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Abstract. This paper introduces the concept of a ‘structured occurrence net’,

which as its name indicates is based on that of an ‘occurrence net’, a well-

established formalism for an abstract record that represents causality and con-

currency information concerning a single execution of a system. Structured oc-

currence nets consist of multiple occurrence nets, associated together by means

of various types of relationship, and are intended for recording either the actual

behaviour of complex systems as they communicate and evolve, or evidence that

is being gathered and analysed concerning their alleged past behaviour. We pro-

vide a formal basis for the new formalism and show how it can be used to gain

better understanding of complex fault-error-failure chains (i) among co-existing

communicating systems, (ii) between systems and their sub-systems, and (iii) in-

volving systems that are controlling, creating or modifying other systems. We

then go on to discuss how, perhaps using extended versions of existing tools,

structured occurrence nets could form a basis for improved techniques of system

failure prevention and analysis.

Keywords: failures, errors, faults, dependability, judgement, occurrence nets, ab-

straction, formal analysis.

1 Introduction

The concept of a failure of a system is central both to system dependability and to

system security, two closely associated and indeed somewhat overlapping research do-

mains. Specifically, particular types of failures (e.g., producing wrong results, ceasing to

operate, revealing secret information, causing loss of life, etc.) relate to, indeed enable

the definition of, what can be regarded as different attributes of dependability/security:

respectively reliability, availability, confidentiality, safety, etc. The paper by Avizienis

et al. [1] provides an extended (informal) discussion of the basic concepts and terminol-

ogy of dependability and security, and contains a detailed taxonomy of dependability

and security terms. Our aims in this present paper are: (i) to improve our understand-

ing — in part by formalising — of the concept of failure (and error and fault) as given

by [1]; (ii) to reduce (in fact by uniting the apparently different concepts of ‘system’

and ‘state’) the number of base concepts, i.e., concepts that the paper uses without ex-

plicit definition; and (iii) to provide a basis for an investigation of possible improved
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techniques of system failure prevention and analysis. The paper is a greatly extended

version of [21], providing proofs for the various results that were merely indicated in

our earlier paper, together with several new concepts, definitions and supporting results.

Complex real systems, made up of other systems, and made by other systems (e.g.,

of hardware, software and people) evidently fail from time to time, and reducing the

frequency and severity of their failures is a major challenge — common to both the

dependability and the security communities. Indeed, a dependable/secure system can be

regarded as one whose (dependability/security) failures are not unacceptably frequent

or severe (from some given viewpoint).

We will return shortly to the issue of viewpoint. But first let us quote the definitions

of three basic and subtly-distinct concepts, termed ‘failure’, ‘fault’ and ‘error’ in [1]:

‘A system failure occurs when the delivered service deviates from fulfilling the

system function, the latter being what the system is aimed at. An error is that

part of the system state which is liable to lead to subsequent failure: an error

affecting the service is an indication that a failure occurs or has occurred. The

adjudged or hypothesised cause of an error is a fault.’

Note that errors do not necessarily lead to failures — such occurrences may be

avoided by chance or design. Similarly, failures in a component system do not neces-

sarily constitute faults to the surrounding system — this depends on how the surround-

ing system is relying on the component. These three concepts (respectively an event,

a state, and a cause) are evidently distinct, and so need to be distinguished, whatever

names are chosen to denote them. The above quotation makes it clear that judgement

can be involved in identifying error causes, i.e., faults. However it is also the case that

identifying failures and errors involves judgement (not necessarily simple adherence to

some pre-existing specification) — a critical point that we will return to shortly.

A failure can be judged to have occurred when an error ‘passes through’ the system-

user interface and affects the service delivered by the system — a system being com-

posed of components which are themselves systems. This failure may be significant,

and thus constitute a fault, to the enclosing system.

Thus the manifestation of failures, faults and errors follows a ‘fundamental chain’:

. . .→ failure → fault → error → failure → fault → . . . ,

i.e.,

. . .→ event → cause → state → event → cause → . . . .

It is critical to note that this chain can flow from one system to: (i) another system that

it is interacting with; (ii) a system which it is part of; and (iii) a system which it creates

or sustains.

Typically, a failure will be judged to be due to multiple co-incident faults, e.g., the

activity of a hacker exploiting a bug left by a programmer. Identifying failures (and

hence errors and faults), even understanding the concepts, is difficult. There can be un-

certainties about system boundaries, the very complexity of the systems (and of any

specifications) is often a major difficulty, the determination of possible causes or con-

sequences of failure can be a very subtle and iterative process, and any provisions for
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preventing faults from causing failures may themselves be fallible. Attempting to enu-

merate a system’s possible failures beforehand is normally impracticable. Instead, one

can appeal to the notion of a ‘judgemental system’.

The ‘environment’ of a system is the wider system that it affects (by its correct func-

tioning, and by its failures), and is affected by. What constitutes correct (failure-free)

functioning might be implied by a system specification — assuming that this exists,

and is complete, accurate and agreed. (Often the specification is part of the problem!)

However, in principle a third system, a judgemental system, is involved in determining

whether any particular activity (or inactivity) of a system in a given environment con-

stitutes or would constitute — from its viewpoint — a failure. Note that the judgemental

system and the environmental system might be one and the same, and the judgement

might be instant or delayed. The judgemental system might itself fail — as judged by

some further system — and different judges, or the same judge at different times, might

come to different judgements.

The term ‘Judgemental System’ is deliberately broad — it covers from on-line fail-

ure detector circuits, via someone equipped with a system specification, to the retro-

spective activities of a court of enquiry (just as the term ‘system’ is meant to range

from simple hardware devices to complex computer-based systems, composed of hard-

ware, software and people). Thus the judging activity may be clear-cut and automatic,

or essentially subjective — though even in the latter case a degree of predictability is

essential, otherwise the system designers’ task would be impossible. The judgement is

an action by a system, and so can in principle fail either positively or negatively. This

possibility is allowed for in the legal system, hence the concept of a hierarchy of crown

courts, appeal courts, supreme courts, etc.

In this paper we describe a means of modelling the activity of systems — oper-

ational computing systems, the systems of people and computers that created them or

are adapting them, the systems that are passing judgements on them, etc. The formalism

that we use in this paper is based on that of occurrence nets [3, 8, 22]. We introduce this

formalism not just in order to clarify such concepts as fault-error-failure chains, and

the role of judgemental systems, but also because the occurrence net formalism is well-

supported by tools for system validation and synthesis [6, 10–12, 19], tools which we

believe could be significantly enhanced by being extended so as to take advantage of the

concept that we introduce in Sections 3-6 of this paper of ‘structured occurrence nets’.

(Section 7 sketches the ways in which we envisage exploiting such enhanced tools.)

As can be seen in Figure 1, occurrence nets are directed acyclic graphs that portray

the (alleged) past and present state of affairs, in terms of places (i.e., conditions, rep-

resented by circles), transitions (i.e., events, represented by squares) and arrows (each

from a place to a transition, or from a transition to a place, representing (alleged) causal-

ity). For simple nets, an actual graphical representation suffices — and will be used here

using the notation shown in Figure 1. (In the case of complex nets, these are better rep-

resented in some linguistic or tabular form.) We will also take advantage of our belated

realisation that the concepts of ‘system’ and ‘state’ are not separate, but just a question

of abstraction, so that (different related) occurrence nets can represent both systems and

their states using the same symbol — a ‘place’. In fact in this paper we introduce and

define, and discuss the utility of, several types of relationship, and term a set of related
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Condition (place) Event (transition)

Past condition Extant condition

Interaction

c1

c2

c3

c4

c5

c6e1

e2

e4

e3

Fig. 1. Basic notation (top) and an occurrence net (bottom).

occurrence nets a structured occurrence net. These types of relationship differ depend-

ing on the specific means and objectives of a particular investigation. However, there

are some fundamental constraints that any structured occurrence net ought to satisfy.

Crucially, we will require that the structures we admit avoid cycles in systems’ tempo-

ral behaviour as these contradict the accepted view on the way physical systems could

possibly behave.

Note that it is easy to understand how occurrence nets could be ‘generated’ by

executing Petri nets representing computing systems, but they could in fact be used to

record the execution of any (potentially asynchronous) process, hardware or software,

indeed human, no matter what notation or language might be used to define it. It is also

worth noting that various other graphical notations similar to occurrence nets can be

found in both the hardware and the software design worlds, e.g., strand spaces [23],

signal diagrams [16] and message sequence charts [17].

