
Structured Peer-to-Peer Control Plane
Khashayar Khavari, Nadeem Abji, Ramy Farha, Chuen Liang, Ali Tizghadam, Farid Fadaie, Alberto Leon-Garcia

Dept. of Electrical and Computer Engineering
University of Toronto, Ontario, Canada

Email: {khashayar.khavari, nadeem.abji, ramy.farha, chuen.liang, ali.tizghadam, farid.fadaie, alberto.leongarcia}@utoronto.ca

Abstract— Peer-to-Peer (P2P) systems have witnessed an explo-
sive growth in popularity due to their desirable characteristics
(robustness, scalability, availability). In this paper, we present an
approach to bring these characteristics into the control plane
of IP networks, which mainly relies on signaling protocols such
as SIP to setup multimedia and instant messaging sessions. We
present a structured P2P control plane based on modifications to
the original Chord P2P topology, resulting in a hierarchical over-
lay of SIP peers that replaces traditional client-server paradigms
in control plane signaling protocols. Implementations were used
to study the performance of the proposed structured P2P control
plane, and its suitability for use in IP networks.

I. INTRODUCTION

Next-generation service providers (SPs) offering an ever-
increasing number of services need to find effective ways
to reduce the costs of operating their networks, in order
to become more profitable. Traditionally, telecommunication
networks have been seen as consisting of three planes [1]:
a data plane, a signaling / control plane, and a management
plane. Although these three planes are logically separated, they
can be in the same physical network, and their operations
greatly determine the expenses incurred by SPs. The Session
Initiation Protocol (SIP) [2] is currently expected to provide
the signaling function in the control plane of next generation
services that will be delivered over IP networks (voice, video,
instant messaging). A new application of particular relevance
to SPs is the use of Peer-to-peer (P2P) [3] technology to
provide the “control plane” functionality that is central to
many services. P2P systems are appropriate for control plane
system implementation, since they exhibit many self-managing
capabilities, which contribute in reducing expenses incurred by
SPs to operate their networks.

In this paper, we propose the use of the P2P approach
for control plane, by proposing a layered architecture and
implementation of the SIP-based control / signaling plane over
P2P. The approach is based on SIP over Chord [4], a struc-
tured P2P approach chosen because of its main characteristics
(simplicity, provable performance, and provable correctness).
However, and due to the observed benefits of the hierarchical
P2P systems in unstructured approaches [5], we will use the
notion of hierarchy in regular Chord. For the rest of this
paper, we refer to this modification of Chord as hierarchical
Chord (h-Chord), where some peers of the original Chord
ring are elevated to the role of Super-Peers connected through
a ring. The improvements that this approach brings to the P2P
control plane are explored through detailed experiments using
implementations performed. In addition, the validity of our

approach to provide SIP signaling for the control plane over
a P2P substrate is shown.

The rest of this paper is structured as follows. Section II
briefly summarizes the related work and its relevance to
this paper. Section III presents our design of SIP over P2P,
justifying the decisions made. Section IV shows the detailed
operation of SIP over P2P using h-Chord. Section V summa-
rizes the experiments performed to evaluate the performance
of h-Chord, along with some typical results obtained. Finally,
Section VI concludes this paper.

II. RELATED WORK

Prior to detailing our approach, we review some related
work. Extensive amount of research has been done indepen-
dently in the areas of P2P and SIP, but little work has been
done on the capabilities of a combined P2P-SIP architecture.

P2P file-sharing applications have seen an explosive growth
over the last few years. P2P technology, however, is not
limited to file-sharing applications, but can also implement
gaming, storage and processing applications. However, the
main difference between the original P2P approaches for file
sharing and those emerging for control plane implementations
is that SPs require a more stringent performance level than that
offered by widely available best-effort P2P applications. In
P2P networks, the resulting interconnected set of peers forms
an overlay network. P2P approaches can be categorized as:
unstructured and structured. This depends on the placement
of nodes in the overlay topology, and on how the lookup
is performed to locate desired resources. In unstructured P2P
approaches such as Freenet [6], the process of finding a match
to a query for a resource is essentially a random search through
the overlay network. In structured P2P approaches such as
DHTs [4], [7], [8], the process of finding a match to a query
for a resource has a more predictable performance since the
overlay topology is tightly controlled and the placement of
resources is in precise locations in the overlay. In structured
P2P approaches, Pastry [7] and Tapestry [8] are alternatives
that can be used as well, but Chord [4] was chosen because
of its simplicity, provable correctness and performance.

