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Abstract

We explore unsupervised approaches to rela-
tion extraction between two named entities;
for instance, the semantic bornIn relation be-
tween a person and location entity. Con-
cretely, we propose a series of generative
probabilistic models, broadly similar to topic
models, each which generates a corpus of ob-
served triples of entity mention pairs and the
surface syntactic dependency path between
them. The output of each model is a cluster-
ing of observed relation tuples and their as-
sociated textual expressions to underlying se-
mantic relation types. Our proposed models
exploit entity type constraints within a relation
as well as features on the dependency path be-
tween entity mentions. We examine effective-
ness of our approach via multiple evaluations
and demonstrate 12% error reduction in preci-
sion over a state-of-the-art weakly supervised
baseline.

1 Introduction

Many NLP applications would benefit from large
knowledge bases of relational information about
entities. For instance, knowing that the entity
Steve Balmer bears the leaderOf relation to the
entity Microsoft, would facilitate question answer-
ing (Ravichandran and Hovy, 2002), data mining,
and a host of other end-user applications. Due to
these many potential applications, relation extrac-
tion has gained much attention in information ex-
traction (Kambhatla, 2004; Culotta and Sorensen,
2004; Mintz et al., 2009; Riedel et al., 2010; Yao et

al., 2010). We propose a series of generative prob-
abilistic models, broadly similar to standard topic
models, which generate a corpus of observed triples
of entity mention pairs and the surface syntactic de-
pendency path between them. Our proposed mod-
els exploit entity type constraints within a relation
as well as features on the dependency path between
entity mentions. The output of our approach is a
clustering over observed relation paths (e.g. “X was
born in Y” and “X is from Y”) such that expressions
in the same cluster bear the same semantic relation
type between entities.

Past work has shown that standard supervised
techniques can yield high-performance relation de-
tection when abundant labeled data exists for a
fixed inventory of individual relation types (e.g.
leaderOf ) (Kambhatla, 2004; Culotta and Sorensen,
2004; Roth and tau Yih, 2002). However, less ex-
plored are open-domain approaches where the set
of possible relation types are not fixed and little to
no labeled is given for each relation type (Banko et
al., 2007; Banko and Etzioni, 2008). A more re-
lated line of research has explored inducing rela-
tion types via clustering. For example, DIRT (Lin
and Pantel, 2001) aims to discover different repre-
sentations of the same semantic relation using dis-
tributional similarity of dependency paths. Poon
and Domingos (2008) present an Unsupervised se-
mantic parsing (USP) approach to partition depen-
dency trees into meaningful fragments (or “parts”
to use their terminology). The combinatorial nature
of this dependency partition model makes it difficult
for USP to scale to large data sets despite several
necessary approximations during learning and infer-



ence. Our work is similar to DIRT and USP in that
we induce relation types from observed dependency
paths, but our approach is a straightforward and
principled generative model which can be efficiently
learned. As we show empirically, our approach out-
performs these related works when trained with the
same amount of data and further gains are observed
when trained with more data.

We evaluate our approach using ‘intrinsic’ clus-
tering evaluation and ‘extrinsic’ evaluation settings.1

The former evaluation is performed using subset of
induced clusters against Freebase relations, a large
manually-built entity and relational database. We
also show some clusters which are not included as
Freebase relations, as well as some entity clusters
found by our approach. The latter evaluation uses
the clustering induced by our models as features for
relation extraction in distant supervision framework.
Empirical results show that we can find coherent
clusters. In relation extraction, we can achieve 12%
error reduction in precision over a state-of-the-art
weakly supervised baseline and we show that using
features from our proposed models can find more
facts for a relation without significant accuracy loss.

2 Problem and Experimental Setup

The task of relation extraction is mapping surface
textual relations to underlying semantic relations.
For instance, the textual expression “X was born in
Y” indicates a semantic relation bornIn between en-
tities “X” and “Y”. This relation can be expressed
textually in several ways: for instance, “X, a native
of Y” or “X grew up in Y”. There are several com-
ponents to a coherent relation type, including a tight
small number of textual expressions as well as con-
straints on the entities involved in the relation. For
instance, in the bornIn relation “X” must be a person
entity and “Y” a location (typically a city or nation).
In this work, we present an unsupervised probabilis-
tic generative model for inducing clusters of relation
types and recognizing their textual expressions. The
set of relation types is not pre-specified but induced
from observed unlabeled data. See Table 4 for ex-
amples of learned semantic relations.

