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Abstract—We tackle the speech separation problem through
modeling the acoustics of the reverberant chambers. Our ap-
proach exploits structured sparsity models to perform speech
recovery and room acoustic modeling from recordings of con-
current unknown sources. The speakers are assumed to lie on a
two-dimensional plane and the multipath channel is characterized
using the image model. We propose an algorithm for room
geometry estimation relying on localization of the early images
of the speakers by sparse approximation of the spatial spectrum
of the virtual sources in a free-space model. The images are
then clustered exploiting the low-rank structure of the spectro-
temporal components belonging to each source. This enables
us to identify the early support of the room impulse response
function and its unique map to the room geometry. To further
tackle the ambiguity of the reflection ratios, we propose a
novel formulation of the reverberation model and estimate the
absorption coefficients through a convex optimization exploiting
joint sparsity model formulated upon spatio-spectral sparsity
of concurrent speech representation. The acoustic parameters
are then incorporated for separating individual speech signals
through either structured sparse recovery or inverse filtering
the acoustic channels. The experiments conducted on real data
recordings of spatially stationary sources demonstrate the effec-
tiveness of the proposed approach for multi-party speech recovery
and recognition.

Index Terms—Source separation, Multi-party reverberant
recordings, Structured sparse recovery, Room acoustic modeling,
Image model, Distant speech recognition

I. INTRODUCTION

RECOVERY of speech signals from an acoustic clutter

of unknown competing sound sources plays a key role

in many applications involving distant-speech recognition,

scene analysis, video-conferencing, hearing aids, surveillance,

sound-field equalization and sound reproduction. Despite the

vast efforts devoted to the issues arising in real-world con-

ditions, development of systems to operate in the presence

of overlapping sound sources yet remains a demanding chal-

lenge [1].

In this paper, we consider distant-talking speech recognition

in a multi-party environment where multiple sound sources

talk simultaneously. The common existence of overlapped
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speech segments has been shown to increase the speech

recognition word error rate up to 30% for a large vocabulary

task [2] hence, it is required to incorporate an effective source

separation technique to segregate the desired speech from the

competing signals prior to recognition. We assume that the

signals are acquired by an array of calibrated microphones.

Previous approaches to multi-channel speech separation

can be broadly group into three classes. The first category

incorporates a prior knowledge about mutual independence

and statistical characteristics of the source signals to identify

the mixing model and to recover the individual sources [3].

These techniques are usually confined to the scenarios where

the number of microphones is greater than or equal to the

number of sources referred to as overdetermined or determined

mixtures respectively and their performance degrades due to

reverberation [4].

The second category relies on spatial filtering based on

beamforming or steering a microphone array beam-pattern to-

wards the target speaker to enable suppression of the undesired

sources [5, 6]. The underlying assumption of this approach is

that there is no reverberation so the beamforming techniques

are formulated upon direct path acquisition of the signals.

These geometric approaches to speech separation can work

with any number of microphones including the scenarios in

which the number of sources exceeds the number of sensors

referred to as underdetermined mixtures. A limitation is that

the standard beamforming techniques overlook the model of

acoustic multipath and they are less effective in reverberant

condition [7, 8].

The third category is based on sparse representation of

the source signal, also known as sparse component analy-

sis [9, 10]. These techniques exploit a prior assumption that

the sources have a sparse representation in a known basis or

frame. The notion of sparsity opens a new road to address the

underdetermined unmixing problem to estimate the unknown

variables from fewer known data. Since the underdetermined

linear system admits infinitely many solutions, the answer

ought to be the sparest solution measured in terms of the

sparsity inducing norms [10, 11]. The prior art on multichannel

speech recovery exploiting sparsity models are largely con-

fined to the recovery of the signals at individual frequency

level and ignore the higher-level structures exhibited in data

representation.

The approach that we propose in this paper relies on struc-

tured sparsity models underlying multiparty multi-channel

recordings in reverberant environments. We discretize the

planar area of the room into a grid of uniform cells where
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each of the speakers is located at one of the cells. If there are

N speakers in the room and given a fine grid of G cells such

that the cell’s occupancy is exclusive, the distribution of the

sources in the room is sparse; i.e., out of G cells only N ≪ G

contain the sound sources. This implies the spatial sparsity

model as depicted in Fig. 1.

Denoting the signal attributed to the source located at cell g

as Sg and concatenating the signals corresponding to each cell,

the signal vector coming from all over the room can be formed

as S = [ST1 , ...,STG]
T where T stands for the transpose operator.

If we consider one instance of recordings from N speakers, S

is a sparse vector with only N non-zero elements. The support

of S corresponds to the N cells where the sources are located.

If we consider F instances (e.g. frequency bins) of recordings

and assume that sources are immobile, each instance of the

signal of a particular source implies sparsity in exactly the

same manner as every other instances as they all correspond

to the one particular cell where the source is located. This extra

restriction imposes a constraint on the structure of the elements

in S which goes beyond simple sparsity. We characterize

sparsity with such constraints as structured sparsity. Fig. 1

illustrates the particular block sparsity model exhibited in

representation of the signals coming from all over the grid

as described above.

This paper exploits structured sparsity models to recover

the unknown individual speech signals: Sg,g ∈ {1, ...,G}

from a few known mixed recordings when the speakers are

talking simultaneously. In addition to the spatial sparsity and

block dependency, we exploit harmonic sparsity of spectral

components. The spectral structure of voiced speech typically

comprises a small number of spectral peaks at harmonics of a

fundamental frequency; at other frequencies the energy is typi-

cally low or negligible. We can therefore model the distribution

of energy over frequencies as being sparse. Furthermore,

we exploit the structured sparsity underlying the acoustic

channel of the room characterized by the image model of the

multipath effect. The contribution of this paper is ultimately to

introduce a unified theory of spatio-spectral speech separation

formulated as a problem of sparse recovery of information

embedded in multichannel recordings exploiting structured

sparsity models.

II. STATE-OF-THE-ART

This paper tackles the multi-party speech recovery problem

through modeling the acoustic of the enclosure and exploit-

ing sparsity models. The room acoustic characterization was

earlier incorporated in the method proposed in [12]. Their

approach relies on statistical independence assumption of the

sources to estimate the acoustic channel of the enclosure and

perform joint deconvolution and separation of speech signals;

its applicability is limited to overdetermined scenarios. This

assumption has been relaxed in the method proposed in [13]

where multiple complex valued independent component anal-

ysis adaptations jointly estimate the mixing matrix and the

temporal activities of multiple sources in each frequency band

to exploit the spectral sparsity of speech signals. However,

it does not explicitly rely on identification of the acoustic

Fig. 1: The spatial sparsity of the speakers inside the room is
illustrated through discretization of the planar area of the room into
a grid of G cells. The sources occupy only two cells marked as 1 and
2. Hence, the spatial representation of the source signals generated
inside the room is sparse.
Assuming that the sources are immobile, if we denote an arbitrary F
(e.g. F = 3) instances of the signal attributed to the speaker at cell g
as Sg(f), f ∈ {1, · · · , F} and concatenate the signals corresponding
to each cell, the signal vector of the room can be formed as
S = [ST

1 , ...,ST
G]

T ∈ C
GF×1. We can see that support of S exhibits

the block-sparsity structure as there are only two blocks of non-zero
elements corresponding to the two speakers. The size of each block
is the number of recording instances.

channel and recovery of the desired source imposes a permu-

tation problem due to mis-alignment of the individual source

components [13].

