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ABSTRACT Structured query language (SQL) is difficult to master because the execution process of SQL

statements is invisible. When learning to construct an SQL query, learners must visualise the evolution

process of the intermediate datasets of the SQL statement in working memory, which may burden learners’

cognitive load and consequently jeopardise learning outcomes. This study describes the execution process of

SQL statements by using concept maps to improve learners’ understanding of SQL. An empirical experiment

was conducted using two database courses, namely concept map–based and conventional instruction,

to examine the relationship between concept maps and the understanding of SQL from a cognitive load

theory perspective. The experimental results demonstrated the superiority of concept map–based instruction

over conventional instruction because concept map–based instruction reduces extraneous load but increases

germane load. Concept map construction facilitated learner engagement and promoted meaningful learning.

Studying the instructors’ concept maps helped learners follow the cognitive structures used by instructors

to perform SQL queries, and enabled them to perceive the execution process of SQL queries relatively

easily. These results potentially help educators understand the learning difficulties caused by the declarative

nature of SQL and motivating researchers to resolve the inherent problem by considering learners’ cognitive

processes.

INDEX TERMS Structured query language (SQL), cognitive load theory, concept maps, semantic network

theory.

I. INTRODUCTION

Structured query language (SQL) is the standard for access-

ing relational databases. An aim of database courses is to

enable learners to express data retrieval requests in SQL

statements. However, research demonstrates that SQL is a

complex language that is difficult to learn [1]–[4]. SQL is

essentially a declarative language that allows users to specify

what they want and not how to obtain it. The declarative

nature of SQL is difficult for learners to grasp because the

execution process of SQL statements is invisible to learn-

ers [5]–[7]. Therefore, when learning to compose an SQL

query, learners must visualise the initial datasets obtained

from the ‘from’ clause and mentally evolve them into the

intermediate datasets and then into the resultant dataset.

According to cognitive load theory, mentally visualising the

query process may place a burden on learners’ cognitive load
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and consequently jeopardise learning outcomes [8]–[10].

These considerations prompt the following question: how

does the mental imagery problem affect learners’ under-

standing of SQL, and how can the impact of the problem on

learning SQL be reduced?

A main challenge of SQL learning is that its declara-

tive nature compels learners to expend considerable men-

tal effort in understanding SQL. Lavbič et al. [2] indicated

that learners have difficulties in visualising the results of

their written SQL queries. Renaud and van Biljon [6] men-

tioned that learners must have an appropriate understanding

of what exactly is happening when SQL queries are executed.

Prior and Lister [5] found that learning SQL is particularly

difficult if learners cannot understand the evolution process

of the intermediate datasets of SQL queries. To alleviate

difficulties in learning SQL, some learning tools have been

proposed, such as animated pedagogies. eSQL [11] is a tool

for learning SQL, which provides the step-by-step animation

of an executed SQL statement. However, the animation is
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scattered over these steps. Learners still must mentally inte-

grate all the fragmented information to understand the over-

all execution process of the SQL statement. Furthermore,

animating advanced SQL queries may be beyond the capa-

bilities of graphical interfaces, thereby reducing the usable

range of such a tool [9]. In addition, the mental imagery

problem may become worse with the learning difficulties

posed by SQL syntax and semantics. SQL syntax is coun-

terintuitive [6], [12]; moreover, understanding the notions of

multiple tuple variables, such as join operations and nested-

type queries, is difficult. Other concepts that are particularly

difficult to grasp include self-join, multitable joins, correlated

subquery, and group by with having [11]. The semantics

of SQL can quickly become complex, particularly when

a query involves aggregate functions, join statements, and

subqueries [9].

Instructions for learning SQLmay require further strength-

ening of the process of SQL statement execution by incor-

porating materials that appropriately represent this process.

Kolloffel et al. [13] indicated that with regard to complex

instructional materials (high mental effort), for learners with

little or no prior knowledge of the material, representation

formats are particularly critical. According to the learning

psychology of Ausubel et al. [14] such as that related to con-

cept maps, the use of graphic organisers has been recognised

as effective for priming learners to learn by activating prior

knowledge and illustrating its relationship with new concepts.

Concept maps—the use of which is widespread in science

education [15]—are useful for representing the knowledge

structure used by learners to interpret problem domains by

physically presenting associated information together in a

diagrammatic format [16], [17]. Representing materials in

an integrated format (e.g. diagrams) can reduce learners’

mental effort spent in understanding the related informa-

tion [18], [19]. Therefore, diagrammatically displaying the

intermediate datasets of an executed SQL statement and their

evolvement into the resultant dataset by using concept maps

may reduce learners’ mental effort invested in visualising the

evolution process. Concept maps can help learners interre-

late declarative and procedural knowledge [20]. Accordingly,

this study proposes that by incorporating concept mapping

techniques into SQL instruction, mental imagery problems

may be overcome by describing the execution process of SQL

queries in diagrammatic representations.

The current study’s motivation for examining the effects

of concept maps on SQL learning mainly relates to the

inherent problems caused by SQL’s declarative nature, dif-

ficulties with SQL syntax and semantics, and essential fea-

tures of concept maps. Thus, the main study objectives were

to obtain a deep insight into the difficulties in learning

SQL from the perspective of learners’ cognitive processes

and to understand whether concept map–based instruction

assists learners in developing a better comprehension of SQL

than does conventional instruction. An empirical experiment

was conducted using two database courses, namely a con-

cept map–based course and a conventional course; when

the courses ended, the participants were asked to answer

data retrieval questions by writing SQL statements. Next,

the participants’ problem-solving performance and mental

effort were analysed to evaluate the relevance of concept

map–based instruction for effectively understanding SQL on

the basis of cognitive load theory and semantic network the-

ory. Factors undermining learners’ abilities to learn SQLwere

analysed.

Next, we provide a brief overview of pedagogies for SQL

learning (Section 2), explain the related theory and hypothesis

(Section 3), describe the research methodology used to exam-

ine the research questions (Section 4), elaborate on result

analyses (Section 5), describe the findings and their implica-

tions (Section 6), and provide a conclusion and suggestions

for future studies (Section 7).

II. SQL LEARNING PEDAGOGIES

A literature review revealed that techniques for alleviating the

SQL learning difficulties caused by conventional instruction

can be categorised into animation, graphical query builders,

and feedback.

A. ANIMATION

Animated pedagogies resolve SQL queries from a data-

oriented perspective, which diagrammatically illustrates how

initial datasets are obtained from an SQL statement and pro-

cessed by the other clauses to ultimately obtain the resultant

dataset. Animated pedagogies are superior to the usual pen-

and-paper explanations given in lectures and textbooks. Some

animated pedagogies have been proposed, such as eSQL [11],

SQL Advanced Visualization (SAVI) [8], Database Query

Analyzer (DBQA) [9], and Animated Database Courseware

(ADbC) [21].

eSQL, one of the first animated pedagogies for learning

SQL, provides step-by-step animation of the execution of

SQL select queries. In each execution step, eSQL highlights

the clause of the query being executed and provides a textual

explanation for the clause in the text area. Rows, columns,

and cells targeted in each step are highlighted to emphasise

the portion of data being processed by the query. During

the process, learners can move forward to the next step or

to the final result directly. SAVI is a web-based animated

pedagogy with a visualisation approach similar to eSQL. The

difference is that the animations generated by eSQL focus on

displaying the sequence of intermediate datasets derived from

the execution of SQL queries, whereas SAVI places more

emphasis on visualising and explaining how the SQL operator

works and the way the information is transformed. Moreover,

SAVI extends eSQL by adding reversible animation, in which

leaners are permitted to backtrack in the evaluation of SQL

queries. However, SAVI does not provide an explanation for

SQL operators in each step. Similar to eSQL and SAVI,

DBQA evaluates queries one step at a time and displays

visual representations of the intermediate datasets. Moreover,

DBQA provides a more finely grained animation by sup-

porting subqueries, which are usually particularly difficult
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for learners to comprehend [22]. DBQA also allows learners

to move forward or backward during a query evaluation.

Because learners are usually confused regarding default error

messages provided by a database, DBQA provides an error

interpreter that translates a database’s messages to more

understandable messages. ADbC divides the building process

of SQL queries into several steps (group by, having, distinct,

order by, outer join, and function) in a graphic interface and

provides animations for each step.

Animation pedagogies simplify the understanding of SQL

by displaying the intermediate datasets of an SQL query one

clause at a time. This can reduce the mental effort invested

in visualising the execution process; however, learners must

mentally integrate all the correlated intermediate datasets in

working memory to understand the entire execution process

of an SQL query because the animation is distributed over

these steps. Furthermore, because of the limitations of graphi-

cal interfaces, animation pedagogies do not support advanced

SQL queries (e.g. correlated subqueries), which are among

the most difficult for students to learn [22].

B. GRAPHICAL QUERY BUILDER

Graphical query builders bridge the gap between database

systems and learners by providing a graphical user interface

that automatically generates SQL statements for data requests

to assist learners in understanding SQL. Several graphical

query builders have been proposed; these include SQL in

Steps (SiS) [23] and Query by Example (QBE) [24].

