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Abstract. We introduce a class of multidimensional linear systems with evolution along a
free semigroup. The transfer function for such a system is a formal power series in noncommuting
indeterminates. Standard system-theoretic properties (the operations of cascade/parallel connection
and inversion, controllability, observability, Kalman decomposition, state-space similarity theorem,
minimal state-space realizations, Hankel operators, realization theory) are developed for this class
of systems. We also draw out the connections with the much earlier studied theory of rational and
recognizable formal power series. Applications include linear-fractional models for classical discrete-
time systems with structured, time-varying uncertainty, dimensionless formulas in robust control,
multiscale systems and automata theory, and the theory of formal languages.
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1. Introduction. This paper considers extensions of standard system-theoretic
ideas for classical, discrete-time, input/state/output linear systems to the case of
certain types of generalized i/s/o systems having evolution along a free semigroup (in
place of evolution along the nonnegative integers, as in the classical case). One can
introduce formal frequency-domain techniques and arrive at a transfer function for
such a system which is a formal power series in noncommuting variables; such objects
have occurred in the context of the theory of formal languages and automata theory
as well as in connection with realization theory for bilinear systems in the work of
Schützenberger and Fliess (see [37, 38, 39, 20, 21, 22, 23] and the book [15] for a good
survey).

We first review those aspects of the classical theory which we here generalize to
the setting of systems evolving on a free semigroup; this material can be found in
many books on linear system and control theory (see, e.g., [32, 16]). By a classical,
discrete-time, i/s/o linear system (referred to here simply as a linear system for short)
we mean a system Σ of linear equations of the form

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n)(1.1)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1475

(where n takes values in the integers Z), with x(n) taking values in the state-space H,
u(n) taking values in the input-space U , and y(n) taking values in the output-space
Y, where here we assume that H, U , and Y are finite-dimensional linear spaces over
the field of complex numbers C. It is convenient to identify the operator

U =

[
A B
C D

]
:

[
H
U

]
→

[
H
Y

]
as the connection matrix or colligation of the system Σ. Given such a system Σ, if
one initializes the state x(0) at time 0 and feeds in an input string {u(n)}n∈Z+

, one
can use the system equations (1.1) to uniquely determine the state x(n) for all future
times n > 0 and the output y(n) for the present and all future times n ≥ 0; the result
is

x(n) = Anx(0) +

n−1∑
k=0

An−1−kBu(k),

y(n) = CAnx(0) +

n−1∑
k=0

CAn−1−kBu(k) + Du(n).(1.2)

Application of the Z-transform

{x(n)}n∈Z+
�→

∞∑
n=0

x(n)zn

to the system equations (1.1) converts the expressions (1.2) to the so-called frequency-
domain formulas

x̂(z) = (I − zA)−1x(0) + z(I − zA)−1Bû(z),

ŷ(z) = C(I − zA)−1x(0) + TΣ(z)û(z),(1.3)

where

TΣ(z) = D + zC(I − zA)−1B(1.4)

is a rational L(U ,Y)-valued function analytic at the origin called the transfer function
of the system Σ. Standard system-theoretic ideas in this context are controllability
and observability. The system is said to be controllable if for every h in the state-
space H there is an N < 0 and an input string {u(n)}n=N,N+1,...,−1 so that h is
achievable as h = x(0) if the system is run with initialization x(N) = 0 and input
string {u(n)}n=N,N+1,...,−1. It works out that the system Σ is controllable if and only
if the controllability operator

C =
[
B AB A2B · · ·

]
: �fin(Z−,U) → H

has full rank (equal to dimH).1 Here �fin(Z−,U) denotes the linear space of all U-
valued summable sequences on Z− with finite support. Similarly, the system is said
to be observable if the state-vector h ∈ H can be uniquely recovered from the output
string {y(n)}n≥0 generated by running the system with initial condition x(0) = h and

1By the Cayley–Hamilton theorem, it suffices to consider only the finite matrix Cn =[
B AB · · · An−1B

]
, where n = dimH in place of C.
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1476 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

zero input string u(n) = 0 for n ≥ 0; this in turn is equivalent to the observability
operator

O = coln≥0[CAn] : H → �(Z+,Y)

being injective.2 Here and in what follows, we often use the following notation. If Hi,
H̃j , U , and Y are finite-dimensional linear spaces (for each index i in an index set S

and index j in an index set S̃), and if we are given linear operators Bj : U → H̃j and
Ci : Hi → Y, then colj∈S̃ Bj denotes the block-operator column matrix representing

a linear operator from U into ⊕j∈S̃H̃j given by

colj∈S̃ Bj : u → ⊕j∈S̃Bju,(1.5)

while rowi∈S Ci denotes the block-operator row matrix representing a linear operator
from ⊕i∈SHi into Y given by

rowi∈S Ci : ⊕i∈S hi �→
∑
i∈S

Cihi.(1.6)

We say that the system Σ = (U : (H⊕U) → (H⊕Y)) is a realization of the L(U ,Y)-
valued function T (z) if T (z) = TΣ(z). There is a theory of minimality of a realization Σ
of a given matrix-valued function T (z): we say that the realization Σ = (U : (H⊕U) →
(H⊕Y)) of T (z) is a minimal realization if, whenever Σ′ = (U ′ : (H′⊕U) → (H′⊕Y))
is another realization of T (z), it is the case that dimH ≤ dimH′. It is well known that
Σ is a minimal realization of TΣ(z) if and only if Σ is both controllable and observable;
moreover, given a realization Σ′ = (U ′ : (H′ ⊕ U) → (H′ ⊕ Y)) of T (z) which is not
controllable and/or not observable, the Kalman decomposition of the system leads to a
procedure for cutting down the system to a controllable and observable (and therefore
minimal) realization Σ′

c/o = (Uc/o : H′
c/o ⊕ U → H′

c/o ⊕ Y) for T (z) (TΣ′
c/o

(z) =

TΣ(z) = T (z)). Moreover, the Hankel operator H = O·C : �fin(Z−,U) → �(Z+,Y), the
map of a past input signal to the future output signal generated by the system (under
the assumption that the state is initialized to be zero sufficiently far in the past and
if the input string is taken to be zero on the present and future), plays a prominent
role in realization theory, since H = H

T is also completely determined by the Taylor
coefficients of the transfer function T (z) of Σ. Indeed, a given L(U ,Y)-valued function
T (z) analytic at the origin can be realized as the transfer function T (z) = TΣ(z)
for some finite-dimensional system Σ (1.1) if and only if the Hankel operator H

T

constructed from T (z) has finite rank; in this case there is a canonical construction
(the shift realization) of a minimal realization ΣHT = (UHT : HHT ⊕ U → HHT ⊕ Y)
for T (z) with dimHHT = rank H

T .
The purpose of this paper is to extend these ideas to various classes of systems

with evolution along a free semigroup rather than along Z+ or Z. We consider three
main classes of such systems, which we refer to as (1) noncommutative Fornasini–
Marchesini systems, (2) noncommutative Givone–Roesser systems, and (3) noncom-
mutative full-structured systems. In all these examples, application of a formal Z-
transform to the system equations, under the assumption that the state-vector is ini-
tialized to be zero, gives rise to the input-output map for the system being given by

2Again by the Cayley–Hamilton theorem, for the present classical case one can replace O by the
finite matrix On = colj=0,1,...,n−1[CAj ], where n is the dimension of the state-space H.
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MULTIDIMENSIONAL LINEAR SYSTEMS 1477

multiplication by a formal power series in noncommuting indeterminates (the transfer
function of the system) of the form

TΣ(z) = D + C(I − Z(z)A)−1Z(z)B,(1.7)

where Z(z) is a linear pencil in noncommuting indeterminates z = (z1, . . . , zd). The
particular form of the linear pencil Z(z) is determined by the particular form of the
state equations. For the reader’s convenience, section 2 states the main results in
explicit, concrete form for these particular classes of examples. In section 3 the added
formalism is introduced to describe a general structured noncommutative multidimen-
sional linear system (SNMLS; see Definition 3.7 below). In section 4 we show that
such standard system-theoretic operations as cascade connection, parallel connection,
and system inversion can be carried out in this context. With the formalism from
section 3 in hand, unified proofs are given of the results on controllability, observabil-
ity, Kalman decomposition, state-space similarity, minimality of realizations, Hankel
operators, and construction of minimal realizations in sections 5, 6, 7, 8, 9, 10, and
11, respectively. The final section 12 makes connections of our framework with the
theory of recognizable formal power series presented in [15], developed in the work of
Schützenberger [37, 38, 39] and Fliess [20, 21].

In applications it is sometimes convenient to view the indeterminates as noncom-
muting variables, and a formal power series T (z) =

∑
w∈Fd

Twz
w (where Fd is the

set of all words in the d letters 1, 2, . . . , d and where zw = ziN · · · zi1 if w = iN · · · i1)
as a function δ �→ T (δ) =

∑
w∈Fd

Tw ⊗ δw defined on some domain of noncommuting
operator-tuples δ = (δ1, . . . , δd) (where δw = δiN · · · δi1 , multiplication here given by
operator composition); this calculus of operator-substitution is important for several
of the applications listed below.

Now we mention several areas for applications of the results of this paper.
1. Robust control theory. Formal power series and their realizations appear

prominently in the theory of robust control of classical 1-D (one-dimensional) sys-
tems subject to structured possibly time-varying uncertainty (see [33, 13, 12, 10,
11]). A commonly used model for structured uncertainty in a classical linear, finite-
dimensional, feedback-control system is a so-called linear-fractional model, whereby
the uncertainty is assumed to have a certain block structure which then enters the
nominal plant through a feedback loop. In the case where one considers time-varying
uncertainty, the time-varying input-output operator for the disturbed plant can be
identified with the evaluation of the transfer function TΣ(z) at z = δ, where δ =
(δ1, . . . , δd) is a d-tuple of time-varying operators on �2 parametrizing the time-varying
structured uncertainty. Questions concerning minimality, realizability, and reduction
which we explore here have direct relevance for this application. In a companion paper
[5], we impose an energy balance law on an SNMLS to define the notion of a con-
servative SNMLS and obtain a realization theorem for this class of noncommutative
systems; such conservative (or more generally dissipative) SNMLSs are directly rele-
vant to the robust H∞-control problems discussed in [33]. In the followup paper [6], we
make more explicit the connections of this paper and [5] with linear-fractional models
for structured uncertainty and μ-analysis in the presence of structured time-varying
uncertainty. Conservative SNMLSs of noncommutative Fornasini–Marchesini type ap-
pear also in [7] and [8] in connection with other kinds of problems from multivariable
operator theory. Recent closely related work of Alpay and Kalyuzhny̆ı-Verbovetzkĭı
[1] uses the state-space similarity theorem for noncommutative Givone–Roesser sys-
tems to develop a realization theory for noncommutative rational J-unitary formal
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1478 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

power series, including connections with noncommutative formal reproducing kernel
Pontryagin spaces.

2. Dimensionless linear matrix inequalities. As pointed out in [28, 30], many
formulas occurring in engineering involving matrix quantities have the same form in-
dependent of the size of the matrices. This motivates the study of rational functions
in noncommuting variables and the study of noncommutative positivity domains as-
sociated with such rational expressions. Realizations such as (1.7) are exactly what
is needed to convert (numerically unmanageable) rational matrix inequalities into
(highly manageable) linear matrix inequalities (see [30]). Here one substitutes d-
tuples of symmetric matrices of variable common size for the indeterminates in the
noncommutative rational expression.

3. Wavelet analysis/multiscale systems. There have been some attempts in the
literature (see [14, 2]) to attach a system evolution to multiresolution structure and
multiscale modeling. We expect the setting and results of this paper to have some
connections with the work in [14, 2], but details remain to be worked out.

4. Automata and the theory of formal languages. It has been known for some
time (see [15] and the references there) that formal power series in noncommuting
variables, particularly, recognizable and rational formal power series (see section 12
below), arise naturally in connection with the theory of automata and formal lan-
guages. In this context, the coefficients of the formal power series may come from a
semiring (a ring without subtraction such as the nonnegative integers or the nonneg-
ative rational numbers) rather than operators between two Hilbert spaces, and the
free semigroup may be only a monoid. Roughly, a formal power series is said to be
recognizable if the support set of its coefficients is recognizable. A subset of a free
semigroup (or, more generally, of a monoid) is said to be recognizable, in turn, if it
can be identified with the set of successful paths (from an initial state to a final state)
generated by a finite automaton. Recognizability of a formal power series turns out
to be equivalent to existence of a certain type of realization (see section 12 below).
Many of the familiar results (e.g., realization through a Hankel-matrix construction,
equivalence of minimality of realization with simultaneous controllability and observ-
ability, and a state-space similarity theorem) have been worked out in this automaton
context. Further details can be found in [15, 19, 32]. Our results give a broader
perspective in which to view recognizable formal power series.

5. Commutative multidimensional system theory. We view the “noncommuta-
tive Fornasini–Marchesini systems” introduced here as noncommutative analogues of
the (commutative) Fornasini–Marchesini systems introduced by Fornasini and March-
esini [24] in the multidimensional system theory literature, while the “noncommutative
Givone–Roesser systems” are noncommutative analogues of the (commutative) mul-
tidimensional Givone–Roesser systems appearing in [26, 27, 36]. In what we call the
commutative case (evolution along an integer lattice rather than along a free semi-
group), the theory of controllability, observability, state-space similarity, and reduc-
tion to and construction of a minimal realization of a transfer function is problematic
(see, e.g., [31, 25]). By the results here, however, the situation in the noncommutative
case is much more like the classical 1-D case. A possible direction for future work
is the application of the noncommutative theory as a vehicle for deeper understand-
ing of the commutative case; indeed, the realization theorem in [24] for commutative
Fornasini–Marchesini systems is based on the noncommutative realization theorem
from [20].

In other directions the commutative theory is ahead of the noncommutative the-
ory. We mention the recent work of Ambrozie and Timotin [3] and of the first author

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



MULTIDIMENSIONAL LINEAR SYSTEMS 1479

and Bolotnikov [4], which studies classes of functions with a realization similar to the
type of realizations discussed here (see (3.19)) in a commutative (and conservative)
setting but with resolvent containing a certain polynomial in the frequency variables
rather than just a linear term. In particular, [4] contains a realization result which
generalizes the commutative analogue of the main result of [5]. A nonlinear analogue
of the realization results of [4] would probably demand a nonlinear version of the
Taylor functional calculus (see [41] for a start in this direction). Results on minimal-
ity, controllability, and observability obtained in the present paper for this case of
higher-degree polynomial in the resolvent of the realization could be obtained by first
finding an equivalent system representation having a linear resolvent (or first-order
system equations), or, more directly, by developing a more coordinate-free behavioral
framework for noncommutative system theory (see [35] for the commutative case).

2. Three classes of examples of structured noncommutative multidi-
mensional linear systems. In this section we introduce and state the main results
for the three main examples of SNMLSs. Here the reader can understand the ex-
amples and statements of all the main results without having to confront the added
formalism of the general definition involving an “admissible graph” (see Definition 3.7
below).

2.1. Noncommutative Fornasini–Marchesini systems. For d a positive in-
teger, let Fd be the free semigroup generated by the set of d letters {1, 2, . . . , d}. El-
ements of Fd are words w of the form w = iN iN−1 · · · i1, where ik ∈ {1, 2, . . . , d} for
each k = 1, . . . , N . We include the empty word ∅ as an element of Fd. The semigroup
operation is concatenation: w · w′ = iN iN−1 · · · i1i′N ′i′N ′−1 · · · i′1 if w = iN iN−1 · · · i1
and w′ = i′N ′i′N ′−1 · · · i′1; the empty word ∅ serves as the identity element of the
semigroup Fd. A Fornasini–Marchesini connection matrix UFM is a matrix of the
form

UFM =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ :

[
H
U

]
→

[
⊕d

i=1H
Y

]
.

The associated system equations are

ΣFM :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(1w) = A1x(w) + B1u(w),

...

x(dw) = Adx(w) + Bdu(w),

y(w) = Cx(w) + Du(w) for w ∈ Fd,

(2.1)

where the state x(w) takes values in the state-space H and consists of only one compo-
nent, u(w) takes values in the input-space U , and y(w) takes values in the output-space
Y. We consider this type of system as a noncommutative analogue of the (commuta-
tive) multidimensional linear systems studied by Fornasini and Marchesini (see, e.g.,
[24]). We let z = (z1, . . . , zd) be a collection of d formal noncommuting variables and
consider the formal noncommutative multivariable Z-transform

{x(w)}w∈Fd
�→ x̂(z) :=

∑
w∈Fd

x(w)zw,(2.2)D
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1480 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

where zw = ziN ziN−1
· · · zi1 if w = iN iN−1 · · · i1. Then, as will be seen in more

generality in section 3 (see Example 3.8 and formula (3.20) below), application of the
formal Z-transform to the system (2.1) on Tfuture leads to the representation

x̂(z) = (I − (Zrow(z) ⊗ IH)A)−1x(∅) + (I − (Zrow(z) ⊗ IH)A)−1(Zrow(z) ⊗ IH) ·Bû(z),

ŷ(z) = C(I − (Zrow(z) ⊗ IH)A)−1x(∅) + TΣFM (z)û(z),

(2.3)

where the formal power series TFM
Σ (z) (the transfer function of the noncommutative

Fornasini–Marchesini system ΣFM ) is given by

TΣFM (z) = D + C(I − (Zrow(z) ⊗ IH)A)−1(Zrow(z) ⊗ IH)B

= D + C(I − z1A1 − · · · − zdAd)
−1(z1B1 + · · · + zdBd)

= D +
∑
v∈Fd

d∑
j=1

CAvBjz
vzj ,(2.4)

where we have used the conventions

Zrow(z) ⊗ IH =
[
z1IH · · · zdIH

]
,

Av = AiNAiN−1
· · ·Ai1 if v = iN iN−1 · · · i1.

We now also consider the associated backward system equations

ΣFM
past :

{
x(w) =

∑d
i=1 Aix(wi) +

∑d
i=1 Biu(wi),

y(w) = Cx(w) + Du(w) for w ∈ Fd.
(2.5)

We view the system as running on both the present and future Tfuture := Fd and
on the past Tpast := Fd \ ∅ (where we think of the two appearances of Fd here as
two distinct copies of Fd). The forward equations (2.1) apply for w ∈ Tfuture, while
the backward equations (2.5) apply for wi ∈ Tpast. The noncommutative Fornasini–
Marchesini system ΣFM is said to be FM-controllable if any state-vector h ∈ H can be
achieved as h = x(∅) by running the system on the past Tpast with state-initialization
equal to zero on all locations w ∈ Tpast of sufficiently long length with some input
string {u(w)}w∈Tpast having finite support on the past; this condition turns out to be
equivalent to the Fornasini–Marchesini controllability matrix CFM given by

CFM = rowN=1,2,... rowi1,i2,...,iN∈{1,...,d}[AiNAiN−1
· · ·Ai2Bi1 ](2.6)

having full rank, i.e., having im CFM = H. This fact amounts to the specialization of
the analysis in section 5 to Example 3.8; a direct analysis can be found in [34].