A blind channel identification approach for speech separa-

tion and dereverberation is proposed in [14]. In this paper, the

mixing procedure is delineated with a multiple-input multiple-

output (MIMO) mathematical model. The authors propose to

decompose the convolutive source separation problem into

sequential procedures to remove spatial interference at the

first step followed by deconvolution of temporal echoes.

To separate the speech interferences, the MIMO system of

recorded overlapping speech in reverberant environment is

converted into the single-input-multi-output (SIMO) systems

corresponding to the channel associated with each speaker.

The SIMO channel responses are then estimated using the

blind channel identification through the unconstrained nor-

malized multi-channel frequency-domain least mean square

algorithm [15] and dereverberation can be performed based

on the Bezout theorem also known in the context of room

acoustics as the multiple-input/output inverse-filtering theorem

(MINT) [16]. A real-time implementation of this approach has

been presented in [17], where the optimum inverse filtering is

substituted by an iterative technique, which is computationally

more efficient and allows the inversion of long room impulse

responses in real-time applications [17]. The major drawback

of such implementation is that it can only perform channel

identification from single talk periods and it requires a high

input signal-to-noise ratio. Another approach to perform joint

dereverberation and speech separation extends the maximum

likelihood criteria applied in weighted prediction error method

using determined and overdetermined mixtures [18]. This

method assumes that the source spectral components are

uncorrelated across time frames and it relies on a single source

assumption for estimation of the acoustic channel, thus it can

not achieve dereverberation when there are multiple sound

sources [19].
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This paper takes a new perspective to the objective of multi-

channel processing as recovery of the information embedded

in the acoustic field from compressive acquisition provided by

microphone array. We derive a spatio-spectral representation

of concurrent sound sources and characterize the acoustic

reverberation model to formulate a model-based sparse com-

ponent analysis framework for identification of the source

locations and separation of the individual spectral components.

The proposed framework incorporates the model underlying

spectrographic speech representation as well as the acoustic

channel for extraction of the information bearing components.

More specifically, our approach features the following contri-

butions:

⋄ Model-based sparse component analysis framework for

speech separation and localization incorporating spectral,

spatial and acoustic multipath structures.

⋄ Room geometry estimation algorithm from recordings of

multiple unknown sources relying on sparse recovery and

low-rank clustering.

⋄ Formulation of the reverberation model factorized into

free-space propagation and source permutation to model

the multipath effect.

⋄ Room absorption coefficient estimation algorithm from

recordings of multiple unknown sources using model-

based sparse recovery.

⋄ Analysis of the performance of computational approaches

to model-based sparse recovery considering speech-

specific structures.

⋄ Analysis of the performance of speech recovery consid-

ering the design of microphone array layout.

The rest of the paper is organized as follows: The problem

statement and sparse representation of multiparty reverberant

recordings is explained in Section III. We set up the formula-

tion of the structured sparse acoustic modeling in Section IV;

the room geometry estimation algorithm is elaborated in

Section IV-B and a formulation of reverberation model for

absorption coefficient estimation is derived in Section IV-C.

The structured sparse speech recovery algorithms are described

in Section V and the theoretical analysis of the performance

bound is explained in Section VI. The experimental analysis

are presented in Section VII and finally, the conclusions are

drawn in Section VIII.

III. REVERBERANT SPEECH RECORDINGS

A. Problem Statement

We address the problem of separating the signals of an

unknown number of speakers from multi-channel recordings in

a reverberant room. We consider an approximate model of the

acoustic observation as a linear convolutive mixing process,

stated concisely as

xm =

N∑

n=1

hmn ⊛ sn, m = 1, ...,M (1)

where xm and sn denote the time domain signal of the mth

microphone and nth source respectively; hmn denotes the

acoustic channel between signal and microphone and ⊛ is

the convolution operator. M and N indicate the total number

of microphones and sources respectively. This formulation is

stated in time domain; to represent it in a sparse domain, we

apply the discrete Short-Time Fourier Transform (STFT) on

speech signals. Following from the convolution-multiplication

property of the Fourier transform, the mixtures in frequency

domain can be written as

Xm(f, τ) =

N∑

n=1

HmnSn(f, τ), m = 1, ...,M (2)

where Xm, Sn and Hmn denote the microphone and source

signals and their corresponding acoustic channel in Fourier

domain. f and τ indicate the frequency and frame index

respectively. Our objective is to recover the individual source

signals Sn from the distant microphone recordings. There is no

prior information about the number of sources and the acoustic

mixing channels.

B. Spatio-Spectral Sparse Representation

To obtain the sparse representation of multiparty speech

sources, we consider a scenario in which N speakers are

distributed in a planar area (at the same height in three-

dimensional space) spatially discretized into a grid of G cells.

We assume to have a sufficiently dense grid so that each

speaker is located at one of the cells thus N ≪ G. The spatial

spectrum of the sources is defined as a vector with a sparse

support indicating the components of the signal corresponding

to each cell of the grid.

We consider the spectro-temporal representation of multi-

party speech and entangle the spatial representation of the

sources with the spectral representation of the speech signal

to form vector S = [ST1 ...STG]
T ∈ C

GF×1. Each Sg ∈ C
F×1

denotes the spectral representation of the signal of the gth

source (located at cell number g) in Fourier domain. We

express the signal ensemble at the microphone array as a

single vector X = [XT
1 ...XT

M]T where each Xm ∈ C
F×1

denotes the spectral representation of the recorded signal at

microphone number m. The sparse vector S generates the

microphone observations as X = ΦS. Φ is the microphone

array measurement matrix consisted of the acoustic projections

associated to the acquisition of source signals located on the

grid. In the following Section IV, we propose a method to

characterize the acoustic measurements.

IV. STRUCTURED SPARSE ACOUSTIC MODELING

A. Characterizing the Acoustic Measurements

We assume the room to be a rectangular enclosure consist-

ing of finite impedance walls. The point source-to-microphone

impulse responses of the room are calculated using the image

model technique [20]. Taking into account the physics of the

signal propagation and multipath effects, the projections asso-

ciated with the source located at cell g where νg represents the

position of the center of the cell and captured by microphone

m located at position µm are characterized by the media



4

Green’s function and denoted as ξfνg→µm
defined by

ξf
νg→µm

: X(f, τ) =

R∑

r=1

ιr

‖µm − νr
g‖α

exp(−jf
‖µm − νr

g‖
c

)S(f, τ),

(3)

where j =
√
−1 and νr

g designates the location of the rth

virtual source corresponding to the actual source located at

cell g with the corresponding reflective energy ratio of ιr. R

denotes the number of source images and c is the speed of

sound. The attenuation constant α depends on the nature of

the propagation and is considered in our model to equal 1

which corresponds to spherical propagation. This formulation

assumes that if s1(l) = s(l) and s2(l) = s(l − ρ), then

S2(f, τ) ≈ exp(−jfρ)S1(f, τ); hence, the frame size should

be greater than the length of the impulse response for this

assumption to hold.

