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Previous research has suggested that distributional learning mechanisms may

contribute to the acquisition of semantic knowledge. However, distributional learning

mechanisms, statistical learning, and contemporary “deep learning” approaches have

been criticized for being incapable of learning the kind of abstract and structured

knowledge that many think is required for acquisition of semantic knowledge. In this

paper, we show that recurrent neural networks, trained on noisy naturalistic speech to

children, do in fact learn what appears to be abstract and structured knowledge. We

trained two types of recurrent neural networks (Simple Recurrent Network, and Long

Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech

directed to children ages 0–3 years old, and assessed what semantic knowledge they

acquired. We found that learned internal representations are encoding various abstract

grammatical and semantic features that are useful for predicting word sequences.

Assessing the organization of semantic knowledge in terms of the similarity structure,

we found evidence of emergent categorical and hierarchical structure in both models.

We found that the Long Short-term Memory (LSTM) and SRN are both learning very

similar kinds of representations, but the LSTM achieved higher levels of performance on

a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram,

on the same input to compare our results to the state-of-the-art in machine learning.

We found that Skip-gram achieves relatively similar performance to the LSTM, but is

representing words more in terms of thematic compared to taxonomic relations, and

we provide reasons why this might be the case. Our findings show that a learning

system that derives abstract, distributed representations for the purpose of predicting

sequential dependencies in naturalistic language may provide insight into emergence of

many properties of the developing semantic system.
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INTRODUCTION

The development of semantic memory is an extremely complex
phenomenon, requiring input from all perceptual modalities and
making use of many psychological processes. Recent research
efforts into this topic have focused on the distributional hypothesis
(Harris, 1954; Firth, 1957), the claim that the similarity, class
membership, or relations between linguistic units or concepts can
be inferred from the statistical or structural contexts in which
those units occur.

In the computational realm, this idea was formalized in a
range of different models of adult semantics, such as Latent
Semantic Analysis (LSA, Landauer and Dumais, 1997), the
Hyperspace Analogue to Language (HAL, Lund and Burgess,
1996), Bound Encoding of the Aggregate Language Environment
(BEAGLE, Jones and Mewhort, 2007), and Probabilistic Topic
Models (Topics, Steyvers and Tenenbaum, 2005). These models
use distributional information to construct semantic feature
vectors for words. Feature vectors can be composed of concrete
associations between words/concepts, as in the HAL model, or
they can consist of abstract or latent features that are formed
over the course of learning (as in the other three models).
The semantic similarity of two words can then be calculated
by measuring the similarity of the two words’ feature vectors
(Kahneman and Tversky, 1972; Smith et al., 1974). Considerable
research has since shown that these and related procedures for
representing semantic similarity predict a wide range of adult
psycholinguistic variables, such as semantic priming and explicit
similarity judgments (Burgess and Lund, 1998; Jones et al., 2006;
Bullinaria and Levy, 2007; Olney et al., 2012; Pereira et al., 2016).

Concurrent to work in computational modeling of semantic
memory, researchers in child language acquisition were studying
whether children are sensitive to distributional information, and
whether they can use it to infer word meanings. Gleitman (1990)
suggested that syntactic bootstrapping (i.e., inferring aspects of a
word’s meaning from its syntactic structure) may be an important
mechanism by which children begin to learn the meanings of
words. Using syntactic bootstrapping, children may, for example,
infer whether a verb is transitive or intransitive by tracking
whether the verb occurs with one or two nouns or noun phrases.
Recent studies have shown that infants and children are sensitive
to the distributional structure of words, and do seem to infer
aspects of word meaning from lexical and syntactic distributional
structure (Fisher et al., 2010; Lany and Saffran, 2010; Syrett and
Lidz, 2010; Wojcik and Saffran, 2013).

Thus, both computational and experimental work has
shown that substantial semantic information exists in words’
distributions, and that human learners are sensitive to this
information. However, the distributional hypothesis leaves many
questions unanswered, and each can be traced back to three
theoretical debates in language and concept acquisition.

The first debate concerns the abstractness of knowledge: Does
knowledge consists primarily (or exclusively) of a rich sets of
associations between sensory-motor features, or instead also
consists of abstract, amodal concepts that bind those features
together? This is a very old question, made very salient by
the debate between Chomsky (1957, 1959) and Skinner (2014)

about the nature of language, and between Osgood (1952, 1966)
and Fodor (1965) in the study of semantics. Recent research
demonstrating children’s powerful statistical learning abilities
(Saffran et al., 1996; Sloutsky, 2003; Smith and Yu, 2008) and
the power of statistical machine learning approaches (Hinton
et al., 2012; Mikolov et al., 2013a; Chen and Manning, 2014)
have revived interest in statistical learning-based approaches,
but persuasive theoretical arguments for abstract concepts still
exist. Waxman and Gelman (2009) succinctly describe this
as a debate between two metaphors. The first is “child as
data analyst,” whereby language acquisition occurs because of
children’s amazing statistical learning skills and their ability to
build webs of associations of a wide variety of perceptual inputs
and motor actions. This is contrasted with the “child as theorist”
metaphor, whereby children begin with and/or build up theories
about the world involving rich conceptual knowledge structures,
and these knowledge structures play a critical role in structuring
language acquisition. Waxman and Gelman accept a role for
statistical learning, but reject an exclusively “child as data analyst”
perspective, arguing that abstract concepts play a critical role in
language acquisition and knowledge representation.

The second debate concerns the organization of knowledge.
Is knowledge an unstructured set of associations, or is
knowledge instead stored in structured and hierarchically-
organized representations? In language, this debate is often
characterized as whether an utterance or sentence is best
understood as a set of associations between the constituent
elements, or instead as some kind of structured, tree-like
representation (Chomsky, 1957; Miller, 1962). In semantics, this
debate is often characterized as whether knowledge is organized
in a hierarchically embedded graph structure (Katz and Fodor,
1963; Collins and Quillian, 1969; Anderson and Stageberg, 1975),
or is instead stored in a more disordered set of associations
(Collins and Loftus, 1975; Rosch, 1975). For many researchers,
a host of behavioral phenomena in linguistic and conceptual
behavior (such as long distance dependencies in language, and
patterns of induction and generalization in semantics) suggest
some form of hierarchical representations are necessary.

The distinction between the first and second debates is
often confused but is very important, creating (in principle)
four distinct theoretical positions as a function of one’s view
of the form of knowledge (knowledge of associations of
concrete sensory-motor features vs. abstract concepts) and the
organization of that knowledge (structured and hierarchical
vs. unstructured). These independent theoretical positions are
summarized in Table 1.

It is difficult, if not impossible, to clearly associate the
distributional hypothesis with any single theoretical position,
as distributional models are often criticized by proponents
of all four. In this paper, we emphasize that, while specific
models instantiating the distributional hypothesis typically take
a position on these theoretical debates (and thus open themselves
up to criticism from those who disagree), the distributional
hypothesis, per se, is orthogonal to these debates. For example,
neural networks, as statistical learning algorithms, are often
lumped into what Waxman and Gelman call “child-as-data-
scientist” explanations. But most neural network models that
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TABLE 1 | Theoretical debates regarding the nature of knowledge.

Form of knowledge

Structure of

knowledge

Only representations of

sensory-motor information

Sensory-motor and

abstract concepts

Unstructured Knowledge consists of nothing

but a very rich and complex set

of unstructured sensory-motor

associations.

Example: Sloutsky and Fisher,

2004.

In addition to

sensory-motor

information, knowledge

consists of a set of

abstract concepts.

Example: Collins and

Loftus, 1975.

Structured Knowledge consists of a very

rich and complex set of

sensory/motor associations

that are organized into

hierarchically-structured

representations.

Example: Most neural theories

of sensory-motor behavior

Knowledge consists of

sensory/motor

information and abstract

concepts, organized into

hierarchically-structured

representations.

Example: Tenenbaum

et al., 2011

include “hidden layers” (e.g., layers of units that involve
compression, re-representation), are indeed representing abstract
concepts, even if they are not the same ones Waxman and
Gelman would suggest.

Likewise, neural network models are often criticized for not
representing language or concepts in a hierarchical way that
is necessary for language (Fodor and Pylyshyn, 1988; Pinker
and Prince, 1988; Marcus, 1998; Gershman and Tenenbaum,
2015). But it is useful to distinguish here between what a neural
network can represent, and what a neural network can learn
to represent. Any structured, hierarchical representation can
be encoded in a vector representation, and can be represented
in a network’s weights. Neural networks with hidden layers
are, after all, universal function approximators. Thus, there is
nothing about neural networks that is incompatible with a
theory that says that language must be represented as a system
of discrete, hierarchically-organized symbols. The question is
whether any particular neural network model can learn the
correct structured representation of the language from the
input.