Dually, we say that the noncommutative Fornasini–Marchesini system ΣFM is
FM-observable if the state-vector h ∈ H can be uniquely recovered from the present
and future output string {yi(w)}w∈Tfuture

generated by running the forward system
equations (2.1) of ΣFM with the state initialized by x(∅) = h and with zero input
string on the future (u(w) = 0 for w ∈ Tfuture = Fd). In terms of the system opera-
tors, FM-observability of ΣFM is equivalent to the Fornasini–Marchesini observability
operator OFM being injective, where

OFM = colN=0,1,2,... coli1,i2,...,iN∈{1,...,d}[CAiNAiN−1
· · ·Ai1 ].(2.7)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1481

(Here and elsewhere we interpret AiNAiN−1
· · ·Ai1 to be equal to the identity operator

IH in case N = 0.) This fact follows from specializing the results of section 6 to
Example 3.8 below; again a direct discussion can be found in [34].

The Hankel operator H
FM of the noncommutative Fornasini–Marchesini system

ΣFM is the composition H
FM = OFMCFM : �fin(Tpast,U) → �(Tfuture,Y); the Hankel

operator has the same physical interpretation as in the classical case; H
FM maps a

past input to the corresponding future output of a given system trajectory, under the
assumption that the state has been initialized to zero in the distant past. Matrix
entries of H

FM are given by

H
FM
iN iN−1···i1; i′N′ i

′
N′−1

···i′1 = CAiNAiN−1
· · ·Ai1Ai′

N′Ai′
N′−1

· · ·Ai′2
Bi′1

,(2.8)

where N = 0, 1, 2, . . . , N ′ = 1, 2, . . . , and ik, i
′
k′ ∈ {1, . . . , d} for all k, k′. From the

factorization H
FM = OFMCFM we see that H

FM has finite rank for any (finite-
dimensional) noncommutative Fornasini–Marchesini system. The matrix entries of
H

FM can also be expressed directly in terms of the Taylor coefficients (sometimes
also called Markov parameters) of the transfer function TΣFM (z) =

∑
w∈Fd

Twz
w:

H
FM
v,w = Tvw.(2.9)

This type of Hankel operator is obtained by specializing the Hankel operator dis-
cussed in section 10 to Example 3.8 below; an explicit discussion of this (Fornasini–
Marchesini) case is given in [34].

Given a formal power series T (z) =
∑

w∈Fd
Twz

w in d noncommuting variables

z = (z1, . . . , zd) (where zw = ziN · · · zi1 if w = iN · · · i1 and where z∅ = 1) with
operator-valued coefficients Tw ∈ L(U ,Y), we say that the noncommutative Fornasini–
Marchesini system ΣFM is a (noncommutative Fornasini–Marchesini) realization of
T (z) if T (z) = TΣFM (z). A given (noncommutative Fornasini–Marchesini) realization
ΣFM of T (z) with state-space H is said to be FM-minimal if, whenever ΣFM ′ is
another noncommutative Fornasini–Marchesini realization of T (z) with state-space
H′, then dimH ≤ dimH′. Two noncommutative Fornasini–Marchesini systems ΣFM

and ΣFM ′ with the same input- and output-spaces and connection matrices

UFM =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ :

[
H
U

]
→

[
⊕d

i=1H
Y

]
,

UFM ′ =

[
A′ B′

C ′ D′

]
=

⎡⎢⎢⎢⎣
A′

1 B′
1

...
...

A′
d B′

d

C ′ D′

⎤⎥⎥⎥⎦ :

[
H′

U

]
→

[
⊕d

i=1H′

Y

]

are said to be FM-similar if there is a bijective linear operator Γ: H → H′ such that⎡⎢⎢⎢⎣
Γ

. . .

Γ
IY

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
A′

1 B′
1

...
...

A′
d B′

d

C ′ D′

⎤⎥⎥⎥⎦
[
Γ 0
0 IU

]
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1482 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

The following theorem summarizes the results of Theorems 8.2, 9.1, and 11.1 when
specialized to the case of noncommutative Fornasini–Marchesini systems (Example
3.8).

Theorem 2.1.

(1) Suppose that ΣFM and ΣFM ′ are two noncommutative Fornasini–Marchesini
systems which are both FM-controllable and FM-observable. Then ΣFM and
ΣFM ′ are FM-similar if and only if they realize the same transfer function:

TΣFM (z) = TΣFM′(z).

(2) The noncommutative Fornasini–Marchesini system ΣFM is an FM-minimal
realization of its transfer function TΣFM (z) if and only if ΣFM is both FM-
controllable and FM-observable.

(3) Suppose that T (z) =
∑

w∈Fd
Twz

w is a formal power series in d noncommut-
ing variables z = (z1, . . . , zd) with matrix coefficients Tw ∈ L(U ,Y). Then
T (z) can be realized as the transfer function T (z) = TΣFM (z) of a finite-
dimensional noncommutative Fornasini–Marchesini system ΣFM if and only
if the associated Hankel matrix

H
T = [Tvw]v∈Fd,w∈Fd\{∅}

has finite rank. In this case there is a canonical construction (shift realization)
of a minimal realization with state-space H having dimH = rank H

T .

2.2. Noncommutative Givone–Roesser systems. Just as was done above
for the case of noncommutative Fornasini–Marchesini systems, the domain evolution
for a noncommutative Givone–Roesser system which we discuss now is the free semi-
group Fd on the set of d letters {1, 2, . . . , d} (for d a positive integer). We take the
associated Givone–Roesser connection matrix UGR, however, to have the form

UGR =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 . . . A1d B1

...
...

...
Ad1 . . . Add Bd

C1 . . . Cd D

⎤⎥⎥⎥⎦ :

⎡⎢⎢⎢⎣
H1

...
Hd

U

⎤⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
H1

...
Hd

Y

⎤⎥⎥⎥⎦
for auxiliary state-spaces H1, . . . ,Hd, an input-space U , and an output-space Y (all
finite-dimensional linear spaces for our discussion here). The associated system equa-
tions then are

ΣGR :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(1w) = A11x1(w) + · · · + A1dxd(w) + B1u(w),

...

xd(dw) = Ad1x1(w) + · · · + Addxd(w) + Bdu(w),

y(w) = C1x1(w) + · · · + Cdxd(w) + Du(w),

for w ∈ Fd,(2.10)

where the state x(w) = colj=1,...,d xj(w) at position w ∈ Fd consists of d components
x1(w), . . . , xd(w) with xj(w) taking values in the auxiliary state-space Hj for j =
1, . . . , d; u(w) takes values in the input-space U ; and y(w) takes values in the output-
space Y. In case i, j ∈ {1, . . . , d} with i 
= j we set xi(jw) = 0. We consider this
type of system as a noncommutative analogue of the (commutative) multidimensional
linear systems introduced by Givone and Roesser (see, e.g., [26, 27, 36]). If we apply

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



MULTIDIMENSIONAL LINEAR SYSTEMS 1483

the noncommutative formal Z-transform (2.2) to the system equations (2.10) and
solve, we get

x̂(z) = (I − (Zdiag(z) ⊗ IH)A)−1x(∅) + (I − (Zdiag(z) ⊗ IH)A)−1(Zdiag(z) ⊗ IH)

·Bû(z),

ŷ(z) = C(I − (Zdiag(z) ⊗ IH)A)−1x(∅) + TΣGR(z)û(z),

(2.11)

where the formal power series TΣGR(z) (the transfer function of the noncommutative
Givone–Roesser system ΣGR) is given by

TΣGR(z) = D + C(I − (Zdiag(z) ⊗ IH)A)−1(Zdiag(z) ⊗ IH)B

= D +
[
C1 · · · Cd

]⎛⎜⎝
⎡⎢⎣IH1

. . .

IHd

⎤⎥⎦−

⎡⎢⎣z1A11 · · · z1A1d

...
...

zdAd1 · · · zdAdd

⎤⎥⎦
⎞⎟⎠

−1 ⎡⎢⎣z1B1

...
zdBd

⎤⎥⎦

= D +
∞∑

N=1

∑
i1,...,iN∈{1,...,d}

CiNAiN ,iN−1
AiN−1,iN−2

· · ·Ai2,i1Bi1ziN ziN−1
· · · zi2zi1 ,

(2.12)

where we have used the convention

Zdiag(z) ⊗ IH =

⎡⎢⎣z1IH1

. . .

zdIHd

⎤⎥⎦ .

We now also consider the associated backward system equations

ΣGR
past :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(w) =

∑d
i=1 A1ixi(w1) + B1u(w1),

...

xd(w) =
∑d

i=1 Adixi(wd) + Bdu(wd),

y(w) =
∑d

i=1 Cix(w) + Du(w) for w ∈ Fd.

(2.13)

We follow the same convention as explained above for noncommutative Fornasini–
Marchesini systems and view the system ΣGR as running on both the present and
future Tfuture := Fd and on the past Tpast := Fd \∅, with the forward equations (2.10)
applying for w ∈ Tfuture and the backward equations (2.13) applying for wi ∈ Tpast.
The noncommutative Givone–Roesser system ΣGR is said to be GR-controllable if, for
each i ∈ {1, . . . , d}, any state-vector hi ∈ Hi can be achieved as the ith component
hi = xi(∅) of the state-vector x(∅) at the empty-set location by running the system
on the past Tpast with state-initialization equal to zero on all locations w ∈ Tpast of
sufficiently long length with some input string {u(w)}w∈Tpast having finite support
on the past; this condition turns out to be equivalent to the ith Givone–Roesser
controllability matrix CGR

i given by

CGR
i = rowN=0,1,... rowi1,i2,...,iN∈{1,...,d}[Ai,iNAiN ,iN−1

· · ·Ai2,i1Bi1 ](2.14)

(where the N = 0 term is to be interpreted as simply Bi) having full rank, i.e., having
im CGR

i = Hi for each i = 1, . . . , d. This fact follows by specializing the analysis in
section 5 to Example 3.9 below; a direct discussion is in [34].
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1484 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

Dually, we say that the noncommutative Givone–Roesser system ΣGR is GR-
observable if, for each i = 1, . . . , d, the state-vector hi ∈ Hi can be uniquely recovered
from the present and future output string {y(w)}w∈Tfuture

generated by running the
forward system equations (2.10) of ΣGR with the state initialized by xi(∅) = hi

and xi′(∅) = 0 for i′ 
= i, and with zero input string on the future (u(w) = 0 for
w ∈ Tfuture = Fd). In terms of the system operators, GR-observability of ΣGR is
equivalent to the ith Givone–Roesser observability operator OGR

i being injective for
each i = 1, . . . , d, where

OGR
i = colN=0,1,2,... coli1,i2,...,iN∈{1,...,d}[CiNAiN ,iN−1

AiN−1,iN−2
· · ·Ai1,i].(2.15)

Here the N = 0 term is to be interpreted as simply Ci. All these matters follow
upon specialization of the analysis in section 6 to Example 3.9 below; again, a direct
discussion is in [34].

There are d Hankel operators H
GR,1, . . . ,HGR,d for a noncommutative Givone–

Roesser system ΣGR; namely, for each i = 1, . . . , d,

H
GR,i = OGR

i CGR
i : �fin(Tpast,U) → �(Tfuture,Y).

Each Hankel operator H
GR,i again has a physical interpretation as mapping a past

input to the corresponding future output of a given system trajectory under the
assumption that the state has been initialized to zero in the distant past, but where
the observations are taken only with respect to the ith component xi(∅) of the state
at position ∅. Matrix entries of H

GR,i are given by

H
GR,i
iN iN−1···i1; i′N′ i

′
N′−1

···i′1

= CiNAiN ,iN−1
AiN−1,iN−2

· · ·Ai1,iAi,i′
N′Ai′

N′ ,i
′
N′−1

· · ·Ai′2,i
′
1
Bi′1

,(2.16)

where N ′ = 0, 1, 2, . . . , N = 0, 1, 2, . . . , and ik, i
′
k′ ∈ {1, . . . , d} for all k, k′. Some small

values of N and N ′ in formula (2.16) require special interpretation; for example, for
case N = 0 and N ′ = 0 we interpret (2.16) as giving

H
GR,i
∅;∅ = CiBi.

From the factorization H
GR,i = OGR

i CGR
i we see that H

GR,i has finite rank for each
i = 1, . . . , d for any (finite-dimensional) noncommutative Givone–Roesser system.
The matrix entries of H

GR,i can also be expressed directly in terms of the Tay-
lor coefficients (sometimes also called Markov parameters) of the transfer function
TΣGR(z) =

∑
w∈Fd

Twz
w: indeed,

H
GR,i
v,w = Tviw for v, w ∈ Fd, i ∈ {1, . . . , d}.(2.17)

These details amount to the specialization of section 10 to Example 3.9 below, and
also can be found (in explicit form) in [34].

Given a formal power series T (z) =
∑

w∈Fd
Twz

w in d noncommuting variables

z = (z1, . . . , zd) (where zw = ziN · · · zi1 if w = iN · · · i1 and where z∅ = 1) with
operator-valued coefficients Tw ∈ L(U ,Y), we say that the noncommutative Givone–
Roesser system ΣGR is a (noncommutative Givone–Roesser) realization of T (z) if
T (z) = TΣGR(z). A given (noncommutative Givone–Roesser) realization ΣGR of T (z)
with auxiliary state-spaces H1, . . . ,Hd is said to be GR-minimal if, whenever ΣGR′
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MULTIDIMENSIONAL LINEAR SYSTEMS 1485

is another noncommutative Givone–Roesser realization of T (z) with auxiliary state-
spaces H′

1, . . . ,H′
d, then dimHi ≤ dimH′

i for each i = 1, . . . , d. Two noncommutative
Givone–Roesser systems ΣGR and ΣGR′ with the same input- and output-spaces and
connection matrices

UGR =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 . . . A1d B1

...
...

...
Ad1 . . . Add Bd

C1 . . . Cd D

⎤⎥⎥⎥⎦ :

⎡⎢⎢⎢⎣
H1

...
Hd

U

⎤⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
H1

...
Hd

Y

⎤⎥⎥⎥⎦ ,

UGR′ =

[
A′ B′

C ′ D′

]
=

⎡⎢⎢⎢⎣
A′

11 . . . A′
1d B′

1
...

...
...

A′
d1 . . . A′

dd B′
d

C ′
1 . . . C ′

d D′

⎤⎥⎥⎥⎦ :

⎡⎢⎢⎢⎣
H′

1
...

H′
d

U

⎤⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
H′

1
...

H′
d

Y

⎤⎥⎥⎥⎦
are said to be GR-similar if, for each i = 1, . . . , d, there is a bijective linear operator
Γi : Hi → H′

i such that⎡⎢⎢⎢⎣
Γ1

. . .

Γd

IY

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
A11 · · ·A1d B1

...
...

...
Ad1 · · ·Add Bd

C1 · · ·Cd D

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
A′

11 · · · A′
1d B′

1
...

...
...

A′
d1 · · · A′

dd B′
d

C ′
1 · · · C ′

d D′

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Γ1

. . .

Γd

IU

⎤⎥⎥⎥⎦ .

The following theorem summarizes the results of Theorems 8.2, 9.1, and 11.1 when
specialized to the case of noncommutative Givone–Roesser systems (Example 3.9).

Theorem 2.2.

(1) Suppose that ΣGR and ΣGR′ are two noncommutative Givone–Roesser sys-
tems which are both GR-controllable and GR-observable. Then ΣGR and ΣGR′

are GR-similar if and only if they realize the same transfer function:

TΣGR(z) = TΣGR′(z).

(2) The noncommutative Givone–Roesser system ΣGR is a GR-minimal realiza-
tion of its transfer function TΣGR(z) if and only if ΣGR is both GR-controllable
and GR-observable.

(3) Suppose that T (z) =
∑

w∈Fd
Twz

w is a formal power series in d noncommut-
ing variables z = (z1, . . . , zd) with matrix coefficients Tw ∈ L(U ,Y). Then
T (z) can be realized as the transfer function T (z) = TΣGR(z) of a finite-
dimensional noncommutative Givone–Roesser system ΣGR if and only if the
associated Hankel matrices

H
T,i = [Tviw]v∈Fd,w∈Fd

have finite rank for i = 1, . . . , d. In this case there is a canonical construction
(shift realization) of a minimal realization with auxiliary state-space Hi having
dimHi = rank H

T,i for i = 1, . . . , d.
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1486 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

In fact, it can be shown that a formal power series T (z) =
∑

w∈Fd
Twz

w in
d noncommuting variables z = (z1, . . . , zd) has an FM-realization if and only if it
has a GR-realization if and only if it is rational in the sense of Schützenberger (see
[15]). One of the points of part (3) in Theorems 2.1 and 2.2 is that they identify
the precise Hankel matrices with rank(s) equal to the state-space dimension(s) in
a minimal realization of Fornasini–Marchesini or Givone–Roesser type. We discuss
these connections between various types of noncommutative realizations in section 12.

2.3. Noncommutative full-structured systems. Our last concrete example
of a structured noncommutative system is what we call a “full-structured” system.
For this case it is convenient to assume that the evolution of the system takes place on
the free semigroup generated by a certain Cartesian product set. Denote by Fn,m the
free semigroup generated by the set E = {1, . . . , n} × {1, . . . ,m}. Thus elements of
Fn,m are words w of the form (iN , jN )(iN−1, jN−1) · · · (i1, j1), where ik ∈ {1, . . . , n}
and jk ∈ {1, . . . ,m} for all k = 1, . . . , N . Again we let ∅ denote the empty word which
serves as the identity for the semigroup Fn,m. By a full-structured connection matrix
U full we mean a block-operator matrix of the form

U full =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 · · · A1n B1

...
...

...
Am1 · · · Amn Bm

C1 · · · Cn D

⎤⎥⎥⎥⎦ :

[
⊕n

i=1H
U

]
→

[
⊕m

j=1H
Y

]
,

where H (the state-space), U (the input-space), and Y (the output-space) are finite-
dimensional linear spaces. The associated system equations are

Σfull :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1((1, j) · w) = Aj1x1(w) + · · · + Ajnxn(w) + Bju(w) for j = 1, . . . ,m,
...

xn((n, j) · w) = Aj1x1(w) + · · · + Ajnxn(w) + Bju(w) for j = 1, . . . ,m,

xi((i
′, j) · w) = 0 if i 
= i′,

y(w) = C1x1(w) + · · · + Cnxn(w) + Du(w).

(2.18)

Here the state-vector x(w) = coli=1,...,n xi(w) ∈ ⊕n
i=1H consists of n components

xi(w) for i = 1, . . . , n with each xi(w) in the auxiliary state-space H, while u(w)
assumes values in the input-space U and y(w) assumes values in the output-space Y.
Note that the state trajectory {x(w)}w∈Fn,m

incorporates some redundancy; namely,
if {x(w)}w∈Fn,m = {coli=1,...,n[xi(w)]}w∈Fn,m is the state trajectory satisfying the
state-update equation in (2.18) for some choice of input signal {u(w)}w∈Fn,m , then,
for each fixed j ∈ {1, . . . ,m} and w ∈ Fn,m,

xi((i, j) · w) is independent of i ∈ {1, . . . , n}.(2.19)

We shall work with the redundant form (2.18) of the system equations rather than
rewriting them in a more economical form.