A variant of the original flat P2P model, in which all
peers were part od the overlay network, hierarchical P2P
models have been developed. In hierarchical P2P models,
Super-Peers are interconnected to form an overlay network.
The hierarchical model recognizes the heterogeneity of peers
in terms of communications and processing resources and
adaptively elevates peers to the role of Super-Peer. Hierarchical

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

48

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:04 from IEEE Xplore. Restrictions apply.

P2P systems can scale to very large size, but are vulnerable to
faults in Super-Peers. Super-Peers have mainly been presented
for unstructured P2P models [9], but have rarely been used for
structured P2P models [5].

In control plane protocols used for signaling, SIP [2],
backed by IETF, has recently been gaining ground because of
its extensibility, flexibility, and text-based format. SIP provides
support for new services, operates with low complexity, and
possesses an efficient addressing scheme based on Uniform
Resource Identifiers (URIs). The combination of SIP and P2P
has received little attention until recently. In [10], SIP with
DHTs was presented, where P2P messages are sent over the
SIP infrastructure, which is the major difference between this
approach and the one we present in this paper. The major
disadvantage with [10], is that SIP messages are used for P2P
operations, hence restricting the use of the approach to SIP.
Since new headers in SIP messages have to be supported by
any SIP UA attached to the network, adaptors are needed to
make any translation in an environment where new SIP User
Agents (UAs) are to be introduced. In [11], a P2P approach to
SIP registration is presented, by adding headers and options
to the original SIP messages. Again, the major disadvantage
with this approach is that it modifies SIP semantics. In this
paper, we aim to use P2P capabilities to complement SIP.
SIP exhibits several P2P capabilities already, since the media
delivery is performed in a P2P fashion. The bottleneck is in the
SIP control plane, where central servers are used which can
become overloaded and even fail. Hence, we aim to make SIP
benefit from P2P’s characteristics without any changes at the
SIP layer, so our solution can potentially be used with all SIP-
compliant UAs while remaining compatible with client-server
solutions. Furthermore, our design can be easily modified for
use with any other signaling protocol.

III. STRUCTURED P2P CONTROL PLANE DESIGN

The structured P2P control plane architecture is intended
to be modular. Unlike the previous attempts to integrate SIP
and P2P [10], we aim to achieve modularity, where both
the signaling protocol of the control plane (SIP) and the
P2P topology can be replaced without affecting the overall
design. Thus, we adopt a layered architecture, where the
“SIP” layer has an underlying “P2P substrate” layer replacing
the traditional client-server communication model. The SIP
servers’ functions (Proxy, Redirect, Registrar) are virtualized,
distributed, and performed collectively by the peers in the P2P
substrate. For the structured P2P substrate, we use an approach
based on Chord [4], mainly because of its simplicity, provable
performance, and correctness.

A major design choice to make is on the topology of the P2P
substrate to use for the control plane. It is clear that there are
several alternatives to the traditional client-server paradigm.
Namely, the three possibilities are shown in Fig. 1:

1. SIP Servers Structured P2P: This is the most straight-
forward method to add some of P2P’s benefits to traditional
client-server control planes. In this design, the SIP servers
form a structured P2P ring, and communicate directly with

Server Chord Ring Super-Peer Chord RingPeer Chord Ring

SIP Servers

SIP Peers

SIP Super-Peers

SIP Ordinary-Peers

SIP Ordinary-Peers

Fig. 1. Design Alternatives

SIP UA

SIP message

P2P

module

Parser

Lookup

Peer

Overlay

Search

Peer

Result

Insert

Forward

SIP message

SIP

module

Fig. 2. Typical Node Architecture

the peers connecting to them. The problem with this model is
that SPs are not harnessing the wealth of resources at some
of their SIP peers.