Given the source-sensor projection defined in (3), we

construct the matrix of the F consecutive frequencies as

Ξνg→µm
= diag(ξ1

νg→µm
, . . . , ξFνg→µm

). Hence, the pro-

jections associated to the acquisition of the source sig-

nals located on the grid by microphone m is φm =

[Ξν1→µm
. . .Ξνg→µm

. . .ΞνG→µm
] and the M-channel micro-

phone array manifold matrix is obtained as Φ = [φT
1 . . .φT

M]T .

Thereby, characterizing the acoustic projections amounts to

identifying the location of the source images as well as the

absorption coefficients of the reflective surfaces. We exploit

this parametric model to address the speech recovery problem.

In the following Section IV-B, we estimate the geometry of

the room to identify the location of the source images. In

Section IV-C, we estimate the absorption coefficients of the

reflective surfaces.

B. Estimation of the Room Geometry

The projection expressed in (3) corresponds to characteri-

zation of the forward model of the room acoustic channel as

H(f,µm,νg) =

R∑

r=1

ιr

‖µm − νr
g‖

exp(jf
‖µm − νr

g‖
c

) (4)

H(f,µm,νg) indicates the room impulse response function

between the microphone located at µm and a source located

at νg. Hence, identifying the locations of the R images of the

source enables identifying the temporal support of the room

impulse response function. According to the image model,

if the geometry of the enclosure is known, it is possible to

identify the source images up to any arbitrary order [20].

Recent studies have shown that the impulse response func-

tion is a unique signature of the room and the geometry can be

reconstructed given that up to second order of reflections are

known [21, 22, 23]. Relying on this observation, we propose

to localize the source images by sparse recovery with a free-

space measurement model, i.e., R = 0, while the deployment

of the grid captures the location of early reflections. The

time support of the acoustic channel, {νr | 1 < r < R}

corresponds to the cells where the recovered energy of the

signal is maximized. We consider the localized sources in a

close proximity to the microphone array within a pre-specified

distance range as the actual sources generating the signals

Sn,n = {1, ...,N}. The localized images are sorted up to

the order of D(D + 1)/2 where D indicates the number of

reflective surfaces according to the cosine angle between the

estimated signals and the source signal (Sg) and considered as

the images associated to the gth source. The cosine angle is

the appropriate distance measure to cluster the components

which are geometrically aligned, i.e., images of the same

source. The bound of D(D + 1)/2 guarantees a unique map

to the geometry of the enclosure as proved in [21, 22]. Given

the location of the source images, we estimate the room

geometry by brute-force search to identify the dimensions

which generate the least-squares approximation of the location

of virtual sources [23]. Algorithm 1 summarizes the steps to

implement room geometry estimation.

Algorithm 1 Room geometry estimation

(i) Run sparse source localization algorithm with a free-

space measurement model.

(ii) Run k-means clustering using cosine angle as the dis-

tance metric.

⊲ Select the centroid of the clusters as the nearest

(actual) sources to the array center.

⊲ Measure the cosine angle between components of

virtual and actual sources.

⊲ Keep the closest D(D+ 1)/2 sources as the cluster

members.

(iii) Find the room geometry by identifying the dimensions

which yield the best approximation of the location of

source images in least-squares sense.

The approach that we presented in this section can estimate

the room geometry if a single source or multiple unknown

sources exist in the room. Applying the image model to a

rectangular room, a lattice of virtual sources is obtained. As

the temporal support of room impulse response is attributed to

the source images, the image model of multipath propagation

insinuates temporal sparsity of the early part of the room

impulse response function with a particular structure. We

refer to this property as the acoustic structured sparsity and

exploit it to address the problem of estimating the absorption

coefficients.

C. Estimation of Absorption Coefficients

This section elaborates on a novel formulation of the

reverberant recordings which entangles the structured sparsity

indicated by the image model and the spatio-spectral sparsity

of multiparty recordings for joint estimation of the absorption

coefficients and recovery of the sources. This approach enables

us to estimate the frequency-dependent absorption factors in

a multi-source environment.

1) Factorized Formulation of the Reverberant Recordings:

We formulate the reverberation model factorized into permu-

tation (corresponding to the source images) and attenuation

(corresponding to the absorption factors) of the sources in an

unbounded space.
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We assume that the G-cells grid of the room containing

N sources is expanded into G-cells free-space discretization

where the actual-virtual sources are active. If each of the

sources have R images, N(R + 1) actual-virtual sources are

active. Given the geometry of the room, the image model

maps the position index i ∈ {1, . . . ,G} of each source to

a group Ωi ∈ {1, . . . ,G} containing the location indices of

this source and its images (the corresponding virtual sources)

in G-points. Consequently, a free-space propagation model

can be considered between G actual-virtual source locations

and the positions of M microphones. Hence, the forward

model between sources and the microphone recordings can

be concisely stated as follows:

X = OPS. (5)

This model holds for each particular independent frequency

f of the speech spectrum so we discard the frequency de-

pendency in our mathematical formulation for the sake of

brevity. Given X ∈ C
M×T , the observation matrix of T

frames consisting of the spectro-temporal representation of M

microphones at a particular frequency band, we decompose

the microphone recordings into the following terms:

• S ∈ C
G×T is the source matrix whose rows contain

T frames of the spectro-temporal representation of the

actual sources located in G positions inside the room.

Given a fine discretization of the room such that each

source occupy an exclusive cell, only N ≪ G cells

are occupied with active sources and contain nonzero

elements and the support of S represents the position

of those N active sources is sparse. In other words, the

spatial sparsity indicates S to be a row-sparse matrix

with a support corresponding to the position of the actual

sources.

• P ∈ R
G×G
+ is the permutation matrix such that its ith

column contains the absorption factors of G points on

the grid of actual-virtual sources with respect to the

reflection of the ith actual source. Since the image

model characterizes the source groups, each column P.,i is

consequently supported only on the corresponding group

Ωi i.e., ∀i ∈ {1 . . . ,G}, ∀j /∈ Ωi,Pj,i = 0.

• O ∈ C
M×G is the free-space Green’s function matrix

such that each Oj,i component indicates the sound prop-

agation coefficients, i.e. the attenuation factors and the

phase shift due to the direct path propagation of the sound

source located at cell i (on a G-point grid of actual-virtual

sources) and recorded at the jth microphone. Given the

G-cell discretization, O is computed from the propagation

formula stated in (3) and it is equal to Φ when R = 0.

