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Structured Sparsity through Convex
Optimization

Francis Bach, Rodolphe Jenatton, Julien Mairal and Guillaume Obozinski

Abstract.  Sparse estimation methods are aimed at using or obtaining parsi-
monious representations of data or models. While naturally cast as a combi-
natorial optimization problem, variable or feature selection admits a convex
relaxation through the regularization by the £1-norm. In this paper, we con-
sider situations where we are not only interested in sparsity, but where some
structural prior knowledge is available as well. We show that the £{-norm
can then be extended to structured norms built on either disjoint or over-
lapping groups of variables, leading to a flexible framework that can deal
with various structures. We present applications to unsupervised learning,
for structured sparse principal component analysis and hierarchical dictio-
nary learning, and to supervised learning in the context of nonlinear variable

selection.
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1. INTRODUCTION

The concept of parsimony is central in many scien-
tific domains. In the context of statistics, signal pro-
cessing or machine learning, it takes the form of vari-
able or feature selection problems, and is commonly
used in two situations: First, to make the model or the
prediction more interpretable or cheaper to use; that is,
even if the underlying problem does not admit sparse
solutions, one looks for the best sparse approximation.
Second, sparsity can also be used, given prior knowl-
edge that the model should be sparse.

Sparse linear models seek to predict an output by lin-
early combining a small subset of the features describ-
ing the data. To simultaneously address variable selec-
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tion and model estimation, £1-norm regularization has
become a popular tool, which benefits both from ef-
ficient algorithms (see, e.g., Efron et al., 2004; Beck
and Teboulle, 2009; Yuan, 2010; Bach et al., 2012 and
multiple references therein) and a well-developed the-
ory for generalization properties and variable selection
consistency (Zhao and Yu, 2006; Wainwright, 2009;
Bickel, Ritov and Tsybakov, 2009; Zhang, 2009).

When regularizing with the £;-norm, each variable
is selected individually, regardless of its position in the
input feature vector, so that existing relationships and
structures between the variables (e.g., spatial, hierar-
chical or related to the physics of the problem at hand)
are merely disregarded. However, in many practical sit-
uations the estimation can benefit from some type of
prior knowledge, potentially both for interpretability
and to improve predictive performance.

This a priori can take various forms: in neuroimag-
ing based on functional magnetic resonance (fMRI) or
magnetoencephalography (MEG), sets of voxels allow-
ing one to discriminate between different brain states
are expected to form small localized and connected ar-
eas (Gramfort and Kowalski, 2009; Xiang et al., 2009
and references therein). Similarly, in face recognition,
as shown in Section 4.4, robustness to occlusions can
be increased by considering as features, sets of pixels
that form small convex regions of the faces. Again,
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a plain £1-norm regularization fails to encode such
specific spatial constraints (Jenatton, Obozinski and
Bach, 2010). The same rationale supports the use of
structured sparsity for background subtraction (Cevher
et al., 2008; Huang, Zhang and Metaxas, 2011; Mairal
et al., 2011).

Another example of the need for higher-order prior
knowledge comes from bioinformatics. Indeed, for the
diagnosis of tumors, the profiles of array-based com-
parative genomic hybridization (arrayCGH) can be
used as inputs to feed a classifier (Rapaport, Barillot
and Vert, 2008). These profiles are characterized by
many variables, but only a few observations of such
profiles are available, prompting the need for variable
selection. Because of the specific spatial organization
of bacterial artificial chromosomes along the genome,
the set of discriminative features is expected to con-
sist of specific contiguous patterns. Using this prior
knowledge in addition to standard sparsity leads to im-
provement in classification accuracy (Rapaport, Baril-
lot and Vert, 2008). In the context of multi-task regres-
sion, a problem of interest in genetics is to find a map-
ping between a small subset of loci presenting single
nucleotide polymorphisms (SNP’s) that have a pheno-
typic impact on a given family of genes (Kim and Xing,
2010). This target family of genes has its own structure,
where some genes share common genetic characteris-
tics, so that these genes can be embedded into some un-
derlying hierarchy. Exploiting directly this hierarchical
information in the regularization term outperforms the
unstructured approach with a standard £;-norm (Kim
and Xing, 2010).

These real world examples motivate the need for the
design of sparsity-inducing regularization schemes, ca-
pable of encoding more sophisticated prior knowledge
about the expected sparsity patterns. As mentioned
above, the £1-norm corresponds only to a constraint
on cardinality and is oblivious of any other informa-
tion available about the patterns of nonzero coefficients
(“nonzero patterns” or “supports”) induced in the so-
lution, since they are all theoretically possible. In this
paper, we consider a family of sparsity-inducing norms
that can address a large variety of structured sparse
problems: a simple change of norm will induce new
ways of selecting variables; moreover, as shown in Sec-
tion 3.5 and Section 3.6, algorithms to obtain estima-
tors (e.g., convex optimization methods) and theoreti-
cal analyses are easily extended in many situations. As
shown in Section 3, the norms we introduce general-
ize traditional “group £1-norms” that have been popu-
lar for selecting variables organized in nonoverlapping

groups (Turlach, Venables and Wright, 2005; Yuan and
Lin, 2006; Roth and Fischer, 2008; Huang and Zhang,
2010). Other families for different types of structures
are presented in Section 3.4.

The paper is organized as follows: we first review,
in Section 2, classical £1-norm regularization in super-
vised contexts. We then introduce several families of
norms in Section 3, and present applications to unsu-
pervised learning in Section 4, namely for sparse prin-
cipal component analysis in Section 4.4 and hierarchi-
cal dictionary learning in Section 4.5. We briefly show
in Section 5 how these norms can also be used for high-
dimensional nonlinear variable selection.

Notations. Throughout the paper, we shall denote
vectors with bold lower case letters, and matrices with
bold upper case ones. For any integer j in the set
[1; pI £1,..., p}, we denote the jth coefficient of
a p-dimensional vector w € R?” by w;. Similarly, for
any matrix W € R"*”, we refer to the entry on the ith
row and jth column as W;;, for any (7, j) € [1; n]] x
[[1; pI. We will need to refer to sub-vectors of w € R?,
and so, for any J C [[1; p]l, we denote by w; € RI/I
the vector consisting of the entries of w indexed by J.
Likewise, for any I < [[1;n]l, J € [[1; p]l, we de-
note by W;; € RI/IXI/I the sub-matrix of W formed
by the rows (resp. the columns) indexed by I (resp.
by J). We extensively manipulate norms in this pa-
per. We thus define the £,-norm for any vector w € R”

by lIwllg £ X0_; Iw;19 for g € [1,00), and [|W]loo =
maxje(1;p) [Wj|. For g € (0, 1), we extend the defini-
tion above to £, pseudo-norms. Finally, for any ma-
trix W € R"*?_ we define the Frobenius norm of W by

2 A p 2
”WHF = ?:1 Zj:1 W,’j-

2. UNSTRUCTURED SPARSITY VIA THE £;-NORM

Regularizing by the £{-norm has been a topic of
intensive research over the last decade. This line of
work has witnessed the development of nice theoret-
ical frameworks (Tibshirani, 1996; Chen, Donoho and
Saunders, 1998; Mallat, 1999; Tropp, 2004; Tropp,
2006; Zhao and Yu, 2006; Zou, 2006; Wainwright,
2009; Bickel, Ritov and Tsybakov, 2009; Zhang, 2009;
Negahban et al., 2009) and the emergence of many ef-
ficient algorithms (Efron et al., 2004; Nesterov, 2007;
Friedman et al., 2007; Wu and Lange, 2008; Beck and
Teboulle, 2009; Wright, Nowak and Figueiredo, 2009;
Needell and Tropp, 2009; Yuan et al., 2010). More-
over, this methodology has found quite a few applica-
tions, notably in compressed sensing (Candes and Tao,
2005), for the estimation of the structure of graphical
models (Meinshausen and Biihlmann, 2006) or for sev-
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eral reconstruction tasks involving natural images (e.g.,
see Mairal, 2010, for a review). In this section, we fo-
cus on supervised learning and present the traditional
estimation problems associated with sparsity-inducing
norms such as the £1-norm (see Section 4 for unsuper-
vised learning).

In supervised learning, we predict (typically one-
dimensional) outputs y in Y from observations X in ’;
these observations are usually represented by p-dimen-
sional vectors with X = R”. M-estimation and, in
particular, regularized empirical risk minimization are
well suited to this setting. Indeed, given n pairs of data
points {(x®,y®) e R? x V;i =1,...,n}, we con-
sider the estimators solving the following form of con-
vex optimization problem:

1 . .
2.1 min = > ¢(y@, w'x?) +2Q(w),

weR? n %
i=1

where £ is a loss function, and Q:R? — R is a
sparsity-inducing—typically nonsmooth and non-Eu-
clidean—norm. Typical examples of differentiable loss
functions are the square loss for least squares regres-
sion, that is, £(y, §) = 5(y — $) with y in R, and the
logistic loss £(y, $) = log(1+e~*7) for logistic regres-
sion, with y in {—1, 1}. We refer the readers to Shawe-
Taylor and Cristianini (2004) and to Hastie, Tibshirani
and Friedman (2001) for more complete descriptions
of loss functions.

Within the context of least-squares regression, £1-
norm regularization is known as the Lasso (Tibshirani,
1996) in statistics and as basis pursuit in signal pro-
cessing (Chen, Donoho and Saunders, 1998). For the
Lasso, formulation (2.1) takes the form

1
2.2 in — ||y — Xwl3 + A
(2.2) min —lly = Xwli; + 2wl
and, equivalently, basis pursuit can be written'
1
2.3 in ~|Ix — De||3 + Allex]l1.
(23)  min [x —Def3 + Al

These two equations are obviously identical but we
write them both to show the correspondence between
notations used in statistics and in signal processing.

INote that the formulations which are typically encountered in
signal processing are either mingy |||l s.t. x = De, which corre-
sponds to the limiting case of equation (2.3), where A — 0, and x
is in the span of the dictionary D, or ming ||e||1 s.t. [|x — Dellp <7
which is a constrained counterpart of equation (2.3) leading to the
same set of solutions [see the explanation following equation (2.4)].