Our observed data consists of a corpus of docu-
ments and each document is represented by a bag

1See Section 4 for a fuller discussion of evaluation.

of relation tuples. Each tuple represents an ob-
served syntactic relationship between two Named
Entities (NE) and consists of three components: the
dependency path between two NE mentions, the
source argument NE, and the destination argument
NE. A dependency path is a concatenation of depen-
dency relations (edges) and words (nodes) along a
path in a dependency tree. For instance, the sentence
“John Lennnon was born in Liverpool” would yield
the relation tuple (Lennon, [↑ −nsubjpass, born, ↓
−in], Liverpool). This relation tuple reflects a se-
mantic bornIn relation between the John Lennon and
Liverpool entities. The dependency path in this ex-
ample corresponds to the “X was born in Y” textual
expression given earlier. Note that for the above ex-
ample, the bornIn relation can only occur between a
person and a location. The relation tuple is the pri-
mary observed random variable in our model and we
construct our models (see Section 3) so that clusters
consist of textual expressions representing the same
underlying relation type.

3 Models

We propose three generative models for modeling
tuples of entity mention pairs and the syntactic de-
pendency path between them (see Section 2). The
first two models, Rel-LDA and Rel-LDA1 are sim-
ple extensions of the standard LDA model (Blei et
al., 2003). At the document level, our model is iden-
tical to standard LDA; a multinomial distribution
is drawn over a fixed number of relation types R.
Changes lie in the observations. In standard LDA,
the atomic observation is a word drawn from a la-
tent topic distribution determined by a latent topic
indicator variable for that word position. In our ap-
proach, a document consists of an exchangeable set
of relation tuples. Each relation tuple is drawn from
a relation type ‘topic’ distribution selected by a la-
tent relation type indicator variable. Relation tuples
are generated using a collection of independent fea-
tures drawn from the underlying relation type distri-
bution. These changes to standard LDA are intended
to have the effect that instead of representing seman-
tically related words, the ‘topic’ latent variable rep-
resents a relation type.

Our third model exploits entity type constraints
within a relation and induces clusters of relations



and entities jointly. For each tuple, a set of rela-
tion level features and two latent entity type indica-
tors are drawn independently from the relation type
distribution; a collection of entity mention features
for each argument is drawn independently from the
entity type distribution selected by the entity type
indicator.

Path X, made by Y
Source Gamma Knife
Dest Elekta

Trigger make
Lex , made by the Swedish

medical technology firm
POS , VBN IN DT JJ JJ NN NN

NER pair MISC-ORG
Sync pair partmod-pobj

Table 1: The features of tuple ‘(Gamma Knife, made
by, Elekta)’ in sentence “Gamma Knife, made by the
Swedish medical technology firm Elekta, focuses low-
dosage gamma radiation ...”

3.1 Rel-LDA Model

This model is an extension to the standard LDA
model. At the document level, a multinomial dis-
tribution over relations θdoc is drawn from a prior
Dir(α). To generate a relation tuple, we first draw a
relation ‘topic’ r from Multi(θ). Then we generate
each feature f of a tuple independently from a multi-
nomial distribution Multi(φrf ) selected by r. In this
model, each tuple has three features, i.e. its three
components, shown in the first three rows in Table 1.
Figure 1 shows the graphical representation of Rel-
LDA. Table 2 lists all the notation used in describing
our models.