State-of-the-art neural network models excel at mapping a
sequence of words to its corresponding syntactic structure (Chen
and Manning, 2014), but these models need to be supplied with
the set of possible syntactic structures in order to do so, and
have trouble learning those structures from the ground up. Some
success has been achieved by Rogers et al. (2004) and Rogers
and McClelland (2008), who showed that a feedforward neural
network, learning about concepts in terms of the correlational
structure of their shared features or propositional content (such
as canaries “are yellow” and “have wings”) can be used to explain
the apparent hierarchical nature of concepts, and argued that
hierarchical-like behavior is an emergent property of distributed
representations representing the relative similarity of concepts.
However, critics of Rogers and McClelland have argued that their
model used a simplistic, idealized view of what children’s input
is actually like. They claim that the “poverty of the stimulus”
would prevent such a model from explaining real-world semantic

development (Marcus and Keil, 2008; Robbins, 2008; Snedeker,
2008).

Our paper is designed to specifically address whether
three specific neural network architectures that instantiate
the distributional hypothesis are capable of acquiring useful
organization of semantic knowledge from complex, noisy,
naturalistic input and to assess the extent to which the knowledge
these networks have acquired is abstract and hierarchically-
organized. We employed two recurrent artificial neural network
models – the Simple Recurrent Network (SRN) (Elman, 1990)
and the Long Short-term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) – and a third, Skip-gram, which is one
variant of theWord2Vec family of models (Mikolov et al., 2013a).
Thesemodels learn representations of words by predicting a word
given a context and updating model parameters to minimize the
prediction error. A feed-forward neural network can be used to
predict a word given its co-occurrence context, and the resulting
representations the network learns in order to do this contain
surprisingly rich semantic information (Bengio et al., 2003;
Mikolov et al., 2013a; Pennington et al., 2014). The most popular
of prediction-based models, a family of models often referred
to as Word2Vec (Mikolov et al., 2013a), has become a popular
off-the-shelf tool for learning word representations from text
in machine learning applications. The representations learned
by models in the Word2Vec family (such as Skip-gram, the
algorithm we will focus on in this paper) outperform a number of
publicly available word representations in a benchmark test that
includes 8869 semantic and 10675 syntactic questions (Mikolov
et al., 2013a).

The Skip-gram model raises some concerns with regards to
being taken seriously as cognitively plausible models of semantic
development. For example, Word2Vec implementations contain
a number of optimizations to speed training on large corpora,
but some of these optimizations seem unlikely to be the
way the human brain performs prediction-based learning.
One requirement for training Word2Vec’s Skip-gram model is
knowing beforehand the frequency of words in the corpus (such
that relatively frequent words can be downsampled), knowledge
that is inaccessible in online learning circumstances. Another
concern is Skip-gram’s negative sampling procedure (Mikolov
et al., 2013b), where for each prediction, only a subset of possible
words are sampled from the vocabulary, including the correct
next word, and others drawn from a distribution that does
not include the correct word. This procedure requires knowing
the correct prediction before the outcome of the prediction is
computed. While this speeds training and increases performance
in a machine learning context, there is no evidence for such
a complex memory-based process in online human learning.
A number of other optimizations (such as using the current word
to “postdict” previous words in the stream) have no current basis
in theories of human language processing, though this of course
does not mean that such processes are impossible.

There are other prediction-based neural networks that might
serve as more plausible candidates for theories of semantic
knowledge acquisition than Word2Vec. For example, the first
studies using Simple Recurrent Networks (SRNs) showed they
could learn to predict sequences, and that doing so enables
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learning about the structure of the items in those sequences
(Elman, 1990, 1991; Cleeremans and McClelland, 1991). For
example, Elman (1991) showed that the SRN could learn
the regularities of an artificial linguistic corpus composed of
thousands of sentences constructed following an extremely
simplified English grammar composed of nouns, verbs, articles,
and prepositions. Elman showed that the SRN could learn to
predict the “correct” words in terms of following the grammatical
rules and semantic constraints that were used to generate the
corpus, such as noun-verb number agreement, even in cases
where the verb was separated from the noun by multiple
embedded clauses. Furthermore, its ability to track number
agreement diminished as the length of intervening words grew
larger, and this reflects experimental observations in humans.

The SRN’s success at this task was due to its ability to compress
sequential information into a compact distributed representation
in the hidden layer. In a distributed representation, a concept
is represented by a pattern of activations across an ensemble
of units; by design, no single unit can convey that concept on
its own. Elman showed that the similarity structure between
the learned distributed representations can be interpreted as
a measure of grammatical and semantic similarity between
the words they represent. However, like previous researchers
investigating feedforward models, Elman used an artificial and
simplified corpus, and therefore left open the question of whether
the SRN can scale up to noisy naturalistic language input. Recent
large-scale language modeling efforts using written language
corpora suggest that SRNs can reach prediction performance
equal to, and in some cases surpassing, n-gram models (until
recently the most widely used language modeling tool, and now
largely replaced by neural networks, Mikolov et al., 2014), but its
success on noisy naturalistic language input, such as speech to
children has not been investigated.

A third model which we consider in this paper is the
Long Short-term Memory (LSTM) model (Hochreiter and
Schmidhuber, 1997). In this paper, we will use LSTM to refer
to a network with a recurrent hidden and output layer, where
conventional hidden layer units are replaced by LSTM units.
As we shall describe below, the LSTM units differ from the
traditional hidden units found in the SRN by their ability to
regulate the flow of information to and from themselves. This
added machinery greatly increases learning of long sequences.
The LSTM is of interest because it has proved successful on
a variety of sequence modeling tasks such as learning context
free languages (Gers and Schmidhuber, 2001), and recalling
high precision real numbers over long and noisy sequences
(Hochreiter and Schmidhuber, 1997), tasks which are very
difficult, if not impossible, for the SRN to learn. Furthermore,
the LSTM reached substantially greater accuracy on a variety
of number agreement tasks compared to the SRN (Linzen
et al., 2016), and was used recently by Microsoft Research to
reach human parity in conversational speech recognition (Xiong
et al., 2016). By training both the SRN and LSTM on the
same input, we can get an idea of how the ability to track
sequential dependencies might influence the semantic structure
that emerges. If differences are observed, they will be due to the
specific architectural improvements of the LSTM relative to the

SRN, and as such will provide insight into the design of a model
of semantic development.

In this paper, we use three different neural networks to
test the distributional hypothesis, and to ask three specific
questions about the relationship between these models and
the distributional hypothesis. First, can the neural networks
learn semantic structure from predicting the word sequences
of noisy, naturalistic speech to children? Second, if so, do
the semantic structures that the models acquire reflect the
semantic structures that children acquire? Third, do different
neural network architectures (and the different theories of
learning and memory that they represent) perform qualitatively
or quantitatively differently?

MATERIALS AND METHODS

Corpus
As noted above, one major criticism of previous work showing
that neural networks learn abstract and highly structured
knowledge is that these demonstrations have tended to use
small, artificial datasets that do not capture the real noise
and complexity of speech to children. To address this
problem we trained our models on the CHILDES corpus, a
collection of transcripts of interactions with children in various
situations (MacWhinney, 2000). CHILDES contains a mixture
of transcriptions of structured in-lab activities (such as book-
reading, mealtime, and playing with toys), free play in the lab,
and in-home recordings.

We used all transcripts involving typically-developing
children 0–3 years of age from American–English-speaking
households. This resulted in a corpus containing 2873
documents, 22,448 word types, and 5,308,679 word tokens,
collected from 52 different studies of parent–child interactions.
We randomly split the documents into separate training
(5,244,672 word tokens) and testing (64,007 word tokens)
corpora, where the former will be used for training, and the latter
will be used to assess generalization to input not encountered
during training. Considering that a typical working-class
American child receives approximately 6.5 million words per
year (Hart and Risley, 2003), the training corpus represents
approximately 4–10% of the amount of lexical input of a
3-year-old child (there are large individual differences largely
predictable by socio-economic status). The documents of the
corpus were organized by the age of the child spoken to, such that
each model experienced the input in an age-appropriate way,
receiving the input a 6-month-old hears, then a 7-month-old,
then an 8-month-old, etc.

The transcribed corpus was tokenized (split on spaces) with
sentence-boundary punctuation (periods, exclamation marks,
commas, and question marks) left in the corpus (intended to
serve as a very crude way for representing the pauses and prosody
that tend to accompany utterance boundaries). Spelling was
regularized (e.g., differently spelled forms of the same word like
“play-doh” and “playdoh” were converted to the same form).
Next, all nouns and verbs in the corpus were morphologically
parsed, splitting off plural (-s, -es), possessive (-’s, -s’), and
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diminutive forms (-ie and -y) from nouns, and splitting off
plural (-s,–es), past-tense (-ed) and ongoing (-ing) forms from
verbs. These morphological endings were left in the corpus
(effectively treating them as words of their own), due to previous
research showing a beneficial effect on statistical learning models
of natural language (Willits et al., 2009). Proper names were
replaced with tokens signifying the gender of the person in
question (FNAME and MNAME).