In statistical notations, we will use X € R"*? to de-
note a set of n observations described by p variables
(covariates), while y € R" represents the correspond-
ing set of n targets (responses) that we try to predict.
For instance, y may have discrete entries in the context
of classification. With notations of signal processing,
we will consider an m-dimensional signal x € R™ that
we express as a linear combination of p dictionary el-
ements composing the dictionary D £ [d!,...,d”] €
R™*P_ While the design matrix X is usually assumed
fixed and given beforehand, we shall see in Section 4
that the dictionary D may correspond either to some
pre-defined basis (e.g., see Mallat, 1999, for wavelet
bases) or to a representation that is actually learned as
well (Olshausen and Field, 1996).

Geometric intuitions for the £1-norm ball. While we
consider in (2.1) a regularized formulation, we could
have considered an equivalent constrained problem of
the form

1 & : -
(2.4) min — Zﬁ(y(’), w'x®)  such that Q(w) < p,

weR? n ¢
i=1

for some p € Ry: It is indeed the case that the solu-
tions to problem (2.4) obtained when varying u is the
same as the solutions to problem (2.1), for some of A,
depending on u (e.g., see Section 3.2 in Borwein and
Lewis, 2006).

At optimality, the opposite of the gradient of f : w >
% " ey, wix@) evaluated at any solution W
of (2.4) must belong to the normal cone to B = {w €
R”; Q(w) < u} at w (Borwein and Lewis, 2006). In
other words, for sufficiently small values of u (i.e., en-
suring that the constraint is active) the level set of f
for the value f (W) is tangent to B. As a consequence,
important properties of the solutions w follow from the
geometry of the ball B. If €2 is taken to be the £;-norm,
then the resulting ball B is the standard, isotropic,
“round” ball that does not favor any specific direction
of the space. On the other hand, when €2 is the £{-norm,
B corresponds to a diamond-shaped pattern in two di-
mensions, and to a double pyramid in three dimen-
sions. In particular, 3 is anisotropic and exhibits some
singular points due to the nonsmoothness of €2. Since
these singular points are located along axis-aligned lin-
ear subspaces in R?, if the level set of f with the small-
est feasible value is tangent to I3 at one of those points,
sparse solutions are obtained. We display in Figure 1
the balls B for both the £1- and £>-norms. See Section 3
and Figure 2 for extensions to structured norms.



STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 453

L

(a) £>-norm ball (b) £1-norm ball

F1G. 1. Comparison between the €y-norm and £1-norm balls in
three dimensions, respectively, on the left and right figures. The
£1-norm ball presents some singular points located along the axes
of R3 and along the three axis-aligned planes going through the
origin.

3. STRUCTURED SPARSITY-INDUCING NORMS

In this section, we consider structured sparsity-
inducing norms that induce estimated vectors that are
not only sparse, as for the £1-norm, but whose support
also displays some structure known a priori that reflects
potential relationships between the variables.

3.1 Sparsity-Inducing Norms with Disjoint Groups
of Variables

The most natural form of structured sparsity is ar-
guably group sparsity, matching the a priori knowledge
that pre-specified disjoint blocks of variables should be
selected or ignored simultaneously. In that case, if G is

(a) £1/42-norm
ball without overlaps:
Q(w) = [[w12)ll2 + [w3]

(b) £1/£2-norm
ball with overlaps:
Q(w) = llwg 2,311+
[W1] + [w2]

FI1G. 2. Comparison between two mixed £1/{3-norm balls in
three dimensions (the first two directions are horizontal, the third
one is vertical), without and with overlapping groups of variables,
respectively on the left and right figures. The singular points ap-
pearing on these balls describe the sparsity-inducing behavior of
the underlying norms Q.

a collection of groups of variables, forming a partition
of [1; pll, and dj is a positive scalar weight indexed by
group g, we define Q2 as

3.1) Qw) = ng||wg||q for any g € (1, co].
8€g

This norm is usually referred to as a mixed £1/¢4-
norm, and in practice, popular choices for g are {2, oo}.
As desired, regularizing with €2 leads variables in the
same group to be selected or set to zero simultaneously
(see Figure 2 for a geometric interpretation). In the
context of least-squares regression, this regularization
is known as the group Lasso (Turlach, Venables and
Wright, 2005; Yuan and Lin, 2006). It has been shown
to improve the prediction performance and/or inter-
pretability of the learned models when the block struc-
ture is relevant (Roth and Fischer, 2008; Stojnic, Par-
varesh and Hassibi, 2009; Lounici et al., 2009; Huang
and Zhang, 2010). Moreover, applications of this reg-
ularization scheme arise also in the context of multi-
task learning (Obozinski, Taskar and Jordan, 2010;
Quattoni et al., 2009; Liu, Palatucci and Zhang, 2009)
to account for features shared across tasks, and mul-
tiple kernel learning (Bach, 2008) for the selection of
different kernels (see also Section 5).

Choice of the weights. When the groups vary signifi-
cantly in size, results can be improved, in particular un-
der high-dimensional scaling, by an appropriate choice
of the weights d; which compensate for the discrepan-
cies of sizes between groups. It is difficult to provide
a unique choice for the weights. In general, they de-
pend on g and on the type of consistency desired. We
refer the reader to Yuan and Lin (2006); Bach (2008);
Obozinski, Jacob and Vert (2011); Lounici et al. (2011)
for general discussions.

It might seem that the case of groups that overlap
would be unnecessarily complex. It turns out, in real-
ity, that appropriate collections of overlapping groups
allow us to encode quite interesting forms of struc-
tured sparsity. In fact, the idea of constructing sparsity-
inducing norms from overlapping groups will be key.
We present two different constructions based on over-
lapping groups of variables that are essentially comple-
mentary of each other in Sections 3.2 and 3.3.

3.2 Sparsity-Inducing Norms with Overlapping
Groups of Variables

In this section, we consider a direct extension of the
norm introduced in the previous section to the case of
overlapping groups; we give an informal overview of
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the structures that it can encode and examples of rel-
evant applied settings. For more details see Jenatton,
Audibert and Bach (2011).

Starting from the definition of €2 in equation (3.1), it
is natural to study what happens when the set of groups
G is allowed to contain elements that overlap. In fact,
and as shown by Jenatton, Audibert and Bach (2011),
the sparsity-inducing behavior of €2 remains the same:
when regularizing by €2, some entire groups of vari-
ables g in G are set to zero. This is reflected in the set of
nonsmooth extreme points of the unit ball of the norm
represented on Figure 2(b). While the resulting patterns
of nonzero variables—also referred to as supports, or
nonzero patterns—were obvious in the nonoverlapping
case, it is interesting to understand here the relationship
that ties together the set of groups G and its associated
set of possible nonzero patterns. Let us denote by P
the latter set. For any norm of the form (3.1), it is still
the case that variables belonging to a given group are
encouraged to be set simultaneously to zero; as a re-
sult, the possible zero patterns for solutions of (2.1) are
obtained by forming unions of the basic groups, which
means that the possible supports are obtained by taking
the intersection of a certain number of complements of
the basic groups.

Moreover, under mild conditions (Jenatton, Audibert
and Bach, 2011), given any intersection-closed* fam-
ily of patterns P of variables (see examples below),
it is possible to build an ad-hoc set of groups G—and
hence, a regularization norm 2—that enforces the sup-
port of the solutions of (2.1) to belong to P.

These properties make it possible to design norms
that are adapted to the structure of the problem at hand,
which we now illustrate with a few examples.

One-dimensional interval pattern. Given p variables
organized in a sequence, using the set of groups G
of Figure 3, it is only possible to select contiguous
nonzero patterns. In this case, we have |G| = O(p).
Imposing the contiguity of the nonzero patterns can be
relevant in the context of variable forming time series,
or for the diagnosis of tumors, based on the profiles of
CGH arrays (Rapaport, Barillot and Vert, 2008), since
a bacterial artificial chromosome will be inserted as a
single continuous block into the genome.

Two-dimensional convex support. Similarly, assume
now that the p variables are organized on a two-
dimensional grid. To constrain the allowed supports P
to be the set of all rectangles on this grid, a possible set

2A set A is said to be intersection-closed, if for any k£ € N, and
for any (ay, ..., a;) € AK, we have ﬂ{le aj € A.

W7 7] [T
B (7] [([[] e
B (] ([ . W
____HEEREN
I | [ .

FI1G. 3.  (Left) The set of blue groups to penalize in order to select
contiguous patterns in a sequence. (Right) In red, an example of
such a nonzero pattern with its corresponding zero pattern (hatched
area).

of groups G to consider is represented in the top of Fig-
ure 4. This set is relatively small since |G| = O(/p).
Groups corresponding to half-planes with additional
orientations (see Figure 4 bottom) may be added to
“carve out” more general convex patterns. See an il-
lustration in Section 4.4.

Two-dimensional block structures on a grid. Us-
ing sparsity-inducing regularizations built upon groups
which are composed of variables together with their
spatial neighbors leads to good performances for back-
ground subtraction (Cevher et al., 2008; Baraniuk
et al., 2010; Huang, Zhang and Metaxas, 2011; Mairal
et al., 2011), topographic dictionary learning
(Kavukcuoglu et al., 2009; Mairal et al., 2011), and
wavelet-based denoising (Rao et al., 2011).

Hierarchical structure. A fourth interesting exam-
ple assumes that the variables are organized in a hi-
erarchy. Precisely, we assume that the p variables can
be assigned to the nodes of a tree 7 (or a forest
of trees), and that a given variable may be selected
only if all its ancestors in 7 have already been se-
lected. This hierarchical rule is exactly respected when
using the family of groups displayed on Figure 5.
The corresponding penalty was first used by Zhao,
Rocha and Yu (2009); one of it simplest instances in
the context of regression is the sparse group Lasso
(Sprechmann et al., 2010; Friedman, Hastie and Tib-
shirani, 2010); it has found numerous applications, for
instance, wavelet-based denoising (Zhao, Rocha and
Yu, 2009; Baraniuk et al., 2010; Huang, Zhang and
Metaxas, 2011; Jenatton et al., 2011b), hierarchical
dictionary learning for both topic modelling and image
restoration (Jenatton et al., 2011b), log-linear models
for the selection of potential orders (Schmidt and Mur-
phy, 2010), bioinformatics, to exploit the tree structure
of gene networks for multi-task regression (Kim and
Xing, 2010) and multi-scale mining of fMRI data for
the prediction of simple cognitive tasks (Jenatton et al.,
2011a).
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FI1G. 4. Top: Vertical and horizontal groups: (Left) the set of blue and green groups to penalize in order to select rectangles. (Right) In
red, an example of nonzero pattern recovered in this setting, with its corresponding zero pattern (hatched area). Bottom: Groups with £ /4
orientations: (Left) the set of blue and green groups with their (not displayed) complements to penalize in order to select diamond-shaped

patterns.