2. SIP Peers Structured P2P: This is the method that bene-
fits the most from the P2P capabilities since it involves all SIP
Peers in the control plane. This model harnesses the wealth
of resources at all clients, however, the problem is that this
model is not likely to be used by SPs for commercial purposes,
mainly due to security reasons and to the little control SPs
exert over the operations.

3. SIP Super-Peers Structured P2P: This is the method used
in this paper to design the P2P control plane. The Super-Peers
form the structured P2P ring, to which peers connect directly,
each of which have a capacity regulating how many peers
can connect to them before the need arises to promote new
peers to the role of Super-Peers. SPs control which Ordinary-
Peers are allowed promotion to the role of Super-Peers based
on predefined criteria. This method is based on the original
Chord [4] topology, with modifications to benefit from the
advantages shown by the notion of Super-Peers, leading to our
approach, which we refer to as hierarchical Chord (h-Chord).

Another major design choice is to decide on the mechanism
to use in order to combine SIP with the P2P substrate. A peer
in the structured P2P control plane has both a “SIP module”,
and a “DHT module”. Note that our approach is valid even
if the “SIP module” is in a separate peer (different physical
peer). Fig. 2 shows the internal architecture of a typical peer.

In the “DHT module”, each peer (Super or Ordinary) has a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

49

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:04 from IEEE Xplore. Restrictions apply.

unique m-bit Peer ID. Thus, such an approach allows for up to
2m peers to be included in the ring. The Peer ID is generated
using the SHA-1 [12] consistent hashing function (modulo
2m), using the IP address as an input to the hash function to
generate a 160-bit identifier. The Resource ID is calculated
by hashing the SIP URI of the SIP UA running on the peer,
again using the SHA-1 hashing algorithm resulting in the same
hash space as that of Peer ID. As in the original Chord, each
Super-Peer in h-Chord maintains data for Resource IDs close
to its Peer ID. Specifically, Resource ID k will be stored at the
first node with Peer ID greater than or equal to k (clockwise
around the circle). This peer is referred to as the successor
of k. Each peer maintains a finger table. The ith entry in the
finger table of a peer with Peer ID n is the successor peer to
the Resource ID (n + 2i−1). Peers in the ring use their finger
tables to forward query messages to their destination. With
each forwarded message, a peer can advance a query halfway
around the ring, thus resulting in an O(log(n)) bound on the
number of hops needed for queries. An advantage of h-Chord
is that each peer must only maintain information about a small
subset of the other peers in the network. More details on h-
Chord will be presented in the next section.

The interaction between the “DHT module” and the “SIP
module” is regulated by the following sequence of events:

1. The SIP User Agent (UA) on a peer generates a SIP
message (REGISTER, INVITE, MESSAGE), which it sends
to a “virtual” proxy, located on the same peer, listening on a
well-known port. This preserves SIP transparency to the SIP
UA at the sender. Note that due to the modularity of the design,
the SIP UA does not have to be on the same peer as the “DHT
module”. This step is the same regardless of whether the peer
is a Super or an Ordinary peer.

2. The “DHT module” receives the SIP message, and the
Parser component parses the contents of the header of the
SIP message, in order to identify the destination of this SIP
message, normally identified using the To: field in the SIP
message’s header. This step is the same regardless of whether
the peer is a Super or an Ordinary peer.

3. The Lookup component performs the lookup function, by
hashing the SIP URI obtained from the To: field to obtain the
Resource ID to find. If the peer is a Super-Peer, the lookup
operation is similar to that of a regular Chord lookup. If the
peer is an Ordinary-Peer, the lookup function is performed
by its Super-Peer. As a result, the DHT module receives
information about the Super-Peer storing the Resource ID and
hands it over to the “SIP module”.

4. The “SIP module” inserts a Via: field in the header of
the original message, to ensure the return path of future SIP
messages traverses the “virtual” proxy, hence preserving SIP
transparency to SIP endpoints. The modified SIP message is
forwarded directly to the SIP UA peer.

Hence, messaging can be seen as consisting of two main
types: DHT Messaging, which consist of the messages needed
to maintain the P2P substrate and perform lookups, and SIP
Messaging, which consist of the SIP messages sent over the
P2P substrate.

