
STRUCTURED OUTPUT LAYER NEURAL NETWORK LANGUAGE MODEL

Hai-Son Le1,2, Ilya Oparin2, Alexandre Allauzen1,2, Jean-Luc Gauvain2, François Yvon1,2

1Univ. Paris-Sud; 2LIMSI CNRS, Spoken Language Processing Group
B.P. 133, 91403 Orsay, cedex, France

{lehaison,oparin,allauzen,gauvain,yvon}@limsi.fr

ABSTRACT

This paper introduces a new neural network language model
(NNLM) based on word clustering to structure the output vo-
cabulary: Structured Output Layer NNLM. This model is able
to handle vocabularies of arbitrary size, hence dispensing with
the design of short-lists that are commonly used in NNLMs.
Several softmax layers replace the standard output layer in
this model. The output structure depends on the word cluster-
ing which uses the continuous word representation induced
by a NNLM. The GALE Mandarin data was used to carry out
the speech-to-text experiments and evaluate the NNLMs. On
this data the well tuned baseline system has a character er-
ror rate under 10%. Our model achieves consistent improve-
ments over the combination of an n-gram model and classical
short-list NNLMs both in terms of perplexity and recognition
accuracy.

Index Terms— Neural Network Language Model, Auto-
matic Speech Recognition, Speech-To-Text.

1. INTRODUCTION

Standard n-gram back-off language models (LMs) rely on a
discrete space representation of the vocabulary, where each
word is associated with a discrete index. On the contrary,
Neural network language models (NNLMs) are based on the
idea of continuous word representation. Distributionally sim-
ilar words are represented as neighbors in a continuous space.
This turns n-grams distributions into smooth functions of the
word representations and helps to make use of hidden word
and context similarities. These representations and the asso-
ciated probability estimates are jointly estimated in a neural
network.

Neural networks, working on top of conventional n-gram
models, have been introduced in [1, 2] as a potential means
to improve discrete language models. This topic has recently
gained much attention in the domain of speech recognition [3,
4]. Both neural network approach and class-based models
were shown to pertain to the few approaches that provide sig-
nificant recognition improvements over n-gram baselines for
large-scale speech recognition tasks [5, 6, 7].

Probably the major bottleneck with NNLMs is the com-
putation of posterior probabilities in the output layer. This
layer must contain one unit for each vocabulary word. Us-
ing such a design makes handling of large vocabularies, con-
sisting of hundreds thousand words, infeasible due to a pro-
hibitive growth in computation time. Short-list NNLMs, that
estimate probabilities only for several thousands most fre-
quent words, were proposed as a practical workaround this
problem [5].

In this article, we introduce the Structured OUtput Layer
(SOUL) neural network language modeling approach. It is
based on a tree representation of the output vocabulary. This
approach successfully combines the benefits of neural net-
work and class-based techniques in one single framework. As
opposed to standard NNLMs, SOUL NNLMs make it feasi-
ble to estimate the n-gram probabilities for vocabularies of
arbitrary size. As a result, all the vocabulary words, and not
just the words in the short-list, can benefit from the improved
prediction capabilities of the NNLMs.

The LIMSI Chinese STT system serves as a baseline [8].
It is based on a well-tuned 4-gram LM trained on 3.2 billion
words corpora (without any pruning and cut-offs) interpolated
with standard short-list NNLMs. The GALE Mandarin data
were used to carry out the speech-to-text (STT) experiments
and evaluate the performance. Our main contribution is to
show that training NNLMs on full vocabularies is computa-
tionally feasible, and that it allows achieving significant gains
on a large STT task.

This paper is organized as follows. Related work on hi-
erarchical neural networks is summarized in Section 2. Then
the architecture of SOUL NNLMs is introduced in Section 3.
Section 4 describes the experimental setup and, finally, the
experimental results are presented in Section 5.

2. RELATED WORK

For large training sets, sampling partially enables to circum-
vent one of the NNLM training bottlenecks [5]. However, the
output vocabulary is in practice always restricted to a short-
list up to 20k words. Recent work [9] showed the impact
of initialization and proposed new faster training schemes.
However, there are some issues that occur when resorting to



a short-list: the NNLMs are only used to predict a limited
number of words. Thus the probability distribution must be
normalized with a standard back-off LM that is still used to
deal with words out of the short-list.

To handle large output vocabularies, a hierarchical struc-
ture of the output layer was introduced in [10]. In a nutshell,
the output vocabulary is first clustered and represented by a
binary tree. Each internal node of the tree holds a word clus-
ter which is divided in two sub-clusters and so on. Leaves
correspond to words at the end of this recursive representation
of the vocabulary. Thus the neural network aims to estimate
probabilities of the paths in this binary tree given the history,
rather than directly the word itself.

A shortcoming of this approach is the recursive binary
structure. If one word is poorly clustered, this error affects all
the internal nodes (or clusters) which lead to this word. This
is typically the case for rare words that represent most of the
vocabulary. Thus an error in one word may have a significant
impact on the whole system. By relaxing the constraint of a
binary structure, we expect to overcome this shortcoming.