Extensions. Possible choices for the sets of groups G
are not limited to the aforementioned examples: more
complicated topologies can be considered, for exam-
ple, three-dimensional spaces discretized in cubes or
spherical volumes discretized in slices [see an applica-
tion to neuroimaging by Varoquaux et al. (2010)], and
more complicated hierarchical structures based on di-
rected acyclic graphs can be encoded as further devel-
oped in Section 5.

Choice of the weights. The choice of the weights
dg is significantly more important in the overlapping

FIG.5. Left: set of groups G (dashed contours in red) correspond-
ing to the tree T with p = 6 nodes represented by black circles.
Right: example of a sparsity pattern induced by the tree-structured
norm corresponding to G: the groups {2, 4}, {4} and {6} are set to
zero, so that the corresponding nodes (in gray) that form subtrees
of T are removed. The remaining nonzero variables {1, 3, 5} form a
rooted and connected subtree of T . This sparsity pattern obeys the
two following equivalent rules: (i) If a node is selected, the same
goes for all its ancestors. (ii) If a node is not selected, then its de-
scendant are not selected.

case, both theoretically and in practice. In addition to
compensating for the discrepancy in group sizes, the
weights additionally have to make up for the potential
over-penalization of parameters contained in a larger
number of groups. For the case of one-dimensional
interval patterns, Jenatton, Audibert and Bach (2011)
showed that it was more efficient in practice to actually
weight each individual coefficient inside of a group as
opposed to weighting the group globally.

3.3 Norms for Overlapping Groups: A Latent
Variable Formulation

The family of norms defined in equation (3.1) is
adapted to intersection-closed sets of nonzero patterns.
However, some applications exhibit structures that can
be more naturally modeled by union-closed families of
supports. This idea was introduced by Jacob, Obozin-
ski and Vert (2009) and Obozinski, Jacob and Vert
(2011) who, given a set of groups G, proposed the fol-
lowing norm:

A .
Qunion(W) = m1£1|g\ Z dg A& llg
8€g

veRP

(3.2)

D> ovE=w,

such that { geg

Veeg.vi=0, if jég,
where again d, is a positive scalar weight associated
with group g.

The norm we just defined provides a different gener-

alization of the ¢;/£,-norm to the case of overlapping
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groups than the norm presented in Section 3.2. In fact,
it is easy to see that solving equation (2.1) with the
norm Qypion 1S equivalent to solving

n
min Zﬁ(y(i), > VgTXS)>

(veeRiEh e 4G

+ 1) dglvElly
g€y

(3.3)

and setting W =}, v¢. This last equation shows that
using the norm Qypion can be interpreted as implicitly
duplicating the variables belonging to several groups
and regularizing with a weighted ¢ /{,-norm for dis-
joint groups in the expanded space. Again in this case,
a careful choice of the weights is important (Obozinski,
Jacob and Vert, 2011).

This latent variable formulation pushes some of the
vectors v8 to zero while keeping others with no zero
components, hence leading to a vector w with a support
which is, in general, the union of the selected groups.
Interestingly, it can be seen as a convex relaxation
of a nonconvex penalty, encouraging similar sparsity
patterns which was introduced by Huang, Zhang and
Metaxas (2011) and which we present in Section 3.4.
See an example in Figure 6.

Graph Lasso. One type of a priori knowledge com-
monly encountered takes the form of a graph defined
on the set of input variables, which is such that con-
nected variables are more likely to be simultaneously
relevant or irrelevant; this type of prior is common in

(a) Unit ball for
Gg={{1,3},{2,3}}

(b) G ={{1,3},{2,3},
{1.2}}

FI1G. 6. Two instances of unit balls of the latent group Lasso reg-
ularization Qupion for two or three groups of two variables. Their
singular points lie on axis-aligned circles, corresponding to each
group, and whose convex hull is exactly the unit ball. It should be
noted that the ball on the left is quite similar to the one of Fig-
ure 2(b) except that its “poles” are flatter, hence discouraging the
selection of X3 without either X1 or Xp.

genomics where regulation, co-expression or interac-
tion networks between genes (or their expression level)
used as predictors are often available. To favor the se-
lection of neighbors of a selected variable, it is possi-
ble to consider the edges of the graph as groups in the
previous formulation (see Jacob, Obozinski and Vert,
2009; Rao et al., 2011).

Patterns consisting of a small number of intervals.
A quite similar situation occurs when one knows
a priori—typically for variables forming sequences
(times series, strings, polymers)—that the support
should consist of a small number of connected subse-
quences. In that case, one can consider the sets of vari-
ables forming connected subsequences (or connected
subsequences of length at most k) as the overlapping
groups (Obozinski, Jacob and Vert, 2011).

3.4 Related Approaches to Structured Sparsity

Norm design through submodular functions. An-
other approach to structured sparsity relies on sub-
modular analysis (Bach, 2010). Starting from a non-
decreasing, submodular® set-function F of the sup-
ports of the parameter vector w—that is, w — F({j €
[[1; pIl; w; # 0})—a structured sparsity-inducing norm
can be built by considering its convex envelope (tight-
est convex lower bound) on the unit £~,-norm ball.
By selecting the appropriate set-function F, similar
structures to those described above can be obtained.
This idea can be further extended to symmetric, sub-
modular set-functions of the level sets of w, that is,
wi— max,er F({j € [1; p]l; w; > v}), thus leading to
different types of structures (Bach, 2011b), allowing to
shape the level sets of w rather than its support. This
approach can also be generalized to any set-function
and other priors on the the nonzero variables than the
£oo-norm (Obozinski and Bach, 2012).

Nonconvex approaches. We mainly focus in this re-
view on convex penalties, but in fact, many nonconvex
approaches have been proposed as well. In the same
spirit as the norm (3.2), Huang, Zhang and Metaxas
(2011) considered the penalty

Y(w) £ min > wg

—~ geH

such that {j € [1; pTi w; #0} < | J g.
geH

3Let S be a finite set. A function F:25 — R is said to be
submodular if for any subset A, B C S, we have the inequality
F(ANB)+ F(AUB) < F(A) + F(B); see Bach (2011a) and
references therein.
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where G is a given set of groups, and {w,}geg is a
set of positive weights which defines a coding length.
In other words, the penalty Y measures from an
information-theoretic viewpoint, “how much it costs,”
to represent w. Finally, in the context of compressed
sensing, the work of Baraniuk et al. (2010) also focuses
on union-closed families of supports, although without
information-theoretic considerations. All of these non-
convex approaches can in fact also be relaxed to convex
optimization problems (Obozinski and Bach, 2012).

Other forms of sparsity. We end this review by dis-
cussing sparse regularization functions encoding other
types of structures than the structured sparsity penal-
ties we have presented. We start with the total-variation
penalty originally introduced in the image process-
ing community (Rudin, Osher and Fatemi, 1992),
which encourages piecewise constant signals. It can
be found in the statistics literature under the name
of “fused Lasso” (Tibshirani et al., 2005). For one-
dimensional signals, it can be seen as the £;-norm of
finite differences for a vector w in R?: Qrv_ip(w) £
Zf’;ll |w;+1 — w;|. Extensions have been proposed for
multi-dimensional signals and for recovering piece-
wise constant functions on graphs (Kim, Sohn and
Xing, 2009).

We remark that we have presented group-sparsity
penalties in Section 3.1, where the goal was to select
a few groups of variables. A different approach called
“exclusive Lasso” consists instead of selecting a few
variables inside each group, with some applications in
multitask learning (Zhou, Jin and Hoi, 2010).

Finally, we would like to mention a few works
on automatic feature grouping (Bondell and Reich,
2008; Shen and Huang, 2010; Zhong and Kwok, 2011),
which could be used when no a-priori group structure G
is available. These penalties are typically made of pair-
wise terms between all variables, and encourage some
coefficients to be similar, thereby forming “groups.”

3.5 Convex Optimization with Proximal Methods

In this section, we briefly review proximal methods
which are convex optimization methods particularly
suited to the norms we have defined. They essentially
allow us to solve the problem regularized with a new
norm at low implementation and computational costs.
For a more complete presentation of optimization tech-
niques adapted to sparsity-inducing norms, see Bach
et al. (2012).

Proximal methods constitute a class of first-order
techniques typically designed to solve problem (2.1)
(Nesterov, 2007; Beck and Teboulle, 2009; Combettes

and Pesquet, 2010). They take advantage of the struc-
ture of (2.1) as the sum of two convex terms. For
simplicity, we will present here the proximal method
known as forward-backward splitting, which assumes
that at least one of these two terms is smooth. Thus we
will typically assume that the loss function ¢ is con-
vex differentiable, with Lipschitz-continuous gradients
(such as the logistic or square loss), while €2 will only
be assumed convex.

Proximal methods have become increasingly popu-
lar over the past few years, both in the signal process-
ing (e.g., Becker, Bobin and Candes, 2011; Wright,
Nowak and Figueiredo, 2009; Combettes and Pesquet,
2010, and numerous references therein) and in the
machine learning communities (e.g., Jenatton et al.,
2011b; Chen et al., 2011; Bach et al., 2012, and refer-
ences therein). In a broad sense, these methods can be
described as providing a natural extension of gradient-
based techniques when the objective function to min-
imize has a nonsmooth part. Proximal methods are it-
erative procedures. Their basic principle is to linearize,
at each iteration, the function f around the current es-
timate W, and to update this estimate as the (unique,
by strong convexity) solution of the so-called proxi-
mal problem. Under the assumption that f is a smooth
function, it takes the form

mgp[f(w) +(W—W)Vf(W)
G4
L A2
3820w+ w13

The role of the added quadratic term is to keep the up-
date in a neighborhood of w where f stays close to
its current linear approximation; L > 0 is a parame-
ter which is an upper bound on the Lipschitz constant
of Vf.