TABLE I

PSEUDO-CODE NOTATIONS OF STRUCTURED P2P CONTROL PLANE

Finger[x].start Entry in the finger table with index x
peer p: (p + 2k−1))mod2m, 1 ≤ k ≤ m

Finger[x].peer First node greater than or equal
to entry x in the finger table of the peer

High child Returns the child of the Super-Peer
(Super-Peer) with the highest capacity
Peer.capacity Denotes the capacity of the peer,

i.e. the number of connections
that it can support

Peer.role Either Super-Peer or Ordinary-Peer
Peer.add(child) Add child to peer’s child list, when

peer is a Super-Peer to which
child connects

Super-Peer(Peer) Super-Peer to which peer is connected,
where peer is an Ordinary-Peer

Predecessor(Peer) Predecessor of peer
Successor(Peer) Successor of peer

IV. STRUCTURED P2P CONTROL PLANE OPERATIONS

The operations needed to make SIP over P2P possible can
be categorized in three main categories: Peer Registration,
User Registration, and Periodic Maintenance. In this section,
we will explain in details each of the three, and show pseudo-
codes for the main functions needed. Table I shows some
definitions that will be used in the rest of the paper.

A. Peer Registration

When a SIP peer wishes to join the network, it needs
an attachment point, i.e. a bootstrap. This bootstrap should
be a peer that already belongs to the network, and that
will provide the incoming peer with the capability to reach
other peers in this network. Several methods exist to allow
bootstrapping [10]. In this paper, when a SIP peer joins the
network for the first time, it will use the bootstrap to provide
it with an attachment point. After the SIP peer joins and is
assigned a location in the ring (if Super-Peer), or a Super-Peer
to connect to (if Ordinary-Peer), this information is cached at
the SIP peer, so that for future joins, it can attempt to join by
attaching to the location where it was positioned last time. We
expect this approach to reduce delay between the time a SIP
peer joins the network, and that at which it is placed in the
appropriate position in the structured P2P control plane.

When a new SIP peer joins the network, it will be an
Ordinary Peer. If that SIP peer is the first peer in the network,
then it is promoted to the role of Super-Peer. Otherwise,
the SIP peer uses a bootstrap as an attachment point. If the
bootstrap is an Ordinary Peer, then it refers the new SIP peer
to its Super-Peer. The hash result of the new SIP peer’s IP
address is used to find its Peer ID, so that its position in the
structured P2P control plane topology is determined. Once its
Super-Peer is found, the new SIP peer is added as a child.

However, if the capacity of the SIP peer’s chosen Super-
Peer is exceeded, then one of its children needs to be promoted
to the role of Super-Peer. The promoted Super-Peer’s finger
table, its predecessor and successor information, need to be

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

50

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:04 from IEEE Xplore. Restrictions apply.

Result: Join
// SIP Peer p joins the network
// SIP Peer p’ is an arbitrary peer serving as bootstrap
p.join(p’)
if p’ then

// SIP Peer p is not the first, so p is an Ordinary Peer
if p’ is Ordinary-Peer then

// Refer to the Super-Peer of SIP Peer p’
p’ = Super-Peer(p’);
// If SIP Peer p’ is a Super-Node, continue
Super-Peer(p) = p’.find successor(p);
// If capacity of p’s successor (Super-Peer) reached
if Super-Peer(p).capacity = max then

// Promote highest capacity child
Promote(High child(Super-Peer(p),
Super-Peer(p)));
// If successor capacity is less than the
maximum, continue

else
// If capacity of p’s successor (Super-Peer) not
reached
Super-Peer(p).add(p);

end
end

else
// If SIP peer p is the first
p.role=Super-Peer;
// SIP Peer p has to become a Super-Peer
for i=1 to m do

// Fill in the finger table entries of p
Finger[i].peer = p;

end
// Set the predecessor of SIP Peer p to p
predecessor(p) = p;

end

Algorithm 1: Pseudo Code for SIP Peer Joining

initialized. Fingers and predecessors of existing peers are
updated to reflect addition of the newly Super-Peer. The SIP
peers associated with keys that the newly promoted Super-Peer
is now responsible for, are transferred to him. Algorithm 1
shows the pseudo-code for the operation of a new SIP peer
joining, while Algorithm 2 shows the pseudo-code for the
promotion of an Ordinary-Peer.