The learning process of the models is an EM pro-
cess. The procedure is similar to that used by the
standard topic model. In the variational E-step (in-
ference), we sample the relation type indicator for
each tuple using p(r|f):

P (r|f(p, s, d)) ∝ p(r)
∏
f p(f |r)

∝ (αr + nr|d)
∏
f

βf+nf |rP
f ′ (βf ′+nf ′|r)

|R| Number of relations
|D| Number of documents
r A relation
doc A document
p, s, d Dep path, source and dest args
f A feature/feature type
T Entity type of one argument
α Dirichlet prior for θdoc

βx Dirichlet prior for φrx

β Dirichlet prior for φt

θdoc p(r|doc)
φrx p(x|r)
φt p(fs|T ), p(fd|T )

Table 2: The notation used in our models
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Figure 1: Rel-LDA model. Shaded circles are observa-
tions, and unshaded ones are hidden variables. A docu-
ment consists of N tuples. Each tuple has a set of fea-
tures. Each feature of a tuple is generated independently
from a hidden relation variable r.

p(r) and p(f |r) are estimated in the M-step:

θdoc =
α+ nr|doc∑
r′(α+ nr′|doc)

φrf =
βf + nf |r∑
f ′(βf ′ + nf ′|r)

where nf |r indicates the number of times a feature f
is assigned with r.

3.2 Rel-LDA1
Looking at results of Rel-LDA, we find the clus-
ters sometimes are in need of refinement, and we
can address this by adding more features. For in-
stance, adding trigger features can encourage spar-
sity over dependency paths. We define trigger words
as all the words on the dependency path except stop
words. For example, from path “X, based in Y”,
“base” is extracted as a trigger word. The intuition



for using trigger words is that paths sharing the same
set of trigger words should go to one cluster. Adding
named entity tag pair can refine the cluster too. For
example, a cluster found by Rel-LDA contains “X
was born in Y” and “X lives in Y”; but it also con-
tains “X, a company in Y”. In this scenario, adding
features ‘PER-LOC’ and ‘ORG-LOC’ can push the
model to split the clusters into two and put the third
case into a new cluster.

Hence we propose Rel-LDA1. It is similar to
Rel-LDA, except that each tuple is represented with
more features. Besides p, s, and d, we introduce
trigger words, lexical pattern, POS tag pattern, the
named entity pair and the syntactic category pair fea-
tures for each tuple. Lexical pattern is the word se-
quence between the two arguments of a tuple and
POS tag pattern is the POS tag sequence of the lexi-
cal pattern. See Table 1 as an example.

Following typical EM learning(Charniak and El-
sner, 2009), we start with a much simpler genera-
tive model, expose the model to fewer features first,
and iteratively add more features. First, we train a
Rel-LDA model, i.e. the model only generates the
dependency path, source and destination arguments.
After each interval of 10 iterations, we introduce one
additional feature. We add the features in the order
of trigger, lexical pattern, POS, NER pair, and syn-
tactic pair.

3.3 Type-LDA model
We know that relations can only hold between
certain entity types, known as selectional prefer-
ences (Ritter et al., 2010; Seaghdha, 2010; Kozareva
and Hovy, 2010). Hence we propose Type-LDA
model. This model can capture the selectional pref-
erences of relations to their arguments. In the mean
time, it clusters tuples into relational clusters, and
arguments into different entity clusters. The entity
clusters could be interesting in many ways, for ex-
ample, defining fine-grained entity types and finding
new concepts.

We split the features of a tuple into relation level
features and entity level features. Relation level fea-
tures include the dependency path, trigger, lex and
POS features; entity level features include the entity
mention itself and its named entity tag.

The generative storyline is as follows. At the doc-
ument level, a multinomial distribution over rela-
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Figure 2: Type-LDA model. Each document consists of
N tuples. Each tuple has a set of features, relation level
features f and entity level features of source argument fs

and destination argument fd. Relation level features and
two hidden entity types T1 and T2 are generated from
hidden relation variable r independently. Source entity
features are generated from T1 and destination features
are generated from T2.

tions θdoc is drawn from a Dirichlet prior. A doc-
ument consists of N relation tuples. Each tuple is
represented by relation level features (f ) and entity
level features of source argument (fs) and destina-
tion argument (fd). For each tuple, a relation r is
drawn from Multi(θdoc). The relation level features
and two hidden entity types T1 and T2 are indepen-
dently generated from r. Features fs are generated
from T1 and fd from T2. Figure 2 shows the graphi-
cal representation of this model.