2) Source Localization and Absorption Coefficient Esti-

mation: Relying on the spatio-spectral sparsity of multiple

competing sources, the covariance matrix of the reverber-

ant recordings exhibits structured sparsity determined by the

image model. We exploit this structured sparsity to identify

the location of the active sources and their corresponding

absorption coefficients consisting of the columns of P. Given

the model of the microphone recordings stated in (5), the

covariance matrix of the observations is

C = XX∗ = OΣO∗

=

G∑

i=1

O.,Ωi
ΣΩi,Ωi

O∗
.,Ωi

, (6)

where .∗ denotes conjugate transpose and Σ = PSS∗P∗. Note

that the spatio-spectral sparsity of concurrent speech sources

implies that SS∗ is a diagonal matrix whose diagonal elements

specify the energy of the individual sources - Section VII-A

provides some empirical insights on the properties of the

covariance matrix. The second equation follows because of

the structure of the permutation-attenuation matrix P which

indicates that Σ is supported only on the set
⋃

i Ωi ×Ωi i.e.,

Σj,i =0 ∀(j, i) /∈
G
⋃

i=1

Ωi ×Ωi,

ΣΩi,Ωi
= ‖Si,.‖2

2PΩi.,P
∗
Ωi,.,

(7)

where ‖Si,.‖2 = 2
√

Si,.S
∗
i,.. As we can see, recovering the

diagonal elements of ΣΩi,Ωi
is sufficient to determine the

energy of the corresponding source i and the absorption

coefficients PΩi,.. We thus focus on recovering these sub-

matrices for all i ∈ {1, . . . ,G} from the observation covariance

matrix C. Using the property of the Kronecker product, we can

rewrite (6) as

Cvec =
[

B(1) B(2) . . . B(G)
]

︸ ︷︷ ︸

B











v(1)

v(2)
...

v(G)











︸ ︷︷ ︸

V

∀i ∈ {1 . . . ,G} : v(i) , (ΣΩi,Ωi
)vec ,B(i) , O.,Ωi

⊗O.,Ωi
.

(8)

where ⊗ denotes the Kronecker product between two matrices

and O.,Ωi
is the element-wise conjugate of O.,Ωi

. In a typical

problem setup, very few microphones are used for recording,

i.e. M ≪ G <
∑G

i=1 |Ωi| where operator |.| indicates the

cardinality of the set; thus recovering ΣΩi,Ωi
requires solving

an underdetermined system of linear equations and therefore,

in general (6) admits infinitely many solutions and recovery

is not feasible.

To circumvent the ill-posedness of the inverse problem,

we exploit yet another kind of block-sparsity structure that

is exhibited in our formulation of the reverberant multi-party

recordings. The block sparsity of the actual-virtual sources

implies that only N ≪ G groups of v(i)s (or correspondingly

ΣΩi,Ωi
) contain nonzero elements, and thus, identifying those

groups equivalently determines the positions of the active

sources S.

In addition, by recovering the corresponding elements of V

and then normalizing them by the sources energies, we can

identify the absorption coefficients (i.e., the columns of P)

which correspond to the attenuation for each source due to

the multipath reflections.

We simplify the notation by using Σi , ΣΩi,Ωi
∈

R
|Ωi|×|Ωi|. Our block-sparse recovery approach can then be

formulated by the following convex minimization problem:
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arg min
Σ1,...,ΣG

G∑

i=1

∥

∥

∥Σi
vec

∥

∥

∥

L2

(9)

subject to ‖Cvec −BV‖L2
6 ε

( V =
[

(Σi
vec)

T , , . . . , (Σi
vec)

T
]T

)

Σi = (Σi)∗ ∀i ∈ {1, . . . ,G}

Σi
l,j > 0 ∀l, j, i

We recall that minimizing the sum of the L2 norms of a group

of vectors induces the block-sparsity structure in the solution

so that, only few subsets of vectors in the group (i.e. few

Σis) contain nonzero elements. Indeed, if Σis have the same

size (i.e. |Ω1| = |Ω2| = . . . = |ΩG|) the objective function

of (9) becomes equivalent to the L1L2 norm1 of a matrix

whose rows are populated by (Σi
vec)

T , which as mentioned

earlier is a popular convex approach for block (group) sparse

approximation. We solve (9) by using the iterative proximal

splitting algorithm [24].

To summarize, we obtain the location of the sources and

their images. The components of ΣΩi,Ωi
normalized by the

energy of the sources corresponds to the attenuation factors.

We entangle the room geometry with the absorption coeffi-

cients to characterize the acoustic projections for any order

of desired reflections R, and construct the microphone array

measurement matrix Φ as described in Section IV-A. In a

scenario where N < M, we apply inverse filtering to perform

joint speech separation and deconvolution as explained in the

following Section IV-C3.

3) Speech Recovery by Inverse Filtering the Acoustic Chan-

nel: The approach presented in Sections IV-C1 and IV-C2

enables us to localize the sources and model the mixing

channels. In a scenario where the number of sources is less

than the number of microphones (i.e., M > N), we can use

the frequency domain deconvolution to reverse the attenuation

and phase shift induced by the acoustic propagation. Given

the frequency domain impulse response function H(f,µm,νg)

between microphone located at µm and source located at νg

as expressed in (4), we construct

H =







H(f,µ1,ν1) . . . H(f,µ1,νN)
...

...

H(f,µM,ν1) . . . H(f,µM,νN)







The desired source is recovered by inverse filtering stated as

Ŝ = (H∗H)−1H∗X (10)

This operation performs exact deconvolution of the signal from

the early room impulse response function [14, 16]. The late

reverberation can be statistically modeled as an exponentially

decaying white Gaussian noise which possess the diffuse

characteristics [25].

To reduce the effect of late reverberation and enhance the

signal in terms of speech quality and recognition rate, we

apply the Zelinski post-processing proposed in [26]. Among

several post-filtering methods proposed in the literature, the

1The ‖.‖L1L2
mixed-norm of a matrix is defined as the sum of the L2

norms of its rows as defined in (16)

Zelinski post-filtering is a practical implementation of the

optimal Wiener filter; while a precise realization of the later

requires knowledge about the spectrum of the desired signal,

the Zelinski post-filtering method uses the auto- and cross-

power spectra of the multi-channel input signals to estimate

the target signal and noise power spectra under the assumption

of zero cross-correlation between noise on different sensors.

We implemented the Zelinski post-filter for the experiments

described in Section VII-D. The dereverberation of the early

impulse response achieved by inverse filtering the acoustic

channels enables a more efficient post-filtering as formulated

in [26]. The experimental analysis are presented in Sec-

tion VII-D1.

In the alternative underdetermined scenario where the num-

ber of sources exceeds the number of available recordings (i.e.,

M < N), solving the system of X = ΦS, requires solving an

ill-posed and degenerate system of linear equations which can

take infinitely many answers, we thus exploit prior information

on the sparse properties of S to circumvent the ill-posedness

of the problem. We cast the underdetermined speech recovery

problem as sparse signal reconstruction where we exploit the

underlying structure of the sparse coefficients to recover the

signal components more efficiently from a few number of

measurements [27]. The details are elaborated in the following

Section V.

V. STRUCTURED SPARSE SPEECH RECOVERY

A. Computational Approaches

The objective is to estimate the structured sparse coefficient

vector S such that X = ΦS. This problem can be stated

precisely as

Ŝ = argmin
S∈M

‖S‖0 s.t. X = ΦS (11)

where M specifies the union of all vectors with a particular

support structure. The counting function ‖.‖0 : C
GF → N

returns the number of non-zero components in its argument.

The major classes of computational techniques for solv-

ing the sparse approximation problem stated in (11) include

greedy pursuit, convex relaxation, non-convex optimization,

and Bayesian algorithms. This paper considers greedy algo-

rithms and convex optimization, which offer provable cor-

rect solutions under well-defined conditions [28]. The greedy

pursuit method iteratively refines the current estimate for the

coefficient vector S by modifying one or several coefficients

chosen to yield a substantial improvement in quality of the

estimated signal. The Convex optimization approach solves a

convex relaxation of (11) by replacing the counting function

with a sparsity inducing norm.