SiS combines graphic query builders and automatic SQL

translations to improve the manner through which learn-

ers understand SQL. The process of SQL query building

is divided into several steps in the graphic interface, which

guides learners to build an SQL query step-by-step until the

query is completed. During the process, every changemade in

the interface triggers a change in the SQL translation, which

automatically generates the corresponding SQL statement

and refreshes the output dataset in its current state in the

interface. In addition, SiS provides learners with a graphical

representation of the database schema so that they need not

seek to identify where the elements of data required are

located and how they can be extracted. QBE, developed by

Zloof [24], provides a visual approach for accessing data from

databases through table skeletons. Learners express queries

by inserting examples in these skeletons to generate the logic

of the query. QBE builders have become common as a means

of performing database queries, such as Microsoft (MS) SQL

Server and Access. In MS Access, learners can create a

query in the Query Design function by selecting the needed

tables and entering the values and conditions of the columns

in these tables. The SQL statement is then automatically

generated using SQL View. However, when learners move

to more advanced queries, graphical query builders may

go beyond the capabilities of graphical interfaces [25]. For

instance, SiS has limited support for subqueries, which can

only be used in the ‘from’ clause of SQL statements [23].

Furthermore, users find it difficult to transform from graphi-

cal user interfaces to textual ones [6].

C. FEEDBACK

Feedback represents a key component in a learning

loop [26], [27]. Feedback pedagogies parse learners’ sub-

mitted SQL queries and compare them with the correct

solution to determine their correctness and even provide

intelligent instructions or guidelines for them to under-

take. Tools that provide this ability, such as SQL-Tutor-

Web (SQLT-Web) [28], AsseSQL [27], SQLator [10],

SQLify [29], Learning Environment for Automatic Rating

of Notions of SQL (LEARN-SQL) [30], SQL Lightweight

TutoringModule (SQL-LTM) [31], AutomatedDatabaseVer-

ification with Interactive Counter Example (ADVICE) [32],

Acharya [33], and SQL-Trainer [34], have been developed.

These tools provide different methods for verifying leaners’

written SQL queries and provide various degrees of feedback.

An overview of these tools is provided in Table 1. These are

analysed according to the following characteristics.

• Execution process of SQL queries: This tool provides

information about the execution process of SQL queries.

• Intelligent feedback: This tool automatically provides

meaningful hints and explanations for executed SQL

queries to enable learners to correct errors and under-

stand why their corrections were successful rather than

leading them to a solution by telling them the answer.

• Correctness checking: This tool shows the correctness

of learners’ SQL statements.

• Distance learning: This tool provides a web-based inter-

active interface for learning SQL.

• Database schema: This tool shows learners the database

schema used in SQL questions to reduce learners’

cognitive load.

• Learning status monitoring: This tool collects the his-

tory of learners’ previously solved SQL questions and

then assigns the next practice question according to their

learning status.

Feedback pedagogies assist learners in understanding SQL

by supporting their own solution paths rather than forcing

them to accept the ideal solution provided by the instructor.

Table 1 shows that none of these pedagogies provide informa-

tion about the execution process of SQL queries, indicating

that conceptualisation and visualisation remain necessary.

The animation, graphical query builder, and feedback ped-

agogies have promoted the study of SQL learning. However,

considering the inherent difficulties posed by the declara-

tive nature of SQL, feedback pedagogies and graphic query

builder pedagogies do not demonstrate the execution process

of SQL queries. Although animation-based pedagogies pro-

vide this information, learners still must visualise the entire

evolution process because the animation is distributed over

the steps of the execution process of SQL queries. SQL

learners still encounter mental imagery problems.
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TABLE 1. Overview of feedback pedagogies and their characteristics.

III. THEORY AND HYPOTHESIS

This section introduces cognitive load theory, a cognitive

model for SQL query-writing, semantic network theory, con-

cept maps, and the method of representing the cognitive

model in concept maps.

A. COGNITIVE LOAD THEORY

Cognitive load theory, which provides instructional design

guidelines, divides cognitive load imposed by learning mate-

rials into intrinsic, extraneous, and germane loads [35], [36]:

Intrinsic load relates to the number of interacting information

elements in a material [37]. High intrinsic load is imposed

by materials with high element interactivity [38]. With an

increase in the prior knowledge of the material, intrinsic load

decreases. The main reason for this decrease is the reduction

in the number of elements present in the learning materials,

which occurs for learners with a high level of prior knowl-

edge, who incorporate several information elements about

materials into a cognitive schema, which can be considered a

single element in learners’ working memory. Extraneous load

is caused by inappropriate instructional designs that require

learners to engage in activities not relevant to schema acquisi-

tion [39]. For instance, learners’ working memory resources

are used for searching and organising the information nec-

essary for learning. The material becomes difficult to under-

stand if a high extraneous load is imposed by an instructional

design [16], [40]. When extraneous load decreases, learners

achieve a higher cognitive capacity, which can be invested

in germane processing. Germane load is caused by processes

contributing to schema construction and automation [41].

Thus, germane load is effective for learning. Germane load

can be induced by instruction that stimulates learners to

invest cognitive resources in learning-related activities [38].

Germane and extraneous loads are imposed by learning mate-

rial design, whereas intrinsic load is inherent to the mate-

rial. According to cognitive load theory, good instruction

reduces extraneous load but increases germane load. In this

study, extraneous and germane loads imposed by concept

map–based and conventional instruction were measured and

their effects on learning SQL were thus analysed.

B. COGNITIVE MODEL OF SQL QUERY-WRITING

Gould and Ascher [42] proposed a high-level process of

SQL query-writing, which includes formulation, planning,

FIGURE 1. Data retrieval request and SQL statement for the request.

and coding stages. Learners first formulate a data retrieval

request, then plan a strategy to solve the request, and finally

implement this plan using an SQL statement. Ogden [43]

further established a cognitive model to describe the cogni-

tive process of learners who write SQL queries. The cog-

nitive model comprises formulation, translation, and writing

phases. In the formulation phase, learners decide on the data

they require in the context of an application domain. Fig. 1

illustrates a data request example for the formulation phase,

‘Which members browsed products but have not purchased

them yet?’ The entity-relationship (ER) diagram and rela-

tional database schema associated with the request are shown

in Appendix A. In the translation phase, learners translate the

example into a data access plan in terms of the constructs

of the relational database schema using their own words.

An output for the example is as follows: ‘First, identify

members who browsed products. Second, find out which

products members purchased. Finally, check that each prod-

uct browsed by a member is included in products purchased

by the member. If any product browsed by a member is not

included in what the member has purchased, the member is

added into the resultant dataset.’ In the writing phase, learners

further convert this plan into an SQL statement in terms of

the syntax of a specific SQL language (Fig. 1). This indicates

that the problem of visualising the evolution process of the

intermediate datasets of SQL queries is most related to the

translation phase. This study focused on the translation phase

and attempted to represent the intermediate datasets of a data

access plan and their transformation into the SQL statement

to alleviate the influence of the mental imagery problem.
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C. REPRESENTING THE COGNITIVE MODEL

IN CONCEPT MAPS

Semantic network theory proposes that semantic memory

is structured as a network of nodes [44]. Concepts are

independently stored as a node in semantic memory and

connected by links through which the semantic relation-

ships between them are defined [45]. When learners learn a

semantic relation meaningfully, they must be able to create

nodes that represent newly learned knowledge and estab-

lish links that connect the newly learned nodes and the

already known nodes in their existing semantic memory.

According to the cognitive model of SQL query-writing,

learning an SQL statement for a data request is a seman-

tic transformation from the formulation phase to translation

phase and then to the writing phase. Therefore, from the

perspective of semantic network theory [44], learning the

transformation from a data request to an SQL statement

can be regarded as a process of establishing the semantic

relations from the formulation phase to the translation phase

and then from the translation phase to the writing phase.

In the conventional instruction, learners must visualise the

semantic relations in working memory to understand SQL

queries. A network representation is useful for understanding

the semantic relations by showing the semantic relationship

between the phases. Concept mapping is a learning strategy

based on Ausubel–Novak–Gowin theory [17], which can rep-

resent the cognitive structure used by people to interpret a

problem domain [46]. Through a diagrammatic network rep-

resentation (with nodes = concepts and links = relationships

between concepts), concept maps describe salient concepts

and their structures. Through explicit link labelling, semantic

interconcept relationship information can be obtained. Two or

more concepts joined in this manner form a meaningful state-

ment, which is called a proposition or a semantic unit [47].

A concept map is built piece by piece of interacting semantic

units [46].

This study integrated the cognitive model of SQL query-

writing with concept mapping techniques to represent the

evolution of the intermediate datasets of SQL queries by

using concept maps. In this study, a concept map con-

sists of three segments—namely formulation, translation, and

writing—that correspond to the three phases of the cognitive

model. The use of concept maps is demonstrated using the

data request of Fig. 1 as an example. The concept map in

Fig. 2 represents a possible cognitive model in which learners

translate the data request of Fig. 1 to the SQL statement of

Fig. 1. The translation segment of the concept map, which

is the focus of this study, has seven concepts and related

links (four tables, two intermediate datasets, and one resul-

tant dataset). The concept map explicitly shows what ini-

tial tables are required and how they are joined to generate

the intermediate datasets and further evolve them into the

resultant dataset. For example, the concept map shows that

the data request requires four tables (browse, member, pur-

chase, and transaction). Table browse and table member are

joined through column member_id to generate an intermedi-

ate dataset (members who browsed products).

Chen et al. [48] indicated the importance of assimi-

lating new concepts into existing knowledge structures to

achieve meaningful learning. Concept maps demonstrate the

relationships between new and old knowledge and integrate

them, thus promoting meaningful learning [46], [47], [49].