At inference time, we sample r, T1 and T2 for
each tuple. For efficient inference, we first initialize
the model without T1 and T2, i.e. all the features are
generated directly from r. Here the model degener-
ates to Rel-LDA1. After some iterations, we intro-
duce T1 and T2. We sample the relation variable (r)
and two mention types variables (T1,T2) iteratively
for each tuple. We can sample them together, but
this is not very efficient. In addition, we found that
it does not improve performance.

4 Experiments

Our experiments are carried out on New York Times
articles from year 2000 to 2007 (Sandhaus, 2008).
We filter out some noisy documents, for example,



obituary content, lists and so on. Obituary arti-
cles often contain syntax that diverges from stan-
dard newswire text. This leads to parse errors with
WSJ-trained parsers and in turn, makes extraction
harder. We also filter out documents that contain
lists or tables of items (such as books, movies) be-
cause this semi-structured information is not the fo-
cus of our current work. After filtering we are left
with approximately 428K documents. They are pre-
processed in several steps. First we employ Stanford
tools to tokenize, sentence-split and Part-Of-Speech
tag (Toutanova et al., 2003) a document. Next we
recognize named entities (Finkel et al., 2005) by
labelling tokens with PERSON, ORGANIZATION,
LOCATION, MISC and NONE tags. Consecutive
tokens which share the same category are assembled
into entity mentions. They serve as source and des-
tination arguments of the tuples we seek to model.
Finally we parse each sentence of a document using
MaltParser (Nivre et al., 2004) and extract depen-
dency paths for each pair of named entity mentions
in one sentence.

Following DIRT (Lin and Pantel, 2001), we fil-
ter out tuples that do not satisfy the following con-
straints. First, the path needs to be shorter than
10 edges, since longer paths occur less frequently.
Second, the dependency relations in the path should
connect two content words, i.e. nouns, verbs, ad-
jectives and adverbs. For example, in phrase ‘solve
a problem’, ‘obj(solve, problem)’ is kept, while
‘det(problem, a)’ is discarded. Finally, the de-
pendency labels on the path must not be: ‘conj’,
‘ccomp’, ‘parataxis’, ‘xcomp’, ‘pcomp’, ‘advcl’,
‘punct’, and ‘infmod’. This selection is based on the
observation that most of the times the corresponding
dependency relations do not explicitly state a rela-
tion between two candidate arguments.

After all entity mentions are generated and paths
are extracted, we have nearly 2.5M tuples. After
clustering (inference), each of these tuple will be-
long to one cluster/relation and is associated with its
clusterID.

We experimented with the number of clusters and
find that in a range of 50-200 the performance does
not vary significantly with different numbers. In our
experiments, we cluster the tuples into 100 relation
clusters for all three models. For Type-LDA model,
we use 50 entity clusters.

We evaluate our models in two ways. The first
aims at measuring the clustering quality by mapping
clusters to Freebase relations. The second seeks to
assess the utility of our predicted clusters as features
for relation extraction.

4.1 Relations discovered by different models

Looking closely at the clusters we predict, we find
that some of them can be mapped to Freebase rela-
tions. We discover clusters that roughly correspond
to the parentCom (parent company relation), filmDi-
rector, authorOf, comBase (base of a company rela-
tion) and dieIn relations in Freebase. We treat Free-
base annotations as ground truth and measure recall.
We count each tuple in a cluster as true positive if
Freebase states the corresponding relation between
its argument pair. We find that precision numbers
against Freebase are low, below 10%. However,
these numbers are not reliable mainly because many
correct instances found by our models are missing
in Freebase. One reason why our predictions are
missing in Freebase is coreference. For example,
we predict parentCom relation between ‘Linksys’
and ‘Cisco’, while Freebase only considers ‘Cisco
Systems, Inc.’ as the parent company of ‘Linksys’.
It does not corefer ‘Cisco’ to ‘Cisco Systems, Inc.’.
Incorporating coreference in our model may fix this
problem and is a focus of future work. Instead of
measuring precision against Freebase, we ask hu-
mans to label 50 instances for each cluster and report
precision according to this annotated data. Table 3
shows the scores.

We can see that in most cases Rel-LDA1 and
Type-LDA substantially outperform the Rel-LDA
model. This is due to the fact that both models can
exploit more features to make clustering decisions.
For example, in Rel-LDA1 model, the NER pair fea-
ture restricts the entity types the two arguments can
take.