B. User Registration

When a SIP User Agent (UA) is added to the P2P substrate,
the SIP URI is hashed to obtain the Resource ID so that the
Super-Peer storing the user’s registration is determined. The
obtained Resource ID is stored at the appropriate Super-Peer
in the ring, by finding its successor. The SIP user registration
(successor finding) operation is shown in Algorithm 3.

C. Periodic Maintenance

In addition, maintenance actions are performed regularly by
running a stabilization algorithm to ensure the finger tables
at the Super-Peers are correctly maintained, and keeping the
Super-Peers’ successor pointers up to date. The stabilization
operation is shown in Algorithm 4.

Result: Promote
// Promote SIP peer p knowing its successor
promote(p,successor)
// Initialize finger table of p using successor’s finger table as
starting point
p.initialize finger table(successor);
// Update other finger tables
p.update others();
move Ordinary-Peers in (predecessor, p]
from successor;

Algorithm 2: Pseudo Code for SIP Ordinary-Peer Promo-
tion

Result: Find successor
// Ask SIP peer p to find successor of a SIP peer with ID pid

p.find successor(pid)
p’=find predecessor(p id);
return successor(p’)
// Ask SIP peer p to find p id’s predecessor
p.find predecessor(pid)
p’=p;
while pid ∈ (p’, successor(p’)] do

p’ = p’.closest preceding finger (pid);
end
return p’;
// Return closest finger preceding pid

p.closest preceding finger(pid)
for i=m to 1 do

if finger[i].peer ∈ (p, pid) then

end
return finger[i].peer;
return p;

end

Algorithm 3: Pseudo Code for Finding Successor

Result: Stabilize
// Periodically verify peer p’s immediate successor and tell
the successor about p
p.stabilize ()
x = predecessor (successor(p));
if x ∈ (p, successor(p) then

successor(p) = x;
end
successor(p).notify(p);
// Peer p’ thinks it might be the predecessor
p.notify (p’)
if predecessor (p) is nil or p’ ∈ (predecessor(p) , p) then

predecessor(p) = p’;
end
// Periodically refresh finger table entries
p.fix fingers ()
i = random index > 1 into finger[];
finger[i].peer = find successor
(finger[i].start);

Algorithm 4: Pseudo Code to Stabilize

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

51

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:04 from IEEE Xplore. Restrictions apply.

Result: Initialize finger table
// Initialize finger table of local SIP peer
// SIP peer p’ is an arbitrary peer serving as bootstrap
p.initialize finger table(p’)
finger[1].peer =
p’.find successor(finger[1].start);
// Insert SIP peer p
predecessor(p) = predecessor(successor(p));
// Set SIP peer p as predecessor of successor
predecessor(successor(p)) = p;
for i=1 to m-1 do

if finger[i+1].start ∈ [p , finger[i].peer) then
finger[i+1].peer = finger[i].peer;

else
finger[i+1].peer =
p’.find successor(finger[i+1].start);

end
end
Result: Update others
// Update all SIP peers whose finger tables should refer to p
p.update others()
for i = 1 to m do

// Find last SIP peer p” whose ith finger might be p
p’’=find predecessor(p − 2i−1);
p’’.update finger table(p,i);

end
Result: Update finger table
// If s ith finger of SIP peer p, update p’s finger table with s
p.update finger table (s, i)
if s ∈ [p, finger[i].peer) then

finger[i].peer = s;
// Get first SIP peer preceding p
p = predecessor(p);
p.update finger table (s, i);

end

Algorithm 5: Pseudo Code for other operations needed by
Join, Promote, and Stabilize

V. EXPERIMENTAL RESULTS

Several experiments were performed to check the validity
and to quantify the performance of the proposed structured
P2P control plane approach. We will use actual implementa-
tions in the Network Architecture Labs at the University of
Toronto, using IBM’s BladeCenter with 56 blades consisting
of 2 Xeon 2.8GHz processors each with 2GB of RAM. SIP
peers using h-Chord for the “DHT module” are implemented
using the C language. In the following experiments, we do not
measure the absolute delay for the search and stabilization,
since these numbers are not meaningful given SIP peers used
for our experiments are collocated and not distributed over the
Internet, as will be the case for a typical application. Instead
we use normalized metrics such as number of hops.