B. Structured Sparsity models

We focus on two types of structures underlying the sparse

coefficients: block-dependency and harmonicity.

• The block-dependency model is exhibited if some in-

terconnections between the adjacent frequencies exist.

In case of the vector S, it indicates that the spatial
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sparsity structure is the same at all neighboring discrete

frequencies. In other words, a block of b consecutive

frequencies corresponds to the same cell so the signal

of the individual sources is recovered with a structure of

independent blocks defined as

FB = {[f1, ..., fb], [fb+1, ..., f2b], [fF−b+1, ..., fF]} (12)

• The harmonic-dependency model is exhibited if there

are some interconnections between frequencies which are

the harmonics of a fundamental frequency. In voiced

speech, most of the signal energy occurs at harmonics of a

fundamental frequency. The harmonic sparsity structure

captures this model: it indicates that at any cell of the

grid, energy is present in all frequencies that can be

expressed as harmonics of a fundamental frequency. To

state it more precisely, the support of vector S has the

following FH structure defined as

FH = {kf0|1 < k < K}, (13)

where f0 is the fundamental frequency and K is the

number of harmonics.

C. Model-based Sparse Recovery

Sparse recovery methods have been proposed to incorporate

the underlying structure of the sparse coefficients in recover-

ing the unknown sparse vector. We use model-based sparse

recovery algorithms explained as follows:

• IHT: Iterative hard thresholding (IHT) offers a simple

yet effective approach to estimate the sparse vectors. It

seeks an N-sparse representation Ŝ of the observation

X iteratively to minimize the residual error. We use

the algorithm proposed in [29] which is an accelerated

scheme for hard thresholding methods with the following

recursion 





Ŝ0 = 0

ri = X−ΦŜi
Ŝi+1 = MF.

(

Ŝi + κΦT ri
)

(14)

The step-size κ is the Lipschitz gradient constant to guar-

antee the fastest convergence speed [29]. To incorporate

for the underlying structure of the sparse coefficients,

the model approximation MF. is defined as reweighting

and thresholding the energy of the components of Ŝ with

either FB or FH structures.

• OMP: The Orthogonal Matching Pursuit (OMP) is a

greedy pursuit algorithm which iteratively refines a sparse

solution by successively identifying one or more compo-

nents that yield the greatest improvement in quality. To

describe our model-based OMP in mathematical formula-

tion, we consider an index set Λ which selects a subset of

columns from Φ. Denoting the set difference operator as

\, the columns of Φ\Λ corresponding to either FB or FH

structures are searched per iteration and Λ is expanded

so as the mean-squared error of the signal approximation

is minimized through the left pseudo-inverse operation

denoted by Φ†
. [28, 30]. The signal estimation algorithm

would thus have the following recursion






ΛF.

0 = 0

λi = argmin
λ∈Φ

\Λ
F.
i−1

‖X−Φ
ΛF.

i−1∪λ
Φ

†

ΛF.
i−1∪λ

X‖2

ΛF.

i = ΛF.

i−1 ∪ λi
Ŝi = Φ

†
Λi

X

(15)

• L1L2: Another fundamental approach to sparse approx-

imation replaces the combinatorial counting function in

the mathematical formulation stated in (11) with the L1

norm, yielding convex optimization problems that admit

a tractable algorithm referred to as basis pursuit [31].

We use a group version of basis pursuit algorithm with

the number of group components nF. determined by

each structure F. referring to either FB or FH. The

optimization problem to recover the structured sparse

coefficients Ŝ is formulated as follows

Ŝ = arg min ‖S‖L1,L2
s.t. X = ΦS,

‖S‖L1,L2
=







G∑

g=1





nF.
∑

b=1

S2
g(b)





1/2






(16)

The speech recovery approach as described in this section,

requires characterization of the acoustic measurements and the

performance bound is entangled with the properties of the

microphone array manifold matrix.

VI. PERFORMANCE BOUND

The approach that we have taken in this paper to address

the reverberant speech separation as studied throughout Sec-

tions III-IV, relies on casting the problem as reconstructing

the high-dimensional spatio-spectral information embedded

in the acoustic scene from a compressive acquisition pro-

vided by the array of microphones. We leveraged model-

based sparse recovery framework for characterization of the

compressive acoustic measurements and recovering the speech

components. In this framework, the theoretical analysis of the

performance bounds is entangled with the performance of the

sparse recovery algorithms [28]. We adopt the notion that φj

represents the jth column of Φ. A key property to guarantee

the theoretical performance bound is the coherence of the

measurement matrix defined as

γ(Φ) = max
16j,k6G,j6=k

|〈φj,φk〉|
‖φj‖‖φk‖ (17)

The coherence quantifies the smallest angle between any

pairs of the columns of Φ. The number of recoverable non-

zero coefficients (N) using either convexified or greedy sparse

recovery is inversely proportional to γ as N < 1
2
(γ−1+1) [28].

Hence, to guarantee the performance of sparse recovery algo-

rithms, it is desired that the coherence is minimized. As the

measurement matrix is constructed of the location-dependent

projections, this property implies that the contribution of the

source to the array’s response is small outside the correspond-

ing sensor location or equivalently the resolution of the array

is maximized. It has been shown in [32] that the free-space

Green’s function constituted projections given that the inter-
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element spacing is large enough, exhibits an optimal design,

and the columns of the measurement matrix corresponds to

a sampled Fourier basis function. It has been further pointed

out that a large-aperture random design of sensor array yields

the projections to be mutually incoherent [32]. Thereby, the

projections are spread across all the acoustic scene and each

sensor captures the information about all components of S.

These studies elucidate that the performance of our sparse

approximation framework is entangled with the microphone

array construction design. This issue is investigated in Sec-

tion VII.

VII. EXPERIMENTAL ANALYSIS

A. Orthogonality of Spectrographic Speech

We carried out experiments to investigate the orthogonality

of multiple speech sources in the frequency domain. In this

experiment, five speech signals are obtained by random con-

catenation of 100 utterances from Wall Street Journal speech

corpus and they are normalized prior to analysis. The length

of each speech signal is 2 min and the signals are analyzed

in frames of size 256ms (fft-size = 2048) with 50% overlap;

thus we obtain five 1024 × 900 matrices corresponding to

the STFT of each source. The orthogonality is measured for

each frequency band independently. We construct the matrix

S5×900 where each row corresponds to each source and has the

frequency components of a particular band along 900 frames.

In case of perfectly orthogonal sources, C = SS∗ is diagonal

and the energy of the diagonal elements of the matrix is equal

to the matrix Frobenius norm. Fig. 2-right-hand-side illustrates

the diagonal-L2-norm/matrix-Frobenius-norm.

In addition, we compute a pointwise multiplication of the

STFTs of two utterances and plot the histograms of the

resulted values. Fig. 2-left-hand-side illustrates the obtained

histogram. We can see the distribution mass of the energy

of the point-wise multiplication values is localized around

0. This phenomenon indicates that the majority of the high

energy components in the spectro-temporal domain are non-

overlapping or disjoint. The orthogonality of spectrographic

speech is exploited in our acoustic modeling approach ex-

plained in Section IV-C.
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Fig. 2: Orthogonality of multiple speech utterances in spectro-
temporal domain: Left-hand-side illustrates the energy histogram of
the component-wise multiplication of speech utterances and Right-
hand-side illustrates the diagonal-L2-norm/matrix-Frobenius-norm of
the covariance matrix constructed per frequency.

