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symbol duration of the coherence interval. We have established the cor-
rectness of the conjecture for three special cases: 1) a coherence interval
comprising one symbol, 2) a coherence interval of unlimited duration,
and 3) an unlimited SNR.

As mentioned in the Introduction, there is an interesting analogy
between multiple user, multiple antenna links, and coded DS-CDMA
with random signatures. In the regime considered here, the signatures
are chosen in an absolutely random fashion for everyT -symbol coher-
ence interval, without their values being known by any of the receivers,
whether legitimate or not. It is not surprising that our results also con-
form with the autocoding capacity [7], [20], where, for the case of un-
known CSI, the number of actively operating users at each time instant
is small compared withT .

Operating at the multiple-user mode forces the signals corresponding
to different users to be independent, yet all users can pre-coordinate
powers, maintain the average power constraint. (TDMA is a simple
example). We conjecture that operating with the optimized number of
the transmitting users that maximizes throughput, optimization of such
power allocation sharing (mixed strategy) would not further increase
the throughput. Evidently, in case that the optimized number of trans-
mitting usersM� is smaller than the actual number of usersM , “fair-
ness” could be imposed at no penalty in overall throughput, by permit-
ting different sets ofM� out ofM users to access the channel in some
uniform preassigned order.
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Abstract—We recently showed that arbitrarily reliable communication
is possible within a single coherence interval in Rayleigh flat fading
as the symbol duration of the coherence interval and the number of
transmit antennas grow simultaneously. This effect, where the space–time
signals act as their own channel codes, is calledautocoding. For relatively
short (e.g., 16-symbol) coherence intervals, a codebook of independent
isotropically random unitary space–time signals theoretically supports
transmission rates that are a significant fraction of autocapacity with
an extremely low probability of error. The exploitation of space–time
autocoding requires the creation and decoding of extraordinarily large
constellations—typically = 2 . In this correspondence, we make
progress on the first part of the problem through a random, but highly
structured, constellation that is completely specified bylog inde-
pendent isotropically distributed unitary matrices. The distinguishing
property of this construction is that any two signals in the constellation
are pairwise statistically independent and isotropically distributed. Thus,
the pairwise probability of error, and hence the union bound on the block
probability of error, of the structured constellation is identical to that
of a fully random constellation of independent signals. We establish the
limitations of an earlier construction through a subsidiary result that is
interesting in its own right: the square (or for that matter, any integer
power greater than one) of an isotropically random unitary matrix is not
isotropically random, with the sole exception of the one-by-one unitary
matrix.

Index Terms—Eigenvalues of random matrices, multiple antennas,
Rayleigh flat fading, space–time autocoding, unitary space–time modula-
tion, wireless communication.

I. INTRODUCTION

Research in multiple-antenna wireless entered an exciting phase
with [3], [15], which predict spectacular capacities (both Shannon
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and outage) for single-user multiple-antenna wireless links operating
in Rayleigh flat fading, where the receiver knows the propagation
matrix. In particular, the capacity grows linearly with the smaller of
the number of transmit or receive antennas with no extra bandwidth
or total power. Moreover, [3] discloses a practical scheme referred
to as BLAST (Bell Labs Layered Space Time) for realizing a signif-
icant fraction of the capacity with small outage probability, using a
divide-and-conquer strategy based on ordinary modulation and coding
techniques.

BLAST, as well as certain other space–time codes [14], requires
the receiver to know the propagation matrix between the transmit and
receive antennas. This knowledge can be acquired by sending known
training signals. The required training interval is proportional to the
number of transmit antennas [9], and for many potential applications,
training is an acceptable burden. However, in time-division mul-
tiple-access (TDMA) applications with fast fading, for example, both
training and data transmission may have to occur during a relatively
short interval. Because both the training interval and capacity increase
linearly with the number of transmit antennas, the total throughput is
maximized by choosing the number of transmit antennas such that half
of the interval is used for training, and half for data transmission [9].

Ideally, one would like to achieve BLAST-like transmission rates
with multiple antennas while circumventing training and channel
estimation. Some steps in this direction are described in [1], [10],
[6], [16], based on a piecewise-constant model for fading (also called
block fading [12], [2]). Here, the random propagation matrix (which
nobody knows) remains constant for aT symbol coherence interval,
after which it jumps to a new independent value where it remains
for anotherT symbols, and so on. This constitutes a memoryless
channel from one coherence interval to another for matrix-valued
signals, which permits a direct application of Shannon theory implic-
itly involving coding over many coherence intervals. During every
coherence interval, aT � M complex matrix is transmitted and a
T � N complex matrix is received, whereM andN are the number
of transmit and receive antennas, respectively. It was shown [10]
that capacity cannot be increased by makingM > T , and that the
capacity-attaining signals are equal to the product of two independent
matrices: aT � M isotropically distributed unitary matrix, and an
M �M diagonal, real, nonnegative matrix. This structure motivates
the use ofunitary space–time modulation[6] involving a constellation

of L T �M unitary matricesf�0; . . . ; �L�1g, where�y
`
�` = IM ,

chosen according to a design criterion that differs markedly from the
familiar maximum-Euclidean-distance criterion.