CHILDES is not perfect as a representative sample of the full
range of activities that parents participate in with their children or
the variety of language used during those activities, but is instead
a useful approximation. Indeed, the relatively constrained set of
activities that occur in CHILDES ought to hinder learning of
useful semantic structure, and thus make positive results all the
more impressive.

Vocabulary, Probe-Words, and
Categories
To reduce training time and simulate the fact that children are
unlikely to know the lexical form of the lowest frequency items
in the corpus, we limited the model’s vocabulary to the 4096
most frequent word types. The other 18,352 word types (81% of
total word types in the corpus) were replaced with the symbol
UNKNOWN. Given that word distribution obeys a power law,
only 0.79% of all total word tokens (41,532 out of 5,308,679) in the
corpus were affected. In an offline analysis, we included all words
that occur at least twice (12,511 word types in the vocabulary) and
found no improvement in learning outcomes.

In order to address the question of whether the model
was learning abstract and structured knowledge, we chose to
investigate the model’s knowledge of a set of probe words
belonging to a set of pre-identified categories. We selected a
subset of the vocabulary words to serve as probe words for all
subsequent analyses by, (1) choosing the subset of word forms
which could be nouns (even if, in practice they appear more often
in verb form, such as jump), (2) choosing the subset of those
that refer to a concrete object, and (3) choosing the subset of
those that unambiguously belong to a semantic category from
which at least six other words belong, according to a set of human
raters. For example, apple, orange, and banana (along with many
other fruit words) were included because they belonged to a large
category of items that contained at least six items. The result
was a set of 720 words belonging to 29 categories. This set of
29 categories used for and analyzing the models is shown in
Table 2.

Model Implementation
All three models were trained on a machine with 32 GB of RAM,
an 8-core 3.0GHz Intel Xeon processor, and a NVIDIAGTX 1080
GPU. To train the recurrent neural networks, we used the open-
source machine-learning framework TensorFlow (Abadi et al.,
2016), and to train Skip-gram, we used Gensim (Rehurek and
Sojka, 2010), a free Python library which provides APIs for a
wide variety of semantic models. The code, including the training
corpus, and test materials are available at https://github.com/
phueb/rnnlab. Using a mini-batch size of 64, training one LSTM

TABLE 2 | The set of categories, the number of word types in each category, and

the number of occurrences of word types in each category in the training corpus.

Category Word

types

Word

tokens

Category Word

types

Word

tokens

Bathroom 22 5533 Mammal 72 35781

Bird 27 8384 Meat 18 2914

Body 62 42601 Months 13 1897

Clothing 48 16022 Music 14 1845

Days 14 8163 Numbers 27 41048

Dessert 20 9048 Plants 15 6006

Drink 14 9880 Shape 13 3355

Electronics 18 5347 Space 14 3042

Family 32 52539 Times 11 7731

Fruit 28 7719 Tools 28 7665

Furniture 28 11131 Toys 30 25339

Games 6 1222 Vegetable 21 3271

Household 32 10930 Vehicles 34 15559

Insect 18 4755 Weather 11 4082

Kitchen 29 7767

and one SRN on the GPU takes approximately 3 and 2.5 h,
respectively. Using 4 CPU cores in parallel, Skip-gram completed
training in less than 5 min.

Model Architecture and Training
Simple Recurrent Network Architecture

The Simple Recurrent Network (SRN) is an artificial neural
network that contains an input, a hidden, and an output layer,
in addition to copy connections linking the hidden layer to the
input layer at the next time step (Elman, 1990). The hidden
layer learns distributed internal representations of the input, and
the recurrent connectivity allows these representations to encode
information from previous time steps. This means that the
hidden layer’s pattern of activations is not a simple representation
of the input stimulus, but rather the input stimulus in the context
in which it occurred.

A schematic of the SRN’s architecture is shown in Figure 1A.
For each time step, the SRN received as input a localist
representation of a single word drawn sequentially from the
training corpus. The localist representational scheme ensures
the model has no access to information about word similarity
(phonological, semantic, etc.) at this stage. This is done by
filling the input vector with zeros at every of 4096 positions
(corresponding to the vocabulary size) except for the position
uniquely assigned to the current input word. The goal of this
scheme is not to claim that children do not utilize additional
sources of information about input words, but to test just how
rich a child’s semantic knowledge could become based on lexical
distributional information alone.

The activations at the hidden layer (512 units) are the result
of multiplying each input unit’s activation by the weighted
connections from that input unit to each hidden unit. Critically,
the pattern of activations from the hidden units at the previous
time step is added, weighted by the recurrent connections. Lastly,
each hidden unit activation is transformed by the hyperbolic

Frontiers in Psychology | www.frontiersin.org 5 February 2018 | Volume 9 | Article 133

https://github.com/phueb/rnnlab
https://github.com/phueb/rnnlab
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


Huebner and Willits Semantic Development from Sequence Prediction

FIGURE 1 | A simple comparison of model architectures showing the Simple Recurrent Network (A), a single Long Short-term Memory (LSTM) unit (B), and

Word2Vec’s Skip-gram (C). Note that 1B depicts a single LSTM unit, rather than the full LSTM model. The complete LSTM architecture consists of three layers as in

(A) but with LSTM units instead of conventional sigmoidal or hyperbolic tangent units at the hidden layer. Colors depict the level of activation from 0 to 1 (yellow to

red). Skip-gram does not have the full vocabulary represented at the output layer as in (A), as Skip-gram is typically trained using negative sampling, where the

objective is to predict the correct answer amongst a small selection of “negative” words.

tangent non-linearity to constrain its activation between −1
and +1.

The hidden layer activations are then sent via a third set of
weighted connections to the output layer (again containing 4096
units). The net input into each output unit is first transformed by
exponentiating e to the weighted input (effectively flattening the
distribution. of activations across the output units). These output
activations are then transformed into a posterior probability
distribution of predictions of next most likely word in the
corpus, given the input word. This is done using the softmax
operation (dividing each output activation by the sum of all
output activations).

Long Short-term Memory Architecture

Because the amount of information in the hidden layer
representing distant past information decreases with each time
step, learning dependencies across longer distances becomes
increasingly difficult for the SRN. This problem has been
referred to as “the vanishing gradient problem” (Hochreiter
et al., 2001), referring to the vanishing across time steps of
the signal carrying information that specifies how to update
the weighted connections. Numerous workarounds have been
suggested, and the most successful of them is the Long Short-
term Memory (LSTM) unit introduced by Hochreiter and
Schmidhuber (1997). The LSTM unit, rather than being a single
unit, refers to three multiplicative gating units which control
the flow of information to and from a central unit (termed the
“memory cell”) whose activation does not undergo non-linear
transformation. The architectural details of a single LSTM unit
are shown in Figure 1B. Note that this is not the complete LSTM;
instead, we will refer to the LSTM as a three-layer neural network
similar to the SRN, with LSTM units replacing conventional
hidden layer units.

To illustrate the advantage of the gating units, consider that
in the SRN (which does not employ gating units), long-term
memory is stored in the hidden layer where new information
is integrated with little regard to whether it is relevant to
the model’s objective or might instead mask already existing
(and possibly useful) information. To prevent this, long-term

information in the LSTM is stored in the memory cell where
read and write access are a function of the input and forget
gate unit, respectively. More precisely, incoming information can
only be added to the memory cell if the input gate is not set
to zero, and this can prevent integration of information that
might not be useful. Similarly, if information already contained
in the memory cell at the previous time step is not useful at
the next time step, the forget unit can flush the contents of the
memory cell by being set to zero. The output unit then gates
the content of the memory cell after being transformed by a
non-linear function (hyperbolic tangent), and it is the output
of this gating operation which is typically fed into the output
layer. Thus, the LSTM unit contains two distinct outputs which
are reused across time steps: the content of the memory cell,
and the result of the output gating operation. The former can
preserve gradient information across more time steps relative
to conventional units due to preserving only the information
that is most useful and because it does not undergo any non-
linear transformation, while the latter allows for learning of
non-linear relationships. The gating units receive information in
the input and from the previous output, which are multiplied
by a unique set of weights, and are then squashed through the
sigmoid function to result in an activation bounded between 0
and 1. Because the weighted connections to the gating units are
trainable, the network can learn tomodify the flow of information
into and out of the memory cell, and it will do so independently
at every time step.