In the first experiment, we tested whether the proposed SIP
over P2P approach results in successful call establishment.
For this purpose, we use any SIP phone (for instance, Cisco
IP Phone 7960) and attempt to establish a call over the P2P
substrate. Fig. 3 shows a snapshot of the setup, and the call
establishment procedure using the h-Chord substrate, with
Ethereal [13] captures to show the packets exchanged.

As seen in Fig. 3, the REGISTER message is first sent by

192.168.1.71 h-Chord

192.168.1.85

192.168.1.86

SIP UA

SIP UA

INVITE

180 Ringing

INVITE

REGISTER
+Via

1

2 3

4

1

2

3

4

Fig. 3. Call establishment over Structured P2P Control Plane

the SIP UA @192.168.1.85. The SIP URI is extracted, hashed
using SHA-1, and stored in its corresponding successor in the
ring. Then, when a call is to be initiated over P2P from the
SIP UA @192.168.1.85 to the SIP UA @192.168.1.86, the
INVITE message is sent to the Super-Peer @192.168.1.71.
This Super-Peer extracts the To: field in the INVITE header,
and using its hash value, inserts the Via: field in the header,
as seen in the Ethereal captures. The INVITE message is
forwarded to the destination, and the 180 Ringing SIP message
is returned, indicating successful call establishment.

Next, we performed experiments to quantize the perfor-
mance of the structured P2P control plane. In these exper-
iments, the maximum capacity of SIP peers is set to 5,
unless stated otherwise. Since the P2P control plane provides
a location service for the signaling plane we are interested
with the following three major categories of measurements:

1. Lookup Cost: Quantized using the number of hops (both
average and maximal) needed by a SIP peer to look for a
particular resource and to successfully find it using h-Chord.

2. Stabilization Cost: Quantized using the number of
messages exchanged by a new SIP peer to reach stability when
SIP peers join / leave. Stability is defined as the state in which
all Super-Peers have the correct successors, thus guaranteeing
correct lookup using h-Chord.

3. Load Balancing Capability: Quantized using the num-
ber of SIP peers connected to a Super-Peer, and how this
number changes when peers join / leave. Even though the
structured P2P control plane was not initially designed to
balance the load between the Super-Peers, we attempt to
characterize its load balancing capabilities.

A. Structured P2P Control Plane Lookup Cost

To obtain the lookup cost, we performed the following
experiments. For different network sizes (100 to 600 peers),
a random SIP peer is chosen, and this SIP peer sequentially

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

52

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:04 from IEEE Xplore. Restrictions apply.

100 150 200 250 300 350 400 450 500 550 600
1

2

3

4

5

6

7

8

9

10

Number of Hops in Successful Lookup

N
u

m
b

er
 o

f
h

o
p

s
tr

av
er

se
d

 b
y

a
p

ee
r

b
ef

o
re

 r
ea

ch
in

g
 r

es
o

u
rc

e

Number of peers in the network

Chord avg
Chord max
h−Chord avg
h−Chord max

Fig. 4. Avg. and Max. number of hops needed for a successful lookup

searches for all other SIP peers in the network, and records the
average and maximum lookup cost in terms of the number of
hops traversed before the lookup succeeds. To avoid biased
results, we repeat the experiment for 5 different randomly
chosen SIP peers, and average the results.

Fig. 4 shows the number of hops needed to perform a
successful lookup using h-Chord. The number of hops needed
for a successful lookup depends on the number of SIP peers in
the network. In these measurements, we compare h-Chord to
regular Chord, in order to quantify the effects of introducing
the notion of Super-Peers into the structured P2P control plane.
In Chord, the maximum lookup cost is log(n) and the average
lookup cost is log(n)

2 , where n is the number of SIP peers
in the Chord ring [4]. On the other hand, h-Chord shows
improvements over Chord for all network sizes. For 400 peers,
h-Chord has an average and maximum lookup costs of 3.64
and 7.4 respectively.