Erdogan [50] emphasised that concept map development and

study can assist learners in correlating known concepts and

experiences with a new subject, helping them acquire new

knowledge on the subject. Therefore, building a concept map

for learning an SQL query may be beneficial for learners to

integrate new and old SQL knowledge, because when they

are constructing a concept map, they must make decisions

about how the new and old SQL knowledge can be applied

together to accomplish the data request. This process could

promote learner engagement and thus increase germane load.

When a learner is studying a concept map for learning an SQL

query, the concept mapmay aid the learner in focusing his/her

attention on the key concepts of the SQL query because

this map can explicitly depict the evolution of the interme-

diate datasets of the SQL query and thus reduce extraneous

load. Furthermore, concept maps have been widely used in

software engineering learning research, such as in research

on programming languages [51], [52], data modelling [53],

requirements analysis [54], and communication problems

between analysts and users [55]. Hence, this study proposed

integrating concept maps techniques into SQL learning.

Readers may consider why query trees are not used to

represent the execution process of SQL statements because

Fig. 2 has some similarities with a query tree. Query trees

represent a tree data structure that corresponds to a relational

algebra expression [56]. In a query tree, the input relations of

a relational algebra expression are represented as leaf nodes

and the relational algebra operations are represented as inter-

nal nodes. Query trees give a favourable visual representation

and understanding of the query in terms of the relational

operations it uses. However, in the context of learning SQL,

representing SQL queries in query trees compels learners to

develop data access plans in terms of the limited operations

(such as project, Cartesian product, and division) of relational

algebra. By contrast, concept maps are not as formal as query

trees; thus, learners may find it easier to depict their cognitive

structure by using their own words and understand concept

maps depicted by the instructors. Gould and Ascher [42]

indicated that for easily developing a data access plan to solve

a data request, learners should use their ownwords in the plan.

According to cognitive load theory, the cognitive model

for SQL query-writing, semantic network theory, and the

essential features of concept maps, concept maps may be

a worthwhile instructional approach for learning SQL. This

study thus proposes the following hypothesis:

Hypothesis: Learners who receive concept map–based

instruction acquire a clearer understanding of SQL than do

learners who receive conventional instruction.

VOLUME 8, 2020 100099



S.-S. Shin: SQL Learning: Concept Map-Based Instruction Based on Cognitive Load Theory

FIGURE 2. Concept Map for the Data Request in Fig. 1.

IV. RESEARCH METHODOLOGY

To examine the relationship between concept maps and

understanding SQL, we evaluated the performance of two

database courses, one with concept map–based instruction

and the other with conventional instruction. Each course

was conducted by the same instructor. The aim was that

both courses cover completely identical database information

at approximately the same pace. In total, 39 and 42 par-

ticipants [i.e. undergraduate management information sys-

tem (MIS) majors] were enrolled in the concept map–based

and conventional courses, respectively. This study analysed

the participants’ background and knowledge to ensure that

the two treatment groups are comparable. The participants

were students of the same grade in the same department

of the same university. All participants had taken the same

computer science–related courses, such as object-oriented

programming. No significant difference was noted in their

object-oriented programming scores between the conven-

tional (M = 81.31, SD= 10.743) and the concept map–based

(M = 78.09, SD= 8.226) courses (t(81) = 1.507, p > 0.05).
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To further determine whether the participants had prior

knowledge of SQL, before the courses began, theywere asked

to participate in an SQL query-writing test; the results showed

that both groups had no SQL-related expertise. At the end

of the two courses, the participants’ SQL comprehension

was measured and the differences between the two groups

were compared to clarify the relationship between concept

map–based instruction and SQL learning.

A. CONCEPT MAP–BASED VERSUS

CONVENTIONAL INSTRUCTION

Both courses lasted 3 hours per week for 18 weeks, includ-

ing the 2 weeks of the midterm and final exams. Database

learning began with fundamental database concepts (1 week),

followed by the ER model (2 weeks), the relational data

model, and the transformation from the ER model to the

relational data model (1.5 weeks). The students then received

instruction on relational algebra (1 week), Oracle SQL

(5 weeks), normalisation (1.5 weeks), data storage and index-

ing (1 week), query processing and optimisation (2 weeks),

and transaction processing and concurrency control (1 week).

The SQL teaching material included data manipulation lan-

guage (DML), data definition language, and data control

language. The DML material contained four types of SQL

statements: select, insert, update, and delete. The students

learned the four types of statements, but the study paid most

attention to select statements because many of the concepts

covered by select statements are directly relevant to other

statement types [23], [28]. Select statements are typically

the most relevant when learning SQL [8]. Concepts covered

in the material of select statements included simple queries

with one table, order by, build-in functions, arithmetic oper-

ators, simple subquery, exists, in, correlated subquery, inner

join, outer join, self-join, group by, group by with having,

aggregate functions, and set operators. Completely identical

information was covered in both database courses, with the

only difference being the instruction type used for learning

SQL.

1) CONVENTIONAL INSTRUCTION

Students learn SQL queries from the verbal description of

instructors, without the support of concept maps. Taking the

data request in Fig. 1 as an example, the ER diagram and the

relational database schema (shown as Appendix A) are first

introduced by the instructor, who then verbally introduces the

SQL query for the data request as follows.

To implement this data request, one possible plan is to

check if products browsed by a member are not included in

what the member purchased. When a product satisfies this

condition, the member who browsed the product is classi-

fied as the resultant dataset. According to this plan, first,

we must identify members who browsed products, then find

out products purchased by members, and finally identify

members who browsed products that are not included in prod-

ucts the member purchased. According to the ER diagram,

information about members who browsed products is in the

two entity types (member and product) and the relationship

type (browses). They can be transformed into three relations:

member, product, and browse. The join attribute between

member and browse ismember_id. Thus, data aboutmembers

who browsed products can be retrieved using the SQL state-

ment ‘select member_name from browse b, member m where

b.member_id = m.member_id,’ which is lines 1 and 2 of the

complete SQL statement in Fig. 1. The information about

products purchased by members is stored in the two entity

types (transaction and product) and the relationship type

(purchases). They can be transformed into three relations:

transaction, purchase, and product. The join attribute between

transaction and purchase is transaction_no. Thus, the data

about products purchased by members can be retrieved using

the SQL statement ‘select product_id from purchase p, trans-

action t where t.transaction_no = p.transaction_no,’ which is

lines 4 and 5 of the complete SQL statement. Finally, wemust

identify members who browsed a product and have not pur-

chased it. This is implemented by 3–6 lines of the complete

SQL statement. A ‘not in’ operator (line 3) is applied on the

correlated subquery (4–6 lines), which is evaluated once for

each product browsed by members and uses the value of the

member from the outer query to check that the product is not

included in the dataset of products purchased by the member.

If a product fits this condition, the member is classified as the

resultant dataset.

2) CONCEPT MAP–BASED INSTRUCTION

The core of the concept map–based instruction is to ask

learners to describe the query logic they use to perform a data

request by using concept maps and then provide them with a

concept map prepared by the instructor for the data request

to verify what they understand and misunderstand. Before

teaching SQL, the instructor teaches learners the concept

mapping technique and how to use concept maps to represent

their cognitive structure regarding the transformation from a

data request to an SQL statement. When building a concept

map for a data request, learners analyse the data request,

the ER diagram, and the relational database schema to iden-

tify appropriate concepts (e.g. table, intermediate dataset) and

links (e.g. joined via) according to the following steps until

a potential data access plan is established: (1) Use the data

request as the main concept of the concept map, which is

presented in the formulation segment of the concept map.

Taking the data request in Fig. 2 as an example, the main

concept is ‘‘Which members browsed products but have not

purchased them yet?’’ (2) Determine the required tables based

on the data requirements of the data request and connect

them to the main concept as the initial datasets. For exam-

ple, the data request of Fig. 2 requires four tables (member,

browse, transaction, and purchase), and these are connected

to the main concept as the initial datasets and presented in

the translation segment of the concept map. (3) Determine

the logic of evolving the initial datasets into the intermediate

datasets and then into the resultant dataset. The evolvement

process is presented in the translation segment of the concept

map. For example, the two initial tables, member and browse,

in Fig. 2 are joined through column member_id to generate
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the intermediate dataset #1, members who browsed products.

(4) Create partial SQL statements for the concepts in the

translation segment and integrate them into a complete SQL

statement for the data request. These SQL statements are

presented in the writing segment of the concept map. For

example, the intermediate dataset #1, members who browsed

products, in Fig. 2 is written in SQL statements: select mem-

ber_name from browse b, member m where b.member_id =

m.member_id. These partial SQL statements in Fig. 2 are

integrated into a complete SQL statement for the data request.

The concept map–based instruction assists learners in under-

standing SQL by encouraging them to begin with the main

concept and expend outward to more in-detail evolvement

process from initial datasets to the resultant dataset. After the

learners build a concept map for the data request, the instruc-

tor guides them to study a concept map prepared by the

instructor for the query to verify what they understand and

misunderstand. The instructor’s concept map is only one

of the possible concept maps for the data request because

a data request typically has various possible query logics.

Appendix B presents an example of the concept map drawn

by a student for the data request in Fig. 1. However, the con-

cept map provides learners with an insight into the instruc-

tor’s thought process regarding the data request. Furthermore,

when a learner’s concept map for a data request cannot

retrieve the correct data, the learner’s concept map enables

the instructor to understand how well the learner understands

the data request being taught.