B. Data Recordings Set-up

Experiments were performed in the framework of the Multi-

channel Overlapping Numbers Corpus (MONC). This database

was collected by outputting 10136 utterances from Num-

bers Corpus release 1.0 (telephone quality speech, 30-word

vocabulary), prepared by the Center for Spoken Language

Understanding at the Oregon Graduate Institute on one or

more loudspeakers, and recording the resulting sound field

using a microphone array and various lapel microphones [33].

The recordings were made in a 8.2 m × 3.6 m × 2.4 m

rectangular room containing a centrally located 4.8 m ×
1.2 m rectangular table. The positioning of loudspeakers was

designed to simulate the presence of 3 competing speakers

seated around a circular meeting room table of diameter

1.2 m. The loudspeakers were placed at 90◦ spacings at an

elevation of 35 cm (distance from table surface to center of

main speaker element). An eight-element, 20 cm diameter,

circular microphone array placed in the center of the table

recorded the mixtures. The recording scenario is illustrated

in Fig. 3. The average signal to noise ratio (SNR) of the

recordings is 10 dB.

Fig. 3: Microphones and speakers placement

This database is collected to evaluate distant speech recog-

nition performance in overlapping condition. The energy levels

of all utterances in the Numbers corpus were normalized to

ensure a relatively constant desired speech level across all

recordings. The corpus was then divided into 3050 training ut-

terances, 1018 development set and 1044 test files. Separation

of utterances into train, devtest and test sets was done accord-

ing to the Numbers release 1.0 documentation (i.e. based on

utterance ID number modulo 5). Generated competing speaker

utterance ID lists was performed by 500-utterance circular

shift of the ordering. The word loop grammar is used and

the task is speaker independent.

C. Reverberant Acoustic Modeling

1) Room Geometry Estimation: The first step to charac-

terize the room acoustics is to estimate the room geometry.

We accomplish this step through localization of the images

of multiple sources in a large extended area using the sparse

recovery framework with a free space model. The location of

the source images corresponds to the temporal support of the

room impulse response function. The energies of the recovered

signals are sorted and truncated to the order of D(D + 1)/2

to include the early reflections of the walls and guarantee the

uniqueness of the solution. The estimated support of the room

impulse response function is then used for estimation of the

room rectangular geometry by generating the room impulse
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responses for various room dimensions and identify the best

fit to the estimated support in least-squares sense. The brute-

force finding of the room geometry has a computational cost

depending on the number of dimensions of the spatial search

space. We can employ some heuristic approaches and start

from an initial guess about the boundaries as the half-way

wall between the source and its earliest images. The estimates

are then refined around the initial state through least square

regression of all virtual sources. The method is implemented to

find the location of the surrounding walls excluding the floor

and the ceiling. There is no algorithmic impediment to perform

room modeling using a volumetric grid, although more number

of microphones is required. For the purpose of the experiments

presented in this paper, we assume the heights to be known

(to enable three-dimensional acoustic modeling) for reducing

the dimensionality and computational cost and enabling an

exhaustive experimental analysis.

The planar area of the room is divided into square cells

with 25 cm spacing. The maximum distance from the center

of the array to identify the actual sources is 1 m; therefore,

if a source is localized at a distance greater than 1 m, it is

considered as a virtual source or source image. To achieve

a better estimation, we restrict our discretized grid to the

orthogonal subspaces corresponding to the orthogonal walls.

We could estimate the geometry of the room up to 50 cm

error per dimension (i.e., 25 cm per wall) from the recordings

of three sources in a close proximity to the microphone array

as depicted in Fig. 3. The experiments are run on MATLAB

7.14 on 4 Core(TM) i7 CPU @ 2.8-GHz, 11.8-GiB RAM

PC; the required absolute elapsed time to perform geometry

estimation by searching 1.5 m around the initial guess for

estimating the two- and three-dimensional geometry were

0.91 and 11 seconds respectively; it shows a linear growth

proportional to the number of augmented search levels. Once

the geometry is estimated, the whole session is recorded in

one place.

2) Absorption Coefficients Estimation: The initial evalu-

ations are conducted on synthesized recordings to enable

quantification of the performance bound in a controlled set-up.

We consider the following scenarios: (1) 8-channel circular

microphone array positioned in the middle of the room, (2)

12-channel microphone array: two sets of 6-channel circular

arrays, each located 1 m far apart with respect to the center

of the room, (3) 16-channel microphone array: two sets of

8-channel circular arrays, each located 1 m far apart with

respect to the center of the room. We considered about

3 cm displacement of the microphones with respect to the

Euclidean coordinates used for computing the microphone

array manifold matrix. The reverberant channel is simulated

using the code available in [34] for a four-sided 3 × 4 m2

enclosure. The area of the room is discretized into a grid of

uniform cells of size 0.5× 0.5 m2 adding up to 40 cells inside

the room. The reflection coefficients of the walls are selected

as 0.4, 0.6, 0.8 and 0.9. Evaluations are carried out using

N = {1, 2, 3} omni-directional sources distributed arbitrarily

in the room with the following characteristics (a) Spectrum of

orthogonal random broad-band sources at 52 auditory-centered

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1
Room Impulse Response (RIR)

0 50 100 150 200 250 300 350 400
−0.5

0
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1
Estimated RIR using the proposed structured sparse acoustic modeling technique

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1
Estimated RIR using the Cross−Relation (least−square minimization) technique

Fig. 4: (top) Example of a simulated room impulse response
(RIR) [34], (middle) Estimated RIR using the proposed structured
sparse acoustic modeling technique, and (bottom) Estimated RIR
using the Cross-Relation (least-squared optimization) technique [35].
The normalized distances between the actual RIR and estimated RIR
using structured sparse recovery and least-squared optimization are
0.33 and 0.92 respectively.

frequencies and (b) Spectrum of independent speech sources

at the frequency-bands which contain 80% of the total energy.

Fig. 4 demonstrates the estimated room acoustic impulse

response from recordings of two concurrent speech sources

recorded by 8-channel microphone array using our structured

sparse acoustic modeling technique explained in Section IV.

Alternatively, the blind channel impulse response estimation

referred to as the Cross-Relation technique [35] is used to

recover the channel from recording of a single source; the

normalized distance quantified as ‖H−Ĥ‖2/‖H‖2 is calculated

as 0.33 and 0.92 respectively. To our knowledge, the state-of-

the-art techniques can not recover the acoustic channel from

recordings of multiple unknown speech sources.

The results of source localization (SL), absorption coeffi-

cients estimation (AC) and signal recovery (SR) are illustrated

in Figs. 5 (orthogonal sources) and Fig. 6 (speech sources).

The results of Fig. 5 demonstrates the performance bound

of the algorithm presented in Section IV-C. We can see that

in noiseless condition, SL is achieved almost 100% correct

per frequency band for any number of (one to three) sources.

However, estimates of the absorption coefficients are not exact;

the root mean square error (RMSE) is proportional to the

number of microphones used to collect the data. The best

estimate is achieved when 16 microphones are used; increasing

the number of concurrent sources results in about 5% error

increase in estimation of AC. Similarly, estimations of the

source coefficients (SR) is obtained up to 4% error if there

is only one source active. Increasing the number of sources

reduces the accuracy about 5% per added source. Contrasting

these results with the bar charts obtained for speech sources

does not show any degradation in 16-microphones scenario.

