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Abstract—Multiple kernel learning (MKL) provides flexibility
by considering multiple data views and by searching for the
best data representation through a combination of kernels.
Clinical applications of neuroimaging have seen recent upsurge
of the use of multivariate machine learning methods to predict
clinical status. However, they usually do not model structured
information, such as cerebral spatial and functional networking,
which could improve the predictive capacity of the model and
which could be more meaningful for further neuroscientific
interpretation. In this study, we applied a MKL-based approach
to predict prodromal stage of Alzheimer disease (i.e. early
phase of the illness) with prior structured knowledges about the
brain spatial neighborhood structure and the brain functional
circuits linked to cognitve decline of AD. Compared to a set
of classifical multivariate linear classifiers, each one highlighting
specific strategies, the smooth MKL-SVM method (i.e. Lp MKL-
SVM) appeared to be the most powerful to distinguish both very
mild and mild AD patients from healthy subjets.

I. INTRODUCTION

Multivariate machine learning methods are increasingly
used in neuroimaging to detect predictive patterns of a variable
of interest [1]. Contrary to univariate methods, such as voxel-
based morphometry [2], they provide label prediction based on
the information carried by a set of features. Recently, they have
also been exploited to identify, in cerebral anatomical MRI,
spatial distributed structural abnormalities underlying prodro-
mal stage of Alzheimer’s Disease (AD) [3], [4]. Nowadays,
only postmortem histopathological examinations can make AD
diagnosis certain while accurate diagnosis of prodromal AD
is crucial for early therapeutic care of dementia sufferers.

Classical multivariate learning methods analyze all the avail-
able information together in a blind way without considering
well-known constraints inherent to the field, such as the
functionning and structural networking of the brain or some
additional contextual information, such as multiple sources of
input data. Multiple Kernel Learning (MKL) alows to resolve
the learning problem in a more realistic way by managing
the introduction of contextual information under the form of
a linear convex combination of kernels [5]. That is combining
subsets of features or several data modelings (i.e. different
parametrizations of kernel functions), consistent according to a
prior knowledge. Besides attempting to improve the predictive

capacity of the model [6], [4], an important objective of MKL
is to make the interpretation of the results more meaningful
[7].

Based on this idea, we proposed an MKL-based approach
aiming at exploiting both spatial and functional information,
by considering respectively sets of neighboring subcortical
regions of interest (ROIs) and classical functional network
of ROIs, more specifically those with injuries underlying
cognitive decline in AD. We highlighted the benefits of taking
into account structured information by comparing the perfor-
mances of an SVM-based MKL method with those of classical
multivariate linear methods for the prodromal AD (very mild
and mild stages) prediction. Each considered method reflects
a particular strategy in its solution modeling and learning. We
dealt in particular with the impact on the predictive capacity of
two characteristics present in the proposed strategies, through a
set of models comparisons : features interactions modeling and
the level of model complexity. Moreover, making use of linear
methods and kernels yields to easy-to-interpret models, giving
us good intel on the predictive MRI patterns for prodromal
AD and enabling us to visualize these anatomical predictive
patterns.

This paper is organised as follows. The general framework
of this study is described in Section II. Then, our main
contribution is detailed in Section III, giving the description
of the conducted experiments. Finally, the performances of the
learning methods are compared and analyzed in Section IV.
A discussion related to these results and further perspectives
are given in Section V.

II. MATERIALS AND METHODS

Data: the data used for the experiments presented in
this paper come from the cross-sectional dataset of the
Open Access Series of Imaging Studies (OASIS) (www.oasis-
brains.org), a neuroimaging database freely available to
the scientific community. This dataset contains T1-weighted
magnetization-prepared rapid gradient echo (MP-RAGE) scans
for 416 subjects aged from 18 to 96 years, male and female,
and all right-handed [8]. The Alzheimer dementia stage is
characterized using the Clinical Dementia Rating (CDR) scale



that rates gradual onset and progression of decline in memory,
cognitive and functional domains [9]. A CDR equal to 0.5, 1
and 2 corresponds to very-mild (or MCI), mild and moderate
AD patients, respectively. A CDR equal to 0 corresponds to
healthy subjects.