We let z = (z11, . . . , z1m; z21, . . . , z2m; . . . ; zn1, . . . , znm) be a collection of nm
noncommuting variables indexed by {1, . . . , n} × {1, . . . ,m}. Application of the non-
commutative Z-transform (2.2) (with respect to Fn,m rather than with respect to Fd)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1487

converts the system equations to

x̂(z) = (I − (Zfull(z) ⊗ IH)A)−1x(∅) + (I − (Zfull(z) ⊗ IH)A)−1(Zfull(z) ⊗ IH) ·Bû(z),

ŷ(z) = C(I − (Zfull(z) ⊗ IH)A)−1x(∅) + TΣfull(z)û(z),

(2.20)

where TΣfull(z) (the transfer function of the noncommutative full-structured system
Σfull) is given by

TΣfull(z) = D + C(I − (Zfull(z) ⊗ IH)A)−1(Zfull(z) ⊗ IH)B

= D +
[
C1 · · · Cn

]
·

⎛⎜⎝
⎡⎢⎣IH . . .

IH

⎤⎥⎦−

⎡⎢⎣
∑m

j=1 z1jAj1 · · ·
∑m

j=1 z1jAjn

...
...∑m

j=1 znjAj1 · · ·
∑m

j=1 znjAjn

⎤⎥⎦
⎞⎟⎠

−1 ⎡⎢⎣
∑m

j=1 z1jBj

...∑m
j=1 znjBj

⎤⎥⎦
= D +

∞∑
N=1

∑
i1,...,iN∈{1,...,n}

∑
j1,...,jN∈{1,...,m}

CiNAjN ,iN−1
AjN−1,iN−2

· · ·Aj2,i1Bj1

· ziN ,jN ziN−1,jN−1
· · · zi2,j2zi1,j1 ,(2.21)

and where Zfull(z) ⊗ IH is given by

Zfull(z) ⊗ IH =

⎡⎢⎣z1,1IH · · · z1,mIH
...

...
zn,1IH · · · zn,mIH

⎤⎥⎦ .

The backward full-structured system equations have the form

Σfull
past :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(w) =

∑m
j=1

∑n
i′=1 Aj,i′xi′(w · (1, j)) +

∑m
j=1 Bju(w · (1, j)),

...

xn(w) =
∑m

j=1

∑n
i′=1 Aj,i′xi′(w · (n, j)) +

∑m
j=1 Bju(w · (n, j)),

y(w) =
∑n

i=1 Cixi(w) + Du(w),

(2.22)

and are to be interpreted as the evolution of the system on the past Tpast = Fn,m\{∅}.
The noncommutative full-structured system Σfull is said to be full-controllable if, for
each i ∈ {1, . . . , n}, any state-vector h ∈ H can be achieved as the ith component
hi = xi(∅) (for some, or equivalently for any i ∈ {1, . . . , n}) of the state-vector x(∅) at
the empty-set location by running the system on the past Tpast with state-initialization
equal to zero on all locations w ∈ Tpast of sufficiently long length with some input
string {u(w)}w∈Tpast having finite support on the past; this condition turns out to be
equivalent to the full-structured controllability matrix Cfull

1 given by

Cfull
1 = rowN=1,2,... row(1,jN )(iN−1,jN−1)···(i1,j1) : i1,i2,...,iN−1∈{1,...,n};j1, ...,jN∈{1,...,m}

[AjN ,iN−1
AjN−1,iN−2

· · ·Aj2,i1Bj1 ]
(2.23)

having full rank, i.e., having im Cfull
1 = H. These facts amount to the specialization

of the results of section 5 to Example 3.10 below.
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1488 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

Dually, we say that the noncommutative full-structured system Σfull is full-observ-
able if the state-vector h ∈ H can be uniquely recovered from the n-tuple of present and
future output strings {yi(w)}i=1,...,n;w∈Tfuture

(with Tfuture = Fn,m). Here, for each
i = 1, . . . , n, the ith output string {yi(w)}w∈Fn,m is generated by running the forward
system equations (2.18) of Σfull with the state initialized by xi(∅) = hi and xi′(∅) = 0
for i′ 
= i and with zero input string on the future (u(w) = 0 for w ∈ Tfuture = Fn,m).
In terms of the system operators, full-observability of Σfull is equivalent to the full
observability operator Ofull : H → ⊕n

i=1�(Fn,m,Y) being injective, where

Ofull = coli=1,...,n colN=0,1,2,... col(iN ,jN )···(i1,j1) : i1,...,iN∈{1,...,n};j1,...,jN∈{1,...,m}

[CiNAjN ,iN−1
AjN−1,iN−2

· · ·Aj1,i].(2.24)

Here the N = 0 term is to be interpreted as simply Ci. These matters amount to
specialization of the results of section 6 to Example 3.10 below.

We define the Hankel operator H
full for a noncommutative full-structured system

Σfull as the composition H
full = OfullCfull

1 : �fin(T 1
past,U) → ⊕n

i=1�(Tfuture,Y); here
T 1

past denotes a certain subset of the past Tpast, namely, the set of all nonempty words
(i1, j1) · (i2, j2) · · · (iN , jN ) for which the leading letter (i1, j1) has first component i1
equal to 1. Again the Hankel operator H

full has a physical interpretation as mapping
a past input to the corresponding future output of a given system trajectory (in this
case an n-tuple of future outputs) under the assumption that the state has been
initialized to zero in the distant past. Matrix entries of H

full are given by

H
full
i,(iN ,jN )···(i1,j1);(i′N′ ,j

′
N′ ),(i

′
N′−1

,j′
N′−1

)···(i′1,j′1)

= CiNAjN ,iN−1
AjN−1,iN−2

· · ·Aj1,iAj′
N′ ,i

′
N′−1

· · ·Aj′2,i
′
1
Bj′1

,(2.25)

where N = 0, 1, 2, . . . , N ′ = 1, 2, . . . , and ik, i
′
k′ ∈ {1, . . . , n} and jk, j

′
k′ ∈ {1, . . . ,m}

for all k and k′; some small values of N and N ′ in formula (2.25) require special
interpretation; for example, for case N = 0 and N ′ = 1 we interpret (2.25) as giving

H
full
i,∅;(1,j) = CiBj .

From the factorization H
full = OfullCfull

1 we see that H
full has finite rank equal to

the dimension of the state-space in a minimal realization for any (finite-dimensional)
noncommutative full-structured system. The matrix entries of H

full can also be ex-
pressed directly in terms of the Taylor coefficients of the transfer function TΣfull(z) =∑

w∈Fn,m
Twz

w: indeed

H
full
i,v;(1,jN )w′ = Tv·(i,jN )·w′ for v, w′ ∈ Fn,m, i ∈ {1, . . . , n}.(2.26)

These results all fall out of specializing the results of section 10 to Example 3.10
below.

Given a formal power series T (z) =
∑

w∈Fn,m
Twz

w in n · m noncommuting

variables z = (z11, . . . , z1m; · · · ; zn1, · · · , znm) (where zw = ziN ,jN · · · zi1,j1 if w =
(iN , jN ) · · · (i1, j1) and where z∅ = 1) with L(U ,Y)-valued coefficients Tw, we say
that the noncommutative full-structured system Σfull is a (noncommutative full) re-
alization of T (z) if T (z) = TΣfull(z). A given (noncommutative full) realization Σfull

of T (z) with auxiliary state-space H is said to be full-minimal if, whenever Σfull ′ is
another noncommutative full realization of T (z) with auxiliary state-space H, then
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MULTIDIMENSIONAL LINEAR SYSTEMS 1489

dimH ≤ dimH′. Two noncommutative full-structured systems Σfull and Σfull′ with
the same input- and output-spaces and connection matrices

U full =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 · · · A1n B1

...
...

...
Am1 · · · Amn Bm

C1 · · · Cn D

⎤⎥⎥⎥⎦ :

[
⊕n

i=1H
U

]
→

[
⊕m

j=1H
Y

]
,

U full′ =

[
A′ B′

C ′ D′

]
=

⎡⎢⎢⎢⎣
A′

11 · · · A′
1n B′

1
...

...
...

A′
m1 · · · A′

mn B′
m

C ′
1 · · · C ′

n D′

⎤⎥⎥⎥⎦ :

[
⊕n

i=1H′

U

]
→

[
⊕m

j=1H′

Y

]

are said to be full-similar if there is a bijective linear operator Γ: H → H′ such that⎡⎢⎢⎢⎣
Γ

. . .

Γ
IY

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
A11 · · ·A1n B1

...
...

...
Am1 · · ·Amn Bm

C1 · · ·Cn D

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
A′

11 · · · A′
1n B′

1
...

...
...

A′
m1 · · · A′

mn B′
m

C ′
1 · · · C ′

n D′

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Γ
. . .

Γ
IU

⎤⎥⎥⎥⎦ .

The following theorem summarizes the results of Theorems 8.2, 9.1, and 11.1 when
specialized to the case of noncommutative full-structured systems (Example 3.10).

Theorem 2.3.

(1) Suppose that Σfull and Σfull′ are two noncommutative full-structured systems
which are both full-controllable and full-observable. Then Σfull and Σfull′ are
full-similar if and only if they realize the same transfer function:

TΣfull(z) = TΣfull′(z).

(2) The noncommutative full-structured system Σfull is a full-minimal realization
of its transfer function TΣfull(z) if and only if Σfull is both full-controllable and
full-observable.

(3) Suppose that T (z) =
∑

w∈Fn,m
Twz

w is a formal power series in n ·m non-

commuting variables z = (z11, . . . , z1m; . . . ; zn1, . . . , znm) with matrix coef-
ficients Tw ∈ L(U ,Y). Then T (z) can be realized as the transfer function
T (z) = TΣfull(z) of a finite-dimensional noncommutative full-structured sys-
tem Σfull if and only if the associated Hankel matrix

H
T = [Tv·(i,iN )·w]i∈{1,...,n},v∈Fn,m;(1,jN )·w∈Fn,m\{∅}

has finite rank for i = 1, . . . , n. In this case there is a canonical construction
(shift realization) of a minimal realization with state-space H having dimH =
rank H

T .

3. Structured noncommutative multidimensional linear systems: Def-
inition and basic properties. Our general notion of structured noncommutative
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1490 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

multidimensional linear system (SNMLS) will be associated with a graph G. As is
standard, a graph G consists of a set of vertices V together with a set of edges E.
Each edge e ∈ E connects a source vertex s(e) (where s : E → V is the source map) to
a range vertex r(e) (where r : E → V is the range map). We assume throughout that
V and E are finite sets. For our application to SNMLSs, we require a few additional
properties, encoded in the following definition of an admissible graph.

Definition 3.1. We say that the graph G = (V , E, s : E → V , r : E → V ) is
an admissible graph if

(1) the set of vertices V of G has a disjoint partitioning V = S ∪̇R into two
subsets S and R such that each edge e of G has source vertex s(e) ∈ S and
range vertex r(e) ∈ R;

(2) for a given s ∈ S and r ∈ R there is at most one edge e ∈ E connecting s to
r (i.e., at most one edge e with s(e) = s and r(e) = r);

(3) each pathwise-connected component Gk of G is a nondegenerate complete bi-
partite graph; i.e., the vertices of Gk have a partitioning V (Gk) = Sk ∪̇Rk

(with Sk ⊂ S, Rk ⊂ R and both Sk 
= ∅ and Rk 
= ∅) such that for each pair
(s, r) with s ∈ Sk and r ∈ Rk there is exactly one edge e ∈ E with s(e) = s
and r(e) = r.

In other words, conditions (1) and (2) say that G is a bipartite graph. Thus
admissible graphs amount to bipartite graphs having connected path components
which are complete bipartite subgraphs. Thus the set of edges E can be identified
with a subset of the Cartesian product S × R, where S and R are called the source
vertices and range vertices, respectively.

Admissible graphs G have the following intrinsic characterization.
Theorem 3.2. Suppose that we are given finite disjoint sets S, R, and E together

with mappings s : E → S and r : E → R. Associated with these data is a graph G
defined as follows: the vertex set of G is V := S ∪ R, and there exists an edge
connecting v to v′ if and only if there is an e ∈ E either with v = s(e), v′ = r(e) or
with v′ = s(e), v = r(e). Then G is admissible in the sense of Definition 3.1 if and
only if the following conditions hold:

(1) s : E → S is surjective.
(2) r : E → R is surjective.
(3) The map s × r : E → S ×R given by

s × r : e �→ (s(e), r(e))

is injective.
(4) Whenever e1, e2, and e3 are elements of E with r(e1) = r(e2) and s(e1) =

s(e3), then there is an edge e4 in E, with s(e4) = s(e2), and r(e4) = r(e3).
Proof. Let G be an admissible graph with pathwise-connected components equal

to the subgraphs G1, . . . , GK . Since each Gk is a complete bipartite graph by assump-
tion, we have that the vertex set V (Gk) has a disjoint partitioning V (Gk) = Sk ∪̇Rk

for nonempty subsets Sk ⊂ S and Rk ⊂ R, and the edge set E(Gk) of Gk can be
identified with the Cartesian product Sk × Rk (with s(s, r) = s and r(s, r) = r for
s ∈ Sk and r ∈ Rk). As s maps E(Gk) onto Sk and r maps E(Gk) onto Rk for each
k = 1, . . . ,K, we see that s maps E onto S and r maps E onto R. Condition (2) in
Definition 3.1 says that s× r is injective on E. Finally, suppose that e1, e2, e3 ∈ E as
in condition (4). Then r(e1) = r(e2) = r implies that s(e1) and s(e2) are in the same
pathwise-connected component Si of G. On the other hand, s(e1) = s(e3) implies
that s(e3) is also in Si and r(e3) ∈ Ri. The assumption that the pathwise-connected
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MULTIDIMENSIONAL LINEAR SYSTEMS 1491

component Gi is a complete bipartite graph implies that there is an edge e4 connecting
s(e2) to r(e3).

Conversely, suppose that G arises from source vertex function s : E → S and
range vertex function r : E → R satisfying conditions (1)–(4) as in the statement of
the theorem. By definition, the vertex set V is partitioned into two disjoint subsets
S and R such that each edge of G connects an element of S with an element of R or
vice versa; i.e., Definition 3.1(1) holds. Condition (3) in Theorem 3.2 gives Definition
3.1(2). Suppose that s ∈ S and r ∈ R are in the same pathwise-connected component
of the graph G. By the bipartite structure of G, this means that there is a path
e1e2 · · · e2N−1 (necessarily of odd length) connecting s to r:

s(e1) = s, r(e1) = s(e2), r(e2) = s(e3), . . . , r(e2N−2) = s(e2N−1), r(e2N−1) = r.

Without loss of generality we may suppose that we have chosen the shortest such
path. If N > 1, we may use condition (4) to produce a shorter path connecting s
to r. Hence it must be the case that N = 1 and the path consists of a single edge
e ∈ E connecting s to r and hence (s, r). Thus if s ∈ S and r ∈ R are connected
by a path of G, then they are connected by a path of length 1. Condition (1) in the
theorem implies that every s ∈ S is connected to some r ∈ R. We conclude that each
pathwise-connected component of G is a complete bipartite graph; i.e., Definition
3.1(3) is satisfied, and the theorem follows.

If e is an edge in the admissible graph G, then we have the notation s(e) for the
source vertex of e, and r(e) for the range vertex of e. Conversely, given an s ∈ S and
a r ∈ R, there is an edge e connecting s to r (i.e., e ∈ E with s(e) = s and r(e) = r);
exactly one s and r are in the same path-connected component p of G. For v any
vertex of G (either a source vertex or a range vertex) we shall let [v] denote the path-
connected component containing v. Thus s and r are in the same path-connected
component exactly when [s] = [r]. When this is the case, by the admissibility axioms
the edge e connecting s to r is unique. We shall denote this edge by es,r:

es,r determined by s(es,r) = s and r(es,r) = r.(3.1)

Note that es,r is defined for s ∈ S and r ∈ R exactly when [s] = [r].
We associate with each admissible graph G a linear form in noncommuting in-

determinates z = (ze : e ∈ E) indexed by the edge set E of G, as follows. For each
e ∈ E, define a matrix IG,e = [IG,e;s,r]s∈S,r∈R (with rows indexed by S and columns
indexed by R) with matrix entries given by

IG,e;s,r =

{
1 if (s, r) = (s(e), r(e)),

0 otherwise.
(3.2)

We then define the structure matrix ZG(z) associated with each admissible graph G
to be the linear form in the noncommuting indeterminates z = (ze : e ∈ E) given by

ZG(z) =
∑
e∈E

IG,eze.

We are now ready to give examples of admissible graphs with their associated
structure matrices in connection with certain well-known noncommutative multidi-
mensional linear models. We refer to [34] for further details on the motivation and
construction of these models.
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1492 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

Example 3.3 (noncommutative Fornasini–Marchesini structure matrix). In this
case, we take the admissible graph GFM to be a complete bipartite graph having only
one source vertex. Thus we take SFM = {1}, and RFM = EFM = {1, . . . , d} with
sFM (i) = 1, rFM (i) = i, i.e., n = 1,m = d. Thus we have

IGFM ,i =
[
0 · · · 0 1 0 · · · 0

]
,

where 1 is located in the ith slot. Thus, the structure matrix for the noncommutative
Fornasini–Marchesini case is simply given by

ZGFM (z) =

d∑
i=1

IGFM ,izi =
[
z1 · · · zd

]
=: Zrow(z).

Example 3.4 (noncommutative Givone–Roesser structure matrix). In this case,
we take the admissible graph GGR to have d path-connected components, with each
path-connected component containing only one source and one range vertex. Thus,
we take SGR = RGR = EGR = {1, . . . , d} with sGR(i) = i, rGR(i) = i, and thus
n = d = m. We then have

IGGR,i =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where 1 is located at the (i, i)th entry. Therefore, the structure matrix for the non-
commutative Givone–Roesser case has the diagonal form

ZGGR(z) =

d∑
i=1

ziIGGR,i =

⎡⎢⎣z1

. . .

zd

⎤⎥⎦ := Zdiag(z).

Example 3.5 (full matrix block structure matrix). In this case, we take Gfull

to be a general finite, complete bipartite graph. Thus we take S = {1, . . . , n}, R =
{1, . . . ,m}, and E = {(i, j) : i ∈ S, j ∈ R} with sfull(i, j) = i, rfull(i, j) = j, where
d = nm. Then we have

IGfull,(i,j) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where 1 is located at the (i, j)th entry. Thus the structure matrix for this case has
the full-block structure

ZGfull(z) =

⎡⎢⎣z1,1 · · · z1,m

...
...

zn,1 · · · zn,m

⎤⎥⎦ =: Zfull(z).
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MULTIDIMENSIONAL LINEAR SYSTEMS 1493

Note that Example 3.3 amounts to the special case of this example where n = 1.
Example 3.6 (the general structure matrix). Suppose that the admissible graph

G has path-connected components Gk with source vertices Sk = {(k, 1), . . . , (k, nk)},
range vertices Rk = {(k, 1), . . . , (k,mk)}, and edge sets Ek = {(k, i, j) : 1 ≤ i ≤
nk, 1 ≤ j ≤ mk} for k = 1, . . . ,K. Define a graph G to have source vertex set

S = ∪K
k=1Sk = {(k, i) : 1 ≤ k ≤ K, 1 ≤ i ≤ nk},

range vertex set

R = ∪K
k=1Rk = {(k, j) : 1 ≤ k ≤ K, 1 ≤ j ≤ mk},

and edge set

E = ∪K
k=1Ek = {(k, i, j) : 1 ≤ k ≤ K, 1 ≤ i ≤ nk, 1 ≤ j ≤ mk},

with s(k, i, j) = (k, i), r(k, i, j) = (k, j) for (k, i, j) ∈ E. Then the associated structure
matrix ZG(z) is given by

ZG(z) =

⎡⎢⎣Zfull,1(z
1)

. . .