In the following, we take parentCom relation as
an example to analyze the behaviors of different
models. Rel-LDA includes spurious instances such
as ‘A is the chief executive of B’, while Rel-LDA1
has fewer such instances due to the NER pair fea-
ture. Similarly, by explicitly modeling entity type
constraints, Type-LDA makes fewer such errors. All
our models make mistakes when sentences have co-
ordination structures on which the parser has failed.



Rel. Sys. Rec. Prec.

parentCom
Rel-LDA 51.4 76.0
Rel-LDA1 49.5 78.0
Type-LDA 55.3 72.0

filmDirector
Rel-LDA 42.5 32.0
Rel-LDA1 70.5 40.0
Type-LDA 74.2 26.0

comBase
Rel-LDA 31.5 12.0
Rel-LDA1 54.2 22.0
Type-LDA 57.1 30.0

authorOf
Rel-LDA 25.2 84.0
Rel-LDA1 46.9 86.0
Type-LDA 20.2 68.0

dieIn
Rel-LDA 26.5 34.0
Rel-LDA1 55.9 40.0
Type-LDA 50.2 28.0

Table 3: Clustering quality evaluation (%), Rec. is mea-
sured against Freebase, Prec. is measured according to
human annotators

For example, when a sentence has the following pat-
tern “The winners are A, a part of B; C, a part of
D; E, a part of F”, our models may predict parent-
Com(A,F), because the parser connects A with F via
the pattern ‘a part of’.

Some clusters found by our models cannot be
mapped to Freebase relations. Consider the Free-
base relation worksFor as one example. This re-
lation subsumes all types of employment relation-
ships, irrespective of the role the employee plays for
the employer. By contrast, our models discover clus-
ters such as leaderOf, editorOf that correspond to
more specific roles an employee can have. We show
some example relations in Table 4. In the table, the
2nd row shows a cluster of employees of news media
companies; the 3rd row shows leaders of companies;
the last one shows birth and death places of persons.
We can see that the last cluster is noisy since we
do not handle antonyms in our models. The argu-
ments of the clusters have noise too. For example,
‘New York’ occurs as a destination argument in the
2nd cluster. This is because ‘New York’ has high
frequency in the corpus and it brings noise to the
clustering results. In Table 5 some entity clusters
found by Type-LDA are shown. We find different
types of companies, such as financial companies and

news companies. We also find subclasses of person,
for example, reviewer and politician, because these
different entity classes participate in different rela-
tions. The last cluster shown in the table is a mix-
ture of news companies and government agencies.
This may be because this entity cluster is affected
by many relations.

4.2 Distant Supervision based Relation
Extraction

Our generative models detect clusters of dependency
paths and their arguments. Such clusters are inter-
esting in their own right, but we claim that they can
also be used to help a supervised relation extractor.
We validate this hypothesis in the context of relation
extraction with distant supervision using predicted
clusters as features.

Following previous work (Mintz et al., 2009), we
use Freebase as our distant supervision source, and
align related entity pairs to the New York Times arti-
cles discussed earlier. Our training and test instances
are pairs of entities for which both arguments appear
in at least one sentence together. Features of each
instance are extracted from all sentences in which
both entities appear together. The gold label for each
instance comes from Freebase. If a pair of entities
is not related according to Freebase, we consider it
a negative example. Note that this tends to create
some amount of noise: some pairs may be related,
but their relationships are not yet covered in Free-
base.

After filtering out relations with fewer than 10 in-
stances we have 65 relations and an additional “O”
label for unrelated pairs of entities. We call related
instances positive examples and unrelated instances
negative examples.

We train supervised classifiers using maximum
entropy. The baseline classifier employs features
that Mintz et al. (2009) used. To extract features
from the generative models we proceed as follows.
For each pair of entities, we collect all tuples asso-
ciated with it. For each of these tuples we extract its
clusterID, and use this ID as a binary feature.

