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Abstract. In this paper, we propose a novel appearance-based representation,
called Structured Ordinal Feature (SOF). SOF is a binary string encoded by com-
bining eight ordinal blocks in a circle symmetrically. SOF is invariant to lin-
ear transformations on images and is flexible enough to represent different local
structures of different complexity. We further extend SOF to Multi-scale Struc-
tured Ordinal Feature (MSOF) by concatenating binary strings of multi-scale
SOFs at a fix position. In this way, MSOF encodes not only microstructure but
also macrostructure of image patterns, thus provides a more powerful image rep-
resentation. We also present an efficient algorithm for computing MSOF using
integral images. Based on MSOF, statistical analysis and learning are performed
to select most effective features and construct classifiers. The proposed method is
evaluated with face recognition experiments, in which we achieve a high rank-1
recognition rate of 98.24% on FERET database.

1 Introduction

Object recognition from images is a challenging problem in computer vision. The main
difficulties arise due to many uncertainties such as viewpoint and illumination changes.
To overcome such problems, appearance-based object representation has been a hot is-
sue in the past two decades. Among these, PCA [17] and LDA [2] are two classical
linear methods that have significantly advanced object recognition techniques. But lin-
ear, holistic appearance-based methods can not capture subtleties of various objects,
and holistic features are unstable under various illumination changes. It is believed that
localized appearance-based features, which reflect the intrinsic properties of an object,
can be more powerful for object recognition. Thus local features have been investi-
gated a lot by researchers in recent years, such as Local feature analysis (LFA) [10],
Gabor wavelet-based features [5,19,7], Local Binary Patterns (LBP) [1], and ordinal
measures [15].

Local Binary Pattern (LBP) is a powerful local descriptor for microfeatures of im-
ages [9]. The LBP operator labels the pixels of an image by thresholding the 3 × 3-
neighborhood of each pixel with the center value and considering the result as a binary
number. Ahonen et al. proposed a novel approach for face recognition, which takes ad-
vantage of the Local Binary Pattern (LBP) histogram [1]. However, the original LBP
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has its small spatial support area, hence the bit-wise comparison therein made between
two single pixel values is much affected by noise. Moreover, features calculated in the
local 3 × 3 neighborhood cannot capture larger scale structure (macrostructure) that
may be dominant features of objects.

Recently, ordinal measure is discussed frequently as a method for representing lo-
cal image structures. Ordinal features are defined based on the qualitative relation-
ship between two image regions and are robust against various intra-class variations
[11,15,16]. For example, they are invariant to linear transformations on images and
is flexible enough to represent different local structures of different complexity. Sinha
[15] shows that several ordinal measures on facial images, such as those between eye
and forehead and between mouth and cheek, are invariant with different persons and
imaging conditions, and thereby develops a ratio-template for face detection. Schnei-
derman [13] also uses an ordinal representation for face detection. While in the task of
face recognition, which is a more complex problem than face detection, Thoresz [16]
believes that ordinal features are not suited because they are too weak. Yet Liao et al.
propose an ordinal feature based face recognition method for the first try, and obtained
a promising results [6].

In this work, we propose a novel representation, called Structured Ordinal Feature
(SOF). It is believed that the human vision system uses a series of levels of represen-
tation, with increasing complexity. Since one single ordinal feature is too simple to
represent complex structures, we propose to combine several ordinal measures together
to form a more powerful encoding of local image structures. SOF is a binary string
encoded by combining eight ordinal blocks in a circle symmetrically. Using integral
images, the comparison of average intensities between two blocks can be calculated
very efficiently. Furthermore, Multi-scale Structured Ordinal Feature (MSOF) can be
derived via concatenating binary strings of multi-scale SOFs at a fix position. This way,
MSOF encodes not only microstructure but also macrostructure of image patterns, thus
provides a more complete image representation. Based on MSOF, we define several dis-
similarity measures, and perform statistical learning to select the most effective features
and construct classifiers. Finally, we apply it to face recognition to illustrate the power
and effectiveness of our proposed method.

The rest of this paper is organized as follows: In Section 2, the SOF and MSOF
representations are introduced, and several dissimilarity measures based on MSOF are
defined for discrimination tasks. In Section 3, statistical learning is applied for MSOF-
based feature selection and classifier construction. Later, experiments with face recog-
nition are shown in Section 4, and finally we conclude this paper in Section 5.

2 Structured Ordinal Feature

2.1 Ordinal Feature

Ordinal features come from a simple and straightforward concept that we often use. For
example, we could easily rank or order the heights or weights of two persons, but it
is hard to answer their precise differences. For computer vision, the absolute intensity
information associated with an object can vary because it can change under various
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illumination settings. However, ordinal relationships among neighborhood image pixels
or regions present some stability with such changes and reflect the intrinsic natures of
the object.