2 Occurrence nets

In this section, we present the basic model of an occurrence net which is standard within

Petri net theory [3, 8, 22]. Later on, we will extend it to express more intricate features

of our approach to the modelling of complex behaviours. In a nutshell, an occurrence

net is an abstract record of a single execution of some computing system (though they

can be used to portray behaviours of quite general systems, e.g., ones that include peo-

ple) in which only information about causality and concurrency between events and

visited local states is represented. Together with a natural requirement that causal cy-

cles do not occur in the physical world, this means that the underlying mathematical

structure of an occurrence net is that of a partial order. This should be contrasted with
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an ‘interleaving’ record of a computation which presupposes a sequential ordering of

all the events involved, and has as an underlying structure a total order.

Definition 1 (occurrence net ON). An occurrence net is a triple ON
df
= (C,E, F )

where: C 6= ∅ and E are finite1 disjoint sets of respectively conditions and events

(collectively, conditions and events are the nodes of ON); and F ⊆ (C ×E)∪ (E ×C)
is a flow relation satisfying the following: (i) for every c ∈ C there is at most one e such

that (e, c) ∈ F , and at most one f such that (c, f) ∈ F ; (ii) for every e ∈ E there is c
such that (c, e) ∈ F , and d such that (e, d) ∈ F ; and (iii) ON forms an acyclic graph

(in other words, the transitive closure of the relation F , denoted by F+, is irreflexive).

In the above definition — aimed at capturing the essence of a computation history —

E represents the events which have actually been executed and C represents conditions

(or holding of local states) enabling their executions. Here we will discuss computation

histories as though they have actually occurred; however, the term will also be used

of ‘histories’ that might have occurred, or that might occur in the future, given the

existence of an appropriate system.

The flow relation records the causality relationship between events and conditions.

Not all such relationships are meaningful, and so the first condition means that each

non-initial condition is uniquely caused, and each of the non-final conditions caused a

unique event.2 The second condition states that each event has at least one cause and at

least one effect, and the third one simply renders formal a common belief that causality

is not circular. Now we introduce few useful notations:

– For each node x we use pre(x) and post(x) to denote the set of all nodes y such

that (y, x) ∈ F and (x, y) ∈ F , respectively. In other words, pre() and post()
correspond to the incoming and outgoing arcs, respectively. For a set of nodes X ,

we denote

pre(X)
df
=

⋃

x∈X

pre(x) and post(X)
df
=

⋃

x∈X

post(x) .

– Two nodes of ON, x and y, are causally related if (x, y) ∈ F+ or (y, x) ∈ F+;

otherwise they are concurrent.

– During the execution captured by the occurrence net, the system has passed through

a series of (global) states, and the concurrency relation in ON provides full infor-

mation about all such potential states. A cut is a maximal (w.r.t. set inclusion) set

of conditions Cut ⊆ C which are mutually concurrent.

– Let InitON and FinON be the sets of all conditions c such that pre(c) = ∅ and

post(c) = ∅, respectively. These two sets are cuts; the former corresponds to the

initial state of the history represented by ON, and the latter to its final state.

1 For simplicity, we only discuss finite behaviours and so all (structured) occurrence nets con-

sidered in this paper will be finite.
2 Note that if an event is only conditional on the presence of a condition, but does not invalidate

it, then the event can re-establish this condition by producing a fresh copy of the condition.
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For the occurrence net depicted in Figure 1, we have C = {c1, . . . , c6} and E =
{e1, . . . , e4}. Moreover, InitON = {c1} and FinON = {c6}, and the other four cuts of

this occurrence net are {c2, c3}, {c2, c5}, {c4, c3} and {c4, c5}.

An occurrence net is usually derived from a single execution history of the system.

However, since it only records essential (causal) orderings, it also conveys information

about other potential executions. This calls for a precise notion of an execution of a

given occurrence net.

Definition 2 (sequential execution). A sequential execution of the occurrence net ON

is D0 e1D1 . . . enDn, where each Di is a set of conditions and each ei is an event,

such that D0 = InitON and, for every i ≤ n, pre(ei) ⊆ Di−1 and Di = (Di−1 \
pre(ei)) ∪ post(ei). We will call e1 . . . en a firing sequence of ON.

For the occurrence net depicted in Figure 1, one of its possible sequential executions

is {c1} e1 {c2, c3} e2 {c4, c3} e3 {c4, c5} e4 {c6}. Thus an execution starts in the initial

global state, and each successive event transforms a current global state into another one

according to the set of conditions in its vicinity. Basically, all conditions (local states)

which made possible its execution cease to hold, and new conditions (local states) cre-

ated by the event begin to hold. The above definition implies a couple of simple, yet

important facts formulated next. Basically, they imply that ON is sound in the sense of

obeying some natural temporal properties as well as testifying to the fact that ON does

not contain redundant parts. We also have a complete characterisation of global states

reachable from the default initial one — these are all the cuts of ON. In practical terms,

the latter means that we can verify state properties of the computations captured by ON

by running a model checker which inspects all the cuts. Such a model checker could be

based on a SAT-solver or integer programming, e.g., as in [5, 10, 12].

Proposition 1 ([3]). Given a sequential execution as in Definition 2, each Di is a cut

of ON, and no event occurs more than once. Moreover, Dn = FinON iff each event of

E occurs in the execution.

Proposition 2 ([3]). Each cut of ON can be reached from the initial cut through some

sequential execution, and each event of ON occurs in at least one sequential execution

of ON.

An alternative, more concurrent, notion of execution considers that in a single com-

putational move, a set of events (called a step) rather than a single event is executed.

Definition 3 (step execution). A step execution of an occurrence net ON is a sequence

χ
df
= D0G1D1 . . .Gn Dn, where each Di is a set of conditions and each Gi is a set of

events, such that D0 = InitON and, for every i ≤ n, we have pre(Gi) ⊆ Di−1 and

Di = (Di−1 \ pre(Gi)) ∪ post(Gi). We also say that χ leads to Dn, and that Dn is

reachable.

For the net in Figure 1, {c1} {e1} {c2, c3} {e2, e3} {c4, c5} {e4} {c6} is a possible step

execution. For the basic model of occurrence nets, the sequential and step executions are

broadly speaking equivalent; in particular, Propositions 1 and 2 hold also for step exe-

cutions. However, for extended notions of occurrence nets, which we discussed in [13],

sequential and step executions may, e.g., admit different sets of reachable global states.
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The next result can be understood as a statement of a fundamental consistency be-

tween the causality captured by the flow relation and the temporal ordering of condi-

tions and events involved in a step execution.

Proposition 3 ([3]). Given a step execution as in Definition 3 and i ≤ n,

1. each event f such that (f, e) ∈ F+, for some e ∈ Gi, belongs to Gj with j < i;
2. if c ∈ Di ∩ post(e) then e belongs to Gj with j < i;
3. if e ∈ Gi and c ∈ pre(e) then c does not belong to any Dj with j ≥ i.

A cut Cut of an occurrence net ON divides it into two subnets, preonON(Cut)
df
=

(C′, E′, F ′) and postonON(Cut)
df
= (C′′, E′′, F ′′), given by:

C′ df
= {d ∈ C | ∃c ∈ Cut : (d, c) ∈ F ∗} C′′ df

= {d ∈ C | ∃c ∈ Cut : (c, d) ∈ F ∗}

E′ df
= {e ∈ E | ∃c ∈ Cut : (e, c) ∈ F ∗} E′′ df

= {e ∈ E | ∃c ∈ Cut : (c, e) ∈ F ∗}

F ′ df
= F |(C′×E′)∪(E′×C′) F ′′ df

= F |(C′′×E′′)∪(E′′×C′′) .

Intuitively, preonON(Cut) is the part of ON which has been executed to reach the cut

Cut , and postonON(Cut) that which can still be executed after Cut .

Proposition 4 ([3]). Let ON
′ and ON

′′ be respectively the subnets preonON(Cut) and

postonON(Cut) defined above.

1. ON′ and ON′′ are occurrence nets such that: C = C′ ∪ C′′, C′ ∩ C′′ = Cut ,

E = E′ ⊎ E′′ and F = F ′ ⊎ F ′′.

2. InitON′ = InitON, FinON′ = Cut = InitON′′ and FinON′′ = FinON.

3. Given step executions, χ′ and χ′′, of respectively, ON′ and ON′,
– χ′ is a step execution of ON;

– if χ′ leads to Cut then χ′∅χ′′ is a step execution of ON.