Some small(L = 64) unitary space–time constellations are de-
signed in [6] using a simple iterative algorithm. A systematic approach
is pursued in [8], where an initialT �M unitary matrix is successively
rotatedL� 1 times to generate the entire constellation of signals. The
rotation matrix isT � T diagonal, with its diagonal elements equal to
Lth roots of unity, and with the initial signal comprisingM columns
from aT � T discrete Fourier transform (DFT) unitary matrix. Using
iterative random search, the roots that characterize the rotation matrix
are chosen to give a low raw (uncoded) block probability of error for
the constellation, based on pairwise probabilities of error. The search
is facilitated by the fact that the correlation between the signals, which
determines the pairwise probabilities of error, has a circulant structure.
Using this approach, constellations larger thanL = 2000 have been
designed. However, it was not established how restrictive the circulant
structure is, or whether significant improvements in performance are
possible by relaxing this structure.

The recentspace–time autocodingeffect [7] implies that arbitrarily
reliable communication can be achieved within a single coherence in-
terval if T andM simultaneously become large. There is a positive
autocapacity, such that for any rateR less than the autocapacity, the

block probability of error for a single coherence interval goes to zero
asT andM grow large, with no knowledge of the propagation matrix
available to anybody. In effect, temporal diversity—which is unreli-
able for stop-and-go mobiles—is replaced by spatial diversity. Thus,
autocoding says that we may avoid channel coding that is normally
performed over many independent coherence intervals, and shift the
problem of achieving reliability to the problem of designing an effec-
tive constellation ofT �M signals.

Achieving autocapacity theoretically requires unboundedM andT ,
but the autocoding effect manifests itself for relatively smallT andM ,
and transmission rates that are a significant fraction of autocapacity can
theoretically be supported with extremely small probabilities of error.
For example, usingM = 7 transmit antennas andN = 4 receive an-
tennas, and with an expected signal-to-noise ratio (SNR) of 18 dB, a
single user can theoretically transmit 80 bits during a singleT = 16
symbol coherence interval (rate 5 bits/symbol) with a block proba-
bility of error less than 10�9, all without any training or knowledge
of the propagation matrix. These performance predictions are obtained
by applying a union bound and an expression for pairwise probability
of error to a hypothetical codebook ofL = 280 independent isotropi-
cally random16 � 7 unitary matrices.

A constellation of 280 independent matrices is impossible to generate
exhaustively or to store, and because of its lack of structure there is
little hope of ever finding a fast decoding scheme. This note proposes a
unitary space–time constellation that, although random, is structured,
and has exactly the same union-bound performance as a constellation
of independent signals.

Section II reviews the signal model, unitary space–time modulation,
space–time autocoding, and the earlier systematic construction. Sec-
tion III explains the new construction. Section IV reinterprets earlier
systematic constructions such as [8] in light of this new construction.
The mathematical results required for many of the conclusions of this
correspondence are developed in the appendxes: Appendix A reviews
the isotropically random unitary matrix, and presents some unusual op-
erations involving Dirac delta functions. Appendix B shows that any
power (larger than one) of an isotropically distributed unitary matrix is
not isotropically distributed. In fact, a limiting distribution is obtained
for large enough finite powers.

II. BACKGROUND AND PROBLEM STATEMENT

A single user has access to a multiple-antenna wireless link in a
Rayleigh flat-fading environment with no knowledge of the propaga-
tion matrix, and the goal is to transmit a large number of bits reliably
during one coherence interval. The recently discovered space–time au-
tocoding effect implies that, for any rate less than the autocapacity, the
block probability of error goes to zero as the duration of the coherence
interval and the number of transmit antennas increase simultaneously.
A significant fraction of the autocapacity can theoretically be realized
in a typical scenario with low probability of error using a large constel-
lation of isotropically random unitary space–time signals.