Neuroscientists being mainly interested in understanding
AD at the region level, we decided to analyse the whole-brain
subcortical anatomy instead of the classical whole brain voxel-
based approach. Hence, we tested our methods on a dataset
containing volumes of 43 subcortical regions automatically
extracted with the Freesurfer software [10]. To take account
for head size differences, subcortical ROIs volumes have been
normalized respectively by the intra-cranial volume (ICV)
[11]. Regarding age, we selected only subjects over 60 years
as the observation of patients with dementia symptoms (i.e.
CDR>0) begins from that age and we have excluded the two
only subjects diagnosed as moderate AD (i.e. CDR=2) because
of their weak representativeness. We thus obtain that the age
range, mean and standard deviation of the different groups
(i.e. control, very mild and mild AD) are relatively similar.
Regarding gender, the three groups do not include the same
proportions of males and females.We thus have rebalanced
the proportions in such a way to have a similar number of
males and females in each group. We also have removed
critical subjects (MMSE<20) in order to restrict the dementia
sufferers group to typical patients.

Learning methods: we first considered the Gaussian
Naive Bayes (GNB), a parametric model assuming features in-
dependance conditionnally to each class. Then, we considered
three methods that model features interactions : Regularized
logistic regression (RLR), Linear Support Vector Machine
(SVM) and Multiple kernel learning based on support vector
machines (MKL-SVM) [12], [5].

Regularized logistic regression (RLR) is based on classical
logistic regression that represents the class-conditional proba-
bilities through a linear function of features. For sparse (resp.
smooth) logistic regression, a L1 (resp.L2) regularization is
introduced through the penalization of the weighted vector w.
The predictive model is then obtained by maximizing the L1

(resp.L2) penalized log-likelihood.
Linear Support vector machine (SVM) is a non-parametric

classifier whose predictive function is based on a linear
kernel function. For binary classification problems, it builds
a separating hyperplane in the samples-space maximizing the
margin between the two classes.

Multiple kernel learning based on Linear SVM (MKL-
SVM) considers a convex linear combination of several basis
kernels, one per subset of features (or distinct data origin). In
our experiment, we have assigned a linear kernel per struc-
tured cluster of anatomical ROIs spatially and functionally
neighboring. We build ten clusters and thus ten linear kernels,
called subkernels, to produce a final single kernel matrix
which is optimized to both find the best separation on the
training set and limit the complexity model (i.e. ||β||ll, where
βk is the subkernel weight of the k-th kernel). For the norm
l of the subkernel weight vector, we tested three levels of

model capacity constraint : sparse with the 1-norm, non-sparse
with the p-norm (l = p ∈]1, 4]) and the extreme case of
non-sparsity with the ∞-norm (l = 106), incrementing all
subkernel weights to one [13]. Kernels are normalized to avoid
biased contributions due to magnitude differences present in
the initial data. The MKL-SVM problem can be written as
follows :

argmin,wk,ε,βk,b

∑
k

||wk||22
βk

+ C
∑m

i=1 εi + ||β||ll,
under the constraints: yi(wT xi + b) ≥ 1− εi,

εi ≥ 0, i = 1, . . . ,m
(1)

Validation algorithm: for purpose of testing and com-
paring several learning methods, the original dataset has been
divided into two subsets : a training dataset containing 2/3 of
the original dataset, the remaining data being used for testing.

For penalized logistic regressions and linear SVM, we
considered a range of powers of ten values spaced between
10−3 and 103 for the penalty parameter C, which has been
optimized with an inner 10-folds cross-validation on the
training sample. Data and kernels normalization for MKL-
SVM have been systematically computed on each training
fold and applied on the corresponding test fold. Moreover,
initial imbalance of the group sizes have been preserved using
stratified re-sampling.

Classification accuracy has been evaluated by averaging sen-
sitivity and specificity scores to take into account imbalanced
groups of subjects. Sensitivity gives the rate of AD sufferers
correctly identified while specificity evaluates the proportion
of healthy patients correctly identified. Statistical significance
of the classifiers accuracy (p-value) has been assessed by
computing the probability that a random classifier following a
binomial distribution with probability 0.5 (B(0.5)) could get
a better score.

III. CONTRIBUTIONS

Given the three groups, we aim at discriminating the fol-
lowing populations :

• Control subjects (CDR=0, 67 subjects) from very mild
dementia sufferers (CDR=0.5, 51 patients). We called this
comparison “CvsVM” for “Control versus Very Mild”.