Zfull,K(zK)

⎤⎥⎦ ,

where we let zk denote the (nk ·mk)-tuple of variables zk = (zk,i,j : 1 ≤ i ≤ nk; 1 ≤
j ≤ mk) and where

Zfull,k(z
k) =

⎡⎢⎣ zk,1,1 · · · zk,1,mk

...
...

zk,nk,1 · · · zk,nk,mk

⎤⎥⎦
is as in Example 3.5 for k = 1, . . . ,K. By the definition of an admissible graph as
a graph with path-connected components equal to complete bipartite graphs, we see
that this example amounts to the general case.

To define an SNMLS, in addition to an admissible graph we require a collection
of finite-dimensional linear spaces Hp indexed by each path-connected component p
of G. We often abbreviate the whole collection simply by

H = {Hp : p ∈ P (G)},

where P (G) denotes the set of path-connected components of G. In general, for v ∈ V
we use the notation [v] to denote the path-connected component of G containing v
(whether v be in S or in R). Thus, for each s ∈ S and r ∈ R we have associated
finite-dimensional linear spaces H[s] and H[r], which are distinct only for s and r in
distinct path-connected components of G. In addition, we need a connection matrix
or colligation

U =

[
A B
C D

]
=

[
[Ar,s]r∈R,s∈S colr∈R[Br]
rows∈S [Cs] D

]
:

[
cols∈S H[s]

U

]
→

[
colr∈R H[r]

Y

]
,

(3.3)

where U and Y are linear spaces, here taken also to be finite-dimensional, called the
input-space and output-space, respectively.

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1494 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

We now introduce our notion SNMLS.

Definition 3.7. By an SNMLS, we mean a collection of objects

Σ = (G, H, U),(3.4)

where

(1) G is an admissible graph (called the structure graph of Σ),
(2) H = {Hp : p ∈ P (G)} is a collection of finite-dimensional spaces Hp (called

the auxiliary state-spaces of Σ), and
(3) U is a matrix of the form (3.3) (called the connection matrix or colligation

of Σ).

With any SNMLS we associate an i/s/o linear system with evolution along a free
semigroup as follows. We denote by FE the free semigroup generated by the edge set
E. An element of FE is then a word w of the form w = eN · · · e1, where each er is
an edge of G for r = 1, . . . , N . We denote the empty word (consisting of no letters)
by ∅. The semigroup operation is concatenation: if w = eN · · · e1 and w′ = e′N ′ · · · e′1,
then ww′ is defined to be

ww′ = eN · · · e1e
′
N ′ · · · e′1.

Note that the empty word ∅ acts as the identity element for this semigroup. Equiv-
alently, we may view FE as a homogeneous tree of degree #E + 1 (where #E is
the number of edges of G) with root ∅; this point of view appears in the “multiscale
system theory” in [14].

If Σ = (G, H, U) is an SNMLS, we associate the system equations (with evolution
along FE)

Σ:

⎧⎨⎩ xs(e)(ew) = Σs∈SAr(e),sxs(w) + Br(e)u(w),
xs′(ew) = 0 if s′ 
= s(e),

y(w) = Σs∈SCsxs(w) + Du(w).
(3.5)

Here the state-vector x(w) at position w (for w ∈ FE) has the form of a column vector

x(w) = cols∈S xs(w),

with column entries indexed by the source vertices s ∈ S and with column entry
xs(w) ∈ H[s] (thus x(w) ∈ ⊕s∈SH[s]), while u(w) ∈ U denotes the input at position
w and y(w) ∈ Y denotes the output at position w. Just as in the classical case, if we
specify an initial condition x(∅) ∈ ⊕s∈SH[s] and feed in an input string {u(w)}w∈FE

,
then (3.5) enables us to recursively compute x(w) for all w ∈ FE \ {∅} and y(w) for
all w ∈ FE .

As these systems include the full-structured case discussed in section 2.3 as a spe-
cial case (see Example 3.10 below) where some redundancy occurs in the state-vector
of a system trajectory (see (2.18)), in general some redundancy in the state-vector
occurs for trajectories of a general SNMLS Σ as well. Indeed, the analogue of (2.19)
for this more general setting is the following: if {x(w)}w∈FE

= {cols∈S [xs(w)]}w∈FE

is the state trajectory solving the state-update equation in (3.5) for some choice of
input signal {u(w)}w∈FE

, then necessarily, for each fixed r ∈ R and w ∈ FE ,

xs(es,rw) is independent of s for all s with [s] = [r].(3.6)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1495

It will be convenient for purposes of the matrix manipulations to come that we main-
tain the form (3.5) of the system equations rather than rewriting them in a more
economical form.

The solution of these recursions can be made more explicit as follows. Note first
of all that a consequence of the system equations is that

x(ew) ∈ Hs(e) := cols∈S [δs,s(e)H[s(e)]] for all e ∈ E and w ∈ FE

(where δs,s′ is the Kronecker delta function). Given x(∅) and {u(w)}w∈FE
, we

can solve the system equations (3.5) or (3.10) uniquely for {x(w)}w∈FE\{∅} and
{y(w)}w∈FE

as follows:

xs(eN )(eN · · · e1) =
∑
s∈S

Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e1),sxs(∅)

+

N∑
r=1

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1),(3.7)

where we interpret u(er−1 · · · e1) to be u(∅) when r = 1, and where we set

xs(eNeN−1 · · · e1) = 0 if s 
= s(eN ).

Also,

y(eN · · · e1) =
∑
s∈S

Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e1),sxs(∅)

+
N∑
r=1

Cs(eN )Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1) + Du(eN · · · e1).

(3.8)

This formula must be interpreted appropriately for special cases. As examples, for
the particular cases r = 1 and r = N we have the interpretations

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1)|r=1

= Ar(eN ),s(eN−1) · · ·Ar(e2),s(e1)Br(e1)u(∅),
Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1)|r=N = Br(eN )u(eN−1 · · · e1).

If we set

Δe = is(e)Ar(e),· : ⊕s∈S H[s] → ⊕s∈SH[s],

where is denotes the natural injection h �→ cols′∈S [δs′,sh] of H[s] into ⊕s′∈SH[s′], and
if we use our assumption that xs′(ew) = 0 if s′ 
= s(e), then (3.7) and (3.8) can be
rewritten as

x(w) = Δwx(∅) +
∑

w′,w′′∈FE ,e∈E : w′ew′′=w

Δw′
is(e)Br(e)u(w′′),

y(w) = CΔwx(∅) +
∑

w′,w′′∈FE ,e∈E : w′ew′′=w

CΔw′
is(e)Br(e)u(w′′) + Du(w),(3.9)D
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1496 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

where we use the noncommutative functional calculus

Δv = ΔeN ΔeN−1
· · ·Δe1 if v = eNeN−1 · · · e1 ∈ FE , Δ∅ = IH.

The system equations (3.5) can also be written more compactly in operator-
theoretic form as

Σ:

{
x(ew) = IΣ,eAx(w) + IΣ,eBu(w),
y(w) = Cx(w) + Du(w),

(3.10)

where IΣ;e is a higher-multiplicity version of the coefficient matrices IG,e appearing
in (3.2):

IΣ;e : ⊕r∈R H[r] → ⊕s∈SH[s]

with matrix entries [IΣ;e]s∈S,r∈R given by

[IΣ;e]s,r =

{
IH[s(e)]

= IH[r(e)]
if s = s(e)and r = r(e),

0 otherwise.
(3.11)

Also, just as in the classical case, it is convenient to introduce “frequency-domain”
notation for explicit representation of system trajectories. For any linear space H, we
define the formal noncommutative Z-transform of a sequence of H-valued functions
as a formal power series in several noncommuting indeterminates z = (ze : e ∈ E) as
follows:

{h(w)}w∈FE
�→ ĥ(z) =

∑
w∈FE

h(w)zw,(3.12)

where z∅ = 1, zw = zeN zeN−1
· · · ze1 if w = eNeN−1 · · · e1. Then, applying the Z-

transform to (3.10) gives∑
w∈FE

x(ew)zw = IΣ,eAx̂(z) + IΣ,eBû(z).(3.13)

Multiply (3.13) on the left by ze to get∑
w∈FE

x(ew)zew = zeIΣ,eAx̂(z) + zeIΣ,eBû(z).(3.14)

Summing (3.14) over all edges e ∈ E, we get∑
e∈E

∑
w∈FE

x(ew)zew = ZΣ(z)Ax̂(z) + ZΣ(z)Bû(z),(3.15)

where we have set

ZΣ(z) =
∑
e∈E

zeIΣ,e.(3.16)

Note that the definition of the formal Z-transform yields∑
e∈E

∑
w∈FE

x(ew)zew = x̂(z) − x(∅).
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MULTIDIMENSIONAL LINEAR SYSTEMS 1497

Thus (3.15) becomes

x̂(z) = x(∅) + ZΣ(z)Ax̂(z) + ZΣ(z)Bû(z).(3.17)

Solving (3.17) for x̂(z), we obtain

x̂(z) = (I − ZΣ(z)A)
−1

x(∅) + (I − ZΣ(z)A)
−1

ZΣ(z)Bû(z).(3.18)

Substitution of (3.17) into the formal Z-transform of the output equation of (3.10)
then gives

ŷ(z) = Cx̂(z) + Dû(z)

= C (I − ZΣ(z)A)
−1

x(∅) + TΣ(z)û(z),(3.19)

where we have set

TΣ(z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B(3.20)

equal to the transfer function of the SNMLS Σ, where the inverse is taken in the
algebra L(⊕s∈SH[s])〈〈z〉〉 of formal power series with operator coefficients in the non-
commuting variables z = (ze : e ∈ E). We can write TΣ(z) explicitly as a formal
power series in the form

TΣ(z) = T∅ +

∞∑
N=1

∑
e1,...,eN∈E

Cs(eN )

·Ar(eN ),s(eN−1) · · ·Ar(e2),s(e1)Br(e1)zeN zeN−1
· · · ze2ze1 .(3.21)

Example 3.8 (noncommutative Fornasini–Marchesini system). Here we continue
Example 3.3. As the structure graph G is connected in this case, we assume that we
are given a single finite-dimensional linear space H together with an input-space U
and an output-space Y. Then the structure matrix (3.16) ZFM (z) is the row matrix

ZΣFM (z) =

d∑
j=1

zjIΣFM ,j =
[
z1IH . . . zdIH

]
=: Zrow(z) ⊗ IH,

where

IΣFM ,j =
[
0 · · · 0 IH 0 · · · 0

]
(with nonzero entry in the jth column), and the connection matrix UFM has the form

UFM =

[
A B
C D

]
=

[
colj=1,...,d[Aj ] colj=1,...,d[Bj ]

C D

]
:

[
H
U

]
→

[
⊕d

j=1H
Y

]
.(3.22)

Thus, IΣFM ,jA = Aj , IΣFM ,jB = Bj , and therefore the associated noncommutative
Fornasini–Marchesini system is given by

ΣFM :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(1w) = A1x(w) + B1u(w),

...

x(dw) = Adx(w) + Bdu(w),

y(w) = Cx(w) + Du(w),

(3.23)
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1498 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

i.e., we are in the setting of the noncommutative Fornasini–Marchesini systems dis-
cussed in section 2.1. Since in this case ZΣFM (z)A =

∑d
i=1 ziAi and similarly

ZΣFM (z)B =
∑d

i=1 ziBi, the transfer function TΣFM (z) in (3.20) for the noncom-
mutative Fornasini–Marchesini system has the form given in (2.4).

We remark that any SNMLS can be embedded into a noncommutative Fornasini–
Marchesini system having a certain special form as follows. Given a general SNMLS
Σ = (G,H, U), we associate a Fornasini–Marchesini system

ΣFM = (GFM ,HFM , UFM )

as follows. We let GFM be the unique Fornasini–Marchesini graph having the same
edge set as G: EFM = E. Thus we take the source-vertex set SFM to be SFM = {1},
and the range-vertex set RFM to be RFM = E, with associated source and range
vertex maps sFM and rFM given by sFM (e) = 1 and rFM (e) = e for e ∈ E. We let

HFM = ⊕s∈SH, and we define the connection matrix UFM =
[
AFM BFM

CFM DFM

]
by[

AFM BFM

CFM DFM

]
=

[
cole∈E [AFM

e ] cole∈E [BFM
e ]

C D

]
:

[
HFM

U

]
→

[
⊕e∈EHFM

Y

]
and by

AFM
e = is(e)Ar(e),· : HFM → HFM ,

BFM
e = is(e)Br(e) : U → HFM ,

CFM = C : HFM → Y,

DFM = D : U → Y,

where is(e) : H[s] → cols′∈S H[s′] is the natural injection h �→ cols′∈S δs′,sh. A con-
sequence of formula (3.9) is that Σ and ΣFM associated in this way have the same
system trajectories.

Example 3.9 (noncommutative Givone–Roesser system). Here we continue Ex-
ample 3.4. In this case the structure graph G has d connected components, so we
assume that we give d auxiliary state-spaces H1, . . . ,Hd. The structure matrix (3.16)
then has the diagonal form

ZΣGR(z) =

d∑
j=1

IΣGR,jzj =

⎡⎢⎣z1IH1

. . .

zdIHd

⎤⎥⎦ =: Zdiag(z) ⊗ IH,

where IΣGR,j is a d × d matrix with zero entries except at the (j, j)th entry, where
[IΣGR,j ]j,j = IHj , and the connecting matrix UGR is of the form

UGR =

[
A B
C D

]
=

[
[Aj,i]j,i=1,...,d colj=1,...,d[Bj ]
rowi=1,...,d[Ci] D

]
:

[
⊕d

i=1Hi

U

]
→

[
⊕d

j=1Hj

Y

]
.

(3.24)

Thus,

IΣGR,iA =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...

...
Ai,1 · · · Ai,d

...
...

0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ and IΣGR,iB =

⎡⎢⎢⎢⎢⎢⎢⎣

0
...
Bi

...
0

⎤⎥⎥⎥⎥⎥⎥⎦(3.25)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1499

(where the nonzero row is row i in both expressions), and therefore the noncommu-
tative Givone–Roesser system is given by

ΣGR :

⎧⎪⎨⎪⎩
xi(iw) =

∑
i′∈S Ai,i′xi′(w) + Biu(w) for e ∈ E,

xi′′(iw) = 0 if i′′ 
= i,

y(w) =
∑d

i′=1 Ci′xi′(w) + Du(w),

(3.26)

as stated in section 2.2. Here xi(iw) ∈ Hi for i = 1, . . . , d. The transfer function
TΣGR(z) for the noncommutative Givone–Roesser system then has the form as given
in (2.12).

Example 3.10 (noncommutative full-structured system). Here we continue Ex-
ample 3.5. We assume that the structure matrix G has the form Gfull, as in Example
3.5. As the structure graph Gfull has only one connected component, we need specify
only one auxiliary state-space H for an SNMLS Σ = (Gfull,H, U) with structure graph
Gfull. The structure matrix (3.16) is the full-block operator matrix with each matrix
entry containing one of the variables

ZΣfull(z) =

n∑
i=1

m∑
j=1

IΣfull,(i,j)zi,j =

⎡⎢⎣z1,1IH . . . z1,mIH
...

...
zn,1IH . . . zn,mIH

⎤⎥⎦ =: Zfull(z) ⊗ IH,

where IΣfull,(i,j) is an n×m matrix with zero entries except at the (i, j)th entry, where

[IΣfull,(i,j)]i,j = IH. The connecting operator U full in this case is given by

U full =

[
A B
C D

]
:

[
⊕n

1H
U

]
→

[
⊕m

1 H
Y

]
,

where

A =

⎡⎢⎣A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

⎤⎥⎦ , B =

⎡⎢⎣B1

...
Bm

⎤⎥⎦ , C =
[
C1 · · · Cn

]
,

and the system equations (3.5) assume the form

Σfull :

⎧⎪⎨⎪⎩
xi((i, j) · w) =

∑n
i′=1 Aj,i′xi′(w) + Bju(w),

xi′′((i, j) · w) = 0 if i′′ 
= i,

y(w) =
∑n

i′=1 Ci′xi′(w) + Du(w),

(3.27)

and we are in the setting of the noncommutative full-structured systems discussed
in section 2.3. The transfer function TΣfull(z) for the full-block operator matrix case
then has the form as in (2.21).

Example 3.11 (the general SNMLS system). Here we continue Example 3.6.
Suppose that the admissible graph G is the union of complete bipartite graphs Gk

with source-vertex set Sk = {(k, i) : 1 ≤ i ≤ nk}, range-vertex set Rk = {(k, j) : 1 ≤
j ≤ mk}, and edge set Ek = {(k, i, j) : 1 ≤ i ≤ nk; 1 ≤ j ≤ mk} for k = 1, . . . ,K.
Note that k = 1, . . . ,K labels the set P of path-connected components of G. Let
H = {Hk : k = 1, . . . ,K} denote a specification of a finite-dimensional linear space
for each path-connected component k = 1, . . . ,K, and suppose that Σ = (G,H, U) is
an SNMLS with structure graph G. Then the connection matrix U has the form

U =

[
[Ak′,k] [Bk′ ]
[Ck] D

]
:

[
⊕K

k=1 [⊕nk
i=1Hk]

U

]
→

[
⊕K

k′=1

[
⊕mk′

j=1Hk′
]

Y

]
,
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1500 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

where each Ak′,k, Bk′ , and Ck in turn has the form

Ak′,k = [Ak′,k;j,i]j=1,...,mk′ ;i=1,...,nk
, where Ak′,k;j,i : Hk → Hk′ ,

Bk′ = colj=1,...,mk′ [Bk′,j ], where Bk′,j : U → Hk′ ,

Ck = rowi=1,...,nk
[Ck,i], where Ck,i : Hk → Y.

The structure matrix ZΣ(z) has the block-diagonal form

ZΣ(z) =

⎡⎢⎣Zfull,1(z
1) ⊗ IH1

. . .

Zfull,K(zK) ⊗ IHK

⎤⎥⎦ ,

where zk is the collection of variables zk = {zk,i,j : i = 1, . . . , nk; j = 1, . . . ,mk}
and each Zfull,k(z

k) ⊗ IHk
is a full-block structure matrix (of block size nk × mk),

as in Example 3.10. While the structure matrix splits as the direct sum, the system
trajectories for the whole system Σ in general can be quite complicated since there is
no corresponding splitting for the A matrix generating the system dynamics.

If one substitutes general noncommuting operators δ = (δk,i,j : k = 1, . . . ,K; i =
1, . . . , nk; j = 1, . . . ,mk) for the noncommuting formal variables zk,i,j , then ZΣ(δ) is
the most general structure matrix coming up in μ-synthesis analysis (see [33]). Part
of the advantage of the notion of SNMLS introduced here is the setting thereby given
for proving results in the theory of μ-synthesis in a unified way for a general structure.
We refer to [6] for further details.

4. System operations: Cascade/parallel connection and inversion. Sup-
pose that we are given two SNMLSs

Σ′′ = (G,H′′, U ′′), Σ′ = (G,H′, U ′)

with the same structure graph G and with connection matrices

U ′′ =

[
A′′ B′′

C ′′ D′′

]
:

[
cols∈S H′′

[s]

U ′′

]
→

[
colr∈R H′′

[r]

Y ′′

]
,

U ′ =

[
A′ B′

C ′ D′

]
:

[
cols∈S H′

[s]

U ′

]
→

[
colr∈R H′

[r]

Y ′

]
,

with the property that the output-space for U ′ coincides with the input-space for U ′′:

Y ′ = U ′′.