B. MEASUREMENT

Problem-solving performance, mental efficiency, response

latency, and recall accuracy are the metrics typically used

to measure understanding. Problem-solving performance

relates to the ability to use knowledge gained from materials

to resolve related problems in new situations [39]. Mental

efficiency represents a cognitive schema’s efficiency that is

acquired, elaborated on, or automated in semantic memory

when a problem is being resolved [38]. Response latency

indicates the time that is required to retrieve information

from semantic memory [57]. Recall accuracy measures the

proportion of the total information that has been recalled

correctly [58]. Response latency and recall accuracy are used

to measure surface-level understanding; by contrast, to mea-

sure deep-level understanding, problem-solving performance

and mental efficiency are used [38], [59]. By observing stu-

dents’ learning process, it was revealed that most students

could clearly comprehend the individual syntaxes of SQL;

however, when asked to apply these concepts together, they

were overwhelmed by their complexity. Many studies have

indicated that the syntax of SQL appears to be simple but

counterintuitive [10], [12]. This implies that learning SQL

requires an in-depth understanding of complicated semantic

transformations from a data request to an SQL statement,

rather than a superficial understanding of SQL syntax. There-

fore, in this study, problem-solving performance and mental

efficiency were used to test the current hypothesis.

Problem-solving performance concerns the ability to use

knowledge gained frommaterials to solve related problems in

new situations [60]. The measure of problem-solving perfor-

mance is based on the performance of tasks being completed

to obtain information on understanding [61]. In this study,

problem-solving performancewas defined as the score of cor-

rectly answered SQL query-writing tasks. This measure has

beenwidely used in research on SQL learning [1], [62]. At the

end of both courses, an SQL query-writing test was conducted

to measure the problem-solving performance. This study

scored problem-solving performance by using Reisner’s [63]

grading method, which is commonly used in related research

on SQL learning [4], [7]. The participants’ solutions for each

SQL query-writing question were scored into one of two

categories: essentially correct or incorrect. Solutions were

considered essentially correct if they were either completely

correct or had only minor errors. Complete correctness means

that a solution can retrieve correct data. Minor errors are

small errors that could be easily discovered by the partic-

ipant or corrected automatically by an intelligent system

(e.g. a spelling corrector). Examples of minor errors include

misspelled column names, omitted or extra quotation marks,

andmisspelled data values. Solutions that led to incorrect data

retrieval were scored as incorrect. OneMIS professor and one

database professional were recruited to score the participants’

solutions according to the aforementioned criterion. The two

graders integrated their scoring results after discussion and

review.

Mental efficiency was measured using a computational

approach widely used in related education research. This

approach was developed by Paas and van Merriënboer [64],

and it is based on problem-solving performance and the

mental effort that is invested in achieving the problem-solving

performance. To calculate relative mental efficiency scores,

the scores of problem-solving performance and mental

effort were transformed into standardised z-scores based on

the grand mean across instructions obtained using equa-

tion (1). Positive and negative efficiency scores represent

efficient and inefficient learning, respectively. Moreover,

efficiency scores are positive when problem-solving per-

formance exceeds invested mental effort. Mental effort,

indicating the cognitive load invested to satisfy a task’s

demands, was measured on the subjective rating scale of

Paas and van Merriënboer [64] (range: 1–7, with 1 being

extremely low mental effort and 7 being extremely high

mental effort). According to Gopher and Braune [65], peo-

ple assign numerical values to their mental effort without

difficulty. Moreover, subjective measures of task difficulty

strongly correlate with objective measures [66]. Paas et al.

[67] considered subjective measures of mental effort to be

valid, reliable, and sensitive to relatively small cognitive

load differences.

Mental Efficiency Score

=
ZProblem−solving Performance − ZMental Effort

√
2

(1)
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Mental effort was measured in the learning and testing

phases of the courses. In the learning phase, this study mea-

sured the mental effort of participants receiving conventional

instruction shortly after they learned SQL queries. By con-

trast, for the mental effort of participants receiving concept

map–based instruction, mental effort measurement was con-

ducted shortly after the participants constructed conceptmaps

for learning SQL queries and after they studied the concept

maps prepared by the instructor. In the test phase, the mental

effort invested in the SQL query-writing test was measured

after the test was completed. This study used an independent

sample t test to determine possible statistically significant dif-

ferences in problem-solving performance, mental effort, and

mental efficiency between the two instruction approaches.

C. TASK MATERIAL

An SQL query-writing task is presented in Appendix A,

including the ER diagram, relational database schema, and

SQL questions. Most studies have divided the complexity of

SQL questions into two or three levels [7], [62], [63]. The

current study used a three-level distinction: easy, medium,

and difficult. An easy query was defined as one cover-

ing a simple query with one table, arithmetic operations,

built-in functions, selection, projection, and/or, and chaining.

A medium query was defined as one covering join, group by,

nesting, and set functions. A difficult query was defined as

one covering more tables, more join operations, more nested

operations, and combinations of elements used in any of the

levels. The participants of the two groups were requested

to answer the same 18 SQL questions (six for each level)

using paper and pencil in 3 hours at the end of the courses.

Two MIS professors and two senior database professionals

reviewed the task material and recommended some changes.

Then, 10 undergraduate majors in MIS who had completed

a database course were recruited to conduct a pilot test.

These undergraduate majors were required to answer these

questions, and the results indicated that the task material was

presented accurately.

TABLE 2. Problem-solving performance and mental effort scores: mean
(standard deviation) and independent sample t test (p).

V. DATA ANALYSIS AND RESULTS

Table 2 presents the means (standard deviations) of

problem-solving performance and mental effort, along with

independent sample t test results. Compared with those

in the conventional course, the participants in the con-

cept map–based course demonstrated significantly higher

problem-solving performance. Regarding mental effort,

in the test phase, compared with those in the conventional

course, the mental effort invested by the participants in the

concept map–based course for the SQL query-writing task

was significantly lower. Moreover, in the learning phase,

the participants in concept map–based course invested sig-

nificantly more mental effort in concept map construction

but significant less mental effort in studying the instructor’s

concept maps than those in the conventional course.

To calculate the relative mental efficiency scores,

the scores of problem-solving performance and mental effort

in the test phase were transformed into standardised z-scores

by using the grand mean across the two instruction types. The

data presented in Table 3 demonstrates that participants who

received concept map–based instruction achieved signifi-

cantly highermental efficiency in the test phase than did those

who received the conventional instruction, implying that

concept map–based instruction is superior to conventional

instruction in terms of facilitating SQL understanding.

TABLE 3. Relative Mental Efficiency in the Test Phase: Mean (Standard
Deviation) and Independent Sample t Test (p).

VI. DISCUSSION AND IMPLICATIONS

The current data analysis results support the hypothesis that

concept map–based instruction facilitates SQL understand-

ing superior to that facilitated by conventional instruction.

Table 3 indicates that concept map–based course participants

exhibited relatively highmental efficiency, implying that con-

cept map–based instruction may improve learners’ compre-

hension of SQL attained using efficient schema acquisition

and automation.

This study analysed the possible effects of concept map–

based instruction on learning SQL from a cognitive load

theory perspective. Mental effort represents overall cognitive

load. According to cognitive load theory, variations among

different mental effort constituents can be derived if intrin-

sic load is held constant and extraneous and germane loads

are examined in relation to problem-solving performance

scores [38], [68]. When learners have the same level of

prior knowledge in a material, their intrinsic load imposed

by the material is the same [38]. In the current study, for

both courses, the pretest results indicated that the participants

had identical prior SQL knowledge levels, implying that they

had equal intrinsic loads. Therefore, variations in problem-

solving performance scores were associated with extraneous
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and germane loads alone. In the subsequent sections, analyses

of the effects of the two instruction types on SQL comprehen-

sion in terms of germane and extraneous loads are discussed.

A. GERMANE LOAD

Table 2 demonstrates that the mental effort expended in

constructing concept maps for learning SQL queries was

significantly higher in the concept map–based course partici-

pants than in the conventional course participants in learning

SQL queries through verbal description. According to cog-

nitive load theory, at a constant intrinsic load, the increased

mental effort was derived from the germane load because

increasing extraneous load reduced problem-solving perfor-

mance. Moreover, Table 2 indicates that concept map–based

course participants achieved relatively high problem-solving

performance scores. Thus, the increased mental effort was

not derived from the extraneous load. In other words, con-

cept map–based instruction induced a significantly higher

germane load when concept maps were being constructed

than did conventional instruction. Moreover, germane load

helps learners learn. The influence of the concept map–based

instruction on the learners’ germane load are analysed as

follows.

Numerous researchers have recognised concept maps as

being an effective tool for externalising learners’ knowledge

structures [69]–[71]. The network representations of concept

maps can aid in presenting the relationships between con-

cepts [45]. Learning by externalising knowledge structure can

engage learners in organising their knowledge and learning

experiences because learners have to actively seek informa-

tion for describing concepts and relationships that link the

concepts [72]. This process can help learners identifymiscon-

ceptions or contradictions in the knowledge structure [73].