• Control subjects (CDR=0, 95 subjects) from mild de-
mentia sufferers (CDR=1, 19 patients). We called this
comparison “CvsM” for “Control versus Mild”.

The main objective of this study was to assess the benefits of
introducing structured priors in the learning process, i.e. some
dependencies between features, to detect biomarkers that may
enable an earlier identification of patients in the prodromal
stage of AD. Based on a priori knowledges and using the
MKL-SVM learning method, we have been able to incorporate
contextual information about the spatial and functional neigh-
boring of the brain subcortical ROIs. Therefore, we considered
ten clusters of regions of interest that both corresponded to
some parts of well-known anatomical systems (basal ganglia,
limbic system) and networks of neighboring subcortical struc-
tures [14]. Each cluster has been then associated to a kernel



of the MKL-SVM method.
We first proposed two clusters gathering left- and right-

hemispheric ROIs, called left- and right-Brainstem clusters,
the brainstem representing the main intermediate for motor
and sensory innervation between brain and body. Then, we
formed two additional clusters, called left- and right-Center
clusters, based on the hemispheric neighbors of the medial
part of each lateral ventricle and related to the corpus callosum
that connects the right and the left hemispheres and allows
their communication. An other cluster has been considered
to represent the ventricular system composed of three con-
nected cavities containing cerebrospinal fluid, called Ventricles
cluster. By extending the latter, we created a new cluster
containing structures belonging to the diencephalon, called
Diencephalon cluster. Finally, we introduced two functional
sets of subcortical structures, one corresponding to the basal
ganglia, underlying action selection and reinforcement learn-
ing, and the other related to a part of the limbic system
associated with emotion, memory and motivation. For each
we considered one cluster per hemisphere, thus called left-
and right-Basal ganglia and left- and right-limbic system.

To deal with the benefit of modeling structured priors, we
first compared MKL-SVM with Linear SVM, which consid-
ered all the available features inside a single kernel. Then,
we compared MKL-SVM with RLR, which did not include
structured priors either but has been a goog competitor. We
only compared L1 MKL-SVM with L1 RLR and Lp MKL-
SVM with L2 RLR to confront models with similar type of
regularization.

Given all the tested methods, several comparisons have been
made, which emphasized the impact of different strategies
on podromal AD prediction. In particular, we highlighted the
impact of modeling features interactions in terms of classifica-
tion accuracy by considering the comparison between a GNB
classifier, that does not take into account interactions between
features, with the L2-RLR classifier, the latter being the best
competitor among the set of classical multivariate methods
modeling features interactions.Then, we studied the impact of
model complexity constraints on the classifiers performances
for the regularized logistic regression technique, i.e. sparse
L1 RLR versus smooth L2 RLR, and for the MKL-SVM
approach, i.e. sparse with L1 norm versus non-sparse leading
to a smooth constraint with Lp norm (p > 1) versus non-sparse
leading to a uniform-weighted with L∞ norm.

IV. RESULTS

The purpose of this section is to present the empirical
comparison of the learning methods previously described
based on their performances for the two study cases (CvsM
and CvsVM) given in table 1.

For both experiments, all the tested methods gave significant
accuracies at least for a statistical threshold of 5%. Lp MKL-
SVM method achieved the best accuracies and the highest
sensitivity to discriminate both very mild and mild dementia
sufferers from healthy subjects.

Fig. 1. For each experiment CvsM and CvsVM, the table shows the
classification accuracy of each tested strategy with its statistical significance.
Stars represent significance threshold (*:0.05, **: 0.01, ***: 0.001. Between
brackets, two numbers represent respectively sensibility and specificity scores.
and below is given the model parameter selected by cross-validation.

Modeling of structured a priori knowledges: the MKL-
SVM method, that used multiple kernels to model structured
a priori knowledges, improved the preformances obtained
with the SVM and the RLR methods for both classification
experiments.