Provided that we can solve efficiently the proximal
problem (3.4), this first iterative scheme constitutes a
simple way of solving problem (2.1). It appears under
various names in the literature: proximal-gradient tech-
niques (Nesterov, 2007), forward—backward splitting
methods (Combettes and Pesquet, 2010) and iterative
shrinkage-thresholding algorithm (Beck and Teboulle,
2009). Furthermore, it is possible to guarantee conver-
gence rates for the function values (Nesterov, 2007;
Beck and Teboulle, 2009), and after k iterations, the
precision be shown to be of order O(1/k), which
should contrasted with rates for the subgradient case,
that are rather O (1/ Vk).

This first iterative scheme can actually be extended
to “accelerated” versions (Nesterov, 2007; Beck and
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Teboulle, 2009). In that case, the update is not taken
to be exactly the result from (3.4); instead, it is ob-
tained as the solution of the proximal problem applied
to a well-chosen linear combination of the previous es-
timates. In that case, the function values converge to
the optimum with a rate of O(1/k?), where k is the it-
eration number. From Nesterov (2004), we know that
this rate is optimal within the class of first-order tech-
niques; in other words, accelerated proximal-gradient
methods can be as fast as without a nonsmooth compo-
nent.

We have, so far, given an overview of proximal meth-
ods, without specifying how we precisely handle its
core part, namely the computation of the proximal
problem, as defined in (3.4).

Proximal problem. We first rewrite problem (3.4) as

2+)L
L

! . 1V .
mm—”w—(w—z f(W)>

weRr 2

Q(w).

Under this form, we can readily observe that when
A = 0, the solution of the proximal problem is identi-
cal to the standard gradient update rule. The problem
above can be more generally viewed as an instance
of the proximal operator (Moreau, 1962) associated
with A€Q2:

Prox;q :u € R? > argmin l||u — V||% + AQ2(V).
veRP 2

For many choices of regularizers €2, the proximal
problem has a closed-form solution, which makes
proximal methods particularly efficient. It turns out
that for the norms defined in this paper, we can com-
pute, in a large number of cases, the proximal oper-
ator exactly and efficiently (see Bach et al., 2012). If
2 is chosen to be the ¢1-norm, the proximal operator
is simply the soft-thresholding operator applied ele-
mentwise (Donoho and Johnstone, 1995). More for-
mally, we have for all j in [[1; p]l, Prox; ., [u]; =
sign(u;) max(|u;| — A, 0). For the group Lasso penalty
of equation (3.1) with ¢ = 2, the proximal opera-
tor is a group-thresholding operator and can be also
computed in closed form: Prox,q[ule = (ug/|[lug|l2) -
max(|lug|l2 — A, 0) for all g in G. For norms with hi-
erarchical groups of variables (in the sense defined
in Section 3.2), the computation of the proximal op-
erator can be obtained by a composition of group-
thresholding operators in a time linear in the number p
of variables (Jenatton et al., 2011b). In other settings,
for example, general overlapping groups of £,,-norms,
the exact proximal operator implies a more expensive

polynomial dependency on p using network-flow tech-
niques (Mairal et al., 2011), but approximate computa-
tion is possible without harming the convergence speed
(Schmidt, Le Roux and Bach, 2011). Most of these
norms and the associated proximal problems are im-
plemented in the open-source software SPAMS.*

In summary, with proximal methods, generalizing al-
gorithms from the £i-norm to a structured norm re-
quires only to be able to compute the corresponding
proximal operator, which can be done efficiently in
many cases.

3.6 Theoretical Analysis

Sparse methods are traditionally analyzed according
to three different criteria; it is often assumed that the
data were generated by a sparse loading vector w*. De-
noting w a solution of the M-estimation problem in
equation (2.1), traditional statistical consistency results
aim at showing that ||[w* — Ww|| is small for a certain
norm || - ||; model consistency considers the estimation
of the support of w* as a criterion, while prediction ef-
ficiency only cares about the prediction of the model,
that is, with the square loss, the quantity || Xw* — XWH%
has to be as small as possible.

A striking consequence of assuming that w* has
many zero components is that for the three criteria,
consistency is achievable even when p is much larger
than n (Zhao and Yu, 2006; Wainwright, 2009; Bickel,
Ritov and Tsybakov, 2009; Zhang, 2009).

However, to relax the often unrealistic assumption
that the data are generated by a sparse loading vec-
tor, and also because a good predictor, especially in the
high-dimensional setting, can possibly be much sparser
than any potential true model generating the data, pre-
diction efficiency is often formulated under the form
of oracle inequalities, where the performance of the
estimator is upper bounded by the performance of any
function in a fixed complexity class, reflecting approxi-
mation error, plus a complexity term characterizing the
class and reflecting the hardness of estimation in that
class. We refer the reader to van de Geer (2010) for a
review and references on oracle results for the Lasso
and the group Lasso.

It should be noted that model selection consistency
and prediction efficiency are obtained in quite different
regimes of regularization, so that it is not possible to
obtain both types of consistency with the same Lasso
estimator (Shalev-Shwartz, Srebro and Zhang, 2010).

4http://www.di.ens.fr/willow/SPAMS/.
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For prediction consistency, the regularization parame-
ter is easily chosen by cross-validation on the predic-
tion error. For model selection consistency, the regular-
ization coefficient should typically be much larger than
for prediction consistency; but rather than trying to se-
lect an optimal regularization parameter in that case,
it is more natural to consider the collection of mod-
els obtained along the regularization path and to ap-
ply usual model selection methods to choose the best
model in the collection. One method that works rea-
sonably well in practice, sometimes called “OLS hy-
brid” for the least squares loss (Efron et al., 2004),
consists in refitting the different models without reg-
ularization and to choose the model with the best fit by
cross-validation.

In structured sparse situations, such high-dimen-
sional phenomena can also be characterized. Essen-
tially, if one can make the assumption that w* is com-
patible with the additional prior knowledge on the spar-
sity pattern encoded in the norm €2, then some of the
assumptions required for consistency can sometimes
be relaxed (see Huang and Zhang, 2010; Jenatton, Au-
dibert and Bach, 2011; Huang, Zhang and Metaxas,
2011; Bach, 2010), and faster rates can sometimes
be obtained (Huang and Zhang, 2010; Huang, Zhang
and Metaxas, 2011; Obozinski, Wainwright and Jor-
dan, 2011; Negahban and Wainwright, 2011; Bach,
2009; Percival, 2012). However, one major difficulty
that arises is that some of the conditions for recovery
and one’s ability to obtain fast rates of convergence de-
pend on an intricate interaction between the sparsity
pattern, the design matrix and the noise covariance,
which leads, in each case, to sufficient conditions that
are typically not directly comparable between differ-
ent structured or unstructured cases (Jenatton, Audib-
ert and Bach, 2011). Moreover, even if the sufficient
conditions are satisfied simultaneously for the norms
to be compared, sharper bounds on rates and sample
complexities would still often be needed to character-
ize more accurately the improvement resulting from
having a stronger structural a priori.

4. SPARSE PRINCIPAL COMPONENT ANALYSIS
AND DICTIONARY LEARNING

Unsupervised learning aims at extracting latent rep-
resentations of the data that are useful for analysis,
visualization, denoising or to extract relevant infor-
mation to solve subsequently a supervised learning
problem. Sparsity or structured sparsity are essential
to specify, on the representations, constraints that im-
prove their identifiability and interpretability.

4.1 Analysis and Synthesis Views of PCA

Depending on how the latent representation is ex-
tracted or constructed from the data, it is useful to dis-
tinguish two points of view. This is illustrated well in
the case of PCA.

In the analysis view, PCA aims at finding sequen-
tially a set of directions in space that explain the largest
fraction of the variance of the data. This can be for-
mulated as an iterative procedure in which a one-
dimensional projection of the data with maximal vari-
ance is found first, the data are projected on the or-
thogonal subspace (corresponding to a deflation of the
covariance matrix) and the process is iterated. In the
synthesis view, PCA aims at finding a set of vectors, or
dictionary elements (in a terminology closer to signal
processing) such that all observed signals admit a lin-
ear decomposition on that set with low reconstruction
error. In the case of PCA, these two formulations lead
to the same solution (an eigenvalue problem). How-
ever, in extensions of PCA, in which either the dic-
tionary elements or the decompositions of signals are
constrained to be sparse or structured, they lead to dif-
ferent algorithms with different solutions.

The analysis interpretation leads to sequential for-
mulations (d’Aspremont, Bach and El Ghaoui, 2008;
Moghaddam, Weiss and Avidan, 2006; Jolliffe,
Trendafilov and Uddin, 2003) that consider compo-
nents one at a time and perform a deflation of the co-
variance matrix at each step (see Mackey, 2009). The
synthesis interpretation leads to nonconvex global for-
mulations (see, e.g., Zou, Hastie and Tibshirani, 2006;
Moghaddam, Weiss and Avidan, 2006; Aharon, Elad
and Bruckstein, 2006; Mairal et al., 2010) which es-
timate simultaneously all principal components, typ-
ically do not require the orthogonality of the com-
ponents and are referred to as matrix factorization
problems (Singh and Gordon, 2008; Bach, Mairal
and Ponce, 2008) in machine learning, and dictionary
learning in signal processing (Olshausen and Field,
1996).

While we could also impose structured sparse priors
in the analysis view, we will consider from now on the
synthesis view, that we will introduce with the termi-
nology of dictionary learning.

4.2 Dictionary Learning

Given a matrix X € R”*" of n columns correspond-
ing to n observations in R, the dictionary learning
problem is to find a matrix D € R"*?, called dic-
tionary, such that each observation can be well ap-
proximated by a linear combination of the p columns
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(@ )keq1:py of D called the dictionary elements. If
A € RP*" is the matrix of the linear combination
coefficients or decomposition coefficients (or codes),
with o, the kth column of A being the coefficients
for the kth signal x*, the matrix product DA is called a
decomposition of X.

Learning simultaneously the dictionary D and the
coefficients A corresponds to a matrix factorization
problem; see Witten, Tibshirani and Hastie (2009) and
references therein.

As formulated by Bach, Mairal and Ponce (2008)
or Witten, Tibshirani and Hastie (2009), it is natural,
when learning a decomposition, to penalize or con-
strain some norms or pseudo-norms of A and D, say
Q4 and Qp respectively, to encode prior information—
typically sparsity—about the decomposition of X.
While in general the penalties could be defined glob-
ally on the matrices A and D, we assume that each
column of D and A is penalized separately. This can be
written as

1 14
min — X —=DAIZ+ 1Y Qpd),
R, X DA 32 20

DRmX
@1

s.t. Qa(e!) < 1,Vi €[[1;n]],

where the regularization parameter A > 0 controls to
which extent the dictionary is regularized. If we as-
sume that both regularizations 24 and Qp are convex,
problem (4.1) is convex with respect to A for fixed D,
and vice versa. It is, however, not jointly convex in the
pair (A, D), but alternating optimization schemes gen-
erally lead to good performance in practice.