Cognitive load theory indicated that instructions that engage

learners in learning-relevant activities can induce germane

load [38]. Therefore, learning through concept map construc-

tion engenders an increase in germane load because when

constructing concept maps, learners are compelled to make

decisions on how these concepts can work together. In the

context of concept map–based instruction, concept maps can

act as a cognitive tool externally representing the knowledge

structure used by learners to solve SQL queries. When con-

structing a concept map for learning an SQL query, learners

must identify useful SQL concepts and determine how they

can be applied together to generate a possible data access

plan. For instance, to construct a concept map for the data

retrieval request in Fig. 1, learners must identify the required

SQL concepts, such as ‘join’, ‘not’, ‘in’, ‘subquery’, and ‘cor-

related subquery’, and then determine their relationships to

accomplish the data request. This process engages learners in

SQL learning–relevant activities and thus increases germane

load, eventually enhancing learners’ understanding of SQL.

This is consistent with previous study results that learning by

creating a concept map of knowledge structure is consider-

ably more useful than rote memorisation [49]; this is also

supported by the current study results that the participants

receiving the concept map–based instruction exhibited higher

germane load and mental efficiency.

Furthermore, concept map construction for learning SQL

possibly promotes meaningful learning, which involves

assimilating new concepts into existing knowledge struc-

tures [48]. Novak and Cañas [46] indicated that instructional

strategies that emphasise the relation of new knowledge

to learner’s existing knowledge foster meaningful learning.

Studies have found that the use of concept mapping strategies

can facilitate meaningful learning [48], [75], [74]. Accord-

ingly, concept map–based instruction may enhance meaning-

ful learning because constructing a concept map for leaning

an SQL query stimulates the learners to search their existing

knowledge of SQL and integrate it with the newly learned

SQL concepts. For instance, a learner who has learned ‘join’

wants to learn ‘correlated subquery’ through the data retrieval

request in Fig. 1. If the learner draws Fig. 2, it relates the

newly learned concept (correlated subquery) with already

known concept (join) to represent the possible data access

plan in a diagrammatic format. Specifically, the known con-

cept ‘join’ is used in generating the two intermediate datasets

(members who browsed products and products purchased by

members). The newly learned concept ‘correlated subquery’

is applied on the two intermediate datasets to generate the

resultant dataset (members who browsed products that are

not the products purchased by the members). The process of

constructing a concept map may compel learners to reflect

on the relationships between the newly learned concept and

their existing knowledge about SQL in a meaningful man-

ner. This is consistent with a previous result: concept maps

facilitate learning because they can explicitly integrate new

and old knowledge and thus help diagnose misunderstand-

ings and communicate complex concepts [48], [50]. Concept

maps aid in triggering memory and focusing attention on

the relationships between newly learned concepts and known

concepts [73].Marra and Jonassen [76] indicated that concept

map construction can engage learners in analysing their exist-

ing task-related knowledge structures and then in relating

these structures to the content being learned. Anderson [77]

found that students learn better from discovery than from

direct instruction, and such knowledge is retained for longer

than when students learn by being told. Hence, concept

map–based instruction may help learners assimilate newly

learned SQL concepts into existing knowledge structures and

form so-called meaningful learning [48].

B. EXTRANEOUS LOAD

In the concept map–based course, after learners built the

concept maps, they studied the instructor’s concept maps

to review their understanding. Table 2 demonstrates that

the conventional course participants expended significantly

higher mental effort in learning SQL queries than did their

concept map–based course counterparts in studying the con-

cept maps of SQL queries. According to cognitive load

theory, with a constant intrinsic load, the increased men-

tal effort was derived from the extraneous load because
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increasing germane load contributed to problem-solving per-

formance. Moreover, Table 2 indicates that conventional

course participants achieved relatively low problem-solving

performance scores. Thus, the increasedmental effort was not

derived from the germane load. In other words, conventional

instruction induced a significantly higher extraneous load in

learning SQL queries than concept map–based instruction in

the study of the concept maps of SQL queries. Moreover,

extraneous load hampers learning. The following section

analyses the influence of extraneous load on the learners of

the two courses.

The learners in the conventional course learned SQL

queries from the instructor’s verbal description. The learn-

ing process involves sequential processing and assimilation

because in verbal representations, information is organised

sequentially [13]. Larkin and Simon [78] indicated that

sequentially indexing information leads to further extrane-

ous load for keeping the information in working memory.

Learning SQL queries typically requires considering multi-

ple intermediate datasets and their evolution simultaneously.

Therefore, learners receiving conventional instruction may

need to invest additional extraneous load to keep informa-

tion in working memory until all information required is

received. Taking the data retrieval request in Fig. 1 as an

example, learners follow the verbal description described in

Section 4.A to identifymembers who browsed products. They

bring the information on relation browse and relationmember

into working memory, mentally perform a join operation on

the two relations to generate an intermediate dataset (mem-

bers who browsed products), and expendmental effort to keep

the partial plan in working memory. They then follow the

verbal description to generate another intermediate dataset

(products purchased by members), and keep it in working

memory. Finally, they mentally apply an operator ‘not in’ on

the two intermediate datasets by using ‘correlated subquery’

to generate the resultant dataset. This process shows that

relevant information that has to be integrated so that the SQL

query is understood is presented in a sequential manner. The

learners are required to invest mental effort so that informa-

tion is retained in their working memory and then to wait

for more information. Their attention is moved along with

sequential processing. Moreover, learners’ distraction related

to various information sources causes excessive extraneous

load [39]. An instructional procedure, which requires learners

to organise information necessary for learning, imposes a

high extraneous load; the reason for this is that workingmem-

ory resources are invested in activities not related to schema

acquisition [19], [39], [79]. This suggests that sequential rea-

soning is not applicable to SQL learning; thus, conventional

instruction may inhibit learners’ SQL comprehension.

Furthermore, extraneous load may explain why students

can understand individual concepts of SQL but have dif-

ficulty applying these concepts together. When learners

attempt to express a data retrieval request in an SQL query,

they must search for useful SQL concepts in their existing

knowledge of SQL, bring them from semantic memory into

working memory, and determine how they can be applied

together to build a possible data access plan. In this context,

the students must retrieve all possible SQL concepts into

working memory and evaluate them mentally before finally

selecting the appropriate concepts to perform data requests.

The entire process involves extensive working memory–

semantic memory interaction, and the need to retain the

related information in working memory is continual. When

the resultant total cognitive load induced is excessive, learners

are overwhelmed by information and encounter difficulty.

By contrast, in the concept map–based course, after cons-

tructing a conceptmap for learning an SQL query, the learners

studied the instructor’s concept map. Paivio and Csapo [80]

indicated that diagrammatic and verbal representations are

most effectively used in parallel and sequential processing,

respectively. Learning an SQL query usually requires simul-

taneously considering multiple intermediate datasets and

their evolution. Concept maps can diagrammatically present

all associated information together, which can eliminate for

the need to keep track of related elements [78]. Therefore,

concept map–based instruction may reduce the learners’

extraneous load. The concept map in Fig. 2 shows that the

SQL query required four tables to generate two intermediate

datasets and an operator ‘not in’ was applied on the two inter-

mediate datasets by using ‘correlated subquery’ to generate

the resultant dataset. The concept map simultaneously and

explicitly displays the initial tables, the intermediate datasets,

and their evolvement, through which learners may more eas-

ily perceive the evolution process of the intermediate datasets

of the SQL query with lower extraneous load, because the

associated information is presented together. This is consis-

tent with the results of Marcus et al. [16]: diagrammatic

representation increased learning effectiveness by reducing

extraneous load because pieces of informationwere presented

together physically. Concept maps aid in highlighting key

factors for learners [73]. In this context, concept map–based

course learners may expend less extraneous load in hold-

ing relevant information in working memory for visualising

the evolution process. Furthermore, extraneous load that is

freed can be invested into germane load, which can conse-

quently enhance SQL learning. This is supported by data

analysis results in Table 2 that concept map–based instruc-

tion expended considerably lower mental effort in studying

concept maps than did conventional instruction. According

to cognitive load theory, this reduction in mental effort was

derived from extraneous load as mentioned before. Moreover,

some of the freed extraneous load was invested in germane

load, which can be demonstrated by concept map–based

course participants achieving increased problem-solving

performance.

Furthermore, the similarity between the concept maps

of the instructor and learners can be used to assess the

learners’ understanding of SQL [48]. When studying the

instructor’s concept map for learning SQL queries, learners

follow the cognitive structure used by the instructor in per-

forming the data retrieval request; this can assist learners in
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the identification of faulty reasoning or inappropriate rep-

resentations. If these misunderstandings are corrected, fur-

ther understanding is attained [81]. According to cognitive

load theory, the instructor’s concept map can direct learn-

ers’ cognitive processes toward the relevant constructs and

lead them to obtain the relevant information being brought

into working memory with less extraneous load to gain

SQL-related knowledge. The reduced extraneous load con-

tributes to enhanced learning outcomes [16], [40].

VII. THREATS TO VALIDITY

In this section, threats to validity that could affect the study

results are discussed; these threats are analysed according to

the four types proposed by Wohlin et al. [82].

A. CONCLUSION VALIDITY

This validity is concerned with the statistical relationship

between the treatment and the outcome of an experiment [82].