A. Signal Model

There areM transmit antennas andN receive antennas operating
in a Rayleigh flat-fading environment. During aT -symbol coherence
interval, over which the propagation coefficients are constant, a single
user transmits aT �M complex matrixS, and another user receives
a complexT � N matrixX

X =
�

M
SH +W; (1)

whereH is anM �N propagation matrix, whose elements are inde-
pendentCN (0; 1), andW is an independentT � N receiver noise
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Fig. 1. Wireless link comprisingM transmitter andN receiver antennas. We wish to transmitR � T bits of information reliably in asinglecoherence intervalT ,
whereR is the rate in bits per symbol.

matrix whose elements are independentCN (0; 1). There is a power
constraint

E
1

M

M

m=1

jstmj2 = 1 (2)

and� represents the expected SNR at each receive antenna.
We assume throughout the correspondence that the random propa-

gation matrix is unknown to both the transmitter and the receiver.

B. Space–Time Autocoding and Unitary Space–Time Modulation

We wish to transmit a total ofR � T bits, for some rateR, during
a single coherence interval as illustrated in Fig. 1. There is a positive
autocapacityCa [7], such that for allR < Ca, there exists a code
such that the block probability of error goes to zero exponentially as
T; M !1. The autocapacity, in units of bits per symbol, is given by
the simple formula

Ca = N log(1 + �): (3)

Within a finite duration coherence intervalT < 1, bits can theo-
retically be transmitted at rates below the autocapacity with low prob-
ability of error using a random codebook ofL independent isotropi-
cally random (Section III describes the isotropic distribution in some
detail) T � M unitary space–time signals [7],fS` =

p
T�`; ` =

0; . . . ; L � 1g, whereL = 2RT , and where the column vectors of

each�` are orthonormal,�ỳ�` = IM . The block probability of error
Pe may be upper-bounded through the union bound

Pe < 2RTE� ;� fPef�1 vs.�2gg (4)

wherePef�1 versus�2g is the pairwise (e.g., two-signal constella-
tion) probability of error that is associated with any distinct pair of sig-
nals in the constellation [6], given by the exact formula

Pef�1 versus�2g

=
1

�

�=2

0

d�

M

m=1

cos2 �

cos2 � +
(�T=M) (1�d )

4(1+�T=M)

N

(5)

whered1; . . . ; dM are the singular values of theM�M matrix�y2�1.
The expectation with respect to the singular values may be brought
inside the integral in (5) and, when the two signals are independent,
may be obtained in closed form;� can be integrated numerically. We
omit all the details and refer the interested reader to [7].

Fig. 2 displays the bound (4) as a function of the transmission rate
R, for an 18-dB expected SNR,N = 4 receive antennas, forT =
2; 4; 8; 16, and forM = 1; 2; 3; 7; respectively. For the larger values
of T , transmission rates as high as 25% of the autocapacityCa = 24.01
bits/symbol can theoretically be sustained with very low probability of
error. However, to realize the autocoding effect we need constellations
of unprecedented size (L = 280 for T = 16, andR = 5).

C. Earlier Systematic Constructions [8]

The design of constellations of unitary space–time signals when the
propagation matrix is unknown involves a criterion that differs con-
siderably from the usual maximum Euclidean distance criterion [6],
[8]. We see from (5) that making the singular values of the “corre-

lation matrix” �y2�1 as small as possible is beneficial. In particular,

making�y2�1 = 0 is ideal, but this is not generally possible for all
possible pairs of elements in a constellation. Constellations of unitary
space–time signals have a block probability of error that is invariant to
certain transformations: 1) left multiplication by a commonT �T uni-
tary matrix,�` ! 	y�`, ` = 0; . . . ; L�1; 2) right multiplication by
individualM �M unitary matrices,�` ! �`�`, ` = 0; . . . ; L� 1.
Any constellations that are related by transformations of this type are
considered to be equivalent.

The problem of constructing moderately large constellations of uni-
tary space–time signals is addressed in [8] with the goal of achieving
a low block probability of error. The construction proposed in [8] in-
volves successive rotations of an initial signal inT -dimensional com-
plex space

�` = 
`�0; ` = 0; . . . ; L� 1 (6)

where
 is aT � T unitary matrix, and�0 is theT �M initial signal

obeying�y0�0 = IM . A judicious choice of
 and�0 is needed to
make the columns of�` zig-zag over the surface of theT -dimensional
complex sphere.

There is no loss of generality in assuming that
 is diagonal because
the Schur factorization [13] implies that any square unitary matrix

has the eigenvector–eigenvalue decomposition


 = 	�	y (7)

where	 isT �T unitary, and� is aT �T diagonal matrix of eigen-
values of
. The transformation�` ! 	y�` produces an equivalent
constellation that is generated by a diagonal rotation matrix that com-
prises the eigenvalues of


�` = �`�0; ` = 0; . . . ; L� 1: (8)

In [8], further structure is imposed by choosing a)� to be anLth
root of the identity matrix, implying that�tt = ei2�u =L, whereut 2
f0; 1; . . . ; L� 1g; b)�0 to compriseM distinct columns of aT �T
DFT matrix. The integersu1; . . . ; uT and the DFT columns are chosen
by iterative random search with the goal of minimizing the maximum
pairwise probability of error (more precisely, an upper bound on the
Chernoff bound) between all distinct pairs of signals in the constella-
tion.