4.3 Imposing Sparsity

The choice of the two norms Q4 and 2p is cru-
cial and heavily influences the behavior of dictionary
learning. Without regularization, any solution (D, A)
is such that DA is the best fixed-rank approximation
of X, and the problem can be solved exactly with a
classical PCA. When 2, is the £;-norm and Q2p the £;-
norm, we aim at finding a dictionary such that each sig-
nal x' admits a sparse decomposition on the dictionary.
In this context, we are essentially looking for a basis
where the data have sparse decompositions, a frame-
work we refer to as sparse dictionary learning. On the
contrary, when Q24 is the £3-norm and Q2p the £{-norm,
the formulation induces sparse principal components,
that is, atoms with many zeros, a framework we refer
to as sparse PCA. In Section 4.4 and Section 4.5, we
replace the £1-norm by structured norms introduced in
Section 3, leading to structured versions of the above
estimation problems.

4.4 Adding Structures to Principal Components

One of PCA’s main shortcomings is that, even if
it finds a small number of important factors, the fac-
tors themselves typically involve all original variables.
In the last decade, several alternatives to PCA, which
find sparse and potentially interpretable factors, have
been proposed, notably nonnegative matrix factoriza-
tion (NMF) (Lee and Seung, 1999) and sparse PCA
(SPCA) (Jolliffe, Trendafilov and Uddin, 2003; Zou,
Hastie and Tibshirani, 2006; Zass and Shashua, 2007;
Witten, Tibshirani and Hastie, 2009).

However, in many applications, only constraining
the size of the supports of the factors does not seem
appropriate because the considered factors are not only
expected to be sparse, but also to have a certain struc-
ture. In fact, the popularity of NMF for face image
analysis owes essentially to the fact that the method
happens to retrieve sets of variables that are partly lo-
calized on the face and capture some features or parts
of the face which seem intuitively meaningful, given
our a priori. We might therefore gain in the quality of
the factors induced by enforcing directly this a priori in
the matrix factorization constraints. More generally, it
would be desirable to encode higher-order information
about the supports that reflects the structure of the data.
For example, in computer vision, features associated to
the pixels of an image are naturally organized on a grid,
and the supports of factors explaining the variability of
images could be expected to be localized, connected
or have some other regularity with respect to that grid.
Similarly, in genomics, factors explaining the gene ex-
pression patterns observed on a microarray could be
expected to involve groups of genes corresponding to
biological pathways or set of genes that are neighbors
in a protein—protein interaction network.

Based on these remarks, and with the norms pre-
sented earlier, sparse PCA is readily extended to struc-
tured sparse PCA (SSPCA), which explains the vari-
ance of the data by factors that are not only sparse but
also respect some a priori structural constraints deemed
relevant to model the data at hand: slight variants of
the regularization term defined in Section 3 (with the
groups defined in Figure 4) can be used successfully
for Qp.

Experiments on face recognition. By definition, dic-
tionary learning belongs to unsupervised learning; in
that sense, our method may appear first as a tool for
exploratory data analysis, which leads us naturally to
qualitatively analyze the results of our decompositions
(e.g., by visualizing the learned dictionaries). This is
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FI1G. 7. Top left, examples of faces in the datasets. The three remaining images represent learned dictionaries of faces with p = 36: NMF
(top right), SPCA (bottom left) and SSPCA (bottom right). The dictionary elements are sorted in decreasing order of explained variance.
While NMF gives sparse spatially unconstrained patterns, SSPCA finds convex areas that correspond to more natural face segments. SSPCA
captures the left/right illuminations and retrieves pairs of symmetric patterns. Some displayed patterns do not seem to be convex, for example,
nonzero patterns located at two opposite corners of the grid. However, a closer look at these dictionary elements shows that convex shapes
are indeed selected, and that small numerical values (just as regularizing by £>-norm may lead to) give the visual impression of having zeroes
in convex nonzero patterns. This also shows that if a nonconvex pattern has to be selected, it will be, by considering its convex hull.

obviously a difficult and subjective exercise, beyond
the assessment of the consistency of the method in ar-
tificial examples where the “true” dictionary is known.
For quantitative results, see Jenatton, Obozinski and
Bach (2010).°

We apply SSPCA on the cropped AR Face Database
Martinez and Kak, 2001 that consists of 2600 face im-
ages, corresponding to 100 individuals (50 women and
50 men). For each subject, there are 14 nonoccluded

5 A Matlab toolbox implementing our method can be downloaded
from http://www.di.ens.fr/~jenatton/.

poses and 12 occluded ones (the occlusions are due to
sunglasses and scarfs). We reduce the resolution of the
images from 165 x 120 pixels to 38 x 27 pixels for
computational reasons.

Figure 7 shows examples of learned dictionaries (for
p = 36 elements), for NMF, unstructured sparse PCA
(SPCA), and SSPCA. While NMF finds sparse but
spatially unconstrained patterns, SSPCA selects sparse
convex areas that correspond to a more natural seg-
ment of faces. For instance, meaningful parts such as
the mouth and the eyes are recovered by the dictio-

nary.
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4.5 Hierarchical Dictionary Learning

In this section, we consider sparse dictionary learn-
ing, where the structured sparse prior knowledge is put
on the decomposition coefficients, that is, the matrix A
in equation (4.1), and present an application to text
documents.

Text documents. The goal of probabilistic topic mod-
els is to find a low-dimensional representation of a col-
lection of documents, where the representation should
provide a semantic description of the collection. Ap-
proaching the problem in a parametric Bayesian frame-
work, latent Dirichlet allocation (LDA), Blei, Ng and
Jordan (2003) models documents, represented as vec-
tors of word counts, as a mixture of a predefined num-
ber of latent topics, defined as multinomial distribu-
tions over a fixed vocabulary. The number of topics is
usually small compared to the size of the vocabulary
(e.g., 100 against 10,000), so that the topic proportions
of each document provide a compact representation of
the corpus.

In fact the problem addressed by LDA is funda-
mentally a matrix factorization problem. For instance,
Buntine (2002) argued that LDA can be interpreted
as a Dirichlet-multinomial counterpart of factor anal-
ysis. We can actually cast the problem in the dictio-
nary learning formulation that we presented before.®
Indeed, suppose that the signals X = [x!,...,x"] in
R™ " are each the so-called bag-of-word representa-
tion of each of n documents over a vocabulary of m
words, that is, X is a vector whose kth component is
the empirical frequency in document i of the kth word
of a fixed lexicon. If we constrain the entries of D and
A to be nonnegative, and the dictionary elements d/
to have unit £{-norm, the decomposition (D, A) can be
interpreted as the parameters of a topic-mixture model.
Sparsity here ensures that a document is described by
a small number of topics.

Switching to structured sparsity allows us, in this
case, to organize automatically the dictionary of topics
in the process of learning it. Assume that 24 in equa-
tion (4.1) is a tree-structured regularization, such as il-
lustrated on Figure 5; in this case, in the light of Sec-
tion 3.2, if the decomposition of a document involves
a certain topic, then all ancestral topics in the tree are
also present in the topic decomposition. Since the hi-
erarchy is shared by all documents, the topics close to
the root participate in every decomposition, and given

6Doing so we simply trade the multinomial likelihood with a
least-square formulation.

that the dictionary is learned, this mechanism forces
those topics to be quite generic—essentially gathering
the lexicon which is common to all documents. Con-
versely, the deeper the topics in the tree, the more spe-
cific they should be. It should be noted that such hierar-
chical dictionaries can also be obtained with generative
probabilistic models, typically based on nonparametric
Bayesian priors over trees or paths in trees, and which
extend the LDA model to topic hierarchies (Blei, Grif-
fiths and Jordan, 2010; Adams, Ghahramani and Jor-
dan, 2010).

Visualization of NIPS proceedings. We qualitatively
illustrate our approach on the NIPS proceedings from
1988 through 1999 (Griffiths and Steyvers, 2004). Af-
ter removing words appearing fewer than 10 times, the
dataset is composed of 1714 articles, with a vocabu-
lary of 8274 words. As explained above, we enforce
both the dictionary and the sparse coefficients to be
nonnegative, and constrain the dictionary elements to
have a unit £1-norm. Figure 8 displays an example of
a learned dictionary with 13 topics, obtained by us-
ing a tree-structured penalty (see Section 3.2) on the
coefficients A and by selecting manually’ A =271,
As expected and similarly to Blei, Griffiths and Jor-
dan (2010), we capture the stopwords at the root of the
tree, and topics reflecting the different subdomains of
the conference such as neurosciences, optimization or
learning theory.

5. HIGH-DIMENSIONAL NONLINEAR VARIABLE
SELECTION

In this section, we show how structured sparsity-
inducing norms may be used to provide an efficient
solution to the problem of high-dimensional non-
linear variable selection. Namely, given p variables
X = (X1,...,Xp), our aim is to find a nonlinear func-
tion f(xq,...,X,) which depends only on a few vari-
ables. First approaches to the problem have considered
restricted functional forms such as f(xi,...,x,) =
fi(x1)+---+f,(x,), where each fy, ..., £, are univari-
ate nonlinear functions (Ravikumar et al., 2009; Bach,
2008). However, many nonlinear functions cannot be
expressed as sums of functions of these forms. Addi-

"The regularization parameter striking a good compromise be-
tween sparsity and reconstruction of the data is chosen here by hand
because (a) cross-validation would yield a significantly less sparse
dictionary and (b) model selection criteria would not apply without
serious caveats here since the dictionary is learned at the same time.
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FIG. 8.

Example of a topic hierarchy estimated from 1714 NIPS proceedings papers (from 1988 through 1999). Each node corresponds to

a topic whose 5 most important words are displayed. Single characters such as n, t, r are part of the vocabulary and often appear in NIPS
papers, and their place in the hierarchy is semantically relevant to children topics.

tional interactions have been added, leading to func-
tions of the form

f(Xl, ..