We then define the cascade connection Σ = Σ′′◦Σ′ of Σ′′ with Σ′ to be the SNMLS Σ =

(G,H, U) with auxiliary state-spaces Hp given by Hp =
[H′′

p

H′
p

]
and with colligation U

given by

U =

[
A B
C D

]
:=

⎡⎣A′′ B′′C ′ B′′D′

0 A′ B′

C ′′ D′′C ′ D′′D′

⎤⎦ :

⎡⎣cols∈S H′′
[s]

cols∈S H′
[s]

U ′

⎤⎦ →

⎡⎣colr∈R H′′
[r]

colr∈R H′
[r]

Y ′′

⎤⎦ .

Here we have identified the space cols∈S

[H′′
[s]

H′
[s]

]
with

[
cols∈S H′′

[s]

cols∈S H′
[s]

]
as well as colr∈R

[H′′
[r]

H′
[r]

]
with

[
colr∈R H′′

[r]

colr∈R H′
[r]

]
in the natural way. In more detail, the colligation coefficients A, B,
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MULTIDIMENSIONAL LINEAR SYSTEMS 1501

C, D are given by

Ar,s =

[
A′′

r,s B′′
rC

′
s

0 A′
r,s

]
:

[
H′′

[s]

H′
[s]

]
→

[
H′′

[r]

H′
[r]

]
, Br =

[
B′′

rD
′

B′
r

]
: U ′ →

[
H′′

[r]

H′
[r]

]
,

Cs =
[
C ′′

s D′′C ′
s

]
:

[
H′′

[s]

H′
[s]

]
→ Y ′′, D = D′′D′ : U ′ → Y ′′.

We note that the cascade connection Σ = Σ′′ ◦ Σ′ has the following interpreta-
tion. Suppose that we are given an initial condition x′(∅) = x′

0 and an input string
{u′(w)}w∈FE

to generate a trajectory {u′(w), x′(w), y′(w)}w∈FE
of Σ′ via the system

equations

Σ′ :

⎧⎨⎩
x′
s(e)(ew) = Σs∈SA

′
r(e),sx

′
s(w) + B′

r(e)u
′(w),

x′
s′(ew) = 0 if s′ 
= s(e),
y′(w) = Σs∈SC

′
sx

′
s(w) + D′u′(w).

(4.1)

We then let x′′(∅) = x′′
0 ∈ H′′ be arbitrary and set u′′(w) = y′(w) to generate a system

trajectory {u′′(w), x′′(w), y′′(w)}w∈FE
of Σ′′, via the system equations

Σ′′ :

⎧⎨⎩
x′′
s(e)(ew) = Σs∈SA

′′
r(e),sx

′′
s (w) + B′′

r(e)u
′′(w),

x′′
s′(ew) = 0 if s′ 
= s(e),
y′′(w) = Σs∈SC

′′
s x

′′
s (w) + D′′u′′(w).

(4.2)

The resulting triple
{
u′(w),

[ x′′(w)

x′(w)

]
, y′′(w)

}
w∈FE

then is a system trajectory of Σ =

Σ′′ ◦ Σ′, and every system trajectory of Σ′′ ◦ Σ′ arises in this way.
The main result concerning cascade connection is that this is the state-space

operation corresponding to multiplication of the corresponding transfer functions.
Theorem 4.1. Let Σ′′ and Σ′ be SNMLSs for which the cascade connection

Σ := Σ′′ ◦ Σ′ is defined as above. Then the transfer function TΣ(z) for Σ is the
product of the transfer functions TΣ′′(z) and TΣ′(z) for Σ′′ and Σ′:

TΣ′′◦Σ′(z) = TΣ′′(z) · TΣ′(z).(4.3)

Proof. We have seen (see (3.19)) that the transfer function TΣ(z) is characterized
by the property that

ŷ(z) = TΣ(z)û(z)

whenever {u(w), x(w), y(w)}w∈FE
is a trajectory of Σ with x(∅) = 0. By the interpre-

tation for the cascade connection Σ′′ ◦ Σ′ given in the preceding paragraph, we know

that {u(w), x(w), y(w)}w∈FE
has the form

{
u′(w),

[ x′′(w)

x′(w)

]
, y′′(w)

}
w∈FE

, where

{u′(w), x′(w), y′(w)}w∈FE

is a trajectory of Σ′ with x′(∅) = 0, where {u′′(w), x′′(w), y′′(w)}w∈FE
is a trajectory

of Σ′′ with x′′(∅) = 0, and where we impose the interconnection law y′(w) = u′′(w).
It therefore follows that

ŷ(z) = ŷ′′(z) = TΣ′′(z)ŷ′(z)

= TΣ′′(z)
(
TΣ′(z)û′(z)

)
= (TΣ′′(z)TΣ′(z)) û(z),
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1502 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

and we conclude that it must be the case that TΣ(z) = TΣ′′(z)TΣ′(z), as asserted. Of
course the result can also be verified by direct computation using the formula (3.20)
for the transfer function in terms of A,B,C,D.

We next define the parallel connection of two SNMLSs as follows. We suppose
that we are given two SNMLSs

Σ′′ = (G,H′′, U ′′), Σ′ = (G,H′, U ′)

with the same structure graph G and with the same input-space U and the same
output-space Y:

U ′′ =

[
A′′ B′′

C ′′ D′′

]
:

[
cols∈S H′′

[s]

U

]
→

[
colr∈R H′′

[r]

Y

]
,

U ′ =

[
A′ B′

C ′ D′

]
:

[
cols∈S H′

[s]

U

]
→

[
colr∈R H′

[r]

Y

]
.

We then define the parallel sum Σ = Σ′′[+]Σ′ of Σ′′ and Σ′ to be Σ = (G,H, U)

with auxiliary state-spaces Hp again equal to the direct sums Hp =
[H′′

p

H′
p

]
and with

connection matrix U given by

U =

⎡⎣A′′ 0 B′′

0 A′ B′

C ′′ C ′ D′′ + D′

⎤⎦ :

⎡⎣cols∈S H′′
[s]

cols∈S H′
[s]

U

⎤⎦ →

⎡⎣colr∈R H′′
[r]

colr∈R H′
[r]

Y

⎤⎦ .

Here again we identify cols∈S

[H′′
[s]

H′
[s]

]
with

[
cols∈S H′′

[s]

cols∈S H′
[s]

]
and colr∈R

[H′′
[r]

H′
[r]

]
with[

colr∈R H′′
[r]

colr∈R H′
[r]

]
in the natural way. In this case the physical interpretation is that

we feed an initial state x′(∅) = x′
0 ∈ cols∈S H′

[s] and an input string {u(w)}w∈FE

into Σ′ to generate a trajectory {u(w), x′(w), y′(w)}w∈FE
of Σ′ along with an initial

state x′′(∅) = x′′
0 ∈ cols∈S H′′

[s] and the same input string (u(w))w∈FE
to generate

a trajectory {u(w), x′′(w), y′′(w)} of Σ′′. We then set y(w) = y′(w) + y′′(w). Then{
u(w),

[ x′′(w)

x′(w)

]
, y(w)

}
w∈FE

is a system trajectory of Σ = Σ′′[+]Σ′, and every trajec-

tory of Σ′′[+]Σ′ is of this form. With this system interpretation, the following result
follows easily along the same lines as the proof of Theorem 4.1.

Theorem 4.2. Suppose that Σ′′ and Σ′ are two SNMLSs for which the parallel
sum Σ := Σ′′[+]Σ′ is defined as above. Then the transfer function TΣ(z) for Σ is the
sum of the transfer functions TΣ′′(z) and TΣ′(z) for Σ′′ and Σ′:

TΣ′′[+]Σ′(z) = TΣ′′(z) + TΣ′(z).(4.4)

Our final system operation is inversion. We suppose that we are given an SNMLS
Σ = (G,H, U) for which the colligation

U =

[
A B
C D

]
:

[
cols∈S H[s]

U

]
→

[
colr∈R H[r]

Y

]
is such that the feedthrough operator D : U → Y is invertible. We then define the
inverse colligation

Σ× = (G,H, U×)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1503

with the same structure graph G and auxiliary state-spaces H = {Hp : p ∈ P (G)} but
with colligation U× given by

U× =

[
A× B×

C× D×

]
=

[
A−BD−1C BD−1

−D−1C D−1

]
:

[
cols∈S H[s]

Y

]
→

[
colr∈R H[r]

U

]
.

The point here is that {y(w), x(w), u(w)}w∈FE
is a system trajectory of U× if and only

if {u(w), x(w), y(w)}w∈FE
is a system trajectory of U ; i.e., system-inversion amounts

to interchange of inputs and outputs. If we then work with system trajectories having
x(∅) = 0, we see that ŷ(z) = TΣ(z)û(z) is equivalent to û(z) = TΣ×(z)ŷ(z). Of course
it is also possible to verify the formal power series identities

TΣ×(z) · TΣ(z) = IU , TΣ(z) · TΣ×(z) = IY

directly by use of the explicit formula (3.20) for the transfer function. In any case,
we record this observation in the following theorem.

Theorem 4.3. Suppose that Σ = (G,H, U) is an SNMLS with colligation

U =

[
A B
C D

]
:

[
cols∈S H[s]

U

]
→

[
colr∈R H[r]

Y

]
having invertible feedthrough operator D : U → Y. Then

TΣ(z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B

is invertible in the space L(U ,Y)〈〈z〉〉 (formal power series in the noncommuting vari-
ables z = (ze)e∈E with coefficients in the space L(U ,Y) of operators from U to Y),
with inverse T−1

Σ (z) ∈ L(Y,U)〈〈z〉〉 given by

T−1
Σ (z) = TΣ×(z) := D−1 −D−1C(I − ZΣ(z)[A−BD−1C])−1ZΣ(z)BD−1.(4.5)

Remark 4.4. For the classical case, there exists a converse to Theorem 4.1; i.e.,
given Σ, it is possible to describe geometrically all possible nontrivial decompositions
of Σ as Σ = Σ′′ ◦Σ′ (see, e.g., [9]). These results can also be extended to more general
linear-fractional decompositions (see [29] and [18]). Presumably such results can also
be worked out for SNMLSs, but we leave this project to another occasion.

5. Reachability and controllability. The building blocks for reachability and
controllability operators are certain operators Ψw : U → Hs associated with any word
w,

Ψw = Ar(eN ),s(eN−1) · · ·Ar(e2),s(e1)Br(e1) if w = eN · · · e1.(5.1)

Note that the word w = eNeN−1 · · · e2e1 can be written, for each r = 1, 2, . . . , N , as
the concatenation

w = w′
rw

′′
r−1,

where we have set

w′
r = eNeN−1 · · · er for r = 1, . . . , N, w′′

r−1 = er−1 · · · e1 for r = 2, . . . , N, w′′
0 = ∅.
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1504 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

From formula (3.7), we see that the s(eN )th component of the state trajectory at
location w = eN · · · e1 for Σ generated by input string {u(v)}v∈FE

with zero initial
condition x(∅) = 0 is given by

xs(eN )(w) =

N∑
r=1

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(w′′
r−1)

=

N∑
r=1

Ψw′
r
u(w′′

r−1).

Just as in the classical case, the indexing is a little more natural if we consider
controllability operators instead. Up to this point we have been considering the system
evolution only on the “future time” Tfuture := FE . We now define the “past time” Tpast

to be a second copy of FE but with the empty word deleted: Tpast := FE \ {∅}. We
emphasize that Tfuture and Tpast are considered to be disjoint sets; given a nonempty
word w in FE , we will specify in the particular context whether it is to be considered
as an element of Tfuture or of Tpast.

Let us now introduce the system evolution on the past, which is given by

Σpast :

{
xs(w) =

∑
e : s(e)=s

∑
s′∈S Ar(e),s′xs′(we) +

∑
e : s(e)=s Br(e)u(we),

y(w) =
∑

s∈S Csxs(w) + Du(w),
(5.2)

or, in aggregate form,

Σpast :

{
x(w) =

∑
e∈E IΣ,eAx(we) +

∑
e∈E IΣ,eBu(we),

y(w) = Cx(w) + Du(w).
(5.3)

This evolution can actually be derived from the forward evolution by doing the change
of “time” variable w′′

r−1 �→ w′
r along each finite path w (where the initial segment w′′

r−1

is viewed as a point in the future Tfuture, while the corresponding final segment w′
r is

viewed as a position in the past Tpast), and then taking a span over paths as was done
above. In this way, the span of all vectors generated at some finite position in the
future from zero initial condition on the state at ∅ over all possible input strings on
Tfuture is transformed into the set of all possible states achieved at time ∅ (the final
point for the past) over all possible finitely supported input strings on the past with
zero state initialization in the distant past.

More precisely, fix a finite word w = eN · · · e1, and assume that we run the system
in the past Tpast using the system equations (5.2) or (5.3) under the assumption that
x(v) = 0 for all v ∈ Tpast with |v| ≥ N , where N is an arbitrary length, and that
u(v) = 0 for all v ∈ Tpast except for those of the form v = w′

r = eN · · · er for some r
with 1 ≤ r ≤ N . Then the s(eN )th component of the resulting state trajectory x(·)
at the location ∅ is

xs(eN )(∅) =

N∑
r=1

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(w′
r)

=

N∑
r=1

Ψw′
r
u(w′

r).
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MULTIDIMENSIONAL LINEAR SYSTEMS 1505

Then the linear space Cw consisting of all vectors xs ∈ Hs achievable as xs(∅) when
the system is run with state set equal to zero in the distant past and with input taken
to be equal to zero except along some left segment of the word w is characterized as

Cw = im Cw,

where the controllability operator associated with the word w is given by

Cw = row
r=1,...,N

Ψw′
r
: �fin(T w

past,U) → H[s],(5.4)

where T w
past = {w′

r : r = 1, . . . , N} ⊂ Tpast.
More generally, we denote by F∞R

E the set of all nonempty words which have a
beginning on the left but are infinite to the right:

F∞R

E = {e1e2 · · · eN · · · : ej ∈ E for j = 1, 2, 3, . . . }.

Fix an infinite word w = e1e2 · · · eN · · · ∈ F∞R

E . Set wN = e1e2 · · · eN equal to the
finite word obtained as the truncation of w after N letters, and define

Cw = rowN=1,2,3,... ΨwN : �fin(T w
past,U) → H[s(LL[w])],

where LL[w] (for w a finite or infinite word) denotes the leading letter of w,

LL[e1e2 · · · eN · · · ] = e1,

and where T w
past = ∪{wN : N = 1, 2, 3, . . . }. Then the image of Cw (as an operator on

�fin(T w
past,U)) is the linear space of all possible states xs(e1) ∈ H[s(e1)] (e1 = LL[w])

arising in the form xs(e1)(∅) from a system trajectory (5.2) under the assumptions
that x(w) = 0 for all words w ∈ Tpast of sufficiently large length and that the input
string {u(w)}w∈Tpast is supported on w1, . . . , wN for some finite N .

It is natural to initialize the state to be zero in the far past but to allow input
strings of arbitrary finite support. Given s ∈ S, we define the controllability operator
Cs as the block row matrix

Cs = row
w∈Tpast with s(LL[w])=s

Ψw : �fin(T s
past,U) → H[s].(5.5)

Here we set

T s
past =

⋃
w∈Tpast with s=s(LL[w])

T w
past.(5.6)

If we define Cs to be the linear space of all vectors xs ∈ Hs achievable as xs = xs(∅)
when we run the system on Tpast with an input string of finite support and with state
initialization set equal to zero at all positions v ∈ Tpast with |v| sufficiently large, then
we have

Cs = im Cs.

Remark 5.1. More generally, we may define an apparently more general con-
trollability operator as follows. For p ∈ P (the set of path-connected components
of the structure graph G associated with the SNMLS Σ (see Definition 3.7)), set
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1506 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

T p
past =

⋃
s:[s]=p T s

past. We define the controllability operator Cp as the block row
matrix

Cp = row
s:[s]=p

Cs : �fin(T p
past,U) → Hp.(5.7)

Then the image of Cp consists of the linear span of all vectors xp ∈ Hp expressible
as xs(∅) (for some s with [s] = p) when the system Σ is run over the past T p

past with
some input string on T p

past of finite support and with state-vector initialized to be zero
at all positions v sufficiently far in the past.

Note, however, from the formula (5.1) for Ψw that Ψw is independent of the value
of s(LL[w]); i.e., if w = eNeN−1 · · · e2e1 and w′ = e′NeN−1 · · · e2e1, then Ψw′ = Ψw,
as long as r(e′N ) = r(eN ). Thus im Cs = im Cp for any s ∈ S with [s] = p.

It will be convenient to make this invariance property more explicit. We define a
bijection w �→ w∧s from T s′

past to T s
past by

w∧s = es,r(eN )eN−1 · · · e1 if w = eNeN−1 · · · e1.(5.8)

Note that es,r(eN ) is well defined as (3.1) whenever it is the case that [s] = [s(eN )](=
[r(eN )]). As observed in the previous paragraph, the controllability-operator building
blocks Ψw given by (5.1) are invariant under this transformation:

for s, s′ ∈ S with [s] = [s′], Ψw = Ψw∧s′ for w ∈ T s
past.(5.9)

For each of the three choices of controllability operator Cw, Cs, and Cp (where
Cp is as in Remark 5.1), we have a corresponding notion of controllability, namely,
the system Σ is X-controllable (where X = F∞R

E (the set of words which are infinite
to the right), X = S or X = P ) if the operator Cx is surjective for all x ∈ X. A
consequence of Remark 5.1, however, is that S-controllability and P -controllability
are equivalent. The notion of controllability most convenient for our purposes here is
the weakest of these, namely P -controllability (or equivalently, S-controllability). We
therefore make the following definition.

Definition 5.2. We say that the SNMLS Σ is structured-controllable or simply
controllable if the operator

Cp : �fin(T p
past,U) → Hp

given by (5.7) is surjective for each path-connected component p of the admissible
graph G associated with Σ, or equivalently (by Remark 5.1), if the operator

Cs : �fin(T s
past,U) → H[s]

given by (5.5) is surjective for each s ∈ S (or equivalently, for some s with [s] = p for
each p ∈ P ).

6. Observability. Analogously, we have a dual array of observability operators,
but with one additional parameter (roughly due to the fact that Tfuture includes the
empty word ∅, while Tpast does not), namely Os,w for each s ∈ S and infinite word
w = e1e2 · · · eN · · · ∈ F∞R

E , Os for each s ∈ S, and Op for each p ∈ P . For w =
e1e2 · · · eN · · · ∈ F∞R

E and s ∈ S, we define Os,w as the block-operator column matrix

Os,w = col
N=0,1,2,...