An ordinal feature encodes an ordinal relationship between two concept. Fig.1 gives
an example in which the average intensities between regions A and B are compared
to give the ordinal code of 1 or 0. The information entropy of the ordinal measure is
maximized because the ordinal code has nearly equal probability of being 1 or 0 for
arbitrary patterns.

Fig. 1. Ordinal measure of relationship between two regions. An arrow points from the darker
region to the brighter one. Left: Region A is darker than B, i.e. A ≺ B. Right: Region A is
brighter than B, i.e. A � B.

2.2 Structured Ordinal Feature

It is believed that the human vision system uses a series of levels of representations,
with increasing complexity. Since one single ordinal feature is too simple to represent
complex structures, we propose to combine several ordinal measures together to form a
more powerful encoding of local image structures. We call this combination of ordinal
encoding Structured Ordinal Feature (SOF). SOF is a binary string encoded by com-
bining eight square ordinal blocks in a circle symmetrically, which is inspired by the
encoding of local binary patterns [9]. Fig.2 illustrates an example of how SOF encoded.

There are two parameters in SOF: one is the size s of the square blocks, the other is
the radius r of the circle. The parameter pair (s, r) denotes the scale of SOF. An SOF
feature of scale (s, r) at pixel location (x, y) can be denoted as SOFs,r(x, y).

Structured Ordinal Feature extends the original ordinal feature, and can be used to
represent various image structures, which may be some intrinsic properties of image
object. The original ordinal feature can only show the contrast information between
two regions, while using SOF, more local image structures can be represented. Fig. 3
shows some image structures that can only be represented by SOF. These structures are
basic properties within many image objects. Therefore, SOF provides a more efficient
and flexible way for appearance-based object representation.

Note that the scalar values of averages over blocks can be computed very efficiently
[14] from the summed-area table [3] or integral image [18]. For this reason, the compu-
tation of SOF is very fast. Also note that the comparison result between averages of two
blocks is invariant when the image is linearly transformed, thus the encoding of SOF is
invariant to linear transformations on images.
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Fig. 2. An example of SOF encoding. Eight square ordinal blocks are combined in a circle sym-
metrically to form a structured filter. The number in each block is the average intensity within the
corresponding image region. The arrows represent the ordinal relationships. According to these
relationships, the result is encoded as a binary string.

a b c d

Fig. 3. Some image structures represented by SOF. a. Centered darker region; b. Centered brighter
region; c. Brighter strip; d. Cross strips.

2.3 Multi-scale Structured Ordinal Feature

To construct a more complete image representation, we develop the operator of multi-
scale SOF (MSOF). MSOF can be derived via concatenating binary strings of multi-
scale SOFs at a fix position. See Fig.4 for an example. Suppose there are n scales of
SOF, then an MSOF at location (x, y) is encoded as

MSOF (x, y) = SOFs0,r0(x, y) ⊕ SOFs1,r1(x, y) ⊕ · · · ⊕ SOFsn−1,rn−1(x, y),

where ⊕ denotes binary concatenation operator. In this way, MSOF encodes not only
microstructure but also macrostructure of image patterns, thus provides a more com-
plete image representation.

The scale parameters of MSOF should be carefully designed so that the operator will
cover the neighborhood as well as possible while minimizing the amount of redundant
information. Consequently, the square blocks are set to fill the eight directions well
within the same circle, while touching each other as well as possible between circles.
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Fig. 4. An example of MSOF operator. Three scales of SOFs are combined at the center. The
encodings are concatenated to form a binary string of 24 bits.

2.4 Dissimilarity Measure

For discrimination tasks, the Hamming distance can be used between two MSOFs at
the same position. Since the encoding of MSOF is a concatenated binary string at a
fix position, Hamming distance between two MSOFs at the same position can be used
to measure the difference of two images at that position. Let Hamm(·, ·) denote the
Hamming distance between two binary strings, then distance between two MSOFs at
location (x, y) of image I ′ and I ′′ can be measured as

dhamm(x, y) = Hamm(MSOF ′(x, y), MSOF ′′(x, y)) (1)

This kind of difference measures the percentage of bitwise difference between two
MSOFs, ranging from 0 to 1.