In more under-sampled regimes, the degradation is less than

5% in SL and upper bounded by 10% in AC and SR.

If we consider adding white Gaussian noise to the recorded

signals, the errors in AC estimation and SR are increased up

to 8% and 50% respectively. In a similar way, considering the

effect of additive noise and reverberation mismatch (obtained
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(1) Noiseless (2) AWGN 15 dB (3) Reverberation + AWGN 15 dB (4) Given−support in (3)

Fig. 5: Performance of the algorithm in terms of Source Localization
(SL), Root Mean Squared Error (RMSE) of Absorption Coefficients
(AC) estimation as well as Signal Recovery (SR). The test data are
random orthogonal sources and the measurement matrix is consisted
of free-space Green’s function. The SNR of noisy condition is 15 dB.
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(1) Noiseless (2) AWGN 15 dB (3) Reverberation + AWGN 15 dB (4) Given−support at (3)

Fig. 6: Performance of the algorithm in terms of Source Localization
(SL), Root Mean Squared Error (RMSE) of Absorption Coefficients
(AC) estimation as well as Signal Recovery (SR). The test data are
random speech sources and the measurement matrix is consisted of
the free-space Green’s function. The SNR of noisy condition is 15 dB.

by adding noise to the AC coefficients), the distortion of AC

estimates is bounded by the noise level whereas the recovered

source coefficients (SR) are highly degraded. Contrasting these

results with the speech bar charts demonstrates up to 40% SR

distortion using only 8 microphones whereas AC estimation is

achieved more accurately and degraded less than 5% using the

approximately orthogonal speech sources; the average error

of AC estimation is expected around 10-20% in noisy and

reverberant condition. These results show a good robustness

with increasing the number of concurrent sources. In addition,

we observe a noticeable reduction in the performance of

support recovery or localization (SL) of speech sources per

frequencies; this effect could be justified as the spectrographic

speech is approximately sparse and many of the components

have a small energy which are drawn in noise. Hence, exploit-

ing model-based sparse recovery or considering the broadband

speech spectrum is crucial to achieve a reasonable localization

performance [36].

Given that support recovery (i.e., SL) is obtained 100%

correct by considering the broadband spectrum of speech

signal and assuming that the sources are immobile, we can use

the identified support for AC estimation and speech recovery.

The resulted accuracy is upper bounded by noise level and

in particular it enables a great improvement in SR. Hence,

we carried out the AC estimation experiments on real data

recordings where the support of the sparse coefficients (i.e.

location of the active sources) is estimated from the first

initial (< 5) frames and absorption coefficients are recovered

given the support. If the number of microphones is more

than the number of sources, then support estimation (source

localization) enables very accurate results for estimation of

the absorption coefficients [36]. Similarly for speech recovery,

we can perform inverse filtering to separate the individual

sources. This scenario is investigated in Section VII-D1. We

computed the average time per frequency for the absorption

coefficient estimation of six-sided walls using 8-channel mi-

crophone array as 17.16 seconds. This computational cost

grows linearly with the dimension of the sparse vector and

the number of microphones. Estimating the support from the

first initial frames, enables estimation of the coefficients by

pseudo-inversion which decreases the computational cost to a

fraction of a second.

The scenario of the real data evaluations is explained in

Section VII-B which is similar to the first set-up described

above. The location of the desired source is fixed through

out the whole session (i.e. stationary condition). The esti-

mated absorption coefficients are plotted using the data in

the following conditions: (I) single speech utterances, (II)

Two simultaneous speech utterances, (III) Three simultaneous

speech utterances. The estimates are run over 9000 speech

files of MONC corpus [33]; the absorption coefficients are

computed and averaged for each frequency-band indepen-

dently. The estimated frequency-dependent absorption coef-

ficients (computed at a resolution of 4 Hz) are illustrated in

Fig. 7. To enable estimation of the three-dimensional acoustic

parameters, we considered two parallel grids at given heights

corresponding to the first order reflection of the table and

ceiling; the reflections of the carpet floor are trapped under

the table hence, the meeting table was considered as the floor

in our image model [37]. Thereby, the algorithm explained

in Section IV-C is run for a six-sided enclosure. To be more

illustrative, the absorption coefficients are depicted for four
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Fig. 7: Frequency-dependent absorption coefficients computed for

each wall from the utterances of 3 competing speakers for the third

speaker.

surrounding walls, although we performed three-dimensional

acoustic modeling. The absorption coefficients are estimated

independently per frame hence, our method is applicable to

the dynamic scenarios where the speaker changes the position

at a rate slower than the frame-size.

There is no ground truth of the actual acoustic parameters

available. The plots show a consistent estimation using record-

ings of one, two and three concurrent sources. The database

is noisy (SNR≈10 dB); the synthetic data evaluations reported

in Fig. 6 show an expected 10-20% error in absorption coeffi-

cient estimation in noisy condition. Similar uncertainty of the

coefficients is observed on real data recordings. Nevertheless,

we use an average estimate of acoustic parameters for speech

recovery tests conducted in Section VII-D1.

D. Reverberant Speech Separation

1) Overdetermined Scenario: Given the location of the

sources and the characterized room acoustic channel obtained

from the formulation stated in Section IV, we recovered

the desired signal by inverse filtering and perform speech

recognition. We used overlap-add (OLA) to reconstruct a time

domain signal after speech separation. The signal is again

transformed to Fourier domain using a short window size

appropriate for speech feature extraction (e.g. MFCC). The

OLA can be considered as a convenient mean of changing the

DFT size and period.

The automatic speech recognition (ASR) scenario was de-

signed to broadly mirror that of Moore and McCowan [38].

A typical front-end was constructed using the HTK toolkit

[39] with 25 ms frames at a rate of 10 ms. This produced

12 mel-cepstra plus the zeroth coefficient and the first and

second time derivatives; 39 features in total. Cepstral mean

normalization is applied to the feature vectors, resulting in

speech recognition performance improvement of about 15%

relative. The back-end consists of 80 tied-state triphone HMMs

with 3 emitting states per triphone and 12 mixtures per state.

The ASR accuracy on the clean speech data is about 95%. We

performed MAP adaptation by applying each technique on the

training data for the corresponding experiments. The Zelinski

post-filtering is applied on the separated speech prior to the

recognition [26].

In addition to the speech recognition, we evaluated the

quality of the recovered speech using signal to interference

ration (SIR) [40] as well as perceptual evaluation of speech

quality (PESQ) [41]. As our approach relies on the principles

of spatial diversity, we compare it with beamforming which

possess similar essence. We used the super-resolution speaker

localization based on sparse recovery to perform near-field

beamforming. The resulting speech recovery performance is

summarized in Table I.