Choosing� to be anLth root of the identity matrix makes the cor-
relation between the signals, which determines the pairwise probabil-

ities of error, have a circulant structure, i.e.,�
ỳ
�` depends only on

(`0 � `)modL. Conversely, any constellation that has circulant corre-
lation structure is equivalent to one that has the construction (8).

The circulant structure implies that the conditional probability of
error is the same for every signal in the constellation, it simplifies the
iterative design since onlyL� 1 rather than(L2 � L)=2 correlations
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Fig. 2. Reference [7] upper bound on block probability of error versus transmission rate (bits/symbol) for random codebook of unitary space–time signals, for
N = 4, � = 18 dB, and(T; M) = (2; 1); (4; 2); (8; 3); (16; 7). Autocapacity is equal to 24.01 bits/symbol.

have to be checked, and it has some intuitive appeal. However, no in-
dication is given in [8] as to how restrictive this structure really is, or
whether significant improvements could be obtained by relaxing this
structure. Moreover, the iterative optimization could never be used for
anL = 2

80 constellation.
In what follows, we show that gains can indeed be obtained by re-

laxing the structure, and propose a method for designing constellations
that can readily generate 280 signals.

III. STRUCTURED CONSTELLATION WITH GOOD AVERAGE

PERFORMANCE

Our approach to specifying constellations of unitary space–time sig-
nals is based on the observation that the union bound (4), where the
expected pairwise probability of error is identical for all distinct pairs,
only requires�` and�` to be pairwise independent isotropically dis-
tributed matrices for all̀ 0 6= `.1 Any constellation having marginally
isotropically random and pairwise independent signals would have ex-
actly the same union-bound performance (as given by Fig. 2, for ex-
ample) as a constellation of independent unitary space–time signals,
no matter what other probability dependencies they may have. We now
demonstrate a construction that has pairwise independence and is easy
to generate.

Our signals are represented byR � T binary indexes, and they are
generated as follows:

�` ` ���` = 

`
1


`
2
� � �


`

RT �00���0; `1; `2 . . . ; `RT 2 f0; 1g

(9)

1In fact, the random coding exponent only depends on pairwise independence
[4].

where the
1; . . . ; 
RT are independentT � T isotropically dis-
tributed unitary matrices. We let�00���0 be an independentT � M

isotropically distributed unitary matrix.
A T � T random unitary matrix
 is isotropically distributed if its

probability density is unchanged when
 is premultiplied by anyT�T
deterministic unitary matrix. From this definition, one may deduce [10]
that a) there is exactly one probability density that possesses this prop-
erty, with the formula given by (A1); b) the density is invariant to post-
multiplication of
 by any deterministic unitary matrix. Likewise, a
T � M random unitary matrix�, i.e.,�y� = IM , is isotropically
distributed if its probability density is invariant to premultiplication by
any deterministicT � T unitary matrix. An oblong matrix of this type
has the same density as anyM columns of aT � T isotropically dis-
tributed unitary matrix.

We now show that the signal matrices (9) are marginally isotropically
distributed and pairwise independent. They are marginally isotropically
distributed because any signal is equal to theT �M isotropically dis-
tributed unitary matrix�00���0 premultiplied by an independentT �T

unitary matrix. Conditioned on thisT � T factor, the signal is there-
fore isotropically distributed and not dependent on this factor. Since
the conditional density is independent of the factor it follows that the
unconditional distribution is also isotropic.

Let ` denote the vector comprising theRT binary indexes
f`1; . . . ; `RT g, and consider two distinct signals from the constella-
tion (9),�` and�k, for k 6= `. We wish to establish that the signals
are independent. With̀ = 0 denoting the vector of all zeros, the
signals may be expressed as

�` = �`�0 and �k = �k�0

where�` and�k are products of certain subsets off
1; . . . ; 
RT g.
At least one of�` or �k has a factor
q that is not contained in the
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other. Assume without loss of generality that
q is a factor of�` (but
not of�k) which then takes the form

�` = A
qB:

Consider the following argument.

• 
q does not appear inA, B, or�k, and therefore
q is indepen-
dent of these matrices.