Modeling features interactions: the comparison between
the GNB classifier and the L2 RLR, showed that both clas-
sifiers obtained identical results (overall accuracies, senstivity
and specificity scores) for the experiment CvsM.. We noted that
they achieved similar performances with really opposite mod-
eling strategies since the L2 RLR model involved the weakest
penalization (C = 10−3), the amount of information, including
features interactions, being thus only slightly constrained. For
the experiment CvsVM, the L2 RLR classifier outperformed
the GNB classifier. Modeling features interactions is probably
relevant to detect very mild stage of AD because the volumic
losses and enlargements are smaller and and less diffuse in the
brain than in the mild stage of AD. Hence, features interac-
tions provide additional information enabling to improve the
learning process and leading to a better model.

Level of complexity: we first focused on the comparison
of sparse (L1 penalization) and smooth (L2 or Lp penaliza-
tion) models. For both classification experiments, L2 RLR
model (resp. Lp MKL-SVM model) gave higher and more
significant accuracies than L1 RLR model (resp. L1 MKL-
SVM model). We concluded that, with a sparse penalization,
relevant information could be lost since some kernels and all
the features inside (regarding the L1 MKL-SVM) or some
features (regarding the L1 RLR) are set to zero.

Then, by comparing the three levels of penalization for
MKL-SVM (sparse, smooth and uniform), we noted that Lp

MKL-SVM gave the most predictive performances whatever
the classification experiments. A smooth constraint allowed
to detect a more relevant predictive pattern of anatomical
ROIs networks than the extreme cases of sparse and uniform
constraints. Moreover, despite the fact that the Lp MKL-SVM
method involved additional computational cost since we had
to select the regularization norm p, it offered the advantage to
learn the intrinsic complexity of the set of kernels.

Predictive anatomical patterns of Lp MKL-SVM models:
by using only linear kernels, we have been able to visualize the
predictive anatomical pattern since a weight has been assigned
to each kernel and also to each feature. Hence, we computed
the final weight of each subcortical ROI through all the kernels
that highlighted its contribution to the classification decision.



Larger is this weight, larger is its relevance to discriminate
both groups.

For the experiment CvsM, the highest weight of the dis-
criminative pattern (see Figure 2(a)) is located on the fourth
ventricle and average weights to its neighbouring structures,
the cerebellum and brain stem ROIs. This is coherent with
some neuroscientific researches having identified the brainstem
area as being affected by the senile plaques in the early stage
of AD [15].MKL-SVM model also gave an important con-
tribution to the hippocampus, thalamus, amygdala and to the
corpus callosum, which belong to the limbic system essential
for long-term memory and well-known to be impacted in AD
[16].

For the experiment CvsVM, the Lp MKL-SVM model
assigned the highest weight to amygdala structure (in the right
hemisphere) and high and average weights to close structures,
all involved in the limbic system, such as the hippocampus,
a part of corpus callosum, the lateral ventricle and a part
of the thalamus (see Figure 2(b)). The discriminative pattern
is also defined by an important and an average contribution
from the volumes of the pallidum and the putamen structures,
respectively. Both of these structures border and are in relation
to the basal nucleus of meynert (part of the limbic system)
suffereing a loss of cholinergic neurones in the early stage of
AD [17]. Like for the experiment CvsM, the volume changes
of the brainstem and fourth ventricle structures appeared to be
discriminant.

(a) (b)

Fig. 2. 3D map of the discriminative pattern captured by the Lp MKL-
SVM model for the experiments CvsM (a) and CvsVM (b). The weight of
each subcortical ROI computed through all the kernels is represented by a
color (cf palette) in the brain 3D volume that highlighted its contribution to
the classification decision.

V. CONCLUSION AND PERSPECTIVES

The modeling of a priori knowledges with the multiple
kernel learning improved the classification of individuals in
a prodromal stage of Alzheimer’s disease. Moreover, the use
of an optimal smooth Lp norm brought more flexibility than
fixed-norm counterparts by finding the intrinsic complexity of
the given set of kernels. Then, Lp MKL-SVM strategy is an
interesting competitor method to sparse strategies widely used
on real data to improve interpretability. It is also an efficient
technique to test some hypothesis such as the involvement of
a specific anatomical network in AD.

Further works will come to confirm these results on the
sizeable Alzheimer’s disease Neuroimaging Initiative (ADNI)
database and to study the introduction of multi-modality data
and the identification of neuroimaging markers predictive of
the progression of mild cognitive impairement (MCI) to AD
which is an important medical challenge.
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