Recurrent Neural Network Training Regime

Contrary to conventional training methodology in which input
sequences are presented to the model from multiple iterations
over the whole corpus (epoch training), our models iterated
over small partitions of the age-ordered corpus. As a simplified
example, consider a corpus consisting of three partitions, each
representing a day’s worth of input: the first partition was
input to a 1-year-old, the second to a 2-year-old, and the
third to a 3-year old. A typical neural training procedure that
iterated over the input five times would have the partitions
presented to the model in the order: 1,2,3,1,2,3,1,2,3,1,2,3.
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Scaled to an entire dataset (with thousands of partitions/days
of input), this is obviously a bit unrealistic, as it suggests a
perfectly veridical memory of all items such that they can be
successively iterated over. To address this, we instead presented
the partitions in the order 1,1,1,1,2,2,2,2,3,3,3,3, simulating
successive iterations of the same day’s input as model of memory
consolidation of that day’s experiences. There are at least two
potential advantages of this approach: first, given that our corpus
contains transcribed speech ordered by the age of the children
addressed, our models are sensitive to any change over time in
the structure of child-directed speech, and we can investigate
developmental trends and trajectories. Secondly, local iterations
lend cognitive plausibility to our training regime because it is
more likely that children consolidate linguistic experiences across
time periods spanning hours or days rather than months or
years. We split the training corpus into 256 partitions, so that
each partition contains exactly 20,487 words, approximately the
average number of words heard by children in 1 day (Hart
and Risley, 2003). We trained 10 SRNs and 10 LSTMs using
the same hyperparameters, but a different random seed during
weight initialization. Weights were initialized with a truncated
normal distribution with mean zero and standard deviation
1/

√
m, where m is the number of units in the layer above.

A bias unit was used at the output layer and its weights were
initialized to zero. For every word in the training corpus, we
feed into the model a sequence consisting of the word and the
six words immediately left of it. The input was fed through
the model (as described above) and resulted in a probability
distribution of predictions for the next word in the sequence.
We used the cross-entropy operation to compare a model’s
predictions to the correct answer, which is equivalent to the
negative log of the probability assigned by a model to the correct
answer (i.e., the next word in the sequence). We used truncated
backpropagation through time (Werbos, 1990; Williams and
Peng, 1990) to compute the partial derivative of each layer’s
activations with respect to the weights, and used these to
update the weights in the direction that minimized prediction
errors. This procedure was followed sequentially for each input
sequence. We set the learning rate to 0.01 and used Adagrad
optimization (Duchi et al., 2011) to adapt the learning rate so
that infrequently changed weights received a greater update than
those changed more frequently. Weights were adjusted using
mini-batch training, in which weight updates only occurred
after the accumulation of prediction errors from 64 words.
In this way, the weight update reflects the average prediction
error computed for all 64 sequences in the mini-batch. While
the primary motivation for using mini-batching is to speed
model training, the cognitive and neural plausibility of mini-
batch learning is contestable. To address these concerns, we
tested a range of different mini-batch sizes, finding that sizes
greater than 64 led to slightly worse results, with no noticeable
differences (other than in training time) for smaller mini-batch
sizes, including a size of 1. Thus, we believe this detail in the
model to be a benefit with regard to training time without a cost
in terms of qualitatively or quantitatively changing the model’s
behavior and thus calling into question its cognitive or neural
plausibility.

Word2Vec’s Skip-Gram Architecture and Training

Regime

Skip-gram is one of two members of the Word2Vec family of
neural networks introduced by Mikolov et al. (2013a) as an
efficient solution for obtaining word representations from very
large corpora. Word2Vec models consist of an input, hidden,
and output layer, and weighted connections to and from the
hidden layer. While Word2Vec’s CBOW model generates word
representations by predicting a word from its context, Skip-
gram predicts the context from the word in which it occurred
(shown in Figure 1C). We opted for Skip-gram because it
produced superior results compared to CBOW on our corpus.
In contrast to the LSTM and SRN, both Word2Vec models lack
recurrent connections, and therefore do not learn contextual
word representations (one for each occurrence of a word), or the
precise order of words in the corpus.

One reason for including Skip-gram in a paper about child
language learning is to compare the representations learned by
the SRN and LSTM to those generated by the current state-
of-the-art model in machine learning. Skip-gram’s performance
will help to contextualize our results when making inferences
about the SRN’s achievements. Secondly, and perhaps more
importantly, because Skip-gram is not explicitly trained to learn
word order (when Skip-gram predicts a word, it is not told what
distance it was located away from the input word; however, it
is trained more frequently on those that occur more closely),
we can gain insight into how the degree to which information
about word order during training influences learning of semantic
structure. As described above, Skip-gram also includes a number
of optimizations that increase its performance but vastly decrease
its plausibility (or at least its parsimony) as a cognitive model.
Despite these problems, we examined Skip-gram due to its
popularity in the machine learning community as a semantic
model, and to see if it varies in performance on our dataset or
tasks.

We trained Skip-gram with a hidden layer size of 512, 20
epochs, and a bidirectional window size of 3. All other model
properties were left as the default values specified by Gensim. Our
choice of hyperparameters was driven by our goal of matching
as closely as possible the hyperparameters used by the recurrent
neural networks. Gensim did not provide the option of using
the traditional softmax function at the output layer; so we were
limited to using either hierarchical softmax or negative sampling.
We opted for the hierarchical softmax as it is a more reliable
estimate of the true softmax (Goldberg and Levy, 2014) which
we employed in the LSTM and SRN. We found no difference in
performance, however, when we used negative sampling.

RESULTS

Due to the simplicity and parsimony of the SRN compared to
the other two models, we focus our analysis on its performance,
and include results from the other two models only in cases
where they differ substantially. We begin by confirming that the
recurrent neural networks have learned the sequential structure
of the language input. Next, we present analyses designed to
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assess the semantic knowledge that the models acquired through
training.

Sequential Structure Prediction
Before and after training, we calculated the average per-word
perplexity, a measure of themodel’s ability to correctly predict the
next word in the sequence, on a subset of the CHILDES corpus
not used during training (64,000 words). On a single prediction
trial, the mean per-word perplexity score is equal to the number
of times the model would have to sample from a uniform and
independent probability distribution to guarantee that one of the
guesses is correct. Thus, a perfect prediction would result in a
per-word perplexity score of 1, and a perplexity score of 50 (for
example) implies that the model thinks that about 50 different
words are equally likely.

At the end of training, the mean per-word perplexity score
of the 10 SRNs was 43.8 ± 0.05 (M ± SEM), and that of the
10 LSTMs was 42.6 ± 0.01 (M ± SEM). Compared to the same
score before training (4102.2 ± 2.4 for SRN, 4095.9 ± 0.6 for
LSTM), this is a significant reduction, and strong evidence that
learning of word sequences has taken place. In other words, the
average number of equally likely predictions across all words in
the test data were reduced from approximately the total number
of words in the vocabulary before training to only about 42–44
at the end of training for the SRN and LSTM. Because Skip-
gram cannot predict word sequences there is no way to directly
compare Skip-gram on this measure.

Analyses of Semantic Structure
We performed several analyses to assess the semantic structure
that the neural networks acquired. These can be divided into
two categories reflecting the two theoretical questions being
investigated. The first of these was the extent to which a model
learned to represent semantic knowledge in terms of abstract
semantic features, and the second was the extent to which
semantic knowledge is hierarchically organized.

Encoding of Abstract Semantic Features

To address the first question, we investigated the internal
representations of the SRN. For example, Figure 2 shows the
hidden layer activations for the word helicopter and june. It
is important to note that, for recurrent models like the SRN
and LSTM, each occurrence of the word results in a different
pattern of activations because of the influence of the prior context
(i.e., the input coming into the hidden layer from its recurrent
activation). Because there are 175 occurrences of helicopter in the
training data, Figure 2A has 175 rows (one for each occurrence
of the word) and 512 columns (one for each hidden unit in the
SRN). The rows are hierarchically clustered such that rows that
are more similar are located together more closely.

A number of interesting patterns emerge from this analysis.
First, while each occurrence of helicopter generates a slightly
different pattern because of the previous context, these patterns
are overall quite similar, unsurprising because helicopter is a
relatively unambiguous word in child-directed speech. This can
be contrasted with the word june, where we can see clear
polysemy (e.g., it is used as a name and to refer to a month)

in the form of clusters of rows that are quite different from
the rest. This Figure (and quantitative measures that can be
derived from the data) nicely demonstrates that SRNs and
LSTMs can accommodate and explain effects of polysemy and
ambiguity.

To address the question of whether these hidden units are
coding for or representing abstract features or properties of
the words, we performed a principal components analysis on
the hidden units for all vocabulary words. We then assessed
whether the principal components are meaningfully interpretable
by tracking which words load heavily on a principal component.
Figure 3A shows the extent to which selected words and
categories load heavily on the first five principal components. In
Figure 3A, we show five frequent words from a set of different
grammatical categories (verbs, nouns, adjectives, function words,
interjections, and onomatopoeia).