[Cs(eN )Ar(eN ),s(eN−1) · · ·Ar(e1),s] : H[s] → �(T w
future,Y),(6.1)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1507

where we interpret the formula for the case N = 0 to mean

[Os,w]0 = Cs(6.2)

and where we put T w
future = {(wN )� = eNeN−1 · · · e1 : N = 0, 1, 2, . . . } ⊂ Tfuture. For

any s ∈ S, we define an associated observability operator Os as the column matrix

Os = col
v=eNeN−1···e1∈Tfuture

[Cs(eN )Ar(eN ),s(eN−1) · · ·Ar(e1),s] : H[s] → �(Tfuture,Y),(6.3)

with again the interpretation (6.2) for the case v = ∅ column entry. Finally, for
path-connected component p ∈ P we define an associated observability operator Op

by

Op = col
s∈S : [s]=p

Os : Hp → col
s∈S : [s]=p

�(Tfuture,Y).(6.4)

Clearly, for each infinite word w ∈ F∞R

E , index s ∈ S, and path-connected component
p ∈ P with [s] = p, we have the subspace inclusions

kerOp ⊂ kerOs ⊂ kerOs,w.(6.5)

For each of the cases X = S × F∞R

E , X = S, and X = P , we have a notion of
X-observability: Σ is X-observable if the operator Ox is injective for all x ∈ X. By
the set of inclusions (6.5) we see that we have the chain of implications: S × F∞R

E -
observability implies S-observability, which in turn implies P -observability. Note that
each of these observability notions has a system-theoretic interpretation, as follows:

1. S × F∞R

E -observability means that, for each fixed infinite word w ∈ F∞R

E ,
an initial state xs ∈ H[s] is uniquely determined from the observations y((wN )�) (for
N = 0, 1, 2, . . . ) obtained by letting the system drift with initial condition xs(∅) = xs

and xs′(∅) = 0 for s′ 
= s and with zero input string u(w) = 0 for all w ∈ FE .
2. S-observability means again that, for each s ∈ S, one can detect an initial

state xs ∈ H[s] by the same experiment, but with additional observations, namely
y(v) for all v ∈ FE .

3. P -observability means again that one can detect an initial state xp ∈ Hp but
one must do the experiment described above for S-observability with initial condition
xs(∅) = xp and xs′(∅) = 0 for s′ 
= s for each s ∈ S with [s] = p.

For our notion of observability here, we take the weakest of these notions and
make the following definition.

Definition 6.1. We say that the SNMLS Σ = (G, H, U) is structured-
observable (or simply observable) if the operator Op : Hp → cols∈S : [s]=p �(Tfuture,Y)
given by (6.4) is injective for each p ∈ P .

7. Kalman decomposition. In this section we obtain a Kalman-type decom-
position for SNMLSs; for a good summary of these results for the classical case, we
refer to [16].

Let Σ = (G, H, U) be an SNMLS as in Definition 3.7. For each p ∈ P (the set of
path-connected components of the admissible graph G), we let Cp be the controllability
operator defined by (5.7) and Op be the observability operator defined by (6.4).3 From

3As it is only the images im Cp of the controllability operators Cp which enter in here, by Remark
5.1 without loss of generality one can in all the discussion below replace Cp with Csp for any fixed
choice of sp ∈ S with [sp] = p.
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1508 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

the definitions we see that

Ar,s : im C[s] → im C[r],(7.1)

Ar,s : kerO[s] → kerO[r],(7.2)

kerO[s] ⊂ kerCs,(7.3)

imBr ⊂ im C[r](7.4)

for all r ∈ R and s ∈ S. We introduce a direct-sum decomposition

Hp = Hp,c/o ⊕Hp,c/no ⊕Hp,nc/o ⊕Hp,nc/no(7.5)

according to the following recipe:

1. Set Hp,c/no = im Cp ∩ kerOp.
2. Choose Hp,c/o so that Hp,c/no ⊕Hp,c/o = im Cp.
3. Choose Hp,nc/no such that Hp,c/no ⊕Hp,nc/no = kerOp.
4. Choose Hp,nc/o such that Hp = Hp,c/o ⊕Hp,c/no ⊕Hp,nc/o ⊕Hp,nc/no.

Fix an r ∈ R and an s ∈ S. Note that Ar,s : H[s] → H[r], Br : U → H[r], and
Cs : H[s] → Y, while H[s], and H[r] have the direct-sum decompositions

H[s] = H[s],c/o ⊕H[s],c/no ⊕H[s],nc/o ⊕H[s],nc/no,

H[r] = H[r],c/o ⊕H[r],c/no ⊕H[r],nc/o ⊕H[r],nc/no.

We may therefore represent Ar,s, Br, and Cs as matrices with respect to these direct-
sum decompositions of H[s] and H[r]:

Ar,s =

⎡⎢⎢⎣
Ar,s;c/o,c/o Ar,s;c/o,c/no Ar,s;c/o,nc/o Ar,s;c/o,nc/no

Ar,s;c/no,c/o Ar,s;c/no,c/no Ar,s;c/no,nc/o Ar,s;c/no,nc/no

Ar,s;nc/o,c/o Ar,s;nc/o,c/no Ar,s;nc/o,nc/o Ar,s;nc/o,nc/no

Ar,s;nc/no,c/o Ar,s;nc/no,c/no Ar,s;nc/no,nc/o Ar,s;nc/no,nc/no

⎤⎥⎥⎦ ,

Br =

⎡⎢⎢⎣
Br,c/o

Br,c/no

Br,nc/o

Br,nc/no

⎤⎥⎥⎦ , Cs =
[
Cs,c/o Cs,c/no Cs,nc/o Cs,nc/no

]
.

From (7.1) we see that

Ar,s;nc/o,c/o = 0, Ar,s;nc/o,c/no = 0, Ar,s;nc/no,c/o = 0, Ar,s;nc/no,c/no = 0.

From (7.2) we see that

Ar,s;c/o,c/no = 0, Ar,s;c/o,nc/no = 0, Ar,s;nc/o,c/no = 0, Ar,s;nc/o,nc/no = 0.

From (7.4) we see that

Br,nc/o = 0, Br,nc/no = 0.

From (7.3) we see that

Cs,c/no = 0, Cs,nc/no = 0.
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MULTIDIMENSIONAL LINEAR SYSTEMS 1509

We are therefore left with

Ar,s =

⎡⎢⎢⎣
Ar,s;c/o,c/o 0 Ar,s;c/o,nc/o 0
Ar,s;c/no,c/o Ar,s;c/no,c/no Ar,s;c/no,nc/o Ar,s;c/no,nc/no

0 0 Ar,s;nc/o,nc/o 0
0 0 Ar,s;nc/no,nc/o Ar,s;nc/no,nc/no

⎤⎥⎥⎦ ,

Br =

⎡⎢⎢⎣
Br,c/o

Br,c/no

0
0

⎤⎥⎥⎦ , Cs =
[
Cs,c/o 0 Cs,nc/o 0

]
.(7.6)

This analysis leads us to the following result.
Theorem 7.1. Let Σ = (G,H, U) be an SNMLS. Decompose each Hp as in (7.5)

with resulting decompositions (7.6) for the system matrices Ar,s, Br, and Cs.
(1) Define a reduced SNMLS Σc/o = (G,Hc/o, Uc/o) with auxiliary state-spaces

(Hc/o)p = Hp,c/o as in (7.5) and with connection matrix

Uc/o =

[
Ac/o Bc/o

Cc/o Dc/o

]
:

[
⊕s∈SH[s],c/o

U

]
→

[
⊕r∈RH[r],c/o

Y

]
given by

[Ac/o]r,s = Ar,s;c/o,c/o, [Bc/o]r = Br,c/o, [Cc/o]s = Cs,c/o, Dc/o = D

determined as in (7.6). Then the SNMLS Σc/o is structured-controllable and
structured-observable and has the same transfer function as Σ:

D+C(I−ZΣ(z)A)−1ZΣ(z)B = Dc/o+Cc/o(I−ZΣc/o
(z)Ac/o)

−1ZΣc/o
(z)Bc/o.

(2) Define a reduced system Σc = (G,Hc, Uc) with auxiliary state-spaces

(Hc)p = Hp,c/o ⊕Hp,c/no

with components determined as in (7.5) and with connection matrix

Uc =

[
Ac Bc

Cc Dc

]
:

[
⊕s∈SH[s],c

U

]
→

[
⊕r∈RH[r],c

Y

]
given by

[Ac]r,s =

[
Ar,s;c/o,c/o 0
Ar,s;c/no,c/o Ar,s;c/no,c/no

]
, [Bc]r =

[
Br,c/o

Br,c/no

]
,

[Cc]s =
[
Cs,c/o 0

]
, Dc = D,

with matrix entries determined as in (7.6). Then the SNMLS Σc is struc-
tured-controllable and has the same transfer function as Σ:

D + C(I − ZΣ(z)A)−1ZΣ(z)B = Dc + Cc(I − ZΣc
(z)Ac)

−1ZΣc
(z)Bc.

(3) Define a reduced system Σo = (G,Ho, Uo) with auxiliary state-spaces (Ho)p =
Hp,c/o⊕Hp,nc/o with components determined as in (7.5) and with connection
matrix

Uo =

[
Ao Bo

Co Do

]
:

[
⊕s∈SH[s],o

U

]
→

[
⊕r∈RH[r],o

Y
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1510 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

given by

[Ao]r,s =

[
Ar,s;c/o,c/o Ar,s;c/o,nc/o

0 Ar,s;nc/o,nc/o

]
, [Bo]r =

[
Br,c/o

0

]
,

[Co]s =
[
Cs,c/o Cs,nc/o

]
, Do = D,

with matrix entries determined as in (7.6). Then the SNMLS Σo is struc-
tured-observable and has the same transfer function as Σ:

D + C(I − ZΣ(z)A)−1ZΣ(z)B = Do + Co(I − ZΣo(z)Ao)
−1ZΣo

(z)Bo.

8. State-space similarity theorem. We begin with a definition.
Definition 8.1. Given two SNMLSs Σ = (G,H, U) and Σ′ = (G,H′, U ′) with a

common structure graph G and with common input- and output-spaces, so that

U =

[
A B
C D

]
:

[
⊕s∈SH[s]

U

]
→

[
⊕r∈RH[r]

Y

]
,

U ′ =

[
A′ B′

C ′ D′

]
:

[
⊕s∈SH′

[s]

U

]
→

[
⊕r∈RH′

[r]

Y

]
,

we say that Σ and Σ′ are similar (via a state-space similarity) if there is a collection
Γ = {Γp : p ∈ P} of bijective linear operators Γp : Hp → H′

p (for each path-connected
component p of G) such that[(

⊕r∈RΓ[r]

)
0

0 IY

] [
A B
C D

]
=

[
A′ B′

C ′ D′

] [(
⊕s∈SΓ[s]

)
0

0 IU

]
.(8.1)

It is an easy computation to see that two systems Σ and Σ′ have the same transfer
functions if they are similar. On the other hand, Theorem 7.1 is not true in gen-
eral, since an SNMLS Σ which is not already structured-controllable and structured-
observable cannot be similar to its structured-controllable/structured-observable part,
as in this case necessarily dimHp,c/o < dimHp for some p. The next theorem gives
the converse under a controllability/observability hypothesis.

Theorem 8.2. Suppose that Σ = (G,H, U) and Σ′ = (G,H′, U ′) are two
SNMLSs with a common structure graph G and common input- and output-spaces
U and Y. Assume that both Σ and Σ′ are structured-controllable and structured-
observable. Then Σ and Σ′ are similar; i.e., there are bijective linear maps Γp : Hp →
H′

p for each path-connected component p of G such that (8.1) holds if and only if Σ
and Σ′ have the same transfer function

TΣ(z) = TΣ′(z).

Moreover, in this situation the collection of state-space similarity operators

Γp : H[p] → H′
[p]

implementing the similarity between Σ and Σ′ is unique.
Proof. We have already observed that in general two systems which are simi-

lar have the same transfer function. It remains to show the following: under the
assumption that Σ and Σ′ are structured-controllable and structured-observable, if
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MULTIDIMENSIONAL LINEAR SYSTEMS 1511

TΣ(z) = TΣ′(z), then Σ and Σ′ are similar. From the expression (3.21) for the trans-
fer function, we see that the hypothesis that TΣ(z) = TΣ′(z) amounts to the assertion
that

Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)

= C ′
s(eN )A

′
r(eN ),s(eN−1)

A′
r(eN−1),s(eN−2)

· · ·A′
r(e2),s(e1)

B′
r(e1)

(8.2)

for all nonempty words w = eNeN−1 · · · e1 ∈ FE , with the interpretation

Cs(e1)Br(e1) = C ′
s(e1)

B′
r(e1)

(8.3)

in case w = e1 has length 1 together with

D = D′(8.4)

corresponding to the case w = ∅. Recalling the definitions (6.3) and (5.1), we see
immediately from (8.2) and (8.3) that

[Os]vCw = [O′
s]vC′

w(8.5)

whenever s ∈ S, v ∈ Tfuture, and w ∈ T s
past. By the same type of argument as that

appearing in Remark 5.1, in fact (8.5) holds for each s ∈ S, v ∈ Tfuture, and w ∈ T s′

past

for any s′ ∈ S in the same path-connected component as s (i.e., with [s′] = [s]); indeed,
if w = ew′ ∈ T s

past, there is a unique adjustment e′ ∈ E of e so that w′ = e′w′ ∈ T s′

past,
Cw′ = Cw, and also C′

w′ = C′
w. Hence the equality (8.5) with w ∈ T s

past implies the

equality (8.5) with w ∈ T s′

past for any s′ with [s′] = [s] as well.
We attempt to define Γp : Hp → H′

p by

Γp : Ψwu �→ Ψ′
wu for u ∈ U and w ∈ FE with [r(LL[w])] = sp,(8.6)

where Ψw and Ψ′
w are given by (5.1) and where sp ∈ S is any choice of source vertex

with [sp] = p. Note that a consequence of Remark 5.1 is that we can always adjust
LL[w] to achieve s(LL[w]) = sp (for any fixed choice of sp ∈ S with [sp] = p) without
affecting im Ψw and im Ψ′

w. Explicitly, we have

Γp : Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)u

�→ A′
r(eN ),s(eN−1)

A′
r(eN−1),s(eN−2)

· · ·A′
r(e2),s(e1)

B′
r(e1)

u,(8.7)

where w = eNeN−1 · · · e1 ∈ FE and where eN is normalized so that s(eN ) = sp with
the interpretation

Γp : Br(e1)u �→ B′
r(e1)

u(8.8)

in case w = e1 (with s(e1) = sp) has length 1. We then extend Γp to

Dsp = span{Ψwu : w ∈ T sp
future with s(LL[w]) = sp, u ∈ U}(8.9)

by linearity, where we set

T sp
future = {w ∈ FE \ {∅} : s(LL[w]) = sp}.

We first wish to check that Γp is well defined. We must therefore show the
following: given a map w �→ uw from T sp

future to U with finite support (so uw = 0 for
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1512 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

all but finitely many words w ∈ T sp
future) such that

∑
w∈T sp

future
Ψwuw = 0, it follows

that
∑

w∈T sp
future

Ψ′
wuw = 0. Since

∑
w∈T sp

future
Ψwuw = 0, we then also have

Op ·
∑

w∈T sp
future

Ψwuw = 0.(8.10)

From the definition of Op, equation (8.10) in turn means that

Os ·
∑

w∈T sp
future

Ψwuw = 0 for each s ∈ S with [s] = p.(8.11)

From the extended domain of validity of (8.5) explained above, (8.11) immediately
implies

O′
s ·

∑
w∈T sp

future

Ψ′
wuw = for each s ∈ S with [s] = p.(8.12)

By the assumption that Σ′ is structured-observable, we know that O′
p is injective.

Hence we see from (8.12) that ∑
w∈T sp

future

Ψ′
wuw = 0.

We conclude that Γp is well-defined on its domain Dsp (see (8.9)), as wanted.
Since Σ by hypothesis is structured-controllable, we see that in fact Dsp = Hp,

and hence Γp is defined on all of Hp. Similarly, since Σ′ is structured-controllable, we
see that Γp(Hp) is equal to all of H′

p, i.e., that Γp is surjective.

It remains to see that Γp is injective; i.e., given a map w �→ uw from T sp
future to U

with finite support such that
∑

w∈T sp
future

Ψ′
wuw = 0, it follows that

∑
w∈T sp

future
Ψwuw = 0.

This follows by the same argument as in the proof that Γp is well defined, with the
roles of Σ and Σ′ interchanged. We conclude that (8.6) extends by linearity to define
a bijective linear transformation from Hp onto H′

p.
It remains now only to check that Γ = {Γp : p ∈ P} satisfies (8.1). This amounts

to verifying

Γ[r]Ar,s = A′
r,sΓ[s],(8.13)

Γ[r]Br = B′
r,(8.14)

Cs = C ′
sΓ[s],(8.15)

D = D′.(8.16)

Note that (8.16) follows immediately from (8.4), while (8.14) follows from (8.8). By
the structured-controllability hypothesis on Σ, to show (8.13) and (8.15) it suffices to
show

Γ[r]Ar,sAr(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)

= A′
r,sΓ[s]Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1),

(8.17)

CsAr(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)

= C ′
sΓ[s]Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1) if [s] = [r(eN )]

(8.18)D
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MULTIDIMENSIONAL LINEAR SYSTEMS 1513

for all words w = eNeN−1 · · · e1 ∈ T sp
future (with proper interpretation for N = 1) for

each p ∈ P . Note that (8.17) is an immediate consequence of the definition (8.6)
of Γp together with the completeness of the path-connected components of G, while
(8.18) follows from the definition (8.6) combined with the completeness of the path-
connected components of G and the equality of moments (8.2) and (8.3).

As for the last statement in Theorem 8.2, suppose that Γ′
p : Hp → H′

p is any other
linear isomorphism between Hp and H′

p so that (8.1) is satisfied. Then a consequence
of (8.1) is that necessarily Γ′

p must also satisfy (8.6) (with Γ′
p in place of Γp). By the

first part of the proof, Γ′
p = Γp for all p ∈ P , and the uniqueness assertion in Theorem

8.2 follows as well. This completes the proof of Theorem 8.2.

9. Minimal state-space realizations. Suppose that we are given an admissi-
ble graph G together with a formal power series

T (z) =
∑

w∈FE

Twz
w

in the noncommuting variables z = {ze : e ∈ E} (where E is the edge set of G)
with coefficients Tw in the space L(U ,Y) of linear operators between the (finite-
dimensional) linear spaces U and Y. We say that the SNMLS Σ = (G,H, U) (with
structure graph equal to G) is a G-structured realization for T (z) if T (z) is equal to
the transfer function of Σ, i.e., if

T∅ = D, TeNeN−1···e1 = Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1),

where the connection matrix U for Σ has the form

U =

[
A B
C D

]
=

[
[Ar,s] [Br]
[Cs] D

]
:

[
⊕s∈SH[s]

U

]
→

[
⊕r∈RH[r]

Y

]
.

We say that the SNMLS Σ is a structured-minimal realization for T (z) if dimH′
p ≥

dimHp for each path-connected component p of G whenever Σ′ = (G,H′, U ′) is
another G-structured realization for T (z). The following theorem establishes the
equivalence of structured-minimality with simultaneous structured-controllability and
structured-observability for G-structured realizations of a given formal power series
T (z).

Theorem 9.1. Suppose that Σ = (G,H, U) is a G-structured realization for
the formal power series T (z) =

∑
w∈FE

Twz
w. Then Σ is a G-structured minimal

realization for T (z) if and only if Σ is both structured-controllable and structured-
observable (with structure graph G).