The baseline system without generative model
features is called Distant. The classifiers with ad-
ditional features from generative models are named
after the generative models. Thus we have Rel-LDA,
Rel-LDA1 and Type-LDA classifiers. We compare



Source New York, Euro RSCG Worldwide, BBDO Worldwide, American, DDB Worldwide
Path X, a part of Y; X, a unit of Y; X unit of Y; X, a division of Y; X is a part of Y
Dest Omnicom Group, Interpublic Group of Companies, WPP Group, Publicis Groupe

Source Supreme Court, Anna Wintour, William Kristol, Bill Keller, Charles McGrath
Path X, an editor of Y; X, a publisher of Y; X, an editor at Y; X, an editor in chief of Y; X is an editor of Y;
Dest The Times, The New York Times, Vogue, Vanity Fair, New York

Source Kenneth L. Lay, L. Dennis Kozlowski, Bernard J. Ebbers, Thomas R. Suozzi, Bill Gates
Path X, the executive of Y; X, Y’s executive; X, Y executive; X, the chairman of Y; X, Y’s chairman
Dest Enron, Microsoft, WorldCom, Citigroup, Nassau County

Source Paul J. Browne, John McArdle, Tom Cocola, Claire Buchan, Steve Schmidt
Path X, a spokesman for Y; X, a spokeswoman for Y; X, Y spokesman; X, Y spokeswoman; X, a commissioner of Y
Dest White House, Justice Department, Pentagon, United States, State Department

Source United Nations, Microsoft, Intel, Internet, M. D. Anderson
Path X, based in Y; X, which is based in Y; X, a company in Y; X, a company based in Y; X, a consultant in Y
Dest New York, Washington, Manhattan, Chicago, London

Source Army, Shiite, Navy, John, David
Path X was born in Y; X die at home in Y; X die in Y; X, son of Y; X die at Y
Dest Manhattan, World War II, Brooklyn, Los Angeles, New York

Table 4: The path, source and destination arguments of some relations found by Rel-LDA1.

Company Microsoft, Enron, NBC, CBS, Disney
FinanceCom Merrill Lynch, Morgan Stanley, Goldman Sachs, Lehman Brothers, Credit Suisse First Boston

News Notebook, New Yorker, Vogue, Vanity Fair, Newsweek
SportsTeam Yankees, Mets, Giants, Knicks, Jets
University University of California, Harvard, Columbia University, New York University, University of Penn.

Art Reviewer Stephen Holden, Ken Johnson, Roberta Smith, Anthony Tommasini, Grace Glueck
Games World Series, Olympic, World Cup, Super Bowl, Olympics

Politician Eliot Spitzer, Ari Fleischer, Kofi Annan, Scott McClellan, Karl Rove
Gov. Agency Congress, European Union, NATO, Federal Reserve, United States Court of Appeals
News/Agency The New York Times, The Times, Supreme Court, Security Council, Book Review

Table 5: The entity clusters found by Type-LDA

these against Distant and the DIRT database. For
the latter we parse our data using Minipar (Lin,
1998) and extract dependency paths between pairs
of named entity mentions. For each path, the top 3
similar paths are extracted from DIRT database. The
Minipar path and the similar paths are used as addi-
tional features.

For held-out evaluation, we construct the training
data from half of the positive examples and half of
the negative examples. The remaining examples are
used as test data. Note that the number of negative
instances is more than 10 times larger than the num-
ber of positive instances. At test time, we rank the
predictions by the conditional probabilities obtained
from the Maximum Entropy classifier. We report
precision of top ranked 50 instances for each relation

in table 6. From the table we can see that all systems
using additional features outperform the Distant sys-
tem. In average, our best model achieves 4.1%
improvement over the distant supervision baseline,
12% error reduction. The precision of bornIn is low
because in most cases we predict bornIn instances
as liveIn.

We expect systems using generative model fea-
tures to have higher recall than the baseline. This
is difficult to measure, but precision in the high re-
call area is a signal. We look at top ranked 1000
instances of each system and show the precision in
the last row of the table. We can see that our best
model Type-LDA outperforms the distant supervi-
sion baseline by 4.5%.