The initial two principal components are coding for high level,
grammatical features that are understandably very important
for predicting word order. The first principal component of the
hidden layer activations (accounting for approximately 18% of
the hidden layer’s variance), appears to be coding for something
like whether a word is a noun (dark blue) vs. not a noun
(dark red). But it is important to remember that what the
neural networks are learning to do is predict word sequences,
and this is best understood as the extent to which a word
tends to follow words like ‘the’ and ‘my,’ or predict words like
‘is,’ ‘can,’ ‘was,’ and ‘have.’ The second principal component,
accounting for an additional 13% of the variance, looks to be
primarily distinguishing between verbs at one extreme (dark
blue) and interjections and onomatopoeia at the other (dark red).
Careful inspection of the loadings of all words in the in model
suggests that this dimension is coding for whether a word tends
to appear in isolation (onomatopoeia, interjections, and other
similar words) or effectively cannot, as in the case of verbs that
require nouns and other arguments.

After the first two principal components, the later components
begin encoding semantic details. Figure 3B shows a different
set of words that highlight that component three is effectively
coding for the activity context, specifically whether the context
is “eating,” compared to something more akin to “playing.”
Nouns and verbs relating to playing, singing, reading, watching
television, and the locations where those event occur, have highly
positive activations, whereas nouns and verbs relating to eating
have highly negative values on this component. This is not
surprising as these are likely two of the most frequent and
coherent events in young children’s lives, and are also orthogonal
in the sense that they rarely occur together.

Structure and Organization of the Internal

Representations

The second question was whether the model’s internal
representations show signs of structure and organization.
Given that we have just shown that the model is representing
abstract semantic features of words, it is necessarily the case that
some organization in terms of similarity structure must exist.
But just how structured and organized is the information? As
noted, the fact that the model represents each distinct occurrence
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FIGURE 2 | Heatmap showing the SRN hidden unit activations for the word (A) helicopter and (B) june. The rows represent the different occurrences of the word in

the corpus, and the columns represent the 512 different hidden units. The rows are hierarchically clustered such that rows that are more similar are located together

more closely.

of a word slightly differently demonstrates its ambiguity-
representation capabilities. It does, however, raise the issue of the
proper way to assess the similarity space across words, given the
diversity of representations within words.

For the following analyses, we computed the pairwise
similarity between all 720 probe-words and all 4096 words in
the vocabulary in the following manner. First, we re-input the
corpus into the model (after training and without updating
the weights) and saved the hidden layer activations at the end
of every sequence. To obtain a single word representation, we
averaged all activations obtained for sequences in which the last
word corresponded to the word of interest. We then obtained
similarity scores by computing the correlations between these
representations.

In the case of Skip-gram, the representation of a word was
obtained simply from the weights connecting that word’s input
unit to the hidden layer. For example, the input unit for dog
has 512 weighted connections projecting to the 512 hidden units.
Thus, to the extent to which two words make similar predictions
about what their surrounding contexts are, they tend to have
similar values for the weighted connections projecting to the
hidden layer.

Overall Similarity between Models

Our next analysis addresses how similar the overall semantic
spaces were in the 10 different randomly initialized runs of
each model, and also how similar the overall semantic spaces
were between models. In other words, if the first SRN thought
dog’s similarity with cat, shoe, cloud, and car were 0.95, 0.76,
0.81, and 0.91, respectively, and the second SRN thought the
scores were 0.94, 0.77, 0.80, and 0.90, this would reflect high
agreement between the models. We computed this quantitatively
as one would inter-rater reliability (Shoukri, 2010), by taking each
model’s 720 by 4096 matrix of similarity scores and correlating
them with one another, resulting in a r-value measuring the

FIGURE 3 | Heatmap of principal component loadings of words grouped by

(A) grammatical category, and (B) activity context. Principal Components

Analysis was computed using hidden layer activations learned by the SRN.

similarity of different models’ semantic spaces. These analyses
showed that the different instances of the SRN were most similar
to one another, (r = 0.967 ± 0.0002, mean ± standard error), that
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the LSTM instances were less similar (r = 0.959 ± 0.002), and
that the different instances of Skip-gram were the least similar
to one another (r = 0.889 ± 0.0005). Moreover, the semantic
spaces of the SRNs and LSTMs were much more similar to each
other (r = 0.92 ± 0.0004) than those of either the SRN and
Skip-gram (r = 0.248 ± 0.0003) or the LSTM and Skip-gram
(r = 0.284 ± 0.0005).

Nearest Neighbors

The first qualitative analysis we performed was to obtain a list of
the most similar words (nearest neighbors in high dimensional
semantic space) for each of the 720 probe-words. Table 3 shows
the five nearest neighbors for five probe-words for all three
models. The words were chosen to illustrate typical semantic
relations the model has acquired.

A number of notable facts are worth pointing out about the
nearest neighbors. First, the nearest neighbors of most probe-
words share clear semantic relations, and this is evidence that
these models have acquired general knowledge about semantic
similarity, which strongly supports the distributional hypothesis.
Second, this fact was true for all three models, with obvious
qualitative differences in the relatedness or type of relatedness
between a probe-word and its neighbors.

A third detail is that the there seems to be a general trend in
the types of semantic relations the models thought were similar,
as a function of the type of word. If the word is an example of a
relatively well-defined or rule-based category, its neighbors tend
to be members of the same category, even if such pairs do not
co-occur in the corpus and thus are not likely to be thematic
relations (such as dog and tiger). In contrast nearest neighbors for
many human artifact categories (like ‘tools,’ ‘household rooms,’
and ‘furniture’), while still including mostly taxonomic relations,

TABLE 3 | Nearest semantic neighbors after training for 1 of the 10 models for

selected words, in terms of the average hidden activation state of the network

(for SRNs and LSTMs) and in terms of the weight matrix (for Skip-gram).

Dog Bed Shoe Banana Five

SRN

Squirrel 0.95 Crib 0.93 Sock 0.97 Carrot 0.97 Six 0.95

Fox 0.95 Room 0.92 Sneaker 0.95 Pretzel 0.96 Four 0.95

Horse 0.95 Desk 0.92 Boot 0.95 Cracker 0.96 Three 0.94

Tiger 0.95 Pouch 0.92 Sandal 0.95 Cheerio 0.96 Ten 0.93

Wolf 0.95 House 0.92 Jacket 0.94 Lemon 0.96 Seven 0.93

LSTM

Wolf 0.95 Desk 0.94 Sock 0.98 Cheerio 0.96 Four 0.97

Fox 0.95 Crib 094 Sneaker 0.96 Carrot 0.96 Six 0.96

Horse 0.95 Shade 0.93 Sandal 0.95 Pretzel 0.96 Eight 0.94

Mouse 0.95 Bedroom 0.93 Boot 0.94 Hamburger 0.96 Seven 0.94

Penguin 0.94 Room 0.93 Sweater 0.94 Peach 0.95 Three 0.94

Skip-gram

Pup 0.76 Sleep 0.63 Sock 0.77 Pear 0.58 Six 0.88

Collie 0.62 Crib 0.59 Sneaker 0.77 Raisin 0.56 Four 0.83

Kitten 0.57 Blanket 0.54 Sandal 0.64 Frozen 0.55 Seven 0.77

Woggy 0.56 Bedroom 0.53 Pant 0.63 Cereal 0.55 Three 0.74

Bark 0.53 Nap 0.47 Shoelace 0.58 Oatmeal 0.54 Eight 0.69

also include some thematically related neighbors. This pattern of
data that shows an interesting resemblance to an observed bias
by toddlers to use words to group taxonomically related things
for well defined categories (Keil, 1992; Waxman and Markow,
1995). The model predicts this bias may be less strong for artifact
categories than for natural kinds and rule-based categories like
numbers, months, and days.

Dimensionality Reduction

In order to visualize distances between probe-word
representations in the model’s 512-dimensional hidden
activations space, we used a t-SNE dimensionality reduction
algorithm (van der Maaten and Hinton, 2008), available via the
Python package Scikit-Learn. We ran the algorithm using the
average hidden activations for each probe-word as input (shown
in Figure 4). Due to space constraints, we only show the t-SNE
for a single SRN, because no significant qualitative differences
existed between different instances of the model.

Several qualitative patterns emerged from this two-
dimensional representation. When inspecting the category
labels which are positioned at the average location across
category members, an organizational scheme between categories
becomes noticeable. First, words belonging to the categories
‘times,’ ‘months,’ and ‘days’ occupy a section of the similarity
space that is distinct from all other probe-words. It makes sense
that these are separate from items referring to concrete objects,
and given that they all relate to timekeeping in some form, that
they should be positioned closer to each other. Probe-words in
the categories ‘bird,’ ‘insect,’ and ‘mammals’ also form a distinct
super-category cluster in the bottom portion of the Figure 4.
Categories containing non-living objects, and edible objects also
occupy distinct portions of the similarity space.