The explanation for the improvement shown by h-Chord
is that the number of SIP peers in the ring (Super-Peers) is
lowered from that in the Chord ring by a factor proportional
to the average load of a Super-Peer, where load refers to
the number of Ordinary-Peers connected to a given Super-
Peer. For example, for 100 SIP peers, h-Chord resulted in 68
Ordinary-Peers, and 32 Super-Peers, hence an average load of
2.125 per Super-Peer. In a lookup, the maximum number of
hops is proportional to log(n), and the average number of hops
is proportional to log(n)

2 , with n being the number of SIP peers
in the ring. Thus, the expected improvements from h-Chord
are around log(2.125), which is 1.0875, and log(2.125)

2 , which
is 0.5437, respectively for maximum and average lookup
costs. Comparing Chord and h-Chord results obtained in
the experiment for 100 SIP peers, we have improvements of
1.2439 and 0.6919 hops respectively for the maximum and
average number of hops needed for correct lookup.

5 10 15 20 25 30

0

10

20

30

40

50

60

Number of messages to stabilize

N
u

m
b

er
 o

f
p

ee
rs

Distribution of the number of messages exchanged by a peer before stabilization

λ=1
 λ=1−fit
λ=2
 λ=2−fit
λ=3
 λ=3−fit
λ=4
 λ=4−fit

Fig. 5. Distribution of the number of messages exchanged by a peer before
stabilization for different arrival rates

B. Structured P2P Control Plane Stabilization Cost

To obtain the stabilization cost, we performed the following
experiments. For a given network size (500 SIP peers), 200 SIP
peers join with different arrival rates, following an exponential
distribution, with an average rate of λ SIP peers per second.
For each new SIP peer, we count the number of messages
exchanged before stability, as defined defined, is reached.

Fig. 5 shows the distribution of the number of messages
exchanged by a SIP peer entering the network, before stability
is reached, for different arrival rates λ, increased from 1 to 4
SIP peers per second. As the SIP peer arrival rates increase,
a bound on the number of messages needed by the new SIP
peers to reach stabilization is observed. This indicates that
the structured P2P control plane system tends to stabilize
with a finite number of messages exchanged. Furthermore, the
distribution of the number of messages exchanged by a new
SIP peer entering the network is Gaussian, with means and
standard deviations shown in Table II.

One possible explanation can be found using the central
limit theorem [14]. In fact, this number is a random variable
that depends on the hash function used by h-Chord which
determines the location in the ring at which the arriving SIP
peer should be placed. This number is independent from a SIP
peer to another, and follows an arbitrary distribution for each
SIP peer, hence for several SIP peers arriving successively
as in our experiment, this number has a limiting cumulative
distribution function which approaches a Gaussian distribution.
Furthermore, by observing Table II, we note the following: The
mean and standard deviations are almost the same for different
SIP peers arrival rates, hence the structured P2P control plane
seems to be stabilizing. The coefficient of variation (ratio
of standard deviation to mean) [14], which measures the
dispersion of a probability distribution is close to 0.2. This
shows that the dispersion of the number of messages needed
by new SIP peers to reach stability do not drastically vary
regardless of the arrival rate.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

53

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:04 from IEEE Xplore. Restrictions apply.

TABLE II

STABILIZATION COST

Arrival Rate Average Standard Coefficient of
(Peers per second) Deviation Variation

1 12.54 2.6099 0.2081
2 12.52 2.6000 0.2077
3 12.9 2.6474 0.2052
4 12.2 2.9338 0.2405

TABLE III

LOAD BALANCING CAPABILITIES

Network Size Average Standard Coefficient of
(Peers) Deviation Variation

100 2.1875 1.2113 0.5537
200 2.3333 1.2576 0.539
300 2.6429 1.3206 0.4997
400 2.5455 1.6699 0.5077

C. Structured P2P Control Plane Load Balancing Capabilities

To explore the load balancing capabilities of the structured
P2P control plane, we performed the following experiments.
For different network sizes, we measured the load on each
Super-Peer in the ring. We found the distribution of this load,
and calculated its first-order statistics.