We end this section with (non-standard) definitions of two kinds of structures present

in occurrence nets which will prove useful in the rest of this paper:

– A non-empty set of conditions D is a phase if there are two cuts, Cut and Cut ′,

such that Cut ′ is a cut of ON′ df
= postonON(Cut) and D is the set of conditions of

the occurrence net preonON′(Cut ′). We will denote MinD
df
= Cut and MaxD

df
=

Cut ′. Moreover, OND will denote the sub-occurrence net of ON induced by the

conditions in D and all the events e such that pre(e) ∪ post(e) ⊆ D. Phases will

represent stages in the evolution of systems. Purely for notational convenience, we

also admit the empty phase, D = ∅, for which MinD = MaxD = ∅.

– A block is a non-empty B of nodes where both the maximal and minimal (w.r.t.

F ) elements are events, and for all nodes x, y ∈ B, (x, z) ∈ F+ and (z, y) ∈ F+

imply z ∈ B. Thus in a block there are no ‘gaps’ between the nodes it comprises.

In Figure 1, {c2, c4, c3, c5} constitute a phase and {e2, e3, e4, c4, c5} a block.

In this section we introduced basic notions concerning occurrence nets and recalled

some fundamental results about their behaviour which we will subsequently investi-

gate in the extended model described in subsequent sections of this paper. These detail

a number of different ways in which multiple occurrence nets (ONs) can be related

together in order to construct structured occurrence nets (SONs).
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3 Communication

We now outline the first of several ways of structuring occurrence nets, something that

can be done either by defining one or more relations between a set of hitherto separate

occurrence nets, or by adding structure to an existing occurrence net, i.e., by replacing it

by an equivalent set of related smaller occurrence nets. In subsequent figures we follow

a convention that conditions and events of different systems are identified by shading

them differently - there are some obvious rules about legal such labellings (e.g., that

they partition the nodes into disjoint sets, the members of each of which are connected).

A further convention is that, in order to distinguish them from ordinary occurrence nets,

structured occurrence nets which contain two or more component occurrence nets are

shown surrounded by a solid line bounding box.

Our first method of structuring captures communication, i.e., a situation in which

separate occurrence nets proceed concurrently and (occasionally) communicate with

each other — see, for example, Figure 5, in which thick dashed arcs are used to rep-

resent communications so as to distinguish them from the interactions represented in

conventional occurrence nets by causal arcs. (Note that another distinction is that inter-

actions link conditions to events and events to conditions (as was shown in Figure 1),

whereas communications link events — of separate occurrence nets — directly.)

C SON

Fig. 2. A structured occurrence net composed out of two communicating occurrence nets.

In practice, when structuring a complex occurrence net into a set of simpler com-

municating occurrence nets, it is sometimes necessary to use synchronous communica-

tions. Hence, as shown in Figure 5, we allow for the use of two types of communication:

thick dashed directed arcs indicate that an event in one occurrence net is a causal prede-

cessor of an event in another occurrence net (i.e., information flow between occurrence

nets was unidirectional), whereas undirected such arcs indicate that the two events have

been executed synchronously (i.e., information flow was bidirectional). (In practice, in-

teractions and communications of all the kinds described above can occur in the same

overall structured occurrence net provided that a simple acyclicity constraint — similar

to that used for ordinary occurrence nets — is satisfied.)

As an example of such structuring, Figure 3(a) shows a single occurrence net that

is recording the interactions between two systems, the upper of which is itself exhibit-

ing asynchronous behaviour, and Figure 3(b) shows a possible structuring of Figure 3(a)
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into a structured occurrence net composed of two separate (communicating) occurrence

nets, each portraying the activity of a single system. (Because of our rule that commu-

nications relate events directly, the upper occurrence net in Figure 3(b) has had to be

augmented with additional events and implicit conditions.)

Note that the thick dashed arcs are abstractions of the details that correspond to such

communications when one describes such a structured occurrence net by a single con-

ventional occurrence net. The rules governing such abstractions, and the rationale for

our introducing synchronous as well as causal communications, should become clearer

later on when we discuss temporal abstraction (illustrated in Figure 9).

(a)

(b)

C SON

Fig. 3. (a) portrays the activity of two systems, one of which is exhibiting asynchronous be-

haviour, in a single occurrence net; (b) portrays an equivalent structured occurrence net, in which

the activities of these two systems are shown in separate (communicating) occurrence nets.

Definition 4 (communication SON). A communication structured occurrence net (or

C SON) is defined to be a tuple C SON
df
= (ON1, . . . , ONk, κ, σ), k ≥ 1, where each

ONi
df
= (Ci, Ei, Fi) is an occurrence net,3 whereas κ, σ ⊆

⋃
i6=j Ei × Ej are two

relations (σ being symmetric) such that the following relation is acyclic:

PrecC SON
df
= (F ◦ F)|C×C ∪ (F ◦ (κ ∪ σ)+ ◦ F) .

In the above, as well as later on, we denote C
df
=

⋃
iCi, F

df
=

⋃
i Fi and E

df
=

⋃
iEi.

(These notations will also be used in indexed or primed form, e.g., Fj and C
′.)

3 In this, and other similar definitions, different occurrence nets have disjoint sets of nodes.
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Intuitively, if (e, f) ∈ κ then e cannot happen after f , and if (e, f) ∈ σ then e and

f must happen synchronously. (Note that σ is included for convenience as it could be

omitted after replacing κ by σ ∪ κ.) For a communication structured occurrence net as

in Definition 4, cuts and step executions need to be re-defined.

A cut of C SON is a maximal (w.r.t. set inclusion) set of conditions Cut ⊆ C such

that (Cut ×Cut)∩Prec+
C SON = ∅. The initial cut of C SON, InitC SON , is the union

of the initial cuts of all the ONi’s, and the final cut, FinC SON, is the union of the final

cuts of all the ONi’s. A useful characterisation of cuts can be obtained using the notion

of a causal chain of C SON which is any sequence of its nodes

λ
df
= c0e

1
1e

1
2 . . . e

1
k1
c1e

2
1e

2
2 . . . e

2
k2
c2 . . . cm−1e

m
1 e

m
2 . . . em

km
cm (∗)

wherem, k1, . . . , km ≥ 1, and all the ci’s are conditions and ej
i ’s events of C SON such

that for all i ≤ m and j < ki: (ci−1, e
i
1), (e

i
ki
, ci, ) ∈ F and (ei

j , e
i
j+1) ∈ σ ∪ κ.

Proposition 5. A set Cut of conditions is a cut of C SON iff it is a maximal (w.r.t. set

inclusion) subset of C such that there is no causal chain beginning and ending with a

condition in Cut .

Proof. Follows directly from the definitions. ⊓⊔

Proposition 6. In a causal chain of C SON: (i) no condition occurs more than once;

and (ii) between two occurrences of an event there can only occur events and no condi-

tions.

Proof. (i) A repetition of a condition would contradict the acyclicity of PrecC SON.

(ii) Suppose that λ is a causal chain with a sub-sequence eλ′cλ′′e where e is an event

and c condition. Then cλ′′eλ′c is a causal chain, contradicting (i). ⊓⊔

The next result amounts to saying that a global state of a communication structured

occurrence net is made up of local states of the component occurrence nets.

Proposition 7. If Cut is a cut of C SON, then Cut ∩Ci is a cut of ONi, for every i ≤ k.

Proof. Suppose that C
df
= Cut ∩ Ci is not a cut. Then, since C is a set of concurrent

conditions of ONi as (Fi ◦ Fi)|Ci×Ci
⊆ PrecC SON , there is a condition c ∈ Ci \C =

Ci \Cut which is concurrent with all the conditions in C. Since c /∈ Cut , we have that

({c} × Cut) ∩ Prec+
C SON 6= ∅ or (Cut × {c}) ∩ Prec+

C SON 6= ∅ .

Without loss of generality, we may assume that the former holds. Then the set Λ of all

causal chains of C SON starting with c and ending with a condition in Cut is non-empty.

Let λ ∈ Λ. We first observe that not all events in λ belong to the occurrence net

ONi as (Fi ◦ Fi)|Ci×Ci
⊆ PrecONi

and c is concurrent with all the conditions in C.

Now denote by hλ the number of initial events in λ which belong to ONi. Since the first

event in λ belongs to ONi, hλ ≥ 1. Moreover, since the initial events in λ belonging

to ONi are separated by conditions in ONi, by Proposition 6(i), hλ ≤ |Ci|. Hence there

is a causal chain λ ∈ Λ with the highest hλ. We can partition λ as ψfgψ′d, where ψ
comprises exactly hλ − 1 events, f ∈ Ei and g /∈ Ei.
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Take any condition c′ ∈ post(f). We now observe that c′ ∈ Ci \ Cut is not in

the Prec+
C SON relation with any condition in Cut . Indeed, if (c′′, c′) ∈ Prec+

C SON
and c′′ ∈ Cut then, by the fact that |pre(c′)| = 1 and using the event f , we have

(c′′, d) ∈ Prec+
C SON a contradiction with the definition of a cut of C SON. Moreover,

if (c′, c′′) ∈ Prec+
C SON and c′′ ∈ Cut then, by |post(c′)| = 1, we can find a new

causal chain λ′ = ψfc′f ′ . . . ψ′′c′′ in Λ, where f ′ ∈ Ei, for which hλ′ is greater than

hλ, contradicting the choice of λ.