2

Jcfl....phlJ|=2

L Xp) = f,(x7)

(Lin and Zhang, 2006). While second-order interac-
tions make the class of functions larger, our aim in
this section is to consider functions which can be ex-
pressed as a sparse linear combination of the form
f(x1, ... xp) =2, py £ (X)), that is, a combina-
tion of functions defined on potentially larger subsets
of variables.

The main difficulties associated with this problem
are that (1) each function f; has to be estimated, lead-
ing to a nonparametric problem, and (2) there are ex-
ponentially many such functions. We propose, how-
ever, an approach that overcomes both difficulties in
the next section, based on the ideas that estimating
functions, rather than vectors, can be tackled with esti-
mators in reproducing kernel Hilbert spaces (see Sec-
tion 5.1), and that the complexity issues can be ad-
dressed by imposing some structure among all the sub-
sets J C {1,..., p} (see Section 5).

5.1 Multiple Kernel Learning: From Linear to
Nonlinear Predictions

Reproducing kernel Hilbert spaces are arguably the
simplest spaces for the nonparametric estimation of
nonlinear functions since most learning algorithms for
linear models are directly ported to any RKHS via
simple kernelization. We therefore start by reviewing
learning from a single, and later multiple, reproducing
kernels, since our approach will be based on combin-
ing functions from multiple (actually a hierarchy) of
RKHSes; for more details, see Bach (2008).

Single kernel learning. Let us assume that the n in-
put data-points x| ... x™ belong to a set X (not
necessarily R”), and consider predictors of the form
(f, ©(x)) where ®: X — F is a map from the input
space to a reproducing kernel Hilbert space F (associ-
ated to the kernel function k), which we refer to as the
feature space. These predictors are linearly parameter-
ized, but may depend nonlinearly on x. We consider the
following estimation problem:

1 < : ; A
min— Y £(y®, c(f, ®(xD))) + = |If||%,
min 30 eff. () + S5
where | - ||z is the Hilbertian norm associated to F.

The representer theorem (Kimeldorf and Wahba, 1971)
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states that, for all loss functions (potentially non-
convex), the solution f admits the expansion f =
Yo & (x), so that, replacing f by its new expres-
sion, we can now minimize

aeR" n 4

1 & ; A
min — Y £(y?, (Ka); “aKa,
; (", (Kay;) + 5
where K is the kernel matrix, an n x n matrix whose el-
ement (i,j) is equal to (@ (xD), dp(xV))) =
k(x®,x()), This optimization problem involves the
observations x| ..., x® only through the kernel ma-
trix K, and can thus be solved, as long as K can be
evaluated efficiently. See Shawe-Taylor and Cristianini
(2004) for more details.

Multiple kernel learning (MKL). We can now assume
that we are given m Hilbert spaces F;, j =1,...,m,
and look for predictors of the form f(x) = g;(x) +-- -+
g,,(x), where® each g j € Fj. In order to have many g;
equal to zero, we can penalize f using a sum of norms
similar to the group Lasso penalties introduced earlier,
namely 7, [Ig; | 7;. This leads to selection of func-
tions. Moreover, it turns out that the optimization prob-
lems may be expressed also in terms of the m kernel
matrices, and it is equivalent to learn a sparse linear
combination K = Z?;l n;K; (with many n;’s equal
to zero) of kernel matrices with then « solution of the
single kernel learning problem for K. For more details,
see Bach (2008).

From MKL to sparse generalized additive models.
As shown above, the MKL framework is defined with
any set of m RKHSes defined on the same base set X.
When the base set is itself defined as a cartesian prod-
uct of p base sets, thatis, X = X} x --- x &), then it
is common to consider m = p RKHSes which are each
of them defined on a single A;, leading to the desired
functional form £y (xy) +- - - +£,(x,). To overcome the
limitation of this functional form we need to consider
a more complex expansion.

5.2 Hierarchical Kernel Learning

In this section, we consider functional expansions
with up to m = 27 terms corresponding to different
RKHSes, each defined on a Cartesian product of a
subset of the p separate input spaces. Specifically,
we consider functions of the form f(xi,...,x,) =
2icq,....py £7(xy) with f; chosen to live in a RKHS
JFj defined on variables x;. Penalizing by the norm

8Notice that the function g; is not restricted to depend only on a
subpart of x as before.

2icq,....p Ifrll7, would in theory lead to an appro-
priate selection of functions from the various RKHSes
(and to learning a sparse linear combination of the
corresponding kernel matrices). However, in practice,
there are 27 such predictors, which is not algorithmi-
cally feasible.

This is where structured sparsity comes into play. In
order to obtain polynomial-time algorithms and the-
oretically controlled predictive performance, we may
add an extra constraint to the problem. Namely, we
endow the power set of {1, ..., p} with the partial or-
der of the inclusion of sets, and in this directed acyclic
graph (DAG), we require that predictors f select a sub-
set only after all of its ancestors have been selected.
This can be achieved in a convex formulation using a
structured-sparsity inducing norm of the type presented
in Section 3.2, but defined by a hierarchy of groups as
follows:

12
QED a1, py]= Y (ZHlel%) .

Jc{l,...,p} "HDJ

As illustrated in Figure 9, this norm corresponds to
overlapping groups of variables defined on the directed
acyclic graphs of all subsets of {1, ..., p}. We will ex-
plain briefly how introducing this norm may lead to
polynomial time algorithms and what theoretical guar-
antees are associated with it. Illustrations of the appli-
cation of hierarchical kernel learning to real data can
be found in Bach (2009).

Polynomial-time estimation algorithm. While we
are, a priori, still facing an estimation problem with
2P functions, it can be solved using an active set
method, which considers adding a component f; € F;
(resp., Kjy) to the active set of predictors (resp., ker-
nels). The two crucial aspects are (1) to add the right
kernel, that is, choose among the 27 which one to add,
and (2) when to stop. As shown in Bach (2009), these
steps may be carried out efficiently for certain collec-
tions of RKHSes F, in particular those for which
we are able to compute efficiently (i.e., in polyno-
mial time in p) the sum > ;¢ 3 K. This is the
case, for example, for Gaussian kernels k;(x;, X’J) =
exp(—y[Ix; —x13).

Theoretical analysis. Bach (2009) showed that un-
der appropriate assumptions, estimation under high-
dimensional scaling, that is, for p > n but logp =
O (n), is possible in this situation, in spite of the fact
that the number of terms in the expansion is now po-
tentially doubly exponential in 7.
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FIG. 9. Power set of the set {1, ...,4}: in blue, an authorized set of selected subsets. In red, an example of a group used within the norm

(a subset and all of its descendants in the DAG).

6. CONCLUSION

In this paper, we reviewed several approaches for
structured sparsity, based on convex optimization and
the design of appropriate sparsity-inducing norms.
Analyses and algorithms for the traditional £;-norm
can readily be extended to these new norms, making
them an efficient and flexible tools for introducing
prior knowledge in high-dimensional statistical prob-
lems. We also presented several applications to super-
vised and unsupervised learning problems, where the
proper use of additional knowledge leads to improved
interpretability of the sparse estimates and/or increased
predictive performance.

ACKNOWLEDGMENTS

Francis Bach, Rodolphe Jenatton and Guillaume
Obozinski are supported in part by ANR under Grant
MGA ANR-07-BLAN-0311 and the European Re-
search Council (SIERRA Project). Julien Mairal is
supported by the NSF Grant SES-0835531 and NSF
Award CCF-0939370. The authors would like to thank
the anonymous reviewers, whose comments have great-
ly contributed to improve the quality of this paper.

REFERENCES

ADAMS, R., GHAHRAMANI, Z. and JORDAN, M. (2010). Tree-
structured stick breaking for hierarchical data. In Advances
in Neural Information Processing Systems 23 (J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta,
eds.) 19-27.

AHARON, M., ELAD, M. and BRUCKSTEIN, A. (2006). K-SVD:
An algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Trans. Signal Processing 54 4311-4322.

BAcH, F. R. (2008). Consistency of the group lasso and mul-
tiple kernel learning. J. Mach. Learn. Res. 9 1179-1225.
MR2417268

BACH, F. (2009). Exploring large feature spaces with hierarchical
multiple kernel learning. In Neural Information Processing Sys-
tems 21.

BACH, F. (2010). Structured sparsity-inducing norms through sub-
modular functions. In Advances in Neural Information Process-
ing Systems 23.

BAcH, F. (2011a). Learning with submodular functions: A con-
vex optimization perspective. Technical Report No. 00645271,
HAL.

BAcCH, F. (2011b). Shaping level sets with submodular functions.
In Advances in Neural Information Processing Systems 24.

BAcCH, F., MAIRAL, J. and PONCE, J. (2008). Convex sparse
matrix factorizations. Technical report. Preprint. Available at
arXiv:0812.1869.

BACH, F., JENATTON, R., MAIRAL, J. and OBOZINSKI, G.
(2012). Optimization with sparsity-inducing penalties. Founda-
tions and Trends in Machine Learning 4 1-106.

BARANIUK, R. G., CEVHER, V., DUARTE, M. F. and HEGDE, C.
(2010). Model-based compressive sensing. I[EEE Trans. Inform.
Theory 56 1982-2001. MR2654489

BECK, A. and TEBOULLE, M. (2009). A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sci. 2 183-202. MR2486527

BECKER, S., BOBIN, J. and CANDES, E. J. (2011). NESTA: A fast
and accurate first-order method for sparse recovery. SIAM J.
Imaging Sci. 4 1-39. MR2765668

BICKEL, P. J., RiTovV, Y. and TSYBAKOV, A. B. (2009). Simul-
taneous analysis of lasso and Dantzig selector. Ann. Statist. 37
1705-1732. MR2533469

BLEI, D. M., GRIFFITHS, T. L. and JORDAN, M. 1. (2010). The
nested Chinese restaurant process and Bayesian nonparametric
inference of topic hierarchies. J. ACM 57 1-30. MR2606082

BLEI, D., NG, A. and JORDAN, M. (2003). Latent Dirichlet allo-
cation. J. Mach. Learn. Res. 3 993-1022.