3. STRUCTURED OUTPUT LAYER NEURAL
NETWORK LANGUAGE MODEL

In this section we introduce a new class-based neural net-
work language model, namely Structured OUtput Layer Neu-
ral Network Language Model - SOUL NNLM. Following the
classical work on distributed word representation [11], we as-
sume that the output vocabulary is structured by a clustering
tree, where each word belongs to only one class and its asso-
ciated sub-classes. If wi denotes the ith word in a sentence,
the sequence c1:D(wi) = c1, . . . , cD encodes the path for the
word wi in the clustering tree, with D being the depth of the
tree, cd(wi) a class or sub-class assigned to wi, and cD(wi)
being the leaf associated with wi (the word itself). Then the
n-gram probability of wi given its history h can be estimated
as follows using the chain rule:

P (wi|h) = P (c1(wi)|h)
D∏

d=2

P (cd(wi)|h, c1:d−1) (1)

The Figure 1 represents the architecture of the NNLM to
estimate this distribution, for a tree of depth D=3. The SOUL
architecture is the same as for the standard model up to the
output layer. The main difference is the output structure
which involves several layers with a softmax activation func-
tion. The first softmax layer (class layer) estimate the class
probability P (c1(wi)|h), while other output sub-class lay-
ers estimate the sub-class probabilities P (cd(wi)|h, c1:d−1).
Finally, the word layers estimate the word probabilities
P (cD(wi)|h, c1:D−1). Words in the short-list are a spe-
cial case since each of them represents its own class without
subclasses (D=1 in this case). It is worth noticing that while
D at most equals to 3 in our experiments, it depends on the
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Fig. 1. The architecture of the Structured Output Layer Neu-
ral Network language model

clustering algorithm. The proposed word representation can
be generalized to an arbitrary tree structure.

3.1. Word clustering

The first step to train a SOUL model is to cluster the words
of the output vocabulary. Whereas in [10] a rather sophisti-
cated method based on a randomly initialized model was in-
troduced, we propose a more straightforward method based
on the relationship between the two word spaces defined in
the standard NNLM [9]: context and prediction spaces. We
summarize this clustering algorithm as follows:

Step 1: Train a standard NNLM model with the short-
list as an output, following the one vector initialization
scheme [9]. In all our experiments, we train this model
with 3 epochs and the short-list of 8k words.

Step 2: Reduce the dimension of the context space using
a principal component analysis (final dimension is 10 in our
experiments).

Step 3: Perform the recursive K-means word clustering
based on the distributed representation induced by the context
space (except for words in the short-list).

The recursive clustering divides a word class (or sub-
class) only if the number of words in this class is above an
empirical threshold. In our experiments, the algorithm starts
with 4k classes in addition to the short list of 12k. Then
a class which contains W words is divided in |

√
W + 1|

sub-classes if W > 1, 000.



3.2. Training

Training of a NNLM is performed by maximizing log-
likelihood of the training data. This optimization is performed
by stochastic back-propagation as in [12]. The previously
trained standard NNLM is used to initialize the shared pa-
rameters, while the other parameters are initialized in a usual
way. Overall, the training time of each epoch for a SOUL
model is only 1.5 times longer than for 8k short-list NNLMs
and equal to that of 12k short-list NNLMs.

4. EXPERIMENTAL SETUP

To segment Chinese phrases in words, we make use of the
simple longest-match segmentation algorithm based on 56052
word vocabulary used in previous LIMSI Mandarin Chinese
STT systems [13]. However, character error rate (CER) is
conventionally used to evaluate final recognition performance
for Mandarin.

The GALE dev09 and eval09 sets are used in this study to
evaluate the performance of different models. This data con-
sists of broadcast news and broadcast conversations. A subset
of dev09 called dev09s was also defined. It constitutes about a
half of dev09 data. More details concerning the experimental
setup, acoustic models and decoding process of the baseline
LIMSI Mandarin STT system can be found in [8].

The language model of the LIMSI Mandarin STT system
is trained on 3.2 billion word tokens (after segmentation) of
Mandarin Chinese data thus providing the system with robust
LM estimates. The baseline LM is a word-based 4-gram LM.
Individual LMs are first built for each of the 48 Mandarin cor-
pora available by the end of the year 2009. These models are
smoothed according to the unmodified interpolated Kneser-
Ney discount scheme. No cut-offs and pruning is imposed
thus making the LMs to take account of all available informa-
tion. These individual models are subsequently linearly in-
terpolated together with interpolation weights tuned on dev09
data. As the number of individual models is small this does
not result in a bias to this data.