Hence c′ can be added to Cut , contradicting the latter’s maximality. ⊓⊔

We now re-define the notion of a step execution.

Definition 5 (step execution of C SON). A step execution of the communication struc-

tured occurrence net C SON is a sequence χ
df
= D0G1D1 . . . GnDn, where eachDi ⊆

C is a set of conditions and each Gi ⊆ E is a set of events, such that D0 = InitC SON

and, for every i ≤ n:

– pre(Gi) ⊆ Di−1 and Di = (Di−1 \ pre(Gi)) ∪ post(Gi);
– (e, f) ∈ κ ∪ σ and f ∈ Gi implies e ∈

⋃
j≤i Gj .

We also say that χ leads to Dn, and that Dn is reachable.

Note that if (e, f) ∈ σ and f ∈ Gi then also e ∈ Gi as σ is symmetric and so (f, e) ∈ σ.

We first show that a communication structured occurrence net cannot be completely

blocked right at the beginning.

Proposition 8. If E 6= ∅ then there is at least one step execution involving a non-empty

set of events.

Proof. For a causal chain λ as in (*) and event ei
j occurring in it, let indλ(ei

j)
df

= i. By

Proposition 6(i,ii), this notion is well-defined as ei
j = ei′

j′ implies i = i′. Now, for any

event e, let Λe be the set of all causal chains beginning with a condition in InitC SON

and containing e. Clearly, Λe 6= ∅ as we can always find at least one suitable causal

chain with all the elements in the component occurrence net to which e belongs. Finally,

for every e, let ind(e)
df
= max{indλ(e) | λ ∈ Λe}. That ind(e) is a well-defined integer

follows from Proposition 6(i) which implies that indλ(e) ≤ |C|, for every λ ∈ Λe.

LetG be the (non-empty) set of all events e for which ind(e) has the minimal value

among all the events of C SON. One can easily see that: (i) e ∈ G implies that there

is no event f such that (f, e) ∈ F ◦ F; and (ii) if (f, e) ∈ κ ∪ σ then f ∈ G. Hence

DGD′, where D = InitC SON and D′ df
= (InitC SON \ pre(G)) ∪ post(G), is a step

execution of C SON involving a non-empty set of events G. ⊓⊔

Our aim now is to re-establish the basic behavioural characteristics of occurrence

nets and, at the same time, capture a consistency between the individual and interactive

views of computation.

Proposition 9. Given a step execution as in Definition 5 and i ≤ k,

D′
0G

′
1D

′
1 . . . G

′
nD

′
n ,

where D′
i = Di ∩Ci and G′

i = Gi ∩ Ei, is a step execution of ONi.
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Proof. Follows directly from the definitions, InitONi
= InitC SON ∩ Ci and the dis-

jointness of the component occurrence nets. ⊓⊔

Note, however, that it may happen that a cut of an individual occurrence net ONi

may no longer be reachable through any step execution of C SON.

Proposition 10. Given a step execution as in Definition 5 and a causal chain as in (*),

if ei
j ∈ Gl then:

1. each ei
j′ with j′ < j belongs to some Gl′ with l′ ≤ l;

2. each ei′

j′ with i′ < i belongs to some Gl′ with l′ < l.

Proof. The result follows from the following two observations. First, if j = 1, i′ = i−1
and j′ = ki−1 then both ei

j and ei′

j′ belong to the same component occurrence net, and

so by Propositions 3(1) and 9, ei′

j′ belongs to someGl′ with l′ < l. Second, if j′ = j−1

then, by Definition 5, ei
j′ belongs to some Gl′ with l′ ≤ l. ⊓⊔

Theorem 1. Given a step execution as in Definition 5, each Di is a cut of C SON, and

no event occurs more than once.

Proof. We observe that, by Propositions 1 and 9, for every l ≤ k, Di ∩ Cl is a cut of

ONl. Thus Di cannot be extended by any new condition which is not in the Prec+
C SON

relation with the conditions in Di. Hence, by Proposition 5, to show that Di is a cut

of C SON it suffices to demonstrate that there is no causal chain λ = ce . . . fd such

that c, d ∈ Di. On the contrary, suppose that such a λ does exist. By d ∈ Di and

d ∈ post(f) and Propositions 3(2) and 9, we have f ∈ Gh for some h < i. Hence, by

Proposition 10, we have that e ∈ Gz for some z ≤ h (note that we allow e = f ). Thus,

by c ∈ pre(e) and Propositions 3(3) and 9, c /∈ Di, a contradiction. Hence Di is a cut

of C SON.

The second part, i.e., that no event occurs more than once, follows directly from

Propositions 1 and 9. ⊓⊔

As in the case of an occurrence net, a cut Cut of a communication structured oc-

currence net divides it into two parts. We define

preonC SON(Cut)
df
= (ON′

1, . . . , ON′
k, κ

′, σ′)

postonC SON(Cut)
df
= (ON′′

1 , . . . , ON′′
k, κ

′′, σ′′) ,

where, for i ≤ n, the component occurrence nets are defined by:

ON
′
i

df
= preonONi

(Cut ∩Ci) and ON
′′
i

df
= postonONi

(Cut ∩ Ci) ,

and the relations capturing communication are given by:

κ′
df
= κ|E′×E′ σ′ df

= σ|E′×E′ κ′′
df
= κ|E′′×E′′ σ′′ df

= σ|E′′×E′′ .

In the above, and later on, E
′ and E

′′ are events in, respectively, all the ON′
i’s and all

the ON′′
i ’s. Similar notation is used for sets of conditions and flow relations. Note that

the ON′
i’s and ON′′

i are well-defined due to Proposition 7.
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Proposition 11. Let C SON′ and C SON′′ be respectively the tuples preonC SON(Cut)
and postonC SON(Cut) defined above.

1. C SON′ and C SON′′ are communication structured occurrence nets such that:

C = C
′ ∪ C

′′
C

′ ∩ C
′′ = Cut E = E

′ ⊎ E
′′

F = F
′ ⊎ F

′′ .

2. InitC SON′ = InitC SON , FinC SON′ = Cut = InitC SON′′ and FinC SON′′ =
FinC SON.

3. κ′ ∪ κ′′ = κ \ (E′ × E
′′) and (E′′ × E

′) ∩ κ = ∅.

4. σ′ ∪ σ′′ = σ \ (E′ × E
′′) and (E′′ × E

′) ∩ σ = ∅.

5. Given step executions, χ′ and χ′′, of respectively, C SON′ and C SON′′,

– χ′ is a step execution of C SON;

– if χ′ leads to Cut then χ′∅χ′′ is a step execution of C SON.

Proof. (1,2) Follow from the definitions and Propositions 4 and 7.

(3,4) Follow from the fact that otherwise we would have had a causal chain in C SON

starting and ending at condition in Cut , contradicting Proposition 5.

(5) Follows from Proposition 4 and parts (1–4). ⊓⊔

Theorem 2. One can always find a step execution involving all the events of a commu-

nication structured occurrence net.

Proof. We proceed by induction on the number of events in a communication structured

occurrence net. In the base case, when there are no events, there is nothing to show. In

the induction step, from Proposition 8 it follows that we can find a step execution χ
with a non-empty set of events. Let Cut be the resulting cut (see Theorem 1). Now,

we can take preonC SON(Cut) and postonC SON(Cut), and find by induction a step

execution χ′ involving all the events of postonC SON(Cut). By Proposition 11(5), we

then get that χ∅χ′ is a step execution involving all the events of C SON. ⊓⊔

Theorem 3. Each cut of a communication structured occurrence net can be reached

from the initial cut through some step execution.

Proof. Let Cut be a cut of C SON. We can take preonC SON(Cut). By Theorem 2,

there is a step execution χ of preonC SON(Cut) leading to Cut (follows from Proposi-

tions 1 and 9). Thus, by Proposition 11(5), χ is also a step execution of C SON leading

to Cut . ⊓⊔

In this section we introduced a model of structured occurrence nets which captures

communications between concurrently executed subsystems. We then demonstrated

the soundness of this formalisation by showing that the model satisfies some key be-

havioural properties enjoyed by occurrence nets. We now go on to describe various

other forms of relation that can be used to construct structured occurrence nets.
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B SON

b b

b

Fig. 4. Behavioural abstraction. The ‘behaviour’ relation is indicated by b-labelled edges.