TABLE I: Quality evaluation of the recovered speech in terms of

Source to Interference Ratio (SIR), Perceptual Evaluation of Speech

Quality (PESQ) and Word Recognition Rate (WRR) using near-field

Super Directive (SD) beamforming before and after applying post-

filtering (PF), vs. inverse filtering of Room Acoustic Model (RAM)

N Meas. Baseline Lapel SD SD-PF RAM RAM-PF

1
SIR 12.3 19.19 18.5 18.52 16.7 16.1

PESQ 2.7 3 3.3 3.3 2.92 2.97
WRR% 89.61 93.21 95 95 93.9 93.3

2
SIR 2.6 18.29 11.8 11.33 13 17.5

PESQ 2 2.35 2.7 2.69 2.65 2.8
WRR% 55.19 74.53 70.19 68.16 83.8 87.93

3
SIR -0.7 18.35 10.2 10 10.1 14.2

PESQ 1.6 2.27 2.48 2.48 2.4 2.62
WRR% 39.92 68.13 63 61.45 70.88 79.21

As the results indicate, speech separation and deconvolution

obtained by inverse filtering of the room acoustic channels

followed by post-filtering (RAM-PF) yields the maximum

interference suppression and highest perceptual quality of

the recovered speech in multi-party scenarios as quantified

in terms of SIR and PESQ. It also outperforms other

techniques in terms of word recognition rate. The Zelinski

post-processing is derived to reduce the effect of uncorrelated

noise. We can observe that the improvement in performance

obtained after deconvolution of the room acoustic channel is

higher than what we can achieve after standard beamforming.

2) Underdetermined Scenario: To consider the generalized

scenario of underdetermined mixtures, we incorporate the

room acoustic model for structured sparse speech recovery

explained in Section V. The scenario similar to Fig. 3 is

synthesized using five uniformly situated sources and a circular

array with 4 elements is used for recordings. Alternative to

the uniform compact array, a random large array is simulated

where the distances of the four microphones to the array center

is multiplied by 2, 3, 4, 5 respectively. The sampling frequency

is 8 kHz. The recording condition is clean; the goal of this

experiment is to evaluate the underdetermined speech separa-

tion performance comparing various computational strategies

and speech-specific models in different microphone array

topologies.

The spectro-temporal representation is obtained by win-

dowing the signal in 256 ms frames using a Hann function

with 50% overlapping. The length of the speech signal is

15 s. The speech separation experiments are performed using

different sparse recovery approaches to incorporate the block

dependency as well as harmonicity of the spectro-temporal
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coefficients of speech signal. The quality evaluation results

in terms of SIR [40] and PESQ [41] are summarized in

Fig. 8. The block-size b was set to 4 as it was shown to

yield the best results, especially for B-OMP and B-L1L2. The

average time for recovery of a 256 ms speech frame using

L1L2 [31], IHT [29] and OMP [42] were 148.29, 4.25 and

0.973 seconds respectively. The errorbars correspond to 90%

confidence interval and are calculated in a frame-basis.

In the harmonic model, we consider that f0 ∈ [150 − 400]

Hz. Those frequencies that are not harmonics of f0 are

recovered independently in H-IHT and H-L1L2. We also con-

sidered that the harmonic structures are non-overlapping and k

spans the full frequency band. The harmonic sparse recovery

approach does not require estimation of f0. We start from

f0 = 50 and consider all of its harmonics within the frequency

band (i.e., f 6 4000); hence, a block of size K = 80 of

harmonics of f0 = 50 are recovered jointly. Then we move

to f0 = 51 and proceed up to f0 = 400. Therefore, the size of

the blocks are variable. To prevent overlapping, the priority is

given to the first seen frequency components. In other words,

if a particular frequency is first included in the harmonics of

f0 = 50, it is excluded from the harmonics of f0 = 100. The

remaining frequency components are recovered independently.

For H-OMP, the harmonic subspaces are used to select the

bases while projection is performed for the full frequency

band. This procedure is applied on all of the frames regardless

of the voiced/unvoiced characteristics. Therefore, we expect

the model to be more effective if the ratio of the voiced

segments is greater than the unvoiced segments; a combination

of block and harmonic model could be considered for effective

model-based speech recovery.

We observe that the highest quality in terms of SIR and

PESQ are obtained by convex optimization. This could be

due to the zero-forcing spirit of greedy approaches. This

deficiency is particularly exhibited for speech-like signals,

which do not possess high compressibility [43, 44]. However,

in some applications such as speech recognition, where the

reconstruction of the signal is not required, we can exploit

the sparsity of the information bearing components in greedy

sparse recovery approaches, which offer a noticeable compu-

tational speed in efficient implementations and a reasonable

performance [27]. Comparing the results of ad-hoc micro-

phones with the conventional compact topology suggests that

uniform compact microphone array is not an optimal design

from sparse recovery perspective and using the recordings of

an ad-hoc large microphone array yields better performance.

VIII. CONCLUSIONS

In this paper, we proposed a new convolutive speech

separation framework that exploits spatio-spectral structures

in reverberant recordings. This framework exploits structured

sparsity models to characterize acoustic measurements ob-

tained from an array of microphones, and to recover the

individual speech sources. We estimated the acoustic response

of the recording enclosure using the image model through a

two-step procedure: first, estimating the room geometry and

second, estimating the absorption coefficients.
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Fig. 8: Quality evaluation of the separated speech using different
sparse recovery approaches in terms of SIR and PESQ. The baseline
measures are -3.68 and 1.44 respectively. The errorbars depict the
90% confidence interval. The dark bars correspond to the compact
uniform array whereas the light bars correspond to the ad-hoc large
microphone array topology.

For simple rectangular rooms, the room geometry was

estimated by localizing virtual sources associated with discrete

reflections of the original signal, followed by low-rank cluster-

ing of the subspaces resulting of each actual source. Location

of the virtual sources corresponds to the temporal support of

the room impulse response; these were used to estimate the

geometry of the room via least square regression. The absorp-

tion coefficients associated with the reflective surfaces were

then estimated via structured sparse recovery of a factorized

formulation of multipath propagation model.

Given the so inferred model of the reverberant room

response, we characterized microphone array recordings as

compressive measurements of sound sources, and cast mul-

tiparty speech recovery as a structured sparse reconstruction

problem where we exploited the block dependency, as well as

harmonicity of the spectral coefficients, to recover the speech

signals. Recovery may be performed through either convex

optimization or greedy approaches. The results indicate that

recovery through convex optimization yields the best speech

quality quantified in terms of PESQ.

Interference suppression is also well achieved via greedy

sparse recovery using the orthogonal matching pursuit algo-

rithm. Hence, for applications such as speech recognition,

where reconstruction error is not the objective, we can ef-

fectively employ the greedy strategies to recover the salient

information bearing components. Furthermore, we showed

that in a (over)determined setup, we can achieve separation

and deconvolution through inverse filtering of the acoustic

channels.

We generalized our approach to large-aperture ad-hoc mi-

crophone arrays, and showed that the speech recovery perfor-

mance obtained with such arrays is significantly superior to

that obtained with compact arrays with uniform spacing of

microphones. Hence, the compact uniform array set-up is not

an optimal design for a sparse reconstruction framework and

the present study motivates more investigation on sparse and

ad-hoc microphone array layouts.

The success of our structured sparse recovery framework

motivates incorporating other parametric models such as auto-

regressive dependencies of the spectral coefficients [45, 46]

or other forms of statistical dependencies [47] for speech-

specific applications. Furthermore, we can extend our acoustic

modeling formulation exploiting the low-rank structure of the

problem induced by the similarity of signals attributed to the
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source and its images [48].
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