Consequently, Hamming distances at all positions provides a discriminative feature
set for object recognition, and classifiers can be further developed based on these fea-
tures. One simple classifier is Nearest Neighbor (NN) classifier, using MSOF distance
summed over the whole image as a dissimilarity measure. Suppose all images are H
pixels high and W pixels wide, then such dissimilarity measure between two images I ′

and I ′′ can be defined as

dhamm =
1

H × W

∑

x,y

dhamm(x, y) (2)

The NN classifier can be used to provide a baseline performance. The latter section will
demonstrate promising results given by MSOF-based NN classifier.

Another discriminative feature set can be constructed considering spacial informa-
tion. Let B = {B0, B1, · · · , Bm−1} be a set of m-1 blocks of various sizes and posi-
tions over the whole image, then a set of features containing local region information
can be defined as

dhamm(Bi) =
1

Hi × Wi

∑

(x,y)∈Bi

dhamm(x, y), i = 0, 1, · · · , m − 1, (3)
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where Hi and Wi are height and width of block Bi respectively. Accordingly m dis-
criminative features are defined for object recognition. We call them block-based MSOF
Hamming dissimilarity measures.

Hamming distance based MSOF dissimilarity measure is effective when images are
well aligned. However, based on pixel-wise comparison, Hamming distances are influ-
enced by image misalignment. For more robust and efficient discrimination, we con-
struct a feature set based on spatially distributed histograms, which are also used in [1].
Using the above notations, the MSOF histogram is defined as

Hist(Bi, j) =
1

Hi × Wi × n

∑

(x,y)∈Bi

n∑

k=0

I{SOFsk,rk
(x, y) = j},

i = 0, 1, · · · , m − 1, j = 0, 1, · · · , L − 1,

(4)

where j is an SOF code, and L = 28, thus the histogram has 256 bins. Based on these
spatially distributed histograms, discriminative features can be defined as difference
between two corresponding histogram bins:

dhist(Bi, j) = |Hist′(Bi, j) − Hist′′(Bi, j)|,
i = 0, 1, · · · , m − 1, j = 0, 1, · · · , L − 1.

(5)

We call the above dissimilarity measure histogram-based MSOF dissimilarity mea-
sure. These features provide local histogram information and hence will be more effi-
cient for discrimination tasks. However, considering blocks of all sizes and locations,
the feature dimensions will be very large (m × 256). Therefore, a proper technique
should be used to reduce the dimension and construct classifiers.

3 Statistical Learning for Object Recognition

The above MSOF-based dissimilarity measures provide an over-complete discrimina-
tive feature set. The only question remained is how to use them to construct a powerful
classifier. Because those excessive measures contain much redundant information, a
further processing is needed to remove the redundancy and build effective classifiers.
In this paper we use Gentle AdaBoost algorithm [4] to select the most effective MSOF-
based dissimilarity measures.

Boosting can be viewed as a stage-wise approximation to an additive logistic regres-
sion model using Bernoulli log-likelihood as a criterion [4]. Developed by Friedman et
al, Gentle AdaBoost modifies the popular version of the Real AdaBoost procedure [12],
using Newton stepping rather than exact optimization at each step. Empirical evidence
suggests that Gentle AdaBoost is a more conservative algorithm that has similar perfor-
mance to both the Real AdaBoost and LogitBoost algorithms, and often outperforms
them both, especially when stability is an issue.

While an AdaBoost procedure essentially learns a two-class classifier, we convert the
multi-class problem into a two-class one using the idea of intra- and extra-class differ-
ence [8]. However, here the difference data are derived from the MSOF-based dissim-
ilarity measures rather than from the images. An MSOF-based dissimilarity measure is
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taken between two MSOF representations, which is intra-class if the two images are of
the same class, or extra-class if not. The MSOF-based dissimilarity measures are used to
construct weak classifiers for the above AdaBoost learning. The best current weak clas-
sifier is the one for which the weighted intra-class MSOF-based dissimilarity measure
(over the training set) is minimized while that of the extra-class is maximized. After
AdaBoost learning, the feature dimensions of the MSOF-based dissimilarity measures
are dramatically reduced, meanwhile a powerful classifier is constructed.

With the two-class scheme and the learned classifier, the object recognition proce-
dure will work in the following way: It takes a probe image and a gallery image as the
input, and computes a feature vector from the two images using the selected MSOF-
based dissimilarity measures, then it calculates a similarity score for the feature vector
using the learned AdaBoost classifier. Finally a decision is made based on the score,
to classify the feature vector into the intra-class (the same objects) or the extra-class
(different objects).

4 Experiments

To evaluate the proposed MSOF-based representation, we apply it to face recognition,
which is a typical object discrimination task and also a hard problem. Experiment is
evaluated on FERET fa/fb face database. Face images are cropped into 150 pixels high
and 130 pixels wide, according to their eye coordinates. The non-face area is excluded
using an elliptical mask, and the gray histogram within the elliptical mask is equalized.
The FERET training CD contains 1002 frontal face images from 429 subjects. The test
set contains 1196 galleries and 1195 probes from 1196 subjects.