Why do generative model features help to im-



Relation Dist Rel Rel1 Type DIRT
worksFor 80.0 92.0 86.0 90.0 84.0
authorOf 98.0 98.0 98.0 98.0 98.0

containedBy 92.0 96.0 96.0 92.0 96.0
bornIn 16.0 18.0 22.0 24.0 10.0
dieIn 28.0 30.0 28.0 24.0 24.0
liveIn 50.0 52.0 54.0 54.0 56.0

nationality 92.0 94.0 90.0 90.0 94.0
parentCom 94.0 96.0 96.0 96.0 90.0

founder 65.2 76.3 61.2 64.0 68.3
parent 52.0 54.0 50.0 52.0 52.0

filmDirector 54.0 60.0 60.0 64.0 62.0
Avg 65.6 69.7 67.4 68.0 66.8

Prec@1K 82.8 85.8 85.3 87.3 82.8

Table 6: Precision (%) of some frequent relations

prove relation extraction? One reason is that gen-
erative models can transfer information from known
patterns to unseen patterns. For example, given
“Sidney Mintz, the great food anthropologist at
Johns Hopkins University”, we want to predict the
relation between ‘Sidney Mintz’ and ‘Johns Hopkins
University’. The distant supervision system incor-
rectly predicts the pair as ‘O’ since it has not seen
the path ‘X, the anthropologist at Y’ in the training
data. By contrast, Rel-LDA can predict this pair cor-
rectly as worksFor because the dependency path of
this pair is in a cluster which contains the path ‘X, a
professor at Y’.

In addition to held-out evaluation we also carry
out manual evaluation. To this end, we use all the
positive examples and randomly select five times
the number of positive examples as negative ex-
amples to train a classifier. The remaining nega-
tive examples are candidate instances. We rank the
predicted instances according to their classification
scores. For each relation, we ask human annotators
to judge its top ranked 50 instances.

Table 7 lists the manual evaluation results for
some frequent relations. We also list how many in-
stances are found for each relation. For almost all
the relations, systems using generative model fea-
tures find more instances. In terms of precision, our
models perform comparatively to the baseline, even
better for some relations.

We also notice that clustering quality is not con-
sistent with distant supervision performance. Rel-

LDA1 can find better clusters than Rel-LDA but it
has lower precision in held-out evaluation. Type-
LDA underperforms Rel-LDA in average precision
but it gets higher precision in a higher recall area, i.e.
precision at 1K. One possible reason for the incon-
sistency is that the baseline distant supervision sys-
tem already employs features that are used in Rel-
LDA1. Another reason may be that the clusters do
not overlap with Freebase relations very well, see
section 4.1.

4.3 Comparing against USP

We also try to compare against USP (Poon and
Domingos, 2008). Due to memory requirements of
USP, we are only able to run it on a smaller data
set consisting of 1,000 NYT documents; this is three
times the amount of data Poon and Domingos (2008)
used to train USP.2 For distant supervision based re-
lation extraction, we only match about 500 Freebase
instances to this small data set.

USP provides a parse tree for each sentence and
for each mention pair we can extract a path from
the tree. Since USP provides clusters of words and
phrases, we use the USP clusterID associated with
the words on the path as binary features in the clas-
sifier.

All models are less accurate when trained on this
smaller dataset; we can do as well as USP does,
even a little better. USP achieves 8.6% in F1, Rel-
LDA 8.7%, Rel-LDA1 10.3%, Type-LDA 8.9% and
Distant 10.3%. Of course, given larger datasets,
the performance of Rel-LDA, Rel-LDA1, and Type-
LDA improves considerably. In summary, compar-
ing against USP, our approach scales much more
easily to large data.

5 Related Work

Many approaches have been explored in relation ex-
traction, including bootstrapping, supervised classi-
fication, distant supervision, and unsupervised ap-
proaches.

Bootstrapping employs a few labeled examples
for each relation, iteratively extracts patterns from
the labeled seeds, and uses the patterns to extract

2Using the publicly released USP code, training a model
with 1,000 documents resulted in about 45 gigabytes of heap
space in the JVM.