4 Behavioural abstraction

Structures like that shown in Figure 2 and 3(b) capture communications between dif-

ferent systems but give no information about the evolution of individual systems. This

orthogonal view is illustrated in Figure 4, where we have a two-level view of a system’s

history. (That it concerns a single system is indicated by the fact all conditions and

events are similarly-shaded.)

A possible interpretation of Figure 4 is that the upper level provides a high-level

view of a system which went through two successive versions which are represented by

two conditions of the upper occurrence net (the event in the middle represents a version

update). The lower occurrence net captures the behaviour of the system during the same

period. Figure 4 also shows the ‘behaviour’ relation working across the two levels of

description. The relation connects conditions in the lower part with those in the upper

part which abstract them. We omit a formal definition of this two-level occurrence net

as it is a special case of the construct introduced later in Definition 6.

In this section we aim at formalising the relationship which connects together dif-

ferent descriptions of the same system.

As already illustrated in Figure 4, any condition can be viewed either as a state (of

some system), or as itself representing a system that presumably has its own states and

events — just which is simply a matter of viewpoint. Moreover, as indicated in Figure 2

and 3(b), behaviours of different systems can interact with each other. In general, it is

possible to have sets of related occurrence nets, some showing what has happened in

terms of systems and their evolution, the other showing the behaviours of these systems.

Thus the former can be viewed as the behavioural abstraction of the latter. What comes

now is a combination of the structuring mechanisms that were illustrated in Figure 2,

3(b) and 4.

Figure 5 shows a simple example, involving the interacting activities of two systems

(note that the same shading is used for the higher- and lower-level view of each system).

This picture gives no information about the evolution of the two systems — some such

additional information is portrayed in the following figures. Moreover, the upper part

of the picture does not provide any information about the interactions between the two

systems (basically, all it says is that ‘there are two systems’).
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Abstraction:

two (extant)

systems

Two (active)

communicating

systems

in operation

B SON

C SON

C SON

b b b

b
b

b

Fig. 5. Behavioural abstraction.

More interesting is Figure 6(a) which shows the history of an online modification of

two systems, i.e., one in which the modified systems carry on from the states that had

been reached by the original systems — a possibility that is easy to imagine, though

often difficult to achieve dependably, especially with software systems. In this case, the

‘abstracts’ relation is non-trivial as it identifies those parts of the behaviours which are

pre- and post-modification ones. (Strictly speaking, Figure 6(a) is not an exact reflection

of the formal definition as different occurrence nets are assumed to be disjoint, and so

the pair of overlapping occurrence nets is treated as a single occurrence net. However,

one can portray a more abstract view of what is going on by showing two occurrence

nets. Such a relationship can be deduced by looking at the nets of an upper level, and

will be used below to identify the stages through which a system has passed during its

execution.)

Another type of system modification is shown in Figure 6(b). It again shows that the

two systems have each suffered some sort of modification, i.e., have evolved, once —

the ‘abstracts’ relations between the two levels show which state sequences are associ-

ated with the systems before they were modified, and which with the modified systems.

Note that in this case the behaviour of each system is represented by two disjoint oc-

currence nets. Thus the standard occurrence net theory does not work as desired as it

would consider these two parts as concurrent whereas, in fact, one is meant to precede

the other. In the proposed structured view the upper part provides the necessary infor-

mation for the desired sequencing of the occurrence nets. Again, this is a feature which

is due to the multi-level view of behaviours.

The last motivating example in this section, Figure 7, shows some of the earlier

history of the two systems in Figure 5, i.e., that one system has spawned the other

system, and after that both systems went through some independent further evolutions.

Note that additional information could have been portrayed in the figures by showing

relations, from the earlier versions of the two systems, to parts of the occurrence nets
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(a)

B SON
C SON

C SON

b b

b b

b
b b

b
b b

(b)

B SON
C SON

C SON

b b

b b

b b b

b b b

Fig. 6. System modifications: (a) online, with the modified systems carrying on from where they

left off; (b) offline, with the modified systems restarting from a predefined initial state.

which recorded the behaviour that occurred when these earlier versions were active —

but to avoid undue graphical complexity no attempt is made to show that here (it may

happen that no records of the prior behaviour of the two systems are available).

We will now formalise the concept of ‘behavioural abstraction’ outlined above. In

what follows, we call an occurrence net ON linear if |InitON | = 1 and |pre(e)| =
|post(e)| = 1, for every event e. Such an occurrence net represents a single chain of

alternating conditions and events.
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Definition 6 (behavioural SON). A behavioural structured occurrence net (or B SON)

is a tuple B SON
df
= (C SON, C SON′, β), where C SON is a communication structured

occurrence net as in Definition 4, C SON = (ON
′
1, . . . , ON

′
l, κ

′, σ′) is a communication

structured occurrence net with each ON′
i being linear, and β ⊆ C × C

′ is a relation

such that:

– dom(β) = C;

– β(pre(e)) ∩ β(post(e)) 6= ∅, for every e ∈ E;

– For every i ≤ k, there is exactly one j ≤ l such that β(Ci) ⊆ C′
j;

– For every c′ ∈ C
′, there is exactly one i ≤ k such that phse(c′)

df
= β−1(c′) is a

phase of ONi;

– For all c′, c′′, c′′′ ∈ C
′, if (c′, c′′), (c′′, c′′′) ∈ F

′+ and both phse(c′) and phse(c′′′)
are non-empty then so is phse(c′′);

– PrecB SON
df

= PrecC SON ∪ PrecC SON′ ∪ Prec is an acyclic relation, where

Prec
df
=

⋃

(c,d)∈Prec
+

C SON
|C×C

β(c) × β(d) \ idC′ ∪
⋃

(c′,d′)∈Prec
+

C SON′
|
C′×C′

Maxphse(c′) × Minphse(d′) \ idC .

Intuitively, PrecC SON and PrecC SON′ capture causalities resulting from communica-

tions between behaviours, whereas Prec reflects the succession of evolutions the system

had undergone during the history captured by B SON.

We can identify a ‘continuation’ relation between different occurrence nets ONi as

well as a between different phases within each occurrence net ONi (note that each phase

can be thought of as a sub-occurrence net if we include all events in-between its delim-

iting cuts). More precisely, we say that ONi is a continuation of ONj if there exist condi-

tions c′ and c′′ such that (c′, c′′) ∈ F
′ ◦F

′, FinONj
⊆ β−1(c′) and InitONi

⊆ β−1(c′).

Also, each ONi can be represented as a union of occurrence nets, ÕN1, . . . , ÕNm, where

for each 1 < j ≤ m there exist conditions c′ and c′′ such that (c′, c′′) ∈ F
′ ◦ F

′,

ÕNj−1 = ONphse(c′) and ÕNj = ONphse(c′′). We then say that ÕNj is a continuation of

ÕNj−1.

We now introduce cuts and step executions for the behavioural structured occur-

rence net in Definition 6. A cut of B SON is a maximal (w.r.t. set inclusion) set of

conditions Cut ⊆ C ∪ C
′ such that (Cut × Cut) ∩ Prec+

B SON = ∅. The initial cut

of B SON is the union, InitB SON, of the initial cut of C SON′ and the initial cuts of all

the ONi’s such that β(InitONi
) ⊆ InitC SON′ .

Definition 7 (step execution of B SON). A step execution of the behavioural struc-

tured occurrence net B SON is a sequence χ
df
= D0G1D1 . . .Gn Dn, where each

Di ⊆ C ∪ C
′ is a set of conditions and each Gi ⊆ E ∪ E

′ is a set of events, such

that D0 = InitB SON and, for every i ≤ n:

– pre(Gi) ∪ Max i ⊆ Di−1;

– (e, f) ∈ κ ∪ σ ∪ κ′ ∪ σ′ and f ∈ Gi implies e ∈
⋃

j≤i Gj;

– Di = (Di−1 \ (pre(Gi) ∪ Max i)) ∪ post(Gi) ∪ Min i;

where Min i
df
=

⋃
c′∈post(E′∩Gi)

Minphse(c′) and Max i
df
=

⋃
c′∈pre(E′∩Gi)

Max phse(c′).

We also say that χ leads to Dn, and that Dn is reachable.
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B SON

C SON

C SON

b b b

b b b

Fig. 7. System creation where the upper system has spawned the lower system.