BONDELL, H. D. and REICH, B. J. (2008). Simultaneous regres-
sion shrinkage, variable selection, and supervised clustering of
predictors with OSCAR. Biometrics 64 115-123. MR2422825

BORWEIN, J. M. and LEWIS, A. S. (2006). Convex Analysis and
Nonlinear Optimization. Theory and Examples, 2nd ed. CMS
Books in Mathematics/Ouvrages de Mathématiques de la SMC
3. Springer, New York. MR2184742

BUNTINE, W. L. (2002). Variational extensions to EM and multi-
nomial PCA. In Proceedings of the European Conference on
Machine Learning (ECML).

CANDES, E. J. and TA0, T. (2005). Decoding by linear program-
ming. IEEE Trans. Inform. Theory 51 4203—4215. MR2243152

CEVHER, V., DUARTE, M. F., HEGDE, C. and BARANIUK, R. G.
(2008). Sparse signal recovery using Markov random fields. In
Advances in Neural Information Processing Systems 20).


http://www.ams.org/mathscinet-getitem?mr=2417268
http://arxiv.org/abs/0812.1869
http://www.ams.org/mathscinet-getitem?mr=2654489
http://www.ams.org/mathscinet-getitem?mr=2486527
http://www.ams.org/mathscinet-getitem?mr=2765668
http://www.ams.org/mathscinet-getitem?mr=2533469
http://www.ams.org/mathscinet-getitem?mr=2606082
http://www.ams.org/mathscinet-getitem?mr=2422825
http://www.ams.org/mathscinet-getitem?mr=2184742
http://www.ams.org/mathscinet-getitem?mr=2243152

466 BACH, JENATTON, MAIRAL AND OBOZINSKI

CHEN, S. S., DONOHO, D. L. and SAUNDERS, M. A. (1998).
Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.
20 33-61. MR1639094

CHEN, X., LIN, Q., KiM, S., CARBONELL, J. G. and XING, E. P.
(2011). Smoothing proximal gradient method for general struc-
tured sparse learning. In Proceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence (UAI).

COMBETTES, P. L. and PESQUET, J. C. (2010). Proximal split-
ting methods in signal processing. In Fixed-Point Algorithms for
Inverse Problems in Science and Engineering. Springer, New
York.

D’ ASPREMONT, A., BACH, F. and EL GHAOUI, L. (2008). Opti-
mal solutions for sparse principal component analysis. J. Mach.
Learn. Res. 9 1269-1294. MR2426043

DoNoHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to un-
known smoothness via wavelet shrinkage. J. Amer. Statist. As-
soc. 90 1200-1224. MR 1379464

EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R.
(2004). Least angle regression. Ann. Statist. 32 407-499.
MR2060166

FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2010). A note
on the group Lasso and a sparse group Lasso. Preprint.

FRIEDMAN, J., HASTIE, T., HOFLING, H. and TIBSHIRANI, R.
(2007). Pathwise coordinate optimization. Ann. Appl. Stat. 1
302-332. MR2415737

GRAMFORT, A. and KOWALSKI, M. (2009). Improving M/EEG
source localization with an inter-condition sparse prior. In IEEE
International Symposium on Biomedical Imaging.

GRIFFITHS, T. L. and STEYVERS, M. (2004). Finding scientific
topics. Proc. Natl. Acad. Sci. USA 101 5228-5235.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Ele-
ments of Statistical Learning. Data Mining, Inference, and Pre-
diction. Springer, New York. MR1851606

HUANG, J. and ZHANG, T. (2010). The benefit of group sparsity.
Ann. Statist. 38 1978-2004. MR2676881

HUANG, J., ZHANG, T. and METAXAS, D. (2011). Learning with
structured sparsity. J. Mach. Learn. Res. 12 3371-3412.

JACOB, L., OBOZINSKI, G. and VERT, J. P. (2009). Group Lasso
with overlaps and graph Lasso. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML).

JENATTON, R., AUDIBERT, J.-Y. and BACH, F. (2011). Struc-
tured variable selection with sparsity-inducing norms. J. Mach.
Learn. Res. 12 2777-2824. MR2854347

JENATTON, R., OBOZINSKI, G. and BACH, F. (2010). Structured
sparse principal component analysis. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS).

JENATTON, R., GRAMFORT, A., MICHEL, V., OBOZINSKI, G.,
EGER, E., BACH, F. and THIRION, B. (2011a). Multi-scale
mining of fMRI data with hierarchical structured sparsity. SIAM
J. Imaging Sci. To appear. Technical report. Preprint. Available
at arXiv:1105.0363.

JENATTON, R., MAIRAL, J., OBOZINSKI, G. and BAcH, F.
(2011b). Proximal methods for hierarchical sparse coding.
J. Mach. Learn. Res. 12 2297-2334. MR2825428

JOLLIFFE, 1. T., TRENDAFILOV, N. T. and UDDIN, M. (2003).
A modified principal component technique based on the
LASSO. J. Comput. Graph. Statist. 12 531-547. MR2002634

KAVUKCUOGLU, K., RANZATO, M. A., FERGUS, R. and LE-
CUN, Y. (2009). Learning invariant features through topo-
graphic filter maps. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

KiM, S., SOHN, K. A. and XING, E. P. (2009). A multivariate
regression approach to association analysis of a quantitative trait
network. Bioinformatics 25 204-212.

KiM, S. and XING, E. P. (2010). Tree-guided group Lasso for
multi-task regression with structured sparsity. In Proceedings
of the International Conference on Machine Learning (ICML).

KIMELDORF, G. and WAHBA, G. (1971). Some results on Tcheby-
cheffian spline functions. J. Math. Anal. Appl. 33 82-95.
MR0290013

LEE, D. D. and SEUNG, H. S. (1999). Learning the parts of objects
by non-negative matrix factorization. Nature 401 788-791.

LIN, Y. and ZHANG, H. H. (2006). Component selection
and smoothing in multivariate nonparametric regression. Ann.
Statist. 34 2272-2297. MR2291500

Liu, H., PALATUCCI, M. and ZHANG, J. (2009). Blockwise coor-
dinate descent procedures for the multi-task lasso, with applica-
tions to neural semantic basis discovery. In Proceedings of the
International Conference on Machine Learning (ICML).

Lounici, K., PONTIL, M., TSYBAKOV, A. B. and VAN DE
GEER, S. (2009). Taking advantage of sparsity in multi-task
learning. In Proceedings of the Conference on Learning The-
ory.

LouNnici, K., PONTIL, M., VAN DE GEER, S. and TsY-
BAKOV, A. B. (2011). Oracle inequalities and optimal inference
under group sparsity. Ann. Statist. 39 2164-2204. MR2893865

MACKEY, L. (2009). Deflation methods for sparse PCA. In Ad-
vances in Neural Information Processing Systems 21.

MAIRAL, J. (2010). Sparse coding for machine learning, image
processing and computer vision. Ph.D. thesis, Ecole normale
supérieure de Cachan—ENS Cachan. Available at http://tel.
archives-ouvertes.fr/tel-00595312/fr/.

MAIRAL, J., BACH, F., PONCE, J. and SAPIRO, G. (2010). Online
learning for matrix factorization and sparse coding. J. Mach.
Learn. Res. 11 19-60. MR2591620

MAIRAL, J., JENATTON, R., OBOZINSKI, G. and BAcH, F.
(2011). Convex and network flow optimization for structured
sparsity. J. Mach. Learn. Res. 12 2681-2720. MR2845676

MALLAT, S. G. (1999). A Wavelet Tour of Signal Processing. Aca-
demic Press, New York.

MARTINEZ, A. M. and KAK, A. C. (2001). PCA versus LDA.
In IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 23 228-233.

MEINSHAUSEN, N. and BUHLMANN, P. (2006). High-
dimensional graphs and variable selection with the lasso.
Ann. Statist. 34 1436-1462. MR2278363

MOGHADDAM, B., WEISS, Y. and AVIDAN, S. (2006). Spectral
bounds for sparse PCA: Exact and greedy algorithms. In Ad-
vances in Neural Information Processing Systems 18.

MOREAU, J.-J. (1962). Fonctions convexes duales et points prox-
imaux dans un espace hilbertien. C. R. Acad. Sci. Paris 255
2897-2899. MR0144188

NEEDELL, D. and TROPP, J. A. (2009). CoSaMP: Iterative signal
recovery from incomplete and inaccurate samples. Appl. Com-
put. Harmon. Anal. 26 301-321. MR2502366

NEGAHBAN, S. N. and WAINWRIGHT, M. J. (2011). Simultane-
ous support recovery in high dimensions: Benefits and perils
of block ¢ /¢~o-regularization. IEEE Trans. Inform. Theory 57
3841-3863. MR2817058


http://www.ams.org/mathscinet-getitem?mr=1639094
http://www.ams.org/mathscinet-getitem?mr=2426043
http://www.ams.org/mathscinet-getitem?mr=1379464
http://www.ams.org/mathscinet-getitem?mr=2060166
http://www.ams.org/mathscinet-getitem?mr=2415737
http://www.ams.org/mathscinet-getitem?mr=1851606
http://www.ams.org/mathscinet-getitem?mr=2676881
http://www.ams.org/mathscinet-getitem?mr=2854347
http://arxiv.org/abs/1105.0363
http://www.ams.org/mathscinet-getitem?mr=2825428
http://www.ams.org/mathscinet-getitem?mr=2002634
http://www.ams.org/mathscinet-getitem?mr=0290013
http://www.ams.org/mathscinet-getitem?mr=2291500
http://www.ams.org/mathscinet-getitem?mr=2893865
http://tel.archives-ouvertes.fr/tel-00595312/fr/
http://www.ams.org/mathscinet-getitem?mr=2591620
http://www.ams.org/mathscinet-getitem?mr=2845676
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=0144188
http://www.ams.org/mathscinet-getitem?mr=2502366
http://www.ams.org/mathscinet-getitem?mr=2817058
http://tel.archives-ouvertes.fr/tel-00595312/fr/

STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 467

NEGAHBAN, S., RAVIKUMAR, P., WAINWRIGHT, M. J. and
Yu, B. (2009). A unified framework for high-dimensional anal-
ysis of M-estimators with decomposable regularizers. In Ad-
vances in Neural Information Processing Systems 22.

NESTEROV, Y. (2004). Introductory Lectures on Convex Optimiza-
tion. A Basic Course. Applied Optimization 87. Kluwer Aca-
demic, Boston, MA. MR2142598

NESTEROV, Y. (2007). Gradient methods for minimizing compos-
ite objective function. Technical report, Center for Operations
Research and Econometrics (CORE), Catholic Univ. Louvain.