First, we want to show some basic effects of MSOF filtering. Fig. 5 shows three exam-
ples of face images, and Fig. 6 demonstrates the corresponding filtered images, each of
which is filtered by a 5-scale MSOF operator. The scale parameters we use in this paper
are: (1,1), (3,3), (5,7), (9,14), (17,27), which are determined according to the principle
we mentioned in Section 2.3. From Fig. 6 we could see that large scale of SOF encodes
macrostructure of image objects, while small scale reveals fine details of local structures.
Hence combining all these scales, MSOF provides a complete object representation.

Dissimilarity measures of a pair of intra-personal images and a pair of extra-personal
ones are shown in Fig. 5. The difference image is generated using Equ. (1), where the
brighter pixels indicate larger differences. From Fig. 5 we could see clearly that images
of extra-personal pair have larger differences than that of intra-personal pair. Using
Equation of (2), we could exactly measure the dissimilarity between two images. In
this example, the intra-personal dissimilarity is 0.1603, while the extra-personal one is
0.2974. It follows that the MSOF-based dissimilarity measure is able to provide promis-
ing power for discriminating intra-/extra-class differences.

The next experiment is designed to evaluate the baseline performance of NN classi-
fier using dissimilarity measure of Equ. (2). We follow the standard FERET test proto-
col of fa/fb face database, which contains 1196 gallery images and 1195 probe images.
One advantage of MSOF-based NN classifier is that it could be directly used without
training. The cumulative match score curve is shown in Fig. 7. The rank-1 recognition
rate is 80%, a promising result.
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A1 A2 B

C D

Fig. 5. Examples of dissimilarity measures based on MSOF. The first row: original face images,
where A1 and A2 are the same person, and B is another person. The second row: difference
images calculated via Equ. (1), where C is generated using A1 and A2, and D is generated using
A2 and B. The total dissimilarity of (A1, A2) pair computed with Equ. (2) is 0.1603, while that
of (A2, B) pair is 0.2974.

Fig. 6. Examples of MSOF filtered images with 5 scales. Each column is corresponding to one
scale, which becomes larger from left to right. For each scale, 8-bits binary string of each SOF
encoding is converted to a decimal number ranging from 0 to 255, which is displayed as a pixel
label here. Each row is generated with one face image. The three rows are corresponding to image
A1, A2, and B in Fig. 5 respectively.

Finally, we train two AdaBoost classifiers based on MSOF dissimilarity measure, us-
ing the FERET training set of 1002 images. The first AdaBoost classifier is constructed
using block-based MSOF Hamming dissimilarity measure (Equ. (3)), and the second
one is using histogram-based MSOF dissimilarity measure (Equ. (5)). The results are
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Fig. 7. Cumulative match score curves. “MSOF Hist” is for histogram-based MSOF dissimilarity
measure (Equ. (5)); “MSOF Hamm” is for block-based MSOF Hamming dissimilarity measure
(Equ. (3)); “MSOF NN” is for Nearest Neighbor classifier using dissimilarity measure of Equ.
(2); “Ordinal Feature” is the result of [6], and “LBP” is that of [1].

compared with the approach based on LBP [1] and Ordinal Feature [6] shown in Fig. 7.
From the cumulative match score curve, we could see that classifier using histogram-
based MSOF dissimilarity measure outperforms all other algorithms, though Ordinal
Feature of [6] is slightly better before rank3. The rank-1 recognition rate of histogram-
based MSOF is 98.24%, which is an excellent result on FERET database. The perfor-
mance of block-based MSOF Hamming dissimilarity measure classifier is not the best,
but it is also outperforms LBP after rank-8, and it achieves high recognition rates near
that of Ordinal Feature after rank-20.

5 Summary and Conclusions

This paper proposes a novel appearance-based representation, called Structured Ordinal
Feature (SOF). We show that SOF is invariant to linear transformations on images and
can be efficiently computed. It can be further extended to Multi-scale Structured Ordinal
Feature (MSOF) to encode both microstructure and macrostructure of image patterns.
We also provide several dissimilarity measures based on MSOF for object recognition.
Finally we apply MSOF for face recognition. The experiments on FERET database il-
lustrate that our proposed method achieves an excellent performance. We believe that
the success of SOF is not limited to faces. Since SOF is general for appearance-based
object representation, our future work will be applying SOF on other object classifica-
tion or recognition problems to investigate its power.
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