We next establish a consistency between the individual and interactive views of

computation, intertwined with the record of evolutions of the systems involved. The

way we obtain the desired results is through a translation from a behavioural structured

occurrence net to a communication structured occurrence net that closely simulates it.

The basic idea is to chain together, using new events, the different phases representing

stages of evolution of each sub-system, and then synchronise these events with the cor-

responding events in the linear occurrence nets capturing the succession of the stages.

Let B SON be a behavioural structured occurrence net as in Definition 6. We con-

struct a communication structured occurrence net

Ĉ SON
df
= (ÔN1, . . . , ÔNl, ON

′
1, . . . , ON

′
l, κ ∪ κ′, σ ∪ σ′ ∪ σ̂) ,

by creating, for each element of i ≤ l, an occurrence net ÔNi, as follows.

Suppose that c0, . . . , cm are all the conditions of ON
′
i such that phse(cj) is non-

empty listed according to the causality relation F ′
i . Moreover, let {ej} = post(cj−1) =

pre(cj) for 1 ≤ j ≤ m. For every j ≤ m, we define ÕNj as ONphse(cj) with all

the conditions c ∈ Max phse(cj) renamed to ĉ. Then ÔNi is defined as the union of

all the occurrence nets ÕNj together with new events ẽ1, . . . , ẽm satisfying pre(ej) =
Maxphse(cj−1) and post(ej) = Minphse(cj), for j ≤ m. Furthermore, we add (êj , ej)
and (ej , êj) to σ̂.

It is easy to check that the translation satisfies the following.

Proposition 12. Ĉ SON is a communication structured occurrence net.

Proposition 13. No cut Cut of Ĉ SON contains ĉ, for any c ∈ Cut , and the cuts of

B SON are the cuts of Ĉ SON after renaming each occurrence of ĉ to c.
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Proposition 14. The step executions of B SON are the step executions of Ĉ SON after

renaming each occurrence of ĉ to c.

Our aim now is to re-establish the basic behavioural characteristics of occurrence

nets, and at the same time establish the consistency between the individual and interac-

tive views of computation. Given what we proved about the communication structured

occurrence nets, and the above properties of Ĉ SON, we directly obtain the following.

Theorem 4. Given a step execution as in Definition 7, for every j ≤ k, the sequence

D0∩Cj G1∩Ej D1∩Cj . . . Gn∩Ej Dn∩Cj

is either a sequence of empty steps, or a step execution of the occurrence net ONj

possibly preceded and/or followed by a sequence of empty sets (in the former case, the

first non-empty set is the initial cut of ONj , and in the latter the final one). Moreover,

for every j ≤ l, the sequence

D0∩C
′
j G1∩E

′
j D1∩C

′
j . . . Gn∩E

′
j Dn∩C

′
j

is a step execution of ON′
j .

Theorem 5. Given a step execution as in Definition 7, each Di is a cut of B SON, and

no event occurs more than once.

Theorem 6. One can always find a step execution involving all the events of a be-

havioural structured occurrence net.

In this section we introduced structured occurrence nets capturing an abstraction

mechanism between different representations of the same system. We have also demon-

strated its soundness through showing that the resulting structured representation retains

the desirable properties of the basic occurrence net model.

5 Spatial and Temporal Abstractions

What we will call spatial abstraction is based on the relation ‘contains/is component

of’. Figure 8 shows the behaviour of a system and of its three systems of which it is

composed, and how its behaviour is related to that of these components. (This figure

does not represent the matter of how, or indeed whether, the component systems are

enabled to communicate, i.e., what design is used, or what connectors are involved.)

Having identified such a set of communicating systems, and hence the containing sys-

tem which they make up, then each member of this set has the other members as its

environment.

Definition 8 (spatial abstraction S SON). A spatial abstraction structured occurrence

net (or S SON) is a tuple S SON
df
= (C SON, C SON′, ς), where C SON is a communica-

tion structured occurrence net as in Definition 4, C SON′ = (ON1, . . . , ONl, ON, κ′, σ′)

(l < k) is a communication structured occurrence net, and ς ⊆ (Ĉ × C) ∪ (Ê × E),

where Ĉ
df
=

⋃
i>l Ci and Ê

df
=

⋃
i>lEi, is a relation such that:
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S SON

C SON

C SON

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Fig. 8. System composition. The non-trivial part of the ‘spatially-abstracts’ relation is indicated

by s-labelled edges.

– dom(ς) = Ĉ ∪ Ê and codom(ς) = C ∪ E;

– |ς(x)| = 1 for all x ∈ Ĉ ∪ Ê;

– (Cut \ Ĉ) ∪ ς−1(Cut ∩ Ĉ) is a cut of C SON, for every cut Cut of C SON′;

– pre(e) ⊆ ς−1(pre(ς(e))) and post(e) ⊆ ς−1(post(ς(e))), for every e ∈ Ê;

– PrecS SON
df
= PrecC SON∪Prec ′ is a acyclic, where Prec′ is the union of relations

(ς−1(pre(e))\ς−1(post(e)))×ς−1(e) and ς−1(e)×(ς−1(post(e))\ς−1(pre(e))),
for every e ∈ E′.

One can define the cuts and step executions for S SON similarly as has been done

in Section 4 for B SON, and then obtain results similar in essence and applicability to

those formulated for B SON.

The above is, as indicated, a spatial abstraction — one can also have a temporal ab-

straction, as shown in Figure 9(a). When one so ‘abbreviates’ parts of an occurrence net

one is in effect defining atomic actions, i.e., actions that appear to be instantaneous to

their environment. The rules that enable one to make such abbreviations are non-trivial

when multiple concurrent activities are shown in the net. These rules are best illustrated

by an alternative representation for an occurrence net together with its abbreviations,

namely a structured occurrence net in which each abbreviated section (or ‘atomic’ ac-

tivity) of the net is shown surrounded by an enclosing ‘event box’. Figure 9(b) shows

this alternative representation of Figure 9(a), the top part of which can readily be recre-

ated by ‘collapsing’ Figure 9(b)’s occurrence net, i.e., by replacing the enclosed sections

by simple event symbols, as shown in Figure 9(c). This net collapsing operation is much

trickier with occurrence nets that represent asynchronous activity since there is a need

to avoid introducing cycles into what is meant to be an acyclic directed graph. (Hence

the need, on occasion, to use synchronous system interactions.) This is the main subject

of [4] and is illustrated in Figure 10.
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T SON

t t
tt

tt t t t
t t

(a)

(b)

(c)

Fig. 9. System abbreviation. The ‘temporally abstracts’ relation is indicated by t-labelled edges.

(a) depicts the temporal abstraction structured occurrence net view of what has happened,

whereas (b) delineates the ‘collapsed’ parts of behaviour, and (c) the result of such a collaps-

ing.

Definition 9 (temporal abstraction T SON). A temporal abstraction structured occur-

rence net (or T SON) is a tuple T SON
df
= (C SON, C SON′, τ) where C SON is a commu-

nication structured occurrence net as in Definition 4, C SON′ = (ON′
1, . . . , ON′

k, κ
′, σ′)

is a communication structured occurrence net, and τ : C′ ∪E
′ → C∪E is a mapping

such that, for every i ≤ k:

– τ(C′
i ∪ E

′
i) = Ci ∪ Ei, τ

−1(Ci) ⊆ C′
i and τ(E′

i) = Ei;

– τ−1(e) is a block of ON′
i, for every e ∈ Ei;

– |τ−1(c)| = 1, for every c ∈ Ci;

– Fi = {(x, y) ∈ (C ∪ E) × (C ∪ E) | (τ−1(x) × τ−1(y)) ∩ F ′
i 6= ∅};

– κ is the set of all (e, f) ∈ E× E such that (τ−1(e) × τ−1(f)) ∩ κ′ is non-empty;

and

– σ is the set of all (e, f) ∈ E × E such that (τ−1(e) × τ−1(f)) ∩ σ′ is non-empty,

or both (τ−1(e) × τ−1(f)) ∩ κ′ and (τ−1(f) × τ−1(e)) ∩ κ′ are non-empty.

A practical way in which temporal abstraction might be used is to analyse the be-

haviour at the higher level of abstraction, which can be done more efficiently, and after

finding a problem mapping it to a corresponding behaviour at the lower level (and pos-

sibly continuing the analysis there). To give a flavour of the kind of result which would

provide an underpinning for this approach, we have the following.