OBOZINSKI, G. and BACH, F. (2012). Convex relaxation for com-
binatorial penalties. Technical report, HAL.

OBOZINSKI, G., JACOB, L. and VERT, J. P. (2011). Group Lasso
with overlaps: The latent group Lasso approach. Technical Re-
port No. inria-00628498, HAL.

OBOZINSKI, G., TASKAR, B. and JORDAN, M. 1. (2010). Joint co-
variate selection and joint subspace selection for multiple clas-
sification problems. Stat. Comput. 20 231-252. MR2610775

OBOZINSKI, G., WAINWRIGHT, M. J. and JORDAN, M. I. (2011).
Support union recovery in high-dimensional multivariate re-
gression. Ann. Statist. 39 1-47. MR2797839

OLSHAUSEN, B. A. and FIELD, D. J. (1996). Emergence of
simple-cell receptive field properties by learning a sparse code
for natural images. Nature 381 607-609.

PERCIVAL, D. (2012). Theoretical properties of the overlapping
group Lasso. Electron. J. Statist. 6 269-288.

QUATTONI, A., CARRERAS, X., COLLINS, M. and DARRELL, T.
(2009). An efficient projection for ¢1/{~ regularization. In
Proceedings of the International Conference on Machine
Learning (ICML).

Rao, N. S., NOowAK, R. D., WRIGHT, S. J. and KINGS-
BURY, N. G. (2011). Convex approaches to model wavelet spar-
sity patterns. In International Conference on Image Processing
(ICIP).

RAPAPORT, F., BARILLOT, E. and VERT, J.-P. (2008). Classifi-
cation of arrayCGH data using fused SVM. Bioinformatics 24
1375-1382.

RAVIKUMAR, P., LAFFERTY, J., L1U, H. and WASSERMAN, L.
(2009). Sparse additive models. J. R. Stat. Soc. Ser. B Stat.
Methodol. 71 1009-1030. MR2750255

ROTH, V. and FISCHER, B. (2008). The group-Lasso for general-
ized linear models: Uniqueness of solutions and efficient algo-
rithms. In Proceedings of the International Conference on Ma-
chine Learning (ICML).

RUDIN, L. I., OSHER, S. and FATEMI, E. (1992). Nonlinear total
variation based noise removal algorithms. Phys. D 60 259-268.

SCHMIDT, M., LE RouUX, N. and BACH, F. (2011). Convergence
rates of inexact proximal-gradient methods for convex opti-
mization. In Advances in Neural Information Processing Sys-
tems 24.

SCHMIDT, M. and MURPRHY, K. (2010). Convex structure learning
in log-linear models: Beyond pairwise potentials. In Proceed-
ings of the International Conference on Artificial Intelligence
and Statistics (AISTATS).

SHALEV-SHWARTZ, S., SREBRO, N. and ZHANG, T. (2010).
Trading accuracy for sparsity in optimization problems
with sparsity constraints. SIAM J. Optim. 20 2807-2832.
MR2721156

SHAWE-TAYLOR, J. and CRISTIANINI, N. (2004). Kernel Meth-
ods for Pattern Analysis. Cambridge Univ. Press, Cambridge.

SHEN, X. and HUANG, H.-C. (2010). Grouping pursuit through a
regularization solution surface. J. Amer. Statist. Assoc. 105 727—
739. MR2724856

SINGH, A. P. and GORDON, G. J. (2008). A unified view of
matrix factorization models. In Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in
Databases.

SPRECHMANN, P., RAMIREZ, I., SAPIRO, G. and ELDAR, Y.
(2010). Collaborative hierarchical sparse modeling. In 44th An-
nual Conference on Information Sciences and Systems (CISS)
1-6. IEEE.

STOJINIC, M., PARVARESH, F. and HASSIBI, B. (2009). On the
reconstruction of block-sparse signals with an optimal number
of measurements. /EEE Trans. Signal Process. 57 3075-3085.
MR2723043

TIBSHIRANI, R. (1996). Regression shrinkage and selection via
the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242

TIBSHIRANI, R., SAUNDERS, M., ROSSET, S., ZHU, J. and
KNIGHT, K. (2005). Sparsity and smoothness via the fused
lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 91-108.
MR2136641

TROPP, J. A. (2004). Greed is good: Algorithmic results for sparse
approximation. [EEE Trans. Inform. Theory 50 2231-2242.
MR2097044

TROPP, J. A. (2006). Just relax: Convex programming methods for
identifying sparse signals in noise. IEEE Trans. Inform. Theory
52 1030-1051. MR2238069

TURLACH, B. A., VENABLES, W. N. and WRIGHT, S. J. (2005).
Simultaneous variable selection. Technometrics 47 349-363.
MR2164706

VAN DE GEER, S. (2010). ¢1-regularization in high-dimensional
statistical models. In Proceedings of the International Congress
of Mathematicians. Volume IV 2351-2369. Hindustan Book
Agency, New Delhi. MR2827975

VAROQUAUX, G., JENATTON, R., GRAMFORT, A., OBOZIN-
SKI, G., THIRION, B. and BACH, F. (2010). Sparse structured
dictionary learning for brain resting-state activity modeling. In
NIPS Workshop on Practical Applications of Sparse Modeling:
Open Issues and New Directions.

WAINWRIGHT, M. J. (2009). Sharp thresholds for high-
dimensional and noisy sparsity recovery using £1-constrained
quadratic programming (Lasso). IEEE Trans. Inform. Theory 55
2183-2202. MR2729873

WITTEN, D. M., TIBSHIRANI, R. and HASTIE, T. (2009). A pe-
nalized matrix decomposition, with applications to sparse prin-
cipal components and canonical correlation analysis. Biostatis-
tics 10 515-534.

WRIGHT, S. J., NOwAK, R. D. and FIGUEIREDO, M. A. T.
(2009). Sparse reconstruction by separable approximation.
IEEE Trans. Signal Process. 57 2479-2493. MR2650165

Wu, T. T. and LANGE, K. (2008). Coordinate descent algorithms
for lasso penalized regression. Ann. Appl. Stat. 2 224-244.
MR2415601

XIANG, Z. J., X1, Y. T., HASSON, U. and RAMADGE, P. J.
(2009). Boosting with spatial regularization. In Advances in
Neural Information Processing Systems 22.

YUAN, M. (2010). High dimensional inverse covariance matrix es-
timation via linear programming. J. Mach. Learn. Res. 11 2261—
2286. MR2719856


http://www.ams.org/mathscinet-getitem?mr=2142598
http://www.ams.org/mathscinet-getitem?mr=2610775
http://www.ams.org/mathscinet-getitem?mr=2797839
http://www.ams.org/mathscinet-getitem?mr=2750255
http://www.ams.org/mathscinet-getitem?mr=2721156
http://www.ams.org/mathscinet-getitem?mr=2724856
http://www.ams.org/mathscinet-getitem?mr=2723043
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2136641
http://www.ams.org/mathscinet-getitem?mr=2097044
http://www.ams.org/mathscinet-getitem?mr=2238069
http://www.ams.org/mathscinet-getitem?mr=2164706
http://www.ams.org/mathscinet-getitem?mr=2827975
http://www.ams.org/mathscinet-getitem?mr=2729873
http://www.ams.org/mathscinet-getitem?mr=2650165
http://www.ams.org/mathscinet-getitem?mr=2415601
http://www.ams.org/mathscinet-getitem?mr=2719856

468 BACH, JENATTON, MAIRAL AND OBOZINSKI

YUAN, M. and LIN, Y. (2006). Model selection and estimation in
regression with grouped variables. J. R. Stat. Soc. Ser. B Stat.
Methodol. 68 49-67. MR2212574

YUAN, G.-X., CHANG, K.-W., HsIEH, C.-J. and LIN, C.-J.
(2010). A comparison of optimization methods and software for
large-scale L1-regularized linear classification. J. Mach. Learn.
Res. 11 3183-3234. MR2746550

ZASS, R. and SHASHUA, A. (2007). Nonnegative sparse PCA. In
Advances in Neural Information Processing Systems 19.

ZHANG, T. (2009). Some sharp performance bounds for least
squares regression with L regularization. Ann. Statist. 37
2109-2144. MR2543687

ZHAO, P., ROCHA, G. and YU, B. (2009). The composite absolute
penalties family for grouped and hierarchical variable selection.
Ann. Statist. 37 3468-3497. MR2549566

ZHAO, P. and YU, B. (2006). On model selection consistency of
Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449

ZHONG, L. W. and KwoK, J. T. (2011). Efficient sparse modeling
with automatic feature grouping. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML).

ZHOU, Y., JIN, R. and Hol, S. C. H. (2010). Exclusive Lasso for
multi-task feature selection. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS).

Zou, H. (2006). The adaptive lasso and its oracle properties.
J. Amer. Statist. Assoc. 101 1418-1429. MR2279469

Zou, H., HASTIE, T. and TIBSHIRANI, R. (2006). Sparse princi-
pal component analysis. J. Comput. Graph. Statist. 15 265-286.
MR2252527


http://www.ams.org/mathscinet-getitem?mr=2212574
http://www.ams.org/mathscinet-getitem?mr=2746550
http://www.ams.org/mathscinet-getitem?mr=2543687
http://www.ams.org/mathscinet-getitem?mr=2549566
http://www.ams.org/mathscinet-getitem?mr=2274449
http://www.ams.org/mathscinet-getitem?mr=2279469
http://www.ams.org/mathscinet-getitem?mr=2252527

	Introduction
	Unstructured Sparsity via the l1-Norm
	Structured Sparsity-Inducing Norms
	Sparsity-Inducing Norms with Disjoint Groups of Variables
	Sparsity-Inducing Norms with Overlapping Groups of Variables
	Norms for Overlapping Groups: A Latent Variable Formulation
	Related Approaches to Structured Sparsity
	Convex Optimization with Proximal Methods
	Theoretical Analysis

	Sparse Principal Component Analysis and Dictionary Learning
	Analysis and Synthesis Views of PCA
	Dictionary Learning
	Imposing Sparsity
	Adding Structures to Principal Components
	Hierarchical Dictionary Learning

	High-Dimensional Nonlinear Variable Selection
	Multiple Kernel Learning: From Linear to Nonlinear Predictions
	Hierarchical Kernel Learning

	Conclusion
	Acknowledgments
	References