Lastly, of note is the location of the probe-words belonging
to the category ‘body’ in the top-right portion of Figure 4. It is
obvious that body parts are not human-made objects like those
referred to by words belonging to the categories ‘toys’ and ‘games,’
and that they aren’t living objects with agency either, so they
are not close to ‘birds,’ ‘mammals,’ or even ‘family’ clusters. In
fact, the ‘body’ category occupies its own distinct space along
with ‘clothing,’ even though clothes are far from being the same
kind of object, physically, as well as conceptually. However,
when thinking about the relationship in terms of interactions
taking place in the real world, their adjacency in Figure 4

becomes understandable. The human body is dressed more often
than anything else we might do to it. Notice also that probe-
words belonging to the categories ‘kitchen’ and ‘bathroom’ are
located separately from ‘household’ and ‘furniture.’ This spatial
arrangement does not hold reliably when rerunning the t-SNE
algorithm, which is not deterministic. While these two categories
are often located more closely to ‘household’ and furniture,’ we
show this arrangement because we think that themodel is picking
up on an important difference in the way objects in the kitchen
and bathroom are used compared to those in other places of the
household. We tend to interact more often with objects in the
former two, either for cooking or tending to our hygiene. Objects
in the ‘household’ and ‘furniture’ category, in contrast, are less
frequently interacted with. The above two observations suggest
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FIGURE 4 | A t-SNE dimensionality reduction projection, showing a 2-D representation of the relative similarities of the 720 probe-words learned by the SRN.

that the model organizes objects not only taxonomically, but also
pragmatically.

Similarities between Categories

To get a more complete understanding of the extent to which
the model’s semantic structures are taxonomically-driven and
hierarchically-structured, we constructed a dendrogram heatmap
reflecting the similarities between probe-words within the same
category and between different categories, shown in Figure 5.
To do this, we started with a 720 by 720 matrix containing
similarity scores for each pair of probe-words. Next, we removed
the diagonal of this matrix (all ones, reflecting that each word
was perfectly similar to itself), and then computed the average
similarity of words within and between each of the 29 categories.
This resulted in a 29 × 29 matrix of similarity scores. The rows
and columns of this matrix were re-arranged by performing
hierarchical clustering on the resulting 29 × 29 matrix. The
resulting heatmap has higher values on the diagonal, indicating
words in the same category have strongly correlated activation
states. But in addition to this main effect of words being more
similar, on average, to other words of the same category, there
were also off-diagonal clusters which indicate cases where the

model has learned a set of closely related categories. For example
all of the categories containing ‘food’ probe-words are found in
the lower left portion of Figure 5. A smaller cluster is obtained
for categories containing living items, and another large grouping
in the upper-most right portion of Figure 5 includes categories
containing non-living objects like ‘toys,’ ‘tools,’ and ‘vehicles’.

The dendrogram on the right side of each heatmap in Figure 5
gives a sense of the hierarchical organization underlying the
model’s similarity judgments. The categories ‘numbers,’ and
‘months’ occupy a distinct branch, indicating that these categories
are used in a fairly distinct way (paralleling their distinct clusters
in Figure 4). These results reflect an interesting property of
the models. As shown in earlier work (Elman, 1990; Rogers
et al., 2004), neural networks, while not explicitly encoding or
representing hierarchical structure, nonetheless produce a set of
activations whose similarity encodes hierarchical structure in a
latent way. This fact remains true even when the input is noisy
naturalistic data, where these patterns are not explicitly built
into the model’s training data. The qualitative nature of these
taxonomic and hierarchical structures presents an intriguing
set of testable hypotheses, namely whether children acquire a
semantic structure like that acquired by the model, and whether
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FIGURE 5 | Dendrogram heatmap diagrams showing the average similarity of words (i.e., the Pearson correlations of the words’ hidden state activations) within and

between categories for (A) SRN, (B) LSTM, and (C) Skip-gram. Row ordering mirrors that of columns. Note color scale is different for skip-gram.

these structures are a quantitative and qualitative fit to behavioral
data.

More clearly than in the neighborhood or t-SNE analyses,
there do seem to be interesting differences between the three
types of models, in terms of their between- and within-category
relationships. Looking at the LSTM’s heatmap dendrogram in
Figure 5, we noticed that the most separate cluster, determined
by the dendrogram to the right, contains all the food categories,
rather than time-related categories. Instead, the LSTM has a
distinct fourth cluster for timekeeping categories, including ‘days’
and also ‘numbers,’ although the latter category can be more
broadly used. Figure 5 also shows the heatmap dendrogram
for Skip-gram, which is different in many respects compared
to the two recurrent neural networks. First, the similarities
are globally lower, which is an artifact of the difference in
the two training algorithms, rather than a difference in the
global similarity structure. While the minimum and maximum
similarities are shifted, we kept the size of the range the same
across all diagrams to enable comparing relative similarities
between categories across models. Another important difference
is that the cluster of categories referring to human-made
artifact categories is much less distinct. Indeed similarities within
these categories are much higher relative to similarities across
categories. One might conclude from this that Skip-gram has
learned more about the differences in the probe-words referring
to human-made objects than their similarities. Its four most
prominent clusters include animal and food categories, as in
the SRN, but also a time-keeping category cluster, as in the
LSTM, and a unique cluster referring to objects or concepts
typically found outside, including ‘space,’ ‘weather,’ and ‘plants.’
It is interesting that Skip-gram didn’t acquire a human-made
categories cluster, but was able to cluster categories based on
the concept of ‘outside.’ A final important difference to the
recurrent neural networks is the grouping of ‘kitchen’ with
the food categories instead of with its more taxonomically
related categories ‘bathroom,’ ‘household,’ or ‘furniture.’ From
this analysis, it has become clear that Skip-gram tends to group

categories more thematically than the two recurrent neural
networks.

Hierarchical Structure within Categories

To demonstrate the extent to which the internal representations
have latent hierarchical organization within each category, we
used the same clustering algorithm as above, this time restricting
the analysis to similarity scores from within one category.
Because space is limited, Figure 6 only shows examples of the
categories ‘family,’ ‘kitchen,’ and ‘space from the SRN.

Many interesting details about the semantic structures learned
by the models become apparent from these figures. Beginning
with ‘family’ (Figure 6, left), the most closely related word pairs
(i.e., pairs which share a branching point with the shortest
distance from 0) are grandfather next to grandmother, and father
nearest to mother. It is notable that synonym-like words for
the same role do not tend to group together, instead grouping
with their opposite-gender counterpart (father and mother, not
ma and mother, are more closely related). This happens because
contexts that follow the word mother tend to be very similar to
those that follow the word father, resulting in the model learning
that these two words are very similar or substitutable. Because
the SRN is explicitly learning which words are substitutable
with one another, it ends up with semantic organization that
reflects contextual and pragmatic factors such as that mother
and ma tend to be used in very different situations (predicted
by formality), rather than a semantic organization that reflects
dictionary definitions or feature-based synonyms. Again, this
forms an intriguing testable hypothesis about the macro- and
micro-organization of children’s semantic knowledge, namely
that these pragmatic and contextual factors may play a larger role
than has been supposed.

Similar insights are provided by the hierarchical clustering of
words in ‘kitchen’ (Figure 6, middle). The largest two clusters
seem to be separated according to objects used to prepare
food (bottom cluster) and objects which are associated with the
eating of food (top cluster). Microwaves and toasters, referred
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FIGURE 6 | Hierarchical clustering dendrogram of words in the categories “family members,” “kitchen items,” and “space.”

to by words in the bottom cluster, modify food by changing
their temperature, whereas most words in the top cluster refer
to objects that do not modify, but instead are present during
consumption of food, such as teapots, silverware, napkins, etc.

The third clustering is illustrative because it shows that
hypernyms such as ‘world,’ ‘planet,’ ‘star’ are distinctly separated
from hyponyms, such as ‘venus,’ ‘mars’ (Figure 6, right). In other
words, the hypernym-containing cluster on the bottom of the
figure contains words that do not refer to any particular object in
space, whereas those in the top cluster do. This provides evidence
that the model can learn to separate between concrete objects and
categories containing those objects.