Table III shows the results for network sizes of 100, 200,
300, and 400 SIP peers. The maximal capacity per Super-
Peer is set to an arbitrary number (5 in this experiment) to
obtain values for average and standard deviation. Although
the distribution itself does not exhibit any particular properties,
the interesting observations are in the results obtained for the
coefficient of variation (which is independent of the maximal
capacity value). While the values are very similar for different
network sizes, they are close to 0.5. This means that the
dispersion of the load on the Super-Peers is large, and that the
load is not equally distributed among Super-Peers. While some
are lightly loaded, others have a higher load. This observation
is not surprising, given that h-Chord’s objective was not to
equally distribute the load among Super-Peers, but rather to
have a hierarchical structured P2P control plane topology with
bounds on lookup and stabilization costs. In addition, the
location of a SIP peer in the ring is random, depending on
the hash function obtained. This aspect of h-Chord will be
revisited in the future in order to propose solutions that could
provide a better load balance in the control plane.

VI. CONCLUSION

In this paper, we introduced a hierarchical structured P2P
overlay topology approach as the underlying substrate for
the control plane in IP networks. This design attempts to
combine the advantages of structured overlay topologies with
the notion of Super-Peers introduced in unstructured overlay
topologies, to deliver SIP functionalities over a P2P substrate.
The functionalities offered by SIP servers are “virtualized”
over the P2P substrate built using h-Chord. Experimental
results show that h-Chord improves on the number of hops
needed for successful lookup, and stabilizes quickly when
SIP peers join the network at a high rate. However, the load
balancing capabilities of h-Chord need further studying. This
is part of our future work, as well as examining NAT / Firewall
traversal issues when SIP endpoints are in private networks.
We will also study the effect of the underlying topology on
the the structured P2P control plane, and whether a cross-layer
optimization of performance is possible by using feedback
information from the underlying network.

REFERENCES

[1] A. Leon-Garcia and I. Widjaja, Communication Networks. Mc Graw
Hill, 2004.

[2] J. Rosenberg et. al., “Session Initiation Protocol.” RFC 3261, June 2002.
[3] D. Liben-Nowell, H.Balakrishnan, and D. R.Karger, “Analysis of the

evolution of peer-to-peer systems,” Proceedings of 21st ACM Symp.
Principles of Distributed Computing (PODC), pp. 233–242, July 2002.

[4] I.Stoica et. al., “A scalable peer-to-peer lookup service for internet
applications.” MIT, Tech. Rep. TR-819, 2001.

[5] L. G.-E. et. al., “Hierarchical p2p systems,” Proceedings of ACM/IFIP
International Conference on Parallel and Distributed Computing (Euro-
Par), pp. 1230–1239, Aug. 2003.

[6] I.Clarke, O.Sandberg, B.Wiley, and T. W.Hong, “Freenet: A distributed
anonymous information storage and retrieval system,” Proceedings ICSI
Workshop Design Issues in Anonymity and Unobservability, June 2000.

[7] A.Rowstron and P.Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” Proceedings
of 18th IFIP/ACM International Conference on Distributed Systems
Platforms, pp. 329–350, Nov. 2001.

[8] B.Zhao and J.Kubiatowicz and A.Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing.” Berkeley: Comput.
Sci. Div., Univ. California, Tech. Rep. UCB/CSD-01-1141, 2001.

[9] A. Montresor, “A robust protocol for building superpeer overlay topolo-
gies,” in Proceedings of the 4th IEEE International Conference on Peer-
to-Peer Computing, pp. 202–209, August 2004.

[10] K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using sip.”
New York Metro Area Networking Workshop, Sept. 2004.

[11] “P2p sip.” http://www.p2psip.org/.
[12] “Secure Hash Standard.” Springfield, VA: U.S. Dept. Commerce/NIST,

National Technical Information Service, FIPS 180-1, Apr. 1995.
[13] “Ethereal network packet analyzer.” www.ethereal.com.
[14] A. Leon-Garcia, Probability and Random Processes for Electrical En-

gineering (2nd Edition). Prentice Hall, 1993.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

54

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:04 from IEEE Xplore. Restrictions apply.