In this study, threats to conclusion validity identified and

addressed are reliability of measures, random heterogene-

ity of subjects, and sample size. To address the reliability

of measures, this study adopted well-documented measures

to assess the understanding of SQL. Problem-solving per-

formance was assessed using query accuracy, which has

been considered as an effectiveness measure of SQL learn-

ing performance [1], [62]. A subjective rating scale was

used to assess mental effort. Studies have concluded that

this scale demonstrates a strong correlation with objective

measures and sensitivity to relatively small cognitive load

differences [65]–[67]. The issue of random heterogeneity of

subjects was considered while recruiting participants in the

experiment. Before the courses began, all the participants

were asked to participate in an SQL query-writing test, and

the results demonstrated that they had equal levels of prior

SQL knowledge. That is, they had approximately similar SQL

knowledge and experience, thus reducing the heterogeneity.

With regard to sample size, although participants in the exper-

iment were limited in number, the sample size was sufficient

to verify the hypothesis through independent sample t tests

and obtain conclusion validity.

B. INTERNAL VALIDITY

This validity relates to the ability of a study to establish a

causal link between the treatment and the outcome within

a given environment [82]. Two threats to internal validity

were addressed in this study: instrumentation and setting.

With regard to instrumentation, both the concept map–based

and conventional courses were taught by the same instructor

in such a way that both courses covered exactly the same

information at nearly the same pace, with the only differ-

ence being the instruction type used for learning SQL; this

difference ensured that learners’ SQL comprehension was

related only to instruction. With regard to the issue of setting,

the participants of the two groups were requested to answer

the same SQL questions under the same conditions and all

followed the same procedure.

C. CONSTRUCT VALIDITY

This validity is concerned with the extent to which an experi-

ment setting reflects the construct under study [82]. To ensure

that the measures provide an accurate representation of the

effect construct, this study measured learners’ understand-

ing of SQL by using mental efficiency and problem-solving

performance instead of response latency and recall accuracy

because learning SQL requires a deep-level understanding

of complicated semantic transformation from a data request

to an SQL statement. Mental efficiency and problem-solving

performance have been analysed extensively in related stud-

ies [38], [39]. Three other threats to construct validity iden-

tified and addressed are confounding constructs with lev-

els of constructs, interaction of different treatments, and

experimenter expectancies. To avoid the problem of having

confounding constructs with levels of constructs, this study

used a three-level distinction (i.e. easy, medium, and diffi-

cult) to represent the complexity of SQL questions. A key

concern related to the interaction of different treatments is

ensuring that the participants of a study do not participate in

other studies because treatments from different studies may

interact. In this condition, the researcher cannot conclude

whether the effect is due to one treatment or a combination of

treatments. In this study, the participants did not participate

in other studies; thus, there was no possibility of interactions

among other treatments. Regarding experimenter expectan-

cies, the participants were unaware of the experimental

hypotheses.

D. EXTERNAL VALIDITY

This validity is concerned with the extent to which the

result of a study is generalised outside the scope of the

study [82]. The main concern related to interaction of

selection and treatment is ensuring that the participants

in a study are representative of the population to which

this study seeks to generalise. This study aimed to evalu-

ate the effects of concept map–based instruction on learn-

ers’ SQL comprehension. MIS majors were recruited in

this study to examine the research question. Considering

manipulating and retrieving information from a relational

database is a core competence of MIS majors, the par-

ticipants were considered to be suitable representatives of

SQL learners.

VIII. CONCLUSION

The inherent mental imagery problem caused by the declar-

ative nature of SQL burdens learners’ cognitive load and

consequently jeopardises learning outcomes. In this study,

concept mapping techniques were integrated into conven-

tional database instruction to represent the evolution pro-

cess of the intermediate datasets of SQL queries in concept

maps. The study results show the superiority of con-

cept map–based instruction over conventional instruction.

From the cognitive load theory perspective, the influence

of concept map–based instruction was explored. In the
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FIGURE 3. ER diagram.

learning phase, compared with those receiving conventional

instruction, learners receiving concept map–based instruction

expended higher germane load in concept map construction

and lower extraneous load in studying the instructor’s con-

cept maps. In the test phase, compared with those receiv-

ing conventional instruction, learners receiving concept

map–based instruction achieved higher problem-solving per-

formance and they spent lower mental effort in achieving that

performance level.

Four main reasons may explain the advantages of concept

map–based instruction in SQL learning: (1) Concept map

construction facilitated learner engagement, which increased

learners’ germane load, ultimately enhancing their under-

standing of SQL. (2) Concept map construction promoted

meaningful learning because in the process, learners analysed

their existing knowledge structures about SQL and related

them to what they were learning; this helped learners assim-

ilate newly learned SQL concepts into existing knowledge

structures. (3) Studying instructors’ concept maps helped

learners follow the cognitive structures used by instructors to

perform SQL queries, assisting them in clarifying any mis-

understanding and thus aiding them in understanding SQL.

(4) Studying the instructors’ concept maps enabled learners

perceive the execution process of SQL queries relatively eas-

ily because these concept maps presented relevant informa-

tion that must be mentally integrated for understanding SQL

queries.

In this study, an empirical insight into the effects of concept

map–based instruction on learning SQL was obtained. How-

ever, additional follow-up studies are required to elucidate

the factors limiting SQL learning from the perspectives

of related theories, such as semantic distance between a

data retrieval request and the corresponding SQL statement.

These studies may provide further information for enhancing

SQL learning. A broader perspective on SQL learning may

aid researchers in developing relatively more effective SQL

learning instructions.

APPENDIX A

QUERY-WRITING QUESTIONS

The query-writing questions performed by the participants

at the end of courses are on an e-bookstore system. The

members of the system can browse products and engage in

transactions to buy products. The following figure contains

the ER diagram, relational schemas, and SQL writing ques-

tions provided to the participants.

ER diagram: see Figure 3.

Relational Schemas:

Member (member_id, member_name, birthday, phone,

address, email, introducer, credit)

Product (product_id, product_name, list_price, category)

Transaction (transaction_no, member_id, time, bank_id,

bank_name, card_type, card_no, due_date)

Author (product_id, author_name)

Browse (member_id, product_id, browse_time)

Purchase (transa ction_no, product_id, amount, sale_price)

SQL Writing Questions:

Easy:

1. Find the names of members whose addresses are in

Texas.

2. Find the identities of members who have ever been an

introducer.

3. Find the names of members who have the same birthday

as the member called Tony.

4. Find the names of products whose list price is higher

than that of product b30999.

5. For the Christmas season, each member will have their

credit limit doubled. Find the identities of these members and

the new credit limits.
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FIGURE 4. A concept map example drawn by a student for the data request in Fig. 1
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6. Find the number of products that have the highest sale

price.

Medium:

1. Find the names and phone numbers of members who

have not browsed any products.

2. Find the names of members who browsed product

b30999.

3. Find the names of products that were either ever bought

or ever browsed.

4. Find the identification numbers of all transactions and

the corresponding transaction amounts.

5. Find the identities and names of all members and their

introducers’ names.

6. Find the name of member b0905555 and the names of

members who were introduced by member b0905555.

Difficult:

1. Find how many distinct members have bought product

b40555.

2. Find the introducer names of members who bought

product b30999.

3. Find the names of products that have been browsedmore

than two times.

4. Find the names of members whose transaction amounts

are more than two times the average transaction amount.

5. Find the average credit limit of members who have

bought product b40555.

6. Find the identities of members who have bought all

products they browsed and the names of the products.

APPENDIX B

See Figure 4.

REFERENCES

[1] H. C. Chan, K. K.Wei, and K. L. Siau, ‘‘User-database interface: The effect

of abstraction levels on query performance,’’ MIS Quart., vol. 17, no. 4,

pp. 441–464, Dec. 1993.

[2] D. Lavbič, T. Matek, and A. Zrnec, ‘‘Recommender system for learning

SQL using hints,’’ Interact. Learn. Environ., vol. 25, no. 8, pp. 1048–1064,

Nov. 2017.

[3] W. S. Luk and S. Kloster, ‘‘ELFS: English language from SQL,’’ ACM

Trans. Database Syst., vol. 11, no. 4, pp. 447–472, Dec. 1986.

[4] A. Mitrovic, ‘‘An intelligent SQL tutor on the Web,’’ Int. J. Artif. Intell.

Educ., vol. 13, nos. 2–4, pp. 173–197, Apr. 2003.

[5] J. R. Prior and R. F. Lister, ‘‘The backwash effect on SQL skills grading,’’

ACM SIGCSE Bull., vol. 36, no. 3, pp. 32–36, Jun. 2004.

[6] K. Renaud and J. Van Biljon, ‘‘Teaching SQL—Which pedagogical horse

for this course?’’ in Key Technologies for Data Management (Lecture

Notes in Computer Science), vol. 3112. Berlin, Germany: Springer, 2004,

pp. 244–256.

[7] C. Welty and D. W. Stemple, ‘‘Human factors comparison of a procedural

and a nonprocedural query language,’’ ACM Trans. Database Syst., vol. 6,

no. 4, pp. 626–649, Dec. 1981.

[8] M. Cembalo, A. De Santis, and U. F. Petrillo, ‘‘SAVI: A new system for

advanced SQL visualization,’’ in Proc. Conf. Inf. Technol. Edu. (SIGITE),

New York, NY, USA, 2011, pp. 165–170.

[9] R. Hardt and E. Gutzmer, ‘‘Database query analyzer (DBQA): A data-

oriented SQL clause visualization tool,’’ in Proc. 18th Annu. Conf. Inf.

Technol. Edu. (SIGITE), New York, NY, USA, 2017, pp. 147–152.

[10] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin, ‘‘SQLator: An online SQL

learning workbench,’’ ACM SIGCSE Bull., vol. 36, no. 3, pp. 223–227,

Jun. 2004.