Theorem 7. Let T SON be a temporal abstraction structured occurrence net as in Def-

inition 9, and D0 {e1}D1 . . . Dn−1 {en}Dn be a step execution of C SON. Let i ≤ k
and f1 . . . fq be the subsequence of e1 . . . en comprising the events inEi. For every j ≤
q, let ej1 . . . ejmj

be a listing of all the events of τ−1(fj) such that (ejr , ejs) /∈ F ′
i ◦F

′
i ,

for all r > s. Then e11 . . . e1m1
. . . en1 . . . eqmq

is a firing sequence of ON
′
i.
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(a)

(b)

Fig. 10. Two valid collapsings which give rise to asynchronous (in (a)) and synchronous (in (b))

communication between abstract events.

Proof. Follows directly from the definitions. In particular, it is always possible to list

the events of τ−1(fj) in a way which is consistent with the relation F ′
i since F+

i is a

partial order. Moreover, such a listing is a firing sequence from any cut C satisfying

pre(fj) ⊆ C to the cut (C \ pre(fj)) ∪ post(fj). ⊓⊔

In this section we have presented composition and abbreviation, i.e., spatial and

temporal abstraction, as though they are quite separate — in practice, it is likely that

useful abstractions will result from successive applications of both spatial and temporal

ones.

We envisage that abstraction mechanisms described in this section will be particu-

larly useful in improving the efficiency of verification techniques based on structured

occurrence nets. A possible step of achieving this would be to exploit the structuring of

the execution histories allowing, e.g., to carry out separate checks on those fragments
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which correspond to abbreviated behaviours, and then feeding the results to the final

stage of verification.

6 Information retention and judgement

We now introduce the idea of one occurrence net retaining information about another

occurrence net that is representing the activity of some given system. This could be,

for example, in order to provide fault tolerance in the form of ‘recovery points’, en-

abling the given system to fall back and restart in order that failure might be averted,

or to enable the post hoc assessment of the given system’s activities by some separate

‘judgmental’ system, tasked with trying to determine whether and why a system failed.

A simple example of state retention aimed at supporting recovery points is shown in

Figure 11(a). The upper system is shown as initially acquiring (through its first event)

information about an initial fragment of the activity of the lower system, but then go-

ing on and retaining more information about this system. Intuitively, each event of the

upper system is supposed to describe a recovery point given by the cut made out of the

conditions of a cut in the lower system.

R SON

C SON
r r r rr r r r r

r

(a)

R SON

rr
d

rrr
r

rr

(b)

Fig. 11. State retention. The ‘retains’ and ‘discards’ relations are indicated by r-labelled and d-

labelled edges, respectively. (a) shows how the upper systems accumulates retained information

about the lower system, and (b) shows two systems which retain (and also discard) information

about each other.
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Definition 10 (state retention R SON). A state retention structured occurrence net (or

R SON) is a tuple R SON
df
= (C SON1, . . . , C SONm, ρ, δ), where each C SONi is a

communication structured occurrence net and ρ, δ are relations such that:

– ρ, δ ⊆ (Ĉ ∪ Ê ∪ F̂ ∪ κ̂ ∪ σ̂) × Ê where X̂
df
=

⋃
iXi, for X = C,E,F, κ, σ.

– if ((x, y), e) ∈ ρ then x, y ∈ info(e), where for each e ∈ Ê, info(e) denotes the

set of all z satisfying (z, e) ∈ (ρ ◦ F̂
∗) \ (δ ◦ F̂

∗).
– if (z, e) ∈ δ then (z, e) ∈ info(e) \ ρ.

– the relation F̂ ◦ (ρ ∪ δ ∪ F̂) ◦ F̂|bC×bC is acyclic.

In the above definition, each C SONi represents a system’s evolution for which some

information is being retained during the evolution C SONj of other systems. The relation

ρ formally captures this, and (z, e) ∈ ρ means that the information about z has been

acquired by executing e. This information does not need to be complete (indeed, there

may even be ‘gaps’ in the retained information, as in the example in Figure 11(a)), and

the only requirement is that information about a relationship (an arc or edge) implies

that the elements it involves (the endpoints) are also known. This ‘knowing’ is assumed

to be cumulative, i.e., if e′ is a predecessor of e then all information acquired during

the activation of e′ is retained and available at e as well — see the definition of info(e).
Another relation, δ, is used to model the ‘deletion’ of previously acquired knowledge

introduced, as illustrated with d-labelled edges in Figure 11.

Also, it is worth stressing that we do not assume that if z preceded z′ in C SONi

then the information about the former was necessarily acquired before z′. However we

still have a general acyclicity requirement. For specific applications further assumptions

related to acyclicity may be needed.

As already indicated, the notion of a ’failure’ event involves, in principle, three

systems — the given (possibly failing) system, its environment, and a judging system.

This judging system may interact directly and immediately with the given system, in

which case it is part of the system’s environment, e.g., in VLSI an on-chip testing facil-

ity [14]; another example, in a very different world, is a football referee! Alternatively

the judging system may be deployed after the fact using an occurrence net that repre-

sents how the failing event occurred. Figure 12 is an attempt to portray this. It deliber-

ately represents a situation in which a judgement system has obtained and retained only

incomplete evidence of the states and events, and even the causal relationships between

conditions and events, of two interacting systems (each of which constitutes the other’s

environment).

The judgment system is shown as having gradually accumulated information about

the two systems, and then used this information to help reach a judgement as to whether

a particular event was erroneous, and a failure has occurred. Such ‘retained’ information

might have been obtained directly by observation of an actual system and its environ-

ment, or may be little more than guesswork about the given system’s presumed activity.

Definition 11 (judgement J SON). A judgement structured occurrence net (or J SON)

is a tuple J SON
df
= (C SON1, . . . , C SONm, ρ, δ, ι) such that (C SON1, . . . , C SONm, ρ, δ)

is a state retention structured occurrence net as in Definition 10 and ι is a relation

ι ⊆ Ê × Ê satisfying e ∈ info(e′), for each (e, e′) ∈ ι, and the relation F̂ ◦ (ρ ∪ δ ∪

ι ∪ F̂) ◦ F̂|bC×bC is acyclic.
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C SON
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Fig. 12. (a) shows post-hoc judgement involving a judgemental system (upper part) and an active

system together with its environment (lower part). The ‘retains’, ’deletes’ and ‘judges’ relations

are indicated by r-labelled, d-labelled and j-labelled edges, respectively. (b) shows the part of

the active system behaviour on the basis of which judgement was made.

The relationship (e, e′) ∈ ι represents an act of judging an event e through the event

e′ of the judging system. For this to be valid, e must be known (or retained) at e′, and

so we assume that e ∈ info(e′) using notation introduced in Definition 10.

Retracing the ‘fault-error-failure’ chain, after a judgment has been made that a par-

ticular event needs to be regarded as a failure involves following causal arrows in either

direction within a given occurrence net, and following relations so as to move from one

occurrence net to another. Thus one could retrace (i) the source and/or consequence of

an interaction between systems, (ii) from a system to some guilty component(s), (iii)

from a component to the system(s) built from it, or (iv) from a given system to the

system(s) that created or modified it. All this tracing activity could be undertaken by

some tracing system (perhaps a part of the judgement system) using whatever evidence

is available (e.g., a retained occurrence net which is alleged to record what happened).

This tracing system (just like a judgment system) can of course itself fail (in the eyes of

some other judgment system)! The actual implementation of such tracing in situations

of ongoing activity, and of potential further failures, e.g., such as interfering with wit-

nesses and the jury (in a judicial context), involves problems such as those addressed

by the chase protocols [20].
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7 Applications of Structured Occurrence Nets

Structured occurrence nets have a number of different potential applications. For ex-

ample, they could we believe be used to extend the capabilities of (i) existing occur-

rence net based model-checking approaches to system evaluation, and (ii) existing tools

for the automated synthesis of systems (e.g. VLSI designs) from exemplar occurrence

nets. Such applications involve fully-detailed structured occurrence nets (produced ei-

ther from actual systems, or from models of intended systems). However, we first dis-

cuss the use of structured occurrence nets that were created after the fact from whatever

evidence was available (and that as a consequence are likely to be far from complete) to

assist the task of analyzing (accidental or malicious) failures in large complex evolving

systems, possibly involving software, hardware and people.

One can envisage a given judge, having identified some system event as a failure,

analysing a structured occurrence net, i.e., a set of related occurrence nets (dealing with

the various abstractions of the various relevant systems), in an attempt to identify (i) the

fault(s) that should be blamed for the failure, and/or (ii) the erroneous states that could

and should be corrected or compensated for. Unless we assume that the occurrence nets

are recorded correctly and completely as an automated by-product of system activity,

in undertaking such a task it may well prove appropriate during such an analysis to

correct or add to the occurrence nets, both individually and as a set, based on additional

evidence or assumptions about what occurred.