Quantitative Analyses of Semantic Category

Knowledge

Next we asked to what extent the internal representations can be
used in a semantic classification task, in which two probe-words
are judged to be in the same category. Judgments are based on
a 720 by 720 matrix of the similarity of all probe words with
one another. In this task, all word pairs’ similarity scores (S)
were compared against a decision threshold and used to guess
if the two words belonged to the same semantic category. We
analyzed these results in a signal detection framework, computing
hits, misses, correct rejections, and false alarms for each probe-
word pair at multiple similarity thresholds (r, between 0.0 and
1.0 with step size 0.001). In other words, if two probe-words i
and j belong to the same category, and Si,j > r, a hit is recorded,
whereas if Si,j < r, a miss is recorded. On the other hand, if the
two probe-words do not belong to the same category, either a
correct rejection or false alarm is recorded, depending onwhether
Si,j < r or Si,j > r. For each probe-word, we calculated the
sensitivity and specificity, and averaged the two to produce the
balanced accuracy. This procedure eliminates bias resulting from
the fact that a vast majority of word pairs do not belong to the
same category. The measure of interest was the average of all
the probe-words’ balanced accuracies at the similarity threshold
which yielded the highest value.

We repeated this process for each of the 10 SRN, LSTM,
and Skip-gram models to obtain an average balanced accuracy
of 70.0% ± 0.05% (mean ± standard error) for the SRNs,
73.4% ± 0.05% for the LSTMs, and 73.7% ± 0.03% for Skip-
grams. With such large differences between models and low

variances within models, t-tests comparing differences between
models result in very large differences: t(18) = 45.88, p < 0.0001,
r2 = 0.992 for the difference between the SRN and LSTM;
t(18) = 77.38, p < 0.0001, r2 = 0.997 for the difference between
the SRN and Skip-gram; t(18) = 13.56, p < 0.0001, r2 = 0.911 for
the difference between the LSTM and Skip-gram.

In the case of the SRN, this means that on average a probe-
word pair has a 70.0% chance of being correctly classified as
belonging or not belonging to the same category. This is well
above 50%, the score that an untrained model would be expected
to receive. It is not surprising that both the LSTM and Skip-
gram outperform the SRN on this task, given previous research
demonstrating their improved performance on sequence learning
and semantic tasks, respectively. It is somewhat surprising that
Skip-gram achieved only a very small improvement compared
to the LSTM, given that Skip-gram’s architecture is uniquely
optimized to produce high quality word representations, whereas
the LSTM’s objective is to learn sequential dependencies.

Inspecting the balanced accuracy for individual pairs sorted
by category membership (shown in Figure 7), we found a large
range across different categories, ranging from just above 50%
(for words in the ‘times’ category, like noon, minute, midnight,
o’clock), to just over 90% (for words in the ‘days’ category,
like monday, tuesday, and wednesday). These differences are a
quantitative assessment of which words’ internal representations
form more cohesive categories, and which words the models
would have difficulty determining belong to the same category.
This is important because it allows us tomake testable predictions
about language development for future behavioral experiments.
Comparing the balanced accuracy of the SRN to those of
the other two models, reveals that the LSTM and Skip-gram
achieve slightly better scores for almost all categories. While
the performance profile by the LSTM follows closely that of the
SRN, Skip-gram’s profile differs more dramatically (see spikes
in Figure 7 at categories ‘times,’ ‘space,’ ‘toys,’ ‘months,’ and
‘numbers’).

To better understand Skip-gram’s qualitative difference in
performance, we compared nearest neighbors produced by all
models for the categories ‘space’ and ‘months,’ two categories
where Skip-gram clearly outperforms the recurrent models,
and found distinct differences. The LSTM’s and SRN’s nearest
neighbors to earth are generally locations, whereas Skip-gram’s
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FIGURE 7 | Balanced accuracy when using a model’s similarity scores to judge whether two words belong to the same or to different categories. The gray area

represents the standard error of the mean. Colors: LSTM (orange), SRN (green), and skip-gram (black).

neighbors feature planets more prominently, and few locations.
A similar trend is noticeable for the word planet, for which
Skip-gram’s nearest neighbors are exclusively other planets, and
the LSTM’s nearest neighbors are words referring to things
that can be found on a planet, such as a country, sea, cloud,
etc. Furthermore, comparing nearest neighbors in the category
‘months,’ we found that the recurrent network models produced
hardly any words referring to months for may, march, and june,
whereas Skip-gram did. This is not surprising because may and
march are frequent verbs, and june is a frequent name in the
corpus. The recurrent neural networks seem to be less willing
to group together words if the category is more abstract ( in
the case of ‘space’), or if its members have multiple meanings
(‘months’). Learning outcomes, as with previous connectionist
models, depend on how frequently and how consistently words
are used (Seidenberg and McClelland, 1989). By performing
worse on some items, the model is making specific predictions
about how frequency and consistency may affect the categories
and conceptual structure that children acquire, which can be
tested in future research.

It is important to note that the categories were chosen by
the authors and revised based on the explicit judgments of
adult experimental participants. It could be the case that the
categories with lower scores are less “real” in either a natural or
psychological sense, and thus these lower scores reflect exactly
how we would expect the model to perform. It could also be
the case that these categories, while quite real to adults, are less
important to children and thus not frequent or consistent in
child-directed speech. Follow-up corpus analyses and behavioral
experiments (with children and adults) can further investigate
the natural or psychological reality of these categories, and
assess the extent to which different models predictions about
the cohesiveness of a category reflect the representations that
children acquire.

Thematic and Taxonomic Bias
To investigate further the differences between the models, we
generated nearest neighbors from three categories. Inspecting
the neighbors that Skip-gram produced (Table 4, right column),
we noticed a strong thematic bias. For example, Skip-gram’s
nearest neighbors of ‘snow’ include ‘man,’ ‘white,’ and ‘melt’ which
are not objects related to weather conditions, but instead are
thematically associated with ‘snow.’ In contrast, neither of the
recurrent neural networks (Table 4, left and middle columns)
produced neighbors referring to the properties of snow such as
its color, or its ability to melt. Nearest neighbors produced by
the recurrent neural network instead appear to be constrained by
being a noun; no other organization became apparent to us. More
evidence for a thematic bias can be found by inspecting Skip-
gram’s neighbors for the word ‘fish,’ which include ‘swim,’ which
describes a property of fish, and ‘glub,’ a sound produced by fish
(or at least, the way that such sounds are described in interactions
with children). In contrast, the LSTM and SRN produced nearest
neighbors that refer to fish-like objects while none refer to
properties of fish. These differences is consistent with previous
research, which has shown that models strictly tracking co-
occurrences between words within a window tend to define
words’ similarities in terms of their substitutability, whereas
models tracking co-occurrences between words in a document
(and thereby disregarding word order information) tend to define
word similarities in terms of more thematic-like relationships
(Rubin et al., 2014). Because the number of times Skip-gram is
trained to associate a word with another word in its context is
proportional to the distance between the two words, Skip-gram
does have access to word order information; however, access to
this information is limited compared to models that are trained
to learn word order explicitly (SRN and LSTM). This partial loss
of word order information might account for Skip-gram’s greater
propensity for generating thematically related neighbors.
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TABLE 4 | Nearest semantic neighbors from SRN, LSTM, and Skip-gram for two

words in the categories ‘weather,’ ‘meat,’ and ‘months.’

SRN LSTM Skip-gram

Snow Snow Snow

Treasure 0.87 Rocket 0.90 Man 0.57

Log 0.86 Fish 0.88 Flake 0.55

Motorcycle 0.86 Snail 0.88 White 0.52

Taxi 0.86 Cloud 0.88 Baum 0.50

Mail 0.86 Mole 0.88 Melt 0.46

Rain Rain Rain

Flash 0.92 Dark 0.91 Spout 0.49

Dust 0.91 Daytime 0.90 Outside 0.46

Land 0.90 Dust 0.89 Bitsy 0.45

Steam 0.90 Steam 0.88 Itsy 0.45

Crowd 0.90 Colder 0.88 Spider 0.44

Meat Meat Meat

Salad 0.97 Broccoli 0.96 Soup 0.57

Bread 0.97 Oatmeal 0.95 Carrot 0.56

Pizza 0.96 Salad 0.95 Broccoli 0.55

Oatmeal 0.96 Bread 0.95 Cheese 0.53

Cereal 0.96 Macaroni 0.95 Vegetable 0.53

Fish Fish Fish

Whale 0.91 Penguin 0.92 Angler 0.53

Hay 0.91 Snail 0.91 Turtle 0.49

Goldfish 0.91 Goldfish 0.91 Glub 0.48

Goose 0.91 Whale 0.91 Swim 0.46

Turkey 0.91 Bug 0.91 Fins 0.46

April April April

Buster 0.93 Harvey 0.93 Fifth 0.59

Harvey 0.93 Darling 0.93 February 0.56

Hank 0.93 Abba 0.93 Twenty 0.53

September 0.93 Correct 0.92 Saturday 052

January 0.93 America 0.92 October 0.51

Month Month Month

Year 0.97 Year 0.97 Year 0.80

Degree 0.93 Thousand 0.92 Week 0.68

Ounce 0.93 Hour 0.92 Twenty 0.64

Dollar 0.93 Week 0.92 Ounce 0.58

Thousand 0.92 Hundred 0.92 Thirty 0.56

DISCUSSION

We tested the hypothesis that a distributional learning
mechanism might account for the acquisition of useful
semantic structure from noisy naturalistic language input.
This proposal has a long history, but until recently it has been
difficult to evaluate how effective such a process might be in
the development of the human semantic system, and how
much knowledge and the extent of the knowledge and structure
for which it could account. However, due to increasingly

more powerful and sophisticated computational models, large
naturalistic datasets, and computer power, this hypothesis can
now be tested on a large scale. To this end, we trained three
different neural networks (SRNs, LSTMs, and Word2Vec’s
Skip-gram) on over 5-million words of child-directed speech
and examined both qualitatively and quantitatively the semantic
structure underlying the representations that emerged for 720
probe-words. We compared the results to better understand the
advantages and limitations of each model.