[11] R. Kearns, S. Shead, and A. Fekete, ‘‘A teaching system for SQL,’’ in Proc.

ACSE, 1997, pp. 224–231.

[12] A. Mitrovic, ‘‘Learning SQL with a computerized tutor,’’ ACM SIGCSE

Bull., vol. 30, no. 1, pp. 307–311, Mar. 1998.

[13] B. Kolloffel, T. H. S. Eysink, T. de Jong, and P. Wilhelm, ‘‘The effects

of representational format on learning combinatorics from an interactive

computer simulation,’’ Instructional Sci., vol. 37, no. 6, pp. 503–517,

Nov. 2009.

[14] D. P. Ausubel, J. D. Novak, and H. Hanesian, Educational Psychology:

A Cognitive View, 2nd ed. New York, NY, USA: Holt, Rinehart &Winston,

1968.

[15] G.-J. Hwang, P.-H. Wu, and H.-R. Ke, ‘‘An interactive concept map

approach to supporting mobile learning activities for natural science

courses,’’ Comput. Edu., vol. 57, no. 4, pp. 2272–2280, Dec. 2011.

[16] N. Marcus, M. Cooper, and J. Sweller, ‘‘Understanding instructions,’’

J. Educ. Psychol., vol. 88, no. 1, pp. 49–63, Mar. 1996.

[17] J. D. Novak, and D. B. Gowin, Learning How to Learn. Cambridge, U.K.:

Cambridge Univ. Press, 1984.

[18] P. Ayres and J. Sweller, ‘‘The split-attention principle in multimedia learn-

ing,’’ in The Cambridge Handbook of Multimedia Learning. Cambridge,

U.K.: Cambridge Univ. Press, 2005, pp. 135–146.

[19] P. Chandler and J. Sweller, ‘‘Cognitive load theory and the format of

instruction,’’ Cognition Instruct., vol. 8, no. 4, pp. 293–332, Dec. 1991.

[20] R. B. Clariana, T. Engelmann, and W. Yu, ‘‘Using centrality of concept

maps as a measure of problem space states in computer-supported col-

laborative problem solving,’’ Educ. Technol. Res. Develop., vol. 61, no. 3,

pp. 423–442, Apr. 2013.

[21] M. Murray and M. Guimaraes, ‘‘Animated database courseware: Using

animations to extend conceptual understanding of database concepts,’’

J. Comput. Sci. Colleges, vol. 24, no. 2, pp. 144–150, Dec. 2008.

[22] A. Ahadi, J. Prior, V. Behbood, and R. Lister, ‘‘A quantitative study of

the relative difficulty for novices of writing seven different types of SQL

queries,’’ in Proc. ITiCS, New York, NY, USA, 2015, pp. 201–206.

[23] P. Garner and J. A. Mariani, ‘‘Learning SQL in steps,’’ J. Syst. Cybern.

Informat., vol. 13, no. 4, pp. 19–24, 2015.

[24] M. M. Zloof, ‘‘Query-by-example: A data base language,’’ IBM Syst. J.,

vol. 16, no. 4, pp. 324–343, Dec. 1977.

[25] H.-J. Kim, H. F. Korth, and A. Silberschatz, ‘‘PICASSO: A graphical query

language,’’ Softw., Pract. Exper., vol. 18, no. 3, pp. 169–203, Mar. 1988.

[26] S. I. Mehta and N. W. Schlecht, ‘‘Computerized assessment technique for

large classes,’’ J. Eng. Edu., vol. 87, no. 2, pp. 167–172, Apr. 1998.

[27] J. R. Prior, ‘‘AsseSQL: An online, browser-based SQL skills assess-

ment tool,’’ in Proc. Conf. Innov. Technol. Comput. Sci. Edu. (ITiCSE),

New York, NY, USA, 2014, p. 327.

[28] A. Mitrovic, ‘‘A knowledge-based teaching system for SQL,’’ in Proc. ED-

MEDIA, Charlottesville, VA, USA, 1998, pp. 1032–1037.

[29] S. Dekeyser, M. de Raadt, and T. Y. Lee, ‘‘Computer assisted assessment of

SQL query skills,’’ in Proc. 18th Conf. Australas. Database, Darlinghurst,

NSW, Australia, 2007, pp. 53–62.

[30] Abelló, M. E. Rodríguez, T. Urpí, X. Burgués, M. J. Casany, C.Martín, and

C. Quer, ‘‘LEARN-SQL: Automatic assessment of SQL based on IMSQTI

specification,’’ in Proc. ICALT, P. Díaz, Kinshuk, I. Aedo, and E. Mora,

Eds. Los Alamitos, CA, USA, 2008, pp. 592–593.

[31] R. Dollinger, ‘‘SQL lightweight tutoring module–semantic analysis of

SQL queries based on XML representation and LINQ,’’ in Proc. ED-

MEDIA, Waynesville, NC, USA, 2010, pp. 3323–3328.

[32] M. Cvetanovic, Z. Radivojevic, V. Blagojevic, and M. Bojovic,

‘‘ADVICE—Educational system for teaching database courses,’’ IEEE

Trans. Educ., vol. 54, no. 3, pp. 398–409, Aug. 2011.

[33] S. Bhagat, L. Bhagat, J. Kavalan, and M. Sasikumar, ‘‘Acharya: An intelli-

gent tutoring environment for learning SQL,’’ in Proc. Vidyakash Int. Conf.

Online Learn., Mumbai, India, 2002, pp. 67–77.

[34] H. Laine, ‘‘SQL-trainer,’’ in Proc. 1st Annu. Finnish/Baltic Sea Conf.

Comput. Sci. Educ., Koli, Finlad, 2001, pp. 13–17.

[35] J. Sweller, ‘‘Cognitive load theory, learning difficulty, and instructional

design,’’ Learn. Instruct., vol. 4, no. 4, pp. 295–312, Jan. 1994.

[36] N. Refat, M. A. Rahman, A. T. Asyhari, I. F. Kurniawan, M. Z. A. Bhuiyan,

and H. Kassim, ‘‘Interactive learning experience-driven smart commu-

nications networks for cognitive load management in grammar learning

context,’’ IEEE Access, vol. 7, pp. 64545–64557, 2019.

[37] P. Weichbroth, ‘‘Usability of mobile applications: A systematic literature

study,’’ IEEE Access, vol. 8, pp. 55563–55577, 2020.

[38] T. van Gog and F. Paas, ‘‘Instructional efficiency: Revisiting the original

construct in educational research,’’ Educ. Psychologist, vol. 43, no. 1,

pp. 16–26, Jan. 2008.

VOLUME 8, 2020 100109



S.-S. Shin: SQL Learning: Concept Map-Based Instruction Based on Cognitive Load Theory

[39] R. E. Mayer, ‘‘Models for understanding,’’ Rev. Educ. Res., vol. 59, no. 1,

pp. 43–64, Mar. 1989.

[40] J. Sweller, J. J. G. van Merrienboer, and F. Paas, ‘‘Cognitive architecture

and instructional design,’’ Educ. Psychol. Rev., vol. 10, no. 3, pp. 251–296,

Sep. 1998.

[41] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. Van Gerven, ‘‘Cognitive load

measurement as ameans to advance cognitive load theory,’’Educ. Psychol.,

vol. 38, no. 1, pp. 63–71, Mar. 2003.

[42] J. D. Gould and R. N. Ascher, ‘‘Use of an IQF-like query language by non-

programmers,’’ IBM Thomas J. Watson Res. Center, Yorktown Heights,

NY, USA, Res. Rep. RC 5279, 1975.

[43] W. C. Ogden, ‘‘Implications of a cognitive model of database query: Com-

parison of a natural language, formal language and direct manipulation

interface,’’ ACM SIGCHI Bull., vol. 18, no. 2, pp. 51–54, Oct. 1986.

[44] A.M. Collins andM. R. Quillian, ‘‘Retrieval time from semantic memory,’’

J. Verbal Learn. Verbal Behav., vol. 8, no. 2, pp. 240–247, Apr. 1969.

[45] J. Turns, C. J. Atman, and R. Adams, ‘‘Concept maps for engineering

education: A cognitively motivated tool supporting varied assessment

functions,’’ IEEE Trans. Educ., vol. 43, no. 2, pp. 164–173, May 2000.

[46] J. D. Novak and A. J. Cañas, ‘‘The theory underlying concept maps and

how to construct and use them,’’ Inst. Hum. Mach. Cognition, Pensacola,

FL, USA, IHMC CmapTools, Tech. Rep. IHMC CmapTools 2006-01,

2008.

[47] C. Soderston, N. Kleid, and T. Crandell, ‘‘Concept mapping: A job-

performance aid for hypertext developers,’’ in Proc. 14th Annu. Int. Conf.

Syst. Documentation Marshaling New Technol. Forces: Building Corpo-

rate, Academic, User-Oriented Triangle (SIGDOC), New York, NY, USA,

1996, pp. 179–186.

[48] H.-H. Chen, Y.-J. Chen, and K.-J. Chen, ‘‘The design and effect of a

scaffolded concept mapping strategy on learning performance in an under-

graduate database course,’’ IEEE Trans. Educ., vol. 56, no. 3, pp. 300–307,

Aug. 2013.