Proof. Suppose first that Σ = (G,H, U) is a structured-controllable and structured-
observable realization of T (z) and that Σ′ = (G,H′, U ′) is another structured real-
ization of T (z) (with the same structure graph G). By part (1) of Theorem 7.1,
we may cut the realization Σ′ down to a structured-controllable and structured-
observable realization Σ′

c/o = (G,H′
c/o, U

′
c/o) for T (z); as part of the construction

we have dimH′
p ≥ dimH′

p,c/o for each p ∈ P . We now have that Σ = (G,H, U) and

Σ′
c/o = (G,H′

c/o, U
′
c/o) are both structured-controllable and structured-observable re-

alizations of the same formal power series T (z). By the state-space-similarity theo-
rem (Theorem 8.2), it follows that Σ and Σ′

c/o are similarvia a state-space similarity
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1514 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

Γ = {Γp : Hp → H′
p,c/o : p ∈ P}. In particular,

dimHp = dimH′
p,c/o ≤ dimH′

p.

As Σ′ was any other G-structured realization of T (z), it follows that Σ is a G-
structured minimal realization, as wanted.

Conversely, suppose that Σ is G-structured minimal. By part (1) of Theorem 7.1,
we may cut Σ down to a structured-controllable and structured-observable realization
Σc/o = (G,Hc/o, Uc/o) of the same formal power series T (z). By the construction
in Theorem 7.1, Hp,c/o ⊂ Hp. On the other hand, by the assumption that Σ is
G-structured minimal, we must also have dimHp ≤ dimHp,c/o, and hence we must
have the equality Hp = Hp,c/o for each p ∈ P . From the construction in Theorem
7.1, this means that the realization Σ is itself structured-controllable and structured-
observable. This completes the proof of Theorem 9.1.

10. Hankel operators. The notion of a Hankel operator H for a classical
(1-D) linear system is the map which maps a past input sequence to the future out-
put sequence, under the assumptions that the state has been initialized to be zero at
−∞ (roughly speaking) and that the future input string is set equal to zero. Since
the controllability operator C maps the past history to the state at time zero, also
under the assumption that the state has been initialized to be zero at −∞, while
the observability operator O maps a given state at time 0 into the future output
sequence (under the assumption that the future input string is set equal to zero), we
see immediately from the definitions that the Hankel operator H has the factorization
H = O · C. For the case of SNMLSs, we have three notions (Cw for w ∈ F∞R

E , Cs for
s ∈ S, and Cp for p ∈ P ) of controllability operators which map some version of the
past (T w

past, T s
past, or T p

past) to a state at the “present” position ∅, and three notions
of observability operator (Os,w, Os, and Op for (s, w) ∈ S ×F∞R

E , s ∈ S, and p ∈ P )
mapping some state at the present position ∅ to outputs supported on some version
of the future (T w

future, Tfuture, or ∪s : [s]=pTfuture. Thus a priori we have nine distinct
possible notions of a Hankel operator. However, for purposes of the realization theory
to be presented in section 11 below, only some of these are of interest for our purposes
here, so we focus on them.

Let Σ = (G,H, U) be an SNMLS as in Definition 3.7. In this section we shall
fix a cross section p �→ sp ∈ S of the map [·] : S → P mapping a source vertex s
to its associated path-connected component [s] ∈ P ; i.e., for each p ∈ P , we let sp
be a fixed choice of element of S such that [sp] = p. Consider any past input string
{u(v)}v∈T sp

past
. Run the system with this input string u(w) for w ∈ T sp

past and with

the state initialized to be zero in the distant past to generate a state x(∅) with spth
component xsp equal to, say, xp ∈ Hp. For each s ∈ S with [s] = p, we next run the
system with zero inputs u(w) for w ∈ Tfuture and with initial condition xs(∅) = xp,
xs′(∅) = 0 for s′ 
= s. The result is an output sequence {ys(w)}w∈Tfuture

. The resulting
composite map defined as taking the input string {u(v)}v∈T sp

past
to the output string

{ys(w)}s : [s]=p;w∈Tfuture
we define to be the Hankel operator H

p:

H
p = OpCsp : �fin(T sp

past,U) → ⊕s : [s]=p�(Tfuture,Y).(10.1)

Explicitly, H
p is given as a bi-infinite matrix [Hp

(s,w),v] with rows indexed by pairs

(s, w) with s ∈ S with [s] = p and with w ∈ Tfuture, and with columns indexed by
words v ∈ T sp

past. In terms of the connecting operator U for Σ, the matrix entries are
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MULTIDIMENSIONAL LINEAR SYSTEMS 1515

given explicitly as

H
p
(s,w),w′ = Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)

·Ar(e1),sAr(e′
N′ ),s(e

′
N′−1

)Ar(e′
N′−1

),s(e′
N′−2

) · · ·Ar(e′2),s(e
′
1)
Bs(e′1)

= Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Ar(e1),sΨw′(10.2)

if w = eNeN−1 · · · e2e1 and w′ = e′N ′e′N ′−1 · · · e′2e′1, where e′N ′ is constrained to satisfy
s(e′N ′) = sp and where we use (5.1) to define Ψw′ . (We leave it to the reader to give
the appropriate interpretations for these formulas in case N = 1 and/or N ′ = 0.) As
explained in the context of Remark 5.1, if we replace w′ by w′′ of the form

w′′ = es,r(e′
N′ )e

′
N ′−1 · · · e′2e′1

for any s with [s] = [s(e′N ′)] = [r(e′N ′)], then Ψw′′ = Ψw′ . Since v ∈ T sp
past, where

[sp] = p, we may therefore rewrite the Hankel matrix entry as a moment of the
transfer function TΣ(z) =

∑
w∈FE

Twz
w, namely,

H
p
(s,w),v = Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)

·Ar(e1),s(es,r(e′
N′ )

)Ar(es,r(e′
N′ )

),s(e′
N′−1

)Ar(e′
N′−1

),s(e′
N′−2

) · · ·Ar(e′2),s(e
′
1)
Bs(e′1)

= TeNeN−1···e1es,r(e′
N′ )

e′
N′−1

···e′2e′1 ,(10.3)

or, more compactly,

H
p
(s,w),ev′ = Twes,r(e)v′(10.4)

for s ∈ S, w ∈ Tfuture, and ev′ (with e ∈ E with s(e) = sp and v′ ∈ FE) the generic
form of an element in T sp

past.
From the factorization (10.1) and the definitions, it is easy to see the following

result; we shall obtain a converse in section 11 below.
Theorem 10.1. Suppose that the SNMLS Σ (see Definition 3.7) is structured-

controllable and structured-observable. Then the dimension of the auxiliary state-space
Hp (for a given path-connected component p ∈ P of the structure graph) is given by

dimHp = rank H
p.

Proof. By definition, Csp is a surjective map to Hp if Σ is structured-controllable,
and Op is an injective map if Σ is structured-observable. Hence the result is immediate
from the factorization (10.1).

Corollary 10.2. If T (z) is the transfer function of an SNMLS Σ having struc-
ture graph G, then, for each path-connected component p ∈ P , the Hankel operator
H

p formed from G and T (z) according to the formula (10.4) has finite rank.
We shall obtain a converse of Corollary 10.2 in section 11 below.

11. Realization theory for structured noncommutative linear systems.
Suppose that we are given an admissible graph G together with a formal power series
T (z) =

∑
v∈FE

Tvz
v in noncommuting variables z = (ze : e ∈ E) indexed by the

edge set E of G and with coefficients Tv equal to linear operators between the finite-
dimensional linear spaces U and Y. The realization problem associated with the
data set D := (G,T (z)) then is the following: construct a finite-dimensional SNMLS
Σ = (G,H, U) having G as its structure graph and T (z) as its transfer function.

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1516 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

A necessary condition for the problem to have a solution was formulated in Corol-
lary 10.2. The content of the following theorem is the converse. We shall need the
following conventions. Let G be an admissible graph. As in section 10, we assume
that we have specified a cross section p �→ sp of the map [·] : S → P , so sp ∈ S with
[sp] = p for each p ∈ P . For v ∈ T s

past (where T s
past is defined as in (5.6)), we let δv be

the Kronecker delta function on T s
past:

δv(v
′) =

{
1 if v′ = v,

0 if v′ 
= v,
for v′ ∈ T s

past.

Then {δvu : v ∈ T s
past, u ∈ U} is a spanning set for the linear space �fin(T s

past,U).
Recall the notation es,r as in (3.1) for the unique edge connecting s ∈ S to r ∈ R,
defined whenever [s] = [r], and the notation w∧s introduced in (5.8).

Theorem 11.1. Suppose that we are given the data set D = (G,T (z)) for a real-
ization problem as above. For each path-connected component p ∈ P of G, associate
the Hankel matrix H

p as in (10.4). Then the realization problem for the data set D is
solvable if and only if

rank H
p < ∞ for each p ∈ P.(11.1)

When the condition (11.1) holds, a structured-minimal realization of T (z) can be
constructed as follows.

For each p ∈ P , let Hp be the linear space

Hp = �fin(T sp
past,U)/ ker H

p,(11.2)

and set H equal to the collection

H = {Hp : p ∈ P}.

For each source vertex s ∈ S and range vertex r ∈ R of G, define linear operators
Ar,s : H[s] → H[r], B : U → H[r], Cs : H[s] → Y, and D : U → Y by

Ar,s :
[
{u(v)}

v∈T
s[s]
past

]
H[s]

�→
[
{u′(v)}

v∈T
s[r]
past

]
H[r]

, where

u′(v) =

{
u((v′)∧s[s]) if v has the form v = es[r],rv

′ with v′ ∈ T s
past,

0 otherwise,

Br : u �→ [δes[r],ru]H[r]
,

Cs :
[
{u(v)}

v∈T
s[s]
past

]
H[s]

�→ H
[s]
(s,∅),·

(
{u(v)}

v∈T
s[s]
past

)
=

∑
v∈T

s[s]
past

Tv∧su(v),

D = T∅.

(11.3)

Use (11.3) to define a connection matrix U by

U =

[
A B
C D

]
=

[
[Ar,s] [Br]
[Cs] D

]
:

[
⊕s∈SH[s]

U

]
→

[
⊕r∈RH[r]

Y

]
.
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MULTIDIMENSIONAL LINEAR SYSTEMS 1517

Then the collection Σ = (G,H, U) is a structured-minimal SNMLS with structure
graph G having T (z) as its transfer function.

Proof. We have already observed in Corollary 10.2 the necessity of the condition
(11.1) for the realization problem to have a solution. It remains to prove the suffi-
ciency. This follows if we can verify that the formulas (11.2) and (11.3) provide a
structured-minimal realization of T (z) (with structure matrix G).

As a preliminary step, we note that the formula for Ar,s in (11.3) when specialized
to elements of H[s] of the form [δvu]H[s]

(where v ∈ T s[s]
past) assumes the form

Ar,s : [δvu]H[s]
�→ [δes[r],r(v∧s)]H[r]

.(11.4)

Note also that the set {[δvu]H[s]
: v ∈ T s[s]

past, u ∈ U} is a spanning set for Hs[s] since

{δvu : v ∈ T s[s]
past, u ∈ U} is a spanning set for �fin(T s[s]

past,U). Similarly, the action of Cs

in (11.3) on delta functions can be written as

Cs : [δvu]H[s]
�→ Tv∧su for v ∈ T s[s]

past.(11.5)

The verification proceeds via a number of steps.
Step 1: Verification that Ar,s is well defined. Suppose that {u(v)}

v∈T
s[s]
past

repre-

sents the zero element of H[s]; thus H
[s]({u(v)}

v∈T
s[s]
past

) = 0. Explicitly, this means

∑
v∈T

s[s]
past

Twv∧s′u(v) = 0 for all w ∈ FE and s′ ∈ S with [s′] = [s].(11.6)

View {u(v)}
v∈T

s[s]
past

as equal to
∑

v∈T
s[s]
past

δvu(v), and use the formula (11.4) combined

with linearity: the result is

Ar,s :
∑

v∈T
s[s]
past

δvu(v) �→
∑

v∈T
s[s]
past

δes[r],rv
∧su(v) ∈ �(T s[r]

past,U).

For the right-hand side of this formula to represent the zero element of H[r] we need

to have H
[r](

∑
v∈T

s[s]
past

δes[r],rv
∧su(v)) = 0, which is to say

∑
v∈T

s[s]
past

Tw′(es[r],rv
∧s)∧s′′u(v) = 0 for all w′ ∈ FE , s

′′ ∈ S with [s′′] = [r].(11.7)

However, it is easily verified that

(es[r],rv
∧s)∧s′′ = es′′,rv

∧s.

Hence the condition (11.7) amounts to the known condition (11.6) for the special
case w = w′es′′,r and s′ = s. We conclude that the formula for Ar,s in (11.3), or
equivalently the formula (11.4) for Ar,s on a spanning subset of H[r], is well defined.

Step 2: Verification that Cs is well defined. We again suppose that {u(v)}
v∈T

s[s]

past

represents the zero element of H[s], i.e., that (11.6) holds. Then Cs({u(v)}
v∈T [s]

past
) by

definition is the left-hand side of (11.6) for the special case w = ∅ and s′ = s. Hence
Cs is well defined, as wanted.
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1518 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

Step 3: Verification that TΣ(z) = T (z). Let e ∈ E be an edge of G. Use the
formula for Br in (11.3) and the formula (11.5) for the action of Cs on delta functions
to compute

Cs(e)Br(e)u = Cs(e)

([
δes[r(e)],r(e)u

]
H[r(e)]

)
= T(es[r(e)],r(e))

∧s(e)u

= Teu,(11.8)

where the equality (es[r(e)],r(e))
∧s(e) = es(e),r(e) = e follows from the uniqueness condi-

tion (3) in the admissibility conditions (see Definition 3.1) for the graph G. Similarly,
by using the formula for Br in (11.3) combined with (11.4), a straightforward in-
duction argument gives that, for any word w = eNeN−1 · · · e2e1 of length at least
2,

Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)u =
[
δ
w

∧s[r(eN )]u
]
H[r(eN )]

.(11.9)

From the uniqueness axiom in Definition 3.1 we have

(w∧[r(eN )])∧s(eN ) = w if eN = LL[w].(11.10)

Applying the formula (11.5) to (11.9) and using (11.10), we get

Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)u = T(w∧[r(eN )])∧s(eN )u

= Twu for w = eNeN−1 · · · e2e1.(11.11)

Combining (11.8) and (11) with the definition D = T∅ in (11.3), we see that TΣ(z) =
T (z), as wanted.

Step 4: Verification that Σ is structured-controllable. By formula (11.9) we have

Ψwu = [δwu]Hp for w ∈ T sp
past and u ∈ U .

As the set {[δwu]Hp : w ∈ T sp
past and u ∈ U} is spanning for the space

Hp = �fin(T sp
past,U)/ ker H

p,

we conclude that Σ is structured-controllable, as wanted.
Step 5: Verification that Σ is structured-observable. From the various definitions

it is easy to verify that

Os

([
{u(v)}

v∈T
s[s]
past

]
H[s]

)
= H

[s]
(s,·),·

(
{u(v)}

v∈T
s[s]
past

)
∈ �(Tfuture,Y)

for each source vertex s ∈ S. Since, by definition, Op = cols : [s]=p Os for each p ∈ P ,
we can then make the identification

Op

([
{u(v)}v∈T sp

past

]
Hp

)
= H

p
(
{u(v)}v∈T sp

past

)
∈ ⊕s : [s]=p�(Tfuture,Y).

In this way we see that [{u(v)}v∈T sp
past

]Hp ∈ kerOp if and only if {u(v)}v∈T sp
past

∈ ker H
p,

i.e., if and only if [{u(v)}v∈T sp
past

]Hp
is the zero equivalence class in Hp. We conclude

that Σ is structured-observable as wanted, and the proof of Theorem 11.1 is now
complete.
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MULTIDIMENSIONAL LINEAR SYSTEMS 1519

We now consider the situation where the formal power series T (z) =
∑

v∈Fd
Tvz

v

is given but the admissible graph G is not specified. By comparing the various Hankel
operators involved, we have the following result.

Theorem 11.2. Suppose that we are given the formal power series in the d
noncommuting variables z = (z1, . . . , zd), and let G and G′ be two admissible graphs
with edge sets E and E′ of the same cardinality. Then T (z) has a G-structured
realization Σ = {G,H, U} if and only if T (z) has a G′-structured realization Σ′ =
{G′,H′, U ′}.

Proof. Let G be any admissible graph with edge set E labeled as E = {1, . . . , d},
and let GFM be the Fornasini–Marchesini admissible graph with source-vertex set
S = {1}, range-vertex set R = {1, . . . , d}, and edge set E = {1, . . . , d}, with s(j) = 1
and r(j) = j for j = 1, . . . , d. We show that T (z) has a G-structured realiza-
tion Σ = (G,H, U) if and only if T (z) has a GFM -structured realization ΣFM =
(GFM ,HFM , UFM ). For s in S define the Hankel operator H

s : �fin(T s
past,U) →

�(Tfuture,Y) by

H
s : {u(v)}v∈T s

past
�→ H

[s]
(s,·),·

(
{u(v∧s)}

v∈T
s[s]
past

)
.

As the map v �→ vs[s] is a bijection between T s
past and T s[s]

past, we see that H
s is similar

to H
[s]
(s,·),·. By definition,

H
p = cols : [s]=p

[
H

p
(s,·),·

]
from which we get the estimates

maxs : [s]=p rank H
p
(s,·),· ≤ rank H

p ≤
∑

s : [s]=p

rank H
p
(s,·),·.(11.12)

As we observed above that H
s and H

[s]
(s,·),· have the same rank, we can rewrite (11.12)

as

maxs : [s]=p rank H
s ≤ rank H

p ≤
∑

s : [s]=p

rank H
s.(11.13)

From the characterization (10.4) of H
p we see that

H
FM = colp∈P cols : [s]=p[H

s] = cols∈S [Hs].(11.14)

By combining (10.4) with the estimates (11.13), we see that H
FM has finite rank if

and only if H
p has finite rank for each p ∈ P .

Now suppose that G and G′ are two admissible graphs with the same edge set
E and that T (z) is a given formal power series in the noncommuting variables z =
(ze : e ∈ E). By the first part of the proof, realizability of T (z) as the transfer
function of an SNMLS with structure graph G and realizability of T (z) as the transfer
function of an SNMLS with structure graph G′ are each equivalent to realizability of
T (z) as the transfer function of a noncommutative Fornasini–Marchesini system with
structure graph GFM having edge set E. Hence G-realizability and G′-realizability
are equivalent to each other. This completes the proof of Theorem 11.2.
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1520 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

12. Recognizable and rational formal power series. Formal power series
in noncommuting variables of the form arising here have come up in the theory of
formal languages as studied in computer science [15]. For the sake of concreteness we
index the noncommuting variables simply by {1, . . . , d} and work with the semigroup
Fd generated by the concrete set of letters {1, . . . , d}, as was done in sections 2.1
and 2.2 in the setting of noncommutative Fornasini–Marchesini and Givone–Roesser
systems. We specialize the discussion in [15] to the setting here, where we take the
scalars to be the field C of complex numbers rather than a general semiring, i.e., a
“ring without subtraction.” A formal power series

∑
v∈Fd

Tvz
v (with coefficients Tv

equal to linear operators acting between the finite-dimensional linear spaces U and Y)
is said to be recognizable if there are finite-dimensional linear space H and operators
A1, . . . , Ad : H → H, B : U → H, and C : H → Y such that

Tv = CAvB for v ∈ Fd.