Different judges (even different automated judgement systems) could of course,

even if they identify the same failure event, come to different decisions regarding what

actually happened and in determining the related faults and errors — possibly because

they use different additional information (e.g., assumptions and information relating to

system designs and specifications) to augment the information provided by the occur-

rence nets themselves. The result of such analyses could be thought of as involving the

marking-up of the set of occurrence nets so as to indicate a four-way classification of

all their places, namely as ‘Erroneous’, ‘Correct’, ‘Undecided’, and ‘Not considered’.

As indicated earlier, the production of such a classification is likely to involve re-

peated partial traversals of the occurrence nets, following causal arrows backwards

within a given occurrence net in a search for causes and forwards in a search for con-

sequences. In addition it will involve following relations so as to move from one occur-

rence net to another. A simplistic example of this is the recognition that a given system’s

behaviour had, after a period of correct operation, started to exhibit a succession of er-

rors might lead to investigating the related occurrence net representing the system’s

evolution to determine if it had suffered a modification at the relevant time.

This way of describing the failure analysis task using occurrence nets might be

regarded as essentially metaphorical, i.e., essentially just as a way of describing (semi)-

formally what is currently often done by expert investigators in the aftermath of a major

system failure. However, at the other extreme one can imagine attempting to automate

the recording and analysis of actual occurrence nets — indeed one could argue that

this is likely to be a necessary function of any complex system that really merited the

currently fashionable appellations ‘self-healing’ and ‘autonomic’. The more likely, and

practical, possibility — one that we plan to investigate — is the provision of computer

assistance for the tasks of representing, checking the legality of, and performing analy-
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ses of, structured occurrence nets. This is because the task of analysing and/or deriving

the scenarios depicted by structured occurrence nets will, in real life, be too complex

to be undertaken as a simple paper and pencil exercise. The main reason is that the

systems we primarily aim at are (highly) concurrent and so automated analyses of their

behaviour suffer from the so-called ‘state explosion problem’. In a nutshell, even the

most basic problems are then of non-polynomial complexity and so perhaps the only

way to deal with them is to use highly optimised automated tools. This work could build

on work in, e.g., [6, 10–12, 19], on the unfoldings of Petri nets introduced in [18].

Turning to the other types of application that we envisage, the utilisation of struc-

tured occurrence nets for system evaluation and synthesis is a more straightforward ex-

tension of existing research, and of existing proven tools. They could be used as a way

of modelling complex system behaviour prior to system deployment, so as to facilitate

the use of some form of automated model-checking in order to verify at least some

aspects of the design of the system(s). Alternatively such automated model-checking

might be used to assist analysis of the automatically-generated records of actual fail-

ures of complex systems. Such work could take good advantage of recent work on the

model-checking of designs, originally expressed in the pi-calculus, work which involves

the automated generation and analysis of occurrence nets [11].

System synthesis is yet another very different avenue that could be usefully ex-

plored. This would involve using structured occurrence nets which have been shown to

exhibit desirable behaviour, including automated tolerance and/or diagnosis of faults,

as an aid to designing systems that are guaranteed to exhibit such behaviour when de-

ployed. We have in fact, with colleagues, already shown that it is possible to synthesise

asynchronous VLSI sub-systems via the use of formal representations based on occur-

rence nets [12], but such designs are much less complex than those that we have had in

mind while developing the concept of structured occurrence nets. The use of structured

occurrence nets, in particular those consisting of a set of interacting occurrence nets, as

input to an enhanced synthesiser is in effect a means of allowing the user to exercise a

degree of control over the synthesis process. In effect the structuring is being used to

constrain the synthesiser’s search space. By such means the user could cooperate with

the synthesiser so as to produce solutions to problems of a complexity that exceeds the

practical limits of existing synthesis tools [12].

8 Concluding Remarks

A major aim of the present paper has been to introduce, and motivate the further study

of, the concept that we term structured occurrence nets, a concept that we claim could

serve as a basis for possible improved techniques of failure prevention and analysis of

complex evolving systems. This is because the various types of abstractions that the

concept of a structured occurrence nets make use of are all ones that we suggest could

facilitate the task of understanding complex systems and their possible or actual failures,

and that of the analysis of the cause(s) of such failures. These abstractions would in

most cases be a natural consequence of the way the system(s) have been conceived

and perceived, rather than abstractions that have to be generated after the fact, during

analysis.
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Fig. 13. Entity-Relationship diagram for the Ladbroke Grove Train crash.

In principle, a single huge conventional (i.e. unstructured) occurrence net could be

used to represent the activity of a large evolving set of complex systems. However, by

retaining structuring which matches the actual or perceived reality of a set of distinct

systems and their largely distinct activities, the challenge of creating, understanding and

validating the various systems’ evolution and behaviour (and their failures) is greatly

reduced. In particular, we believe it will prove possible to design automated SON anal-

ysis tools that take advantage of all the retained structure, and as a result are capable of

dealing with much more complex system activities than could be handled by existing

tools for analysing conventional occurrence nets. (Such tools could we hope be built

as extensions of existing tools for supporting the analysis of conventional unstructured

occurrence nets.)

Perhaps the most straightforward use to which structured occurrence nets could

be put is for analysing fully detailed algorithmic models of a set of systems. This is

because such models could be used to generate structured occurrence sets that would

be known to be complete and accurate (as opposed to being in large part the fruit of

speculation and guesswork, which may well be the case for forensic investigations and

safety analyses). Such detailed structured nets can then be used for an enhanced version

of conventional model-checking [5] in order to establish various formal properties of

the set of systems, taking advantage of the structuring to enable more complex systems

to be analysed than would be feasible with conventional techniques.

Of the various possible types of use of structured occurrence net that we have iden-

tified - post hoc analysis of partially-understood systems, a priori analysis of detailed

models of fully specified systems, and synthesis of systems from exemplar occurrence

nets - we have, ahead of the availability of any tool support, so far initiated exploration
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of just the first. We have been working on a sketch of a structured representation of

the various activities and mistakes which led up to the tragic Ladbroke Grove Train

crash [24]. Figure 13 is an example result of this exploration - it uses the conventional

Entity-Relationship graphical notation, the entities in fact being individual (un-detailed)

occurrence nets, representing the existence of information about the activities of each

of the trains that collided, the organisations responsible for train maintenance and in-

spection, the organisation that designed the signalling system, the organisation that was

supposed to educate new drivers about the detailed location and operation of the signals,

etc. In doing so, we made use of such SON relationships as communication, abstraction

and behaviour. However, in our view tool support is needed in order for us to take such

experiments on much further, and our main next priority is to explore the provision of

such support.

Such a tool for recording, analysing and manipulating structured occurrence nets is

best regarded as constituting a somewhat general purpose infrastructure, which would

actually be used via a particular specialised application interface. The infrastructure tool

would embody fairly general facilities for assessing and reporting on the completeness

and consistency of a given structured occurrence net, using algorithms based on the

various theorems and propositions given in earlier sections of this paper. The application

interface could be the means by which for example (i) a structured occurrence net is

constructed, and (ii) any additional information required to identify states and events

that should be classified as erroneous is provided.

A possible example of a specialised application interface would be one supporting

the performing of forensic analyses of extensive automatically-recorded audit trails of

network traffic obtained from or about computers that are suspected of having been

involved in cybercrime [7]. A related, but in practice very different, potential applica-

tion concerns the evaluation of evidence from a major (conventional) crime. The aim of

such evaluation is to formulate plausible scenarios worthy of further police investiga-

tion, an application for which a ‘knowledge-based’ modelling technique has been de-

veloped [9]. Somewhat similar in intent, though designed for aircraft accident analyses

rather than criminal investigations, and very different technically, is the ’Why-Because’

causal analysis scheme [15]. Our speculation is that at least in theory, and perhaps in

practice, all these could benefit from the use of infrastructural support for structured

occurrence nets.

Clearly, much remains to be done to explore how best to exploit the concept of

structured occurrence nets, and to determine the adequacy of the set of relations that

we have described in this paper. (We are considering further relations, in particular

that of ‘alternate’, a relation which would be used when the need is to document and

explore speculative alternative activities that might have led to some given situation,

but have deferred discussion of this to a subsequent paper. Similarly, we have deferred

discussion of how one might best extend the formalism developed here to deal with

recursively defined structured occurrence nets, a challenging task for which the present

paper provides the necessary groundwork.) However, we hope that the present account

has demonstrated that our plans have a solid formal basis, a basis which can usefully

be exploited through the provision of automated support and analysis tools, and has

adequately explained why we believe such tool building activities are now justified.
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