[49] N. Dabbagh, ‘‘Concept mapping as a mindtool for critical thinking,’’

J. Comput. Teach. Educ., vol. 17, no. 2, pp. 16–23, 2001.

[50] Y. Erdogan, ‘‘Paper-based and computer-based concept mappings:

The effects on computer achievement, computer anxiety and computer

attitude,’’ Brit. J. Educ. Technol., vol. 40, no. 5, pp. 821–836, Sep. 2009.

[51] M. N. Ismail, N. A. Ngah, and I. N. Umar, ‘‘The effects of mind mapping

with cooperative learning on programming performance, problem solving

skill and metacognitive knowledge among computer science students,’’

J. Educ. Comput. Res., vol. 42, no. 1, pp. 35–61, Jan. 2010.

[52] J. Keppens and D. Hay, ‘‘Concept map assessment for teaching computer

programming,’’ Comput. Sci. Edu., vol. 18, no. 1, pp. 31–42, Mar. 2008.

[53] A. R. Montazemi and D. W. Conrath, ‘‘The use of cognitive mapping for

information requirements analysis,’’MIS Quart., vol. 10, no. 1, pp. 45–56,

Mar. 1986.

[54] V. P. Gurupur, U. Sakoglu, G. P. Jain, and U. J. Tanik, ‘‘Semantic require-

ments sharing approach to develop software systems using concept maps

and information entropy: A personal health information system example,’’

Adv. Eng. Softw., vol. 70, pp. 25–35, Apr. 2014.

[55] K. Siau and X. Tan, ‘‘Improving the quality of conceptual modeling

using cognitive mapping techniques,’’ Data Knowl. Eng., vol. 55, no. 3,

pp. 343–365, Dec. 2005.

[56] R. Elmasri, and S. Navathe, Fundamentals of Database Systems, 7th ed.

London, U.K.: Pearson, 2015.

[57] G. L. Bradshaw and J. R. Anderson, ‘‘Elaborative encoding as an explana-

tion of levels of processing,’’ J. Verbal Learn. Verbal Behav., vol. 21, no. 2,

pp. 165–174, Apr. 1982.

[58] R. Ratcliff, ‘‘A theory of memory retrieval,’’ Psychol. Rev., vol. 85, no. 2,

pp. 59–108, Mar. 1978.

[59] F. Bodart, A. Patel, M. Sim, and R. Weber, ‘‘Should optional properties

be used in conceptual modelling? A theory and three empirical tests,’’ Inf.

Syst. Res., vol. 12, no. 4, pp. 384–405, Dec. 2001.

[60] A. King, ‘‘Effects of training in strategic questioning on children’s

problem-solving performance.,’’ J. Educ. Psychol., vol. 83, no. 3,

pp. 307–317, 1991.

[61] P. Heller, R. Keith, and S. Anderson, ‘‘Teaching problem solving through

cooperative grouping. Part 1: Group versus individual problem solving,’’

Amer. J. Phys., vol. 60, no. 7, pp. 627–636, Jul. 1992.

[62] K. L. Siau, H. C. Chan, and K. K. Wei, ‘‘Effects of query complexity and

learning on novice user query performance with conceptual and logical

database interfaces,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans,

vol. 34, no. 2, pp. 276–281, Mar. 2004.

[63] P. Reisner, ‘‘Use of psychological experimentation as an aid to develop-

ment of a query language,’’ IEEE Trans. Softw. Eng., vol. SE-3, no. 3,

pp. 218–229, May 1977.

[64] F. G. W. C. Paas and J. J. G. Van Merriënboer, ‘‘The efficiency of instruc-

tional conditions: An approach to combine mental effort and performance

measures,’’ Hum. Factors, vol. 35, no. 4, pp. 737–743, Dec. 1993.

[65] D. Gopher and R. Braune, ‘‘On the psychophysics of workload: Why

bother with subjective measures?’’ Hum. Factors, vol. 26, no. 5,

pp. 519–532, Oct. 1984.

[66] R. D. O’Donnell and F. T. Eggemeier, ‘‘Workload assessment methodol-

ogy,’’ inHandbook of Perception and Human Performance. NewYork, NY,

USA: Wiley, 1986, pp. 1–49.

[67] F. Paas, J. J. G. van Merriëboer, and J. J. Adam, ‘‘Measurement of cog-

nitive load in instructional research,’’ Percept. Motor Skill., vol. 79, no. 1,

pp. 419–430, Aug. 1994.

[68] P. Ayres, ‘‘Using subjective measures to detect variations of intrin-

sic cognitive load within problems,’’ Learn. Instruct., vol. 16, no. 5,

pp. 389–400, Oct. 2006.

[69] L. Anderson-Inman and L. Ditson, ‘‘Computer-based concept mapping:

A tool for negotiating meaning,’’ Learn. Lead. Technol., vol. 26, no. 8,

pp. 6–13, 1999.

[70] P. B. Horton, A. A. McConney, M. Gallo, A. L. Woods, G. J. Senn, and

D. Hamelin, ‘‘An investigation of the effectiveness of concept mapping as

an instructional tool,’’ Sci. Edu., vol. 77, no. 1, pp. 95–111, Jan. 1993.

[71] H. Peng, Y. Su, C. Chou, and C. Tsai, ‘‘Ubiquitous knowledge construc-

tion: Mobile learning re-defined and a conceptual framework,’’ Innov. Edu.

Teach. Int., vol. 46, no. 2, pp. 171–183, May 2009.

[72] G. Kao, S. Lin, and C. Sun, ‘‘Breaking concept boundaries to enhance

creative potential: Using integrated concept maps for conceptual self-

awareness,’’ Comput. Edu., vol. 51, no. 4, pp. 1718–1728, Dec. 2008.

[73] P.-H. Wu, G.-J. Hwang, M. Milrad, H.-R. Ke, and Y.-M. Huang, ‘‘An inno-

vative conceptmap approach for improving students’ learning performance

with an instant feedbackmechanism,’’Brit. J. Educ. Technol., vol. 43, no. 2,

pp. 217–232, Mar. 2012.

[74] C. C. Liu, P. H. Don, and C. M. Tsai, ‘‘Assessment based on linkage

patterns in concept maps,’’ J. Inf. Sci. Eng., vol. 21, no. 5, pp. 873–890,

Sep. 2005.

[75] J. C. Nesbit and O. O. Adesope, ‘‘Learning with concept and knowledge

maps: A meta-analysis,’’ Rev. Educ. Res., vol. 76, no. 3, pp. 413–448,

Sep. 2006.

[76] R. M. Marra and D. H. Jonassen, ‘‘Transfer effects of semantic networks

on expert systems: Mindtools at work,’’ J. Educ. Comput. Res., vol. 26,

no. 1, pp. 1–23, Jan. 2002.

[77] J. R. Anderson, Rules of theMind. Hillsdale, NJ, USA: Lawrence Erlbaum

Associates, 1993.

[78] J. H. Larkin and H. A. Simon, ‘‘Why a diagram is (sometimes) worth ten

thousand words,’’ Cognit. Sci., vol. 11, no. 1, pp. 65–100, Jan. 1987.

[79] P. Chandler and J. Sweller, ‘‘Cognitive load while learning to use a

computer program,’’ Appl. Cognit. Psychol., vol. 10, no. 2, pp. 151–170,

Apr. 1996.

[80] A. Paivio and K. Csapo, ‘‘Concrete image and verbal memory codes,’’

J. Exp. Psychol., vol. 80, no. 2, pp. 279–285, 1969.

[81] D. C. Merrill, B. J. Reiser, S. K. Merrill, and S. Landes, ‘‘Tutor-

ing: Guided learning by doing,’’ Cognition Instruct., vol. 13, no. 3,

pp. 315–372, Sep. 1995.

[82] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:

Springer-Verlag, 2012.

SHIN-SHING SHIN was a Software ProjectMan-

ager with the Institute for Information Industry,

Taiwan. He is an Associate Professor with the

Department of Information Science and Man-

agement Systems, National Taitung University,

Taiwan. He has participated and managed a lot of

software projects for a variety of industries. He has

published many articles in professional journals,

such as Information and Management, the IEEE

TRANSACTIONS ON EDUCATION, ACM Transactions on

Computing Education, Software and Systems Modeling, and so on. His cur-

rent research interests include software engineering, information systems

evaluation, and computer science education.

100110 VOLUME 8, 2020


	INTRODUCTION
	SQL LEARNING PEDAGOGIES
	ANIMATION
	GRAPHICAL QUERY BUILDER
	FEEDBACK

	THEORY AND HYPOTHESIS
	COGNITIVE LOAD THEORY
	COGNITIVE MODEL OF SQL QUERY-WRITING
	REPRESENTING THE COGNITIVE MODEL IN CONCEPT MAPS

	RESEARCH METHODOLOGY
	CONCEPT MAP–BASED VERSUS CONVENTIONAL INSTRUCTION
	CONVENTIONAL INSTRUCTION
	CONCEPT MAP–BASED INSTRUCTION

	MEASUREMENT
	TASK MATERIAL

	DATA ANALYSIS AND RESULTS
	DISCUSSION AND IMPLICATIONS
	GERMANE LOAD
	EXTRANEOUS LOAD

	THREATS TO VALIDITY
	CONCLUSION VALIDITY
	INTERNAL VALIDITY
	CONSTRUCT VALIDITY
	EXTERNAL VALIDITY

	CONCLUSION
	REFERENCES
	Biographies
	SHIN-SHING SHIN