Each NNLM is trained on about 25M words after re-
sampling of the training data. For each test configuration 4
NNLMs of the same type are trained and interpolated. Each of
these 4 NNLMs differs in the dimension of the shared context
space, size of the hidden layer and training data resampling.
For all our experiments, the learning rate of different NNLMs
is 5 × 10−3 , the learning weight decay is 5 × 10−8 and the
the weight decay is 3 × 10−5.

5. EXPERIMENTAL RESULTS

State-of-the-art n-gram language models are rarely of an or-
der larger than 4. Our previous experiments on very large
setups indicated that the gain obtained when increasing the
n-gram order from 4 to 5 is almost negligible while the size

of models increases drastically. Handling such models is thus
very impractical and can hardly be done without pruning.
However, this is not the case for NNLMs due to the different
nature of these models. The increase in context length at the
input layer results in only at most linear growth in complex-
ity [5]. Thus training longer-context neural network models
is still feasible.

As our aim is to improve the performance of the Man-
darin STT system, we also investigated the increase in context
length from 3 (that corresponds to 4-grams) to 5 for different
NNLMs, while keeping the same 4-gram back-off LM at the
output layer for standard short-list NNLMs. This remains a
valid thing to do with the back-off scheme used for NNLMs
with short-lists.

Perplexity and recognition accuracy for different models
are presented in Table 1. Perplexity results are reported for
dev09 and CER results are on dev09s and eval09.

The row +4-gram NNLM 8k corresponds to the results
when the baseline 4-gram model is interpolated with the base-
line NNLMs that make use a short-list of 8k most frequent
words and take account of the context of the same length
(i.e. three). The row +6-gram NNLM 8k reports on the inter-
polation of the baseline 4-gram LM with the longer-context
NNLMs. Training of a baseline 6-gram LM on 3.2 billion
words is unfeasible without severe cut-offs and according to
our experience with 5-gram LMs only minor improvements
over 4-grams can be expected.

We tried the longer context neural network setup with the
short-list increased up to 12k most frequent words. The re-
sults obtained with this setup are reported in the rows +4-
gram NNLM 12k and +6-gram NNLM 12k in Table 1. Finally,
results obtained with the whole-vocabulary SOUL NNLMs
are represented in rows 4 and 7.

model ppx CER
dev09 dev09s eval09

Baseline 4-gram 211 9.8% 8.9%
+4-gram NNLM 8k 187 9.5% 8.6%
+4-gram NNLM 12k 185 9.4% 8.6%
+4-gram SOUL NNLM 180 9.3% 8.5%
+6-gram NNLM 8k 177 9.4% 8.5%
+6-gram NNLM 12k 172 9.3% 8.5%
+6-gram SOUL NNLM 162 9.1% 8.3%

Table 1. Perplexity and CER for different NNLMs.

The results presented in this study suggest several conclu-
sions. Contrary to classical back-off n-gram LMs, increasing
the NNLM context length significantly improves the results
both in terms of perplexity and CER, without any major im-
pact on the training and probability computation time. This
is true for all our NNLMs, which all improve the Kneser-Ney
baseline LM trained on large amounts of data. This shows the



capability of NNLMs to overcome data sparsity issues.
The gains attained with SOUL NNLMs correspond to a

relative improvement of 23% in perplexity and 7-9% in CER.
SOUL NNLMs do also outperform short-list NNLMs due to
the fact they predict all words from the vocabulary (as other
parameters are kept the same). The most significant improve-
ment with SOUL models is obtained for the longer-context
(6-gram) NNLMs configuration.

6. CONCLUSION AND FUTURE WORK

The SOUL Neural Network approach to language model-
ing was presented in this paper. It combines two techniques
that were proved to improve the STT system performance
for large-scale tasks, namely neural network and class-based
language models. This approach allows training of neural
network LMs with full vocabularies without confining their
power to predicting words from limited short-lists. Signif-
icant improvement in speech recognition was attained over
a challenging baseline provided by a 4-gram LM trained on
over 3 billion words (without any pruning and cutoffs) and
interpolated with standard short-list based NNLMs.

We also investigated the impact of short-list size and
context length on the performance of short-list NNLMs.
Longer-context NNLMs were shown to improve the perfor-
mance without drastic increase in computational costs and
model size. At the same time increase of the short-list did
not result in consistent improvements in speech recognition.
That allows stating that short-list NNLMs were at the current
top of their performance when compared to SOUL NNLMs.
SOUL NNLMs outperformed standard short-list NNLMs for
all test configurations.

The SOUL NNLMs are expected to be even more ben-
eficial for languages with especially large vocabularies. In-
flectional languages as, for example, Russian or Arabic,
though being completely different in grammar and morphol-
ogy, are characterized by large number of wordforms for a
given lemma. This results in vocabularies that are several
times larger than the ones used for Chinese or English. In
this context, the short-list strategy is thus expected to be
less effective, especially when small short-lists are used. The
SOUL neural network model provide us with a more coherent
solution in this case. As future work, we plan to perform ex-
periments with SOUL NNLMs on a large-scale Arabic setup
with several hundreds thousand words vocabulary.
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