We found that all three neural network models learned
complex semantic relationships, demonstrating learning of
complex internal representations such as those found in the
models of Elman (1990) and Rogers et al. (2004). This research
shows that the principles demonstrated by those models do
not depend on the cleanliness of their artificial datasets. To
the contrary, this work shows that the structure of the input
that children receive is in fact highly organized and capable of
supporting learning in neural or cognitive system without strong
priors about the organizational structure that might be learned.

Our second purpose was to address whether specific
instantiations of these neural network models can be better
characterized as fitting the “child as data analyst” metaphor, or
the “child as theorist” metaphor, as outlined by Waxman and
Gelman (2009). Across a range of analyses, we showed that
these neural network models are going far beyond representing
simple statistical associations between words, and are instead
representing wordmeanings in terms abstract features that group
words into taxonomic and hierarchically-organized structures.
Hidden units in neural networks, when there are fewer hidden
units than input or output units, can be thought of as a procedure
for discovering abstract features that allow for efficient and
organized representation of information.

We investigated whether the semantic structures the models
acquired reflect the semantic structures that children acquire. The
words that the recurrent neural network models considered to be
the most similar tended to be taxonomically related (i.e., from the
same category) rather than thematically related (i.e., co-occurring
within the same situation or event). For example, it was very rare
for those models to group semantically related words that were
different parts of speech (bounce and ball, for example). This was
true for the two recurrent models (the SRN and LSTM), because
the stronger grammatical constraints (predicting word order) on
these models led to more grammatically constrained semantic
neighborhoods. Skip-gram, on the other hand, is less constrained
by the grammar inherent in the input, and therefore produces less
taxonomically constrained neighbors. The bias in the recurrent
neural networks toward taxonomic relations is notable, given
that children have been shown to assume that noun labels refer
to groups of kinds of things, rather than groups of words that
co-occur within a situation or event (Waxman and Markow,
1995). All threemodels also appeared to learn a latent hierarchical
structure, capable of producing the kinds of behavior observed
in children (Keil, 1992). Words tended to be most similar to
other words of the same category, and then most similar to words
belonging to a superordinate category.

We also investigated whether different neural network
architectures (and the different theories of learning and memory
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that they represent) perform qualitatively or quantitatively
differently with regard to their ability to learn semantic
information. We found that, Skip-gram’s representations differed
from those learned by the recurrent models by displaying a
greater bias for learning thematic relationships. Furthermore,
aligning with previous research, we found that Skip-gram and
LSTM models tended to be slightly better in quantitatively
evaluated situations (such as predicting whether two words
belong to the same category) than the SRN. However, there is
a very important caveat to mention here. This task is arguably
artificial, and even if real, we do not have data on how children or
adults would perform on a similar task. The higher performance
reached by LSTM and Skip-gram on this task is evidence these
are better machine learning models, but not that they are better
models of human cognition. Furthermore, it is not clear whether
the slight performance increase is important, given that we do
not know whether the magnitude of this difference is in the
range of variability between human subjects. Considering the
relative architectural simplicity of the SRN, and absence of any
human data, the SRN should by no means fall out of favor for
cognitive scientists studying semantic memory. In the contrary,
we think that its achievements make it all the more promising as
a model of semantic development. Ongoing work is investigating
how children perform on a number of semantic tasks, and
these models will serve as sources of quantitative and qualitative
predictions of children’s performance in those tasks.

One particularly important distinction in our work is
the distinction between sequence prediction and semantic
classification. Our primary interest in this paper was in modeling
semantic development, and showing how semantic classification
can emerge from sequence prediction. A model that learns to
predict sequences must, by its very nature, learn which items tend
to be substitutable, which is arguably what one needs to do in
order to perform categorization behaviors. However, these two
tasks, while mutually supporting one another to an extent, may
compete with one another in the limit. Perfect (or as perfect as
possible) sequence prediction on new input involves needing to
learn abstract generalizations in the model’s hidden layer that
can predict new situations. The abstractions necessary for doing
this in language are very likely not identical to the abstractions
necessary for interacting with world knowledge (Willits et al.,
2015). As such, one could view getting very good at predicting
language sequences as a case of overfitting to the specifics of
that task or goal, resulting in a slight decrease in performance
when classifying real world objects and events. As a consequence,
models like Skip-gramwhich do not perfectly capture word order,
may be providing a slight protection against such overfitting,
resulting in slightly better semantic performance.

Many questions, limitations, and future research directions
remain. The most obvious is the extent to which these models
correctly predict behaviors about semantic development, beyond
those qualitative matches we have shown here. In addition to
further experimental validation, there remain follow-up analyses
about the specific semantic structures of the models. Can the
precise extent to whichmodels develop taxonomic or hierarchical
representations be quantified, and used to adjudicate between
models? How do the models respond to perturbations in the

input, and how do differences in quantity and quality of input,
or learning more than one language at once affect acquisition of
semantic knowledge?

Other questions involve the cognitive and neurobiological
plausibility of the proposed learning and representational
mechanisms.While models that are capable of capturing a greater
number of the statistical properties of language exist (LSTM), we
must keep in mind that language comprehension is a demanding
process, and requires decoding of highly structured input within
very short time (Friederici, 2002; Pylkkänen and Marantz, 2003).
It is unlikely that humans use all the statistical information
available in the input, as such a learning mechanism would be
costly in terms of the expenditure of neural resources. Many
language statistics contain overlapping information, and many
may not be relevant to language comprehension at all. Moreover,
language learning typically occurs well before the brain has
achieved maturity, so developmental constraints further limit the
learning mechanism. While it is tempting to speculate which of
the three architecture most closely aligns with neurocognitive
principles, there is no evidence to date to guide such speculations.
Neither can we claim to have singled out a specific learning
mechanism operating in children; rather our intention is to
demonstrate the different kind of learning results taking place in
different models.

A final limitation of note, but a very important one, is the fact
that these models of semantics contain only linguistic input, and
have no access to or knowledge of grounded, embodied, world
knowledge that most (but not all) children receive from vision,
hearing, touch, taste, and smell. Much ink has been spilled on
the issue of what precisely distributional models are missing by
not including this information (de Vega et al., 2008; Johns and
Jones, 2012; Jones et al., 2015; Willits et al., 2015). While many
researchers treat distributional models and grounded, embodied
models as necessarily opposed, this need not be the case. There
is no reason that a distributional model cannot operate over
extra-linguistic, grounded world knowledge. In fact, Sadeghi et al.
(2015), in a paper titled “You shall know an object by the
company it keeps” used a distributional model operating over
pictures (rather than words), and showed that such a model
can learn the similarity structure of objects. Like with words,
this makes sense, as the kinds of visual contexts that cats and
dogs tend to occur in are similar to each other, and different
from the kinds of contexts that forks and spoons occur in, or
that shoes and socks occur in. Distributional similarity is an
algorithm that can operate on any modality. Given the lack of
non-linguistic data, it is actually quite impressive how well the
recurrent neural networks learn to represent semantic content.
But of course a more complete model of semantics employing
the distributional hypothesis would include both linguistic and
extralinguistic information, and the interaction between the two
(Willits et al., 2015). In future work, we would like to extend the
recurrent neural networks to include distinct auditory and visual
layers that take audio and video input and learn to combine them
into a composite representation. In the meantime, it may not be
appropriate to call the type of learning taking place in models
without extra-linguistic input as ‘semantic.’ We are optimistic
that this issue is one of terminology, and does not relate to

Frontiers in Psychology | www.frontiersin.org 16 February 2018 | Volume 9 | Article 133

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


Huebner and Willits Semantic Development from Sequence Prediction

fundamental restrictions inherent in the learning algorithms
employed in this study.

Our modeling results show that complex and highly organized
semantic structure emerges automatically from learning the
statistical regularities of child directed speech, supporting the
idea that a neural network-like model of statistical learning might
explain aspects of semantic development. We hope that further
computational modeling efforts will continue to combine realistic
models of children’s input with cognitively realistic models to

contribute to our understanding of a wide range of phenomena
in semantic memory and its development.
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