Relation
Top 50 (%) #Instances

Distant RelLDA TypeLDA Distant RelLDA TypeLDA
worksFor 100.0 100.0 100.0 314 349 349
authorOf 94.0 94.0 96.0 185 208 229

containedBy 98.0 98.0 98.0 670 714 804
bornIn 82.6 88.2 88.0 46 36 56
dieIn 100.0 100.0 100.0 167 176 231
liveIn 98.0 98.0 94.0 77 86 109

nationality 78.0 82.0 76.0 84 92 114
parentCom 79.2 77.4 85.7 24 31 28

founder 80.0 80.0 50.0 5 5 14
parent 97.0 92.3 94.7 33 39 38

filmDirector 92.6 96.9 97.1 27 32 34

Table 7: Manual evaluation, Precision and recall of some frequent relations

more seeds (Brin, 1998). This approach may suffer
from low recall since the patterns can be too specific.

Supervised learning can discover more general
patterns (Kambhatla, 2004; Culotta and Sorensen,
2004). However, this approach requires labeled data,
and most work only carry out experiments on small
data set.

Distant supervision for relation extraction re-
quires no labeled data. The approach takes some
existing knowledge base as supervision source,
matches its relational instances against the text cor-
pus to build the training data, and extracts new in-
stances using the trained classifiers (Mintz et al.,
2009; Bunescu and Mooney, 2007; Riedel et al.,
2010; Yao et al., 2010).

All these approaches can not discover new rela-
tions and classify instances which do not belong to
any of the predefined relations. Other past work has
explored inducing relations using unsupervised ap-
proaches.

For example, DIRT (Lin and Pantel, 2001) aims
to discover different representations of the same se-
mantic relation, i.e. similar dependency paths. They
employ the distributional similarity based approach
while we use generative models. Both DIRT and our
approach take advantage of the arguments of depen-
dency paths to find semantic relations. Moreover,
our approach can cluster the arguments into differ-
ent types.

Unsupervised semantic parsing (USP) (Poon and
Domingos, 2008) discovers relations by merging

predicates which have similar meanings; it proceeds
to recursively cluster dependency tree fragments (or
“parts”) to best explain the observed sentence. It is
not focused on capturing any particular kind of re-
lation between sentence constituents, but to capture
repeated patterns. Our approach differs in that we
are focused on capturing a narrow range of binary
relations between named entities; some of our mod-
els (see Section 3) utilize entity type information to
constraint relation type induction. Also, our models
are built to be scalable and trained on a very large
corpus. In addition, we use a distant supervision
framework for evaluation.

Relation duality (Bollegala et al., 2010) employs
co-clustering to find clusters of entity pairs and pat-
terns. They identify each cluster of entity pairs as a
relation by selecting representative patterns for that
relation. This approach is related to our models,
however, it does not identify any entity clusters.

Generative probabilistic models are widely em-
ployed in relation extraction. For example, they are
used for in-domain relation discovery while incorpo-
rating constraints via posterior regularization (Chen
et al., 2011). We are focusing on open domain re-
lation discovery. Generative models are also ap-
plied to selectional preference discovery (Ritter et
al., 2010; Seaghdha, 2010). In this scenario, the
authors assume relation labels are given while we
automatically discover relations. Generative models
are also used in unsupervised coreference (Haghighi
and Klein, 2010).



Clustering is also employed in relation extraction.
Hasegawa et al. (2004) cluster pairs of named en-
tities according to the similarity of context words
intervening between them. Their approach is not
probabilistic. Researchers also use topic models to
perform dimension reduction on features when they
cluster relations (Hachey, 2009). However, they do
not explicitly model entity types.

Open information extraction aims to discover re-
lations independent of specific domains and rela-
tions (Banko et al., 2007; Banko and Etzioni, 2008).
A self-learner is employed to extract relation in-
stances but the systems do not cluster the instances
into relations. Yates and Etzioni (2009) present RE-
SOLVER for discovering relational synonyms as a
post processing step. Our approach integrates entity
and relation discovery in a probabilistic model.

6 Conclusion

We have presented an unsupervised probabilistic
generative approach to relation extraction between
two named entities. Our proposed models exploit
entity type constraints within a relation as well
as features on the dependency path between entity
mentions to cluster equivalent textual expressions.
We demonstrate the effectiveness of this approach
by comparing induced relation clusters against a
large knowledge base. We also show that using clus-
ters of our models as features in distant supervised
framework yields 12% error reduction in precision
over a weakly supervised baseline and outperforms
other state-of-the art relation extraction techniques.
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