In terms of the linear systems discussed here, one can view a recognizable series
T (z) =

∑
v∈Fd

(CAvB)zv as the transfer function of a noncommutative Fornasini–
Marchesini system

ΣFM :

{
x(jw) = Ajx(w) + Bju(w) for j = 1, . . . , d,
y(w) = Cx(w) + Du(w),

with the special structure that

Bj =: B is independent of j and D = CB.

More economical is to consider the recognizable series as the transfer function of a
system of the form

Σrec :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(1w) = A1x(w) + Bu(1w),

...
x(dw) = Adx(w) + Bu(dw),
y(w) = Cx(w).

(12.1)

One can check that application of the formal noncommutative Z-transform (2.2) to
the system equations Σrec yields the frequency-domain formulas

x̂(z) = (I − Zrow(z)A)−1(x(∅) −Bu(∅)) + (I − Zrow(z)A)−1Bû(z),

ŷ(z) = C(I − Zrow(z)A)−1(x(∅) −Bu(∅)) + TΣrec(z) · û(z),(12.2)

where the transfer function TΣrec(z) for the recognizable system Σrec given by

TΣrec(z) =
∑
v∈Fd

CAvBzv(12.3)

has the form of a recognizable formal series. In particular, if the initial condition is
given by the input-injection x(∅) = Bu(∅), then multiplication by the transfer function
TΣrec(z) provides the input-output map in the frequency domain ŷ(z) = TΣrec(z)û(z).

All the results in sections 5, 6, 8, and 11 (notions of controllability and observ-
ability, equivalence of controllability and observability with minimality, state-space
similarity theorem, realization theorem) have parallels for the case of recognizable
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MULTIDIMENSIONAL LINEAR SYSTEMS 1521

systems in place of general SNMLSs; in fact, as surveyed nicely in Chapters 1 and
2 of [15], all these results, with the exception of the identification of a recognizable
series T (z) =

∑
v∈Fd

(CAvB)zv as the transfer function of a noncommutative linear
system of the form (12.1), already appear in the literature—even in the more general
setting where the scalars are taken to be a general semiring rather than the field C of
complex numbers as is done here (see [37, 38, 17, 39, 20, 21, 22, 23]). We now survey
these results from our system-theoretic perspective.

To obtain a physical interpretation for the recognizable controllability operator
Crec introduced below, it is natural to define the backward system equations giving
the evolution on the past T rec

past = Fd to be

Σrec
backward :

{
x(w) =

∑d
i=1 Aix(wi) + Bu(w),

y(w) = Cx(w).
(12.4)

If we run the backward system equations on the past and present T rec
past := Fd with

the state initialized to be zero sufficiently far in the past and with an input string
{u(w)}w∈T rec

past
with finite support on T rec

past to compute the state x(∅) at location ∅,
the result is

x(∅) = Crec({u(w)}w∈T rec
past

),

where the recognizable controllability operator Crec is given by

Crec = roww∈T rec
past

AwB,(12.5)

where we set Aw = AiNAiN−1
· · ·Ai1 if w = iN iN−1 · · · i1 ∈ T rec

past (with A∅ = IH).
Note that this controllability operator has close to the same form as the Fornasini–
Marchesini controllability operator CFM (2.6); the difference is that a recognizable
system has only one input operator B and that the columns of Crec are indexed by
T rec

past which includes the empty word, with [Crec]∅ = B.

We say that the system Σrec is recognizable-controllable if the image im Crec of the
recognizable-controllability operator Crec is the whole state-space H.

The observability operator Orec : H → �(T rec
future,Y) produces the future output

{y(v)}v∈T rec
future

generated by the system for a given prescribed initial condition x(∅) ∈
H under the assumption that the zero input string {u(v)}v∈T rec

future
is fed into the

system; explicitly, we have4

Orec = row
v∈Fd

CAv.(12.6)

Note that Orec has exactly the same form as the Fornasini–Marchesini observability
operator OFM from (2.7). We say that the system Σrec is recognizable-observable if
the recognizable-observability operator Orec is injective on H.

We can now obtain a recognizable Kalman decomposition of the state-space H,

H = Hc/o ⊕Hc/no ⊕Hnc/o ⊕Hnc/no,

4Here T rec
future is taken to be Fd; the location ∅ in T rec

future is identified with the location ∅ in T rec
past

(i.e., both T rec
future and T rec

past contain the “present”), but a given nonempty word w as an element of
the future T rec

future is to be considered distinct from the same word w considered as an element of the
past T rec

past.
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1522 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

by the same recipe used in section 7 (by using Crec in place of Csp and Orec in place
of Op). We then obtain the decompositions

Aj =

⎡⎢⎢⎣
Aj;c/o,c/o 0 Aj;c/o,nc/o 0
Aj;c/no,c/o Aj;c/no,c/no Aj;c/no,nc/o Aj;c/no,nc/no

0 0 Aj;nc/o,nc/o 0
0 0 Aj;nc/no,nc/o Aj;nc/no,nc/no

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
Bc/o

Bc/no

0
0

⎤⎥⎥⎦ , C =
[
Cc/o 0 Cnc/o 0

]
(12.7)

for the system matrices A1, . . . , Ad, B,C of Σrec. It is then easily verified that the
reduced recognizable system Σrec

c/o with system matrices

A1;c/o,c/o, . . . , Ad;c/o,c/o, Bc/o, Cc/o

is both recognizable-controllable and recognizable-observable and produces the same
transfer function: TΣrec(z) = TΣrec

c/o
(z). Given two recognizable systems Σrec with

system matrices A1, . . . , Ad, B,C and Σrec′ with system matrices A′
1, . . . , A

′
d, B

′, C ′,
let us say that Σrec and Σrec′ are recognizable-similar if there is a bijective linear map
Γ: H → H′ so that ΓAj = A′

jΓ for j = 1, . . . , d, ΓB = B′, and C ′ = CΓ. Following
the same argument as in section 8, we have the state-space similarity theorem for
recognizable systems: given two recognizable systems Σrec = (A1 . . . , Ad, B,C) and
Σrec′ = (A′

1, . . . , A
′
d, B

′, C ′) with the same input-space U and output-space Y, which
are both recognizable-controllable and recognizable-observable, then Σrec and Σrec′ have
the same transfer function

TΣrec(z) = TΣrec′(z)

if and only if Σrec and Σrec′ are recognizable-similar. Furthermore, one can say that
the recognizable system Σrec with state-space H is a recognizable-minimal realization
for its transfer function T (z) = TΣrec(z) if, whenever Σrec′ with state-space H′ is any
other recognizable realization for the same T (z), then dimH ≤ dimH′. Following the
same line of argument as in section 9, one can show the following: the recognizable
system Σrec is a recognizable-minimal realization of its transfer function TΣrec(z) if
and only if Σrec is recognizable-controllable and recognizable-observable.

We next define the recognizable Hankel operator by

H
rec = Orec · Crec : �fin(T rec

past,U) → �(T rec
future,Y).(12.8)

The matrix entries of H
rec are then given by

H
rec
w,v = CAwvB for w, v ∈ Fd(12.9)

or directly in terms of the Taylor coefficients of the transfer function TΣrec(z) =∑
v∈Fd

Tvz
v as

H
rec
w,v = Twv for w, v ∈ Fd.(12.10)

In the case that Σrec is both recognizable-controllable and recognizable-observable,
we see from the factorization (12.8) that

rank H
rec = dimH.
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MULTIDIMENSIONAL LINEAR SYSTEMS 1523

In particular, rank H
rec < ∞, where we now use (12.10) to define H

rec directly in
terms of the formal power series T (z) =

∑
v∈Fd

Tvz
v, which is a necessary condition

for T (z) to have a recognizable realization T (z) =
∑

v∈Fd
(CAvB)zv. For the converse,

we have the following realization theorem.
Theorem 12.1. Let the formal power series T (z) =

∑
v∈Fd

Tvz
v in d noncom-

muting indeterminates z = (z1, . . . , zd), with coefficients Tv equal to linear operators
between the linear spaces U and Y, be given. Then a necessary and sufficient condition
for T (z) to be recognizable, i.e., for the existence of a linear space H and operators
A1, . . . , Ad on H, B : U → H, and C : H → Y with Tv = CAvB for v ∈ Fd, is that

rank H
rec < ∞.(12.11)

When this holds, a recognizable-minimal realization (A1, . . . , Ad, B,C) can be con-
structed as follows: set

H = �fin(T rec
past,U)/ ker H

rec(12.12)

and define operators Aj : H → H (for j = 1, . . . , d), B : U → H, and C : H → Y :

Aj : [δv]H �→ [δjv]H for v ∈ T rec
past,

B : u �→ [δ∅]H,(12.13)

C : [{u(v)}v∈T rec
past

]H �→
∑

v∈T rec
past

Tvu(v).(12.14)

Proof. The proof parallels the ideas in the proof of Theorem 11.1, so we omit the
details. The result is also essentially contained in Theorem 1.5 of [15] (without any
system-theoretic interpretation using the system equations (12.1) and (12.4)), where
it is attributed to [17] and [20].

Note that the recognizable Hankel H
rec is almost the same as the Fornasini–

Marchesini Hankel H
FM; namely, we have

H
rec =

[
colv∈Fd

[Tv] H
FM

]
.(12.15)

In particular, we see that

rank H
FM ≤ rank H

rec ≤ dimU + rank H
FM ,

and hence H
FM has finite rank if and only if H

rec has finite rank. Combining this
observation with Theorems 12.1, 11.1, and 11.2, we arrive at the following result.

Corollary 12.2. Let a formal power series T (z) =
∑

v∈Fd
Tvz

v in d non-
commuting variables z = (z1, . . . , zd) and an admissible graph G with edge set E
labeled as E = {1, . . . , d} be given. Then T has a realization of the form T (z) =
D + C(I − ZΣ(z)A)−1ZΣ(z)B for an SNMLS Σ = (G,H, U) if and only if T (z) =
C(I − z1A1 − · · · − zdAd)

−1B is recognizable.
A related notion arising in the theory of formal languages, particularly in the

work of Schützenberger, is that of rationality. We say that a formal power series
T (z) =

∑
v∈Fd

Tvz
v ∈ C〈〈z〉〉 in noncommuting variables z = (z1, . . . , zd) with scalar

coefficients Tv ∈ C is rational if it is in the smallest subalgebra of C〈〈z〉〉 which contains
the polynomials and is invariant under the operator R(z) �→ R∗(z) =

∑∞
n=0 (R(z))

n

defined on proper formal power series R(z) =
∑

v∈Fd\{∅} Rvz
v. The demand here

that the constant term R∅ vanish guarantees that, for each word w, the w-coefficient
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1524 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

of R(z)n vanishes for all n ≥ Nw for some Nw < ∞, and hence that the infinite series
expression for R∗(z) is convergent in the topology of coefficientwise convergence. The
∗-operation also makes sense in the setting where the scalars are taken from a general
semiring K; in case K is a field (as we assume), the ∗-operation R(z) �→ R∗(z) can be
identified as R∗(z) = (I − R(z))−1. In case that T (z) =

∑
v∈Fd

Tvz
v ∈ L(U ,Y)〈〈z〉〉

has coefficients Tv equal to operators between finite-dimensional linear spaces U and
Y, we say that T (z) is rational if each of its matrix entries (with respect to some bases
for U and Y) is rational. In case U = Y and T∅ = 0, we can define

T ∗(z) :=

∞∑
n=0

(T (z))
n

= (I − T (z))−1(12.16)

just as in the scalar case. The following lemma assures us that T ∗(z) is again rational
if T (z) is rational. This result is actually a special case of Lemma I.6.3 in [15], but
we include a proof for the sake of completeness.

Lemma 12.3. Suppose that T (z) = [Tij(z)]
N
i,j=1 ∈ L(CN )〈〈z〉〉 is a formal power

series in the noncommuting variables z = (z1, . . . , zd) with matrix entries Tij(z) ∈
C〈〈z〉〉 all rational such that T∅ = [T∅,ij ]

N
i,j=1 = 0. Then all matrix entries of the

formal power series T ∗(z) given by (12.16) are also rational.
Proof. If N = 1, the result is clear. By induction we assume that the result is true

for all N < N0 and seek to prove the result for N = N0. Given T (z) ∈ L(CN0)〈〈z〉〉
with T∅ = 0, consider a block decomposition of T (z),

T (z) =

[
a(z) b(z)
c(z) d(z)

]
,

and a corresponding block decomposition of T ∗(z) = (IN0 − T (z))−1,

(IN0 − T (z))−1 =

[
α(z) β(z)
γ(z) δ(z)

]
,

where a(z) and α(z) are both of size K ×K for some K with 1 ≤ K < N0. From the
identity

(IN0
− T (z))−1 = IN0

+ T (z)(IN0
− T (z))−1

we get the collection of identities

α(z) = IK + a(z)α(z) + b(z)γ(z),

β(z) = a(z)β(z) + b(z)δ(z),

γ(z) = c(z)α(z) + d(z)γ(z),

δ(z) = IN0−K + c(z)β(z) + d(z)δ(z).(12.17)

We may then solve the second and third equations in (12.17) for β(z) and γ(z),
respectively, to get

β(z) = (IK − a(z))−1b(z)δ(z),(12.18)

γ(z) = (IN0−K − d(z))−1c(z)α(z).(12.19)

By the induction assumption we see immediately from (12.18) and (12.19) that β(z)
and γ(z) are rational. Plugging back into the first and fourth identities in (12.17)
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MULTIDIMENSIONAL LINEAR SYSTEMS 1525

then gives

α(z) = IK + a(z)α(z) + b(z)(IN0−K − d(z))−1c(z)α(z),

δ(z) = IN0−K + c(z)(IK − a(z))−1b(z)δ(z) + d(z)δ(z).

We may then solve these equations for α(z) and δ(z) to get

α(z) =
(
IK − [a(z) + b(z)(IN0−K − d(z))−1c(z)]

)−1
,(12.20)

δ(z) =
(
IN0−K − [c(z)(IK − a(z))−1b(z) + d(z)]

)−1
.(12.21)

Again as a consequence of the induction assumption, (12.20) and (12.21) imply that
α(z) and δ(z) are rational as well, and the lemma follows.

The following characterization of rational formal power series can be seen as a
corollary of the results of this paper.

Corollary 12.4. Let a formal power series T (z) =
∑

v∈Fd
Tvz

v in d non-
commuting variables z = (z1, . . . , zd) and an admissible graph G with edge set E =
{1, . . . , d} be given. Then the following are equivalent:

(1) T (z) is rational.
(2) For each path-connected component p of G, the Hankel operator H

p given by
(10.4) has finite rank.

(3) T (z) has a realization T (z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B for an SNMLS
Σ = (G,H, U) having structure graph G.

Proof. We first show that (1) =⇒ (3). Note first that any scalar constant D
(considered as a formal power series in noncommuting variables z = (z1, . . . , zd)) is
realizable (with zero auxiliary state-spaces Hp).

We next note that any monomial ze is realizable for each edge e = 1, . . . , d.
Indeed, set H[s(e)] = C and Hp = {0} for p 
= [s(e)] and set

A = [Ar,s]r∈R,s∈S with Ar,s = 0,

B = colr∈R[Br] with Br =

{
1 if r = r(e),

0 otherwise,

C = rows∈S [Cs] with Cs =

{
1 if s = s(e),

0 otherwise,

D = 0.

Then the associated transfer function is given by

TΣ(z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B

= 0 + CZΣ(z)B

=
∑
s∈S

∑
r∈R

Cs[ZΣ(z)]s,rBr

=
∑
s∈S

∑
r∈R

∑
e′∈E

CsIΣ,e′;s,rBrze′

=
∑
e′∈E

Cs(e′)Br(e′)ze′

= ze.
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1526 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

We conclude that each monomial ze has a realization as asserted.
By Theorems 4.1, 4.2, and 4.3, products, sums, and inverses of invertible for-

mal power series which are realizable (as the transfer function of an SNMLS Σ with
structure graph G) are again realizable. By the inductive definition of rational formal
power series given above, we may now conclude that any scalar rational formal power
series T (z) has the form of a transfer function T (z) = TΣ(z) for an SNMLS Σ with
given admissible graph G as structure graph.

If each scalar entry [T (z)]i,j of a matrix of formal power series is realizable, it is
easy to construct a realization (not necessarily minimal) for the formal power series
T (z) with matrix coefficients. This concludes the proof of (1) =⇒ (3).

We next verify (3) =⇒ (1). Assume that the formal power series T (z) has a
realization of the form T (z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B for a finite-dimensional
SNMLS Σ = (G,H, [ A B

C D ]). By Lemma 12.3 it follows that (I−ZΣ(z)A)−1 is rational.
As products and sums of rational matrix functions are rational, it then follows that
T (z) is rational, as wanted.

The equivalence of (2) and (3) is just a restatement of Theorem 11.1.
Remark 12.5. We note that the equivalence (1) ⇐⇒ (2) between rationality

and finiteness of the rank of an associated Hankel operator is known as Kronecker’s
theorem in the classical case.

Remark 12.6. Combining (1) ⇐⇒ (3) in Corollary 12.4 with Corollary 12.2, we
see that a formal power series is recognizable if and only if it is rational; this result
goes back to Schützenberger (see Theorem I.6.1 in [15]).

Remark 12.7. In [22] Fliess gives an alternative system interpretation of a recog-
nizable formal power series in terms of a homogeneous bilinear system with evolution
along the nonnegative integers Z+ but with state-update equation of the form

x(n + 1) =

⎡⎣ d∑
j=0

uj(n)Aj

⎤⎦x(n),

with A0, . . . , Ad linear operators on the state-space H and with u0(n), . . . , ud(n) equal
to d+ 1 scalar-valued controls. The input-output operator for the system is obtained
as

(x0, (u0(n), . . . , ud(n))n∈Z+) �→ TΣ(u)x0,

where TΣ(z) is the recognizable formal power series TΣ(z) = C(I − z0A0 − z1A1 −
· · · − zdAd)

−1 and where TΣ(u) is defined via the substitution

ziN ziN−1
. . . zi0 �→ uiN (N)uiN−1

(N − 1) · · ·ui0(0).

Multidimensional versions of such bilinear systems, including connections with formal
power series in this more general setting, are given in [23]. Sontag [40] used a vari-
ation of Fliess’s Hankel-matrix construction to solve the following related moment
problem connected with an alternative formulation of a bilinear system realization
problem: given operators Tw ∈ L(U ,Y) for w ∈ FE (E = {1, . . . , d}), find oper-
ators C1, . . . , Cd : H → Y, A1, . . . , Ad : H → H, and B1, . . . , Bd : U → H so that
TiN iN−1···i2i1 = CiNAiN−1

· · ·Ai1Bi1 .
Our discussion here gives a linear (rather than bilinear) system interpretation for

a formal power series, but with evolution along a free semigroup rather than along
Z+ and with a somewhat contrived input-injection for the initial condition on the
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state required to recover the precise form of a recognizable series. The awkwardness
of these various system interpretations for a recognizable formal power series gives
some explanation as to why system operations work out well for transfer functions of
SNMLSs (see section 4) but not so well for recognizable series—a point discussed in
[30].

Acknowledgments. We thank the referees for useful suggestions which led to
improvements in the paper; in particular, the material of section 4 appears as a result
of a suggestion of one of the referees.
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