• Conditioned onA, the productA
q is isotropically distributed.
Since this conditional density does not depend onA, the product
A
q is isotropic and independent ofA. The product is also inde-
pendent of�k.

• By a similar argument,�` = A
qB is isotropic and independent
of B and�k.

• Finally, because�y
0
�0 = I , conditioned on�0, �` = �`�0 is

T�M isotropically distributed, and since the conditional density
for�` has no dependence on either�0 or on�k, we conclude that
�` and�k = �k�0 are independent.

We note a final simplification that can be made to the construction
(9). Specifically, the first signal�0 can be chosen to be a determin-
istic (rather than isotropically random)T �M unitary matrix without
changing the block probability of error for the constellation. To see
this, we introduce theT � (T �M) orthogonal complement�0? to
the isotropically distributed�0, such that together they form aT � T

isotropically distributed matrix	 = [�0 �0?]. Every signal in the
constellation can be premultiplied by	y without changing the block
probability of error. This transformation gives

	y�` ���` =	y
`
1
� � �


`

RT 		y�0

= 	y
1	
`

� � � 	y
RT	
` IM

0
:

By our now-standard argument, the product	y
j is isotropic and in-
dependent of	. Likewise,	y
j	 is isotropically distributed and in-
dependent of	. Therefore, the constellation (9) with�0 isotropically

distributed is equivalent to a constellation where�
y
0
= [ IM 0 ].

To summarize, a constellation of2RT independent isotropically
random unitary space–time signals can be replaced, without altering
its union bound performance, by a highly structured random constel-
lation that is specified by only the initialT � M signal and byRT
isotropically distributedT � T unitary matrices.

IV. COMMENTS ONEARLIER SYSTEMATIC CONSTRUCTION OF[8]

In the previous section, we presented a highly structured random
constellation that is based onR � T independent isotropically random
rotation matrices and which has the same (good) union-bound perfor-
mance (4) as a fully random constellation of independent isotropically
random signals. We now demonstrate why this new scheme is superior
to the earlier construction (6) that is based on a single rotation matrix.

A. Single Isotropically Random Rotation Matrix

Consider the construction (6), with the initial signal�0 isotropically
random unitary, and with the rotation matrix
 independent isotrop-
ically random unitary. Because�0 is isotropically distributed, all of
the signals in the constellation are marginally isotropically distributed.
For the construction to have the same union bound performance as the
construction (9), we would require every
`, ` = 2; . . . ; L� 1 to be
marginally isotropically distributed. For then, by an argument that is
parallel to that of the previous section, any two distinct signals would
be pairwise independent.

It is an intuitively appealing proposition that, if
 is isotropically
distributed, then
` is isotropically distributed for any integer` � 2.

Indeed, if this were true, the successive rotations
`�0 would zig-zag
uniformly over the surface of theT -dimensional complex sphere, as
hoped. However, this turns out not to be true. The reason follows di-
rectly from the eigenvector/eigenvalue decomposition (7). The eigen-
vectors and the eigenvalues of an isotropic matrix are independent of
each other, theT � T eigenvector matrix	 is itself isotropically dis-
tributed, and theT eigenvalues�1; . . . ; �T have the density [5]

p�(�) =
1

T !�T

T

t=1

�(j�tj
2 � 1)

s>t

j�s � �tj
2
: (10)

The eigenvalues have unit magnitude, while the phases�t in �t = ei�

are distributed as

p(�) =
2T �T

T !(2�)T

T

t=1 s>t

sin2
�s � �t

2
: (11)

On the other hand, the eigenvalues of
`, which again have unit mag-
nitude and we denote�t = �`t , t = 1; . . . ; T have phases1; . . . ; T
distributed as

p() =
2T �T

T !(2�)T `T

`�1

j =0

� � �

`�1

j =0

T

t=1 s>t

sin2
s � t + 2�(js � jt)

2`
: (12)

For allT > 1,
` isnotisotropically distributed for anỳ� 2. Further-
more,
` reaches a limiting density for all` � T , where the eigenvalue
phases are independent and uniformly distributed

p() =
1

2�

T

; ` � T: (13)

See [11] or, alternatively, Appendix B for derivations of these results.
These results are highly counterintuitive. For example, the`th

power of a3� 3 real isotropically distributed orthogonal matrix is not
isotropic, as illustrated in Fig. 3. Let	 be a3 � 3 real, isotropically
distributed orthogonal matrix, and letex be the unit vector that points
in thex-direction. The figure shows that the product	ex is equally
likely to lie anywhere on the unit sphere. However, the product	`ex,
for even powers of̀ is biased towardex, and for odd powers of̀ is
biased toward�ex.

For two signals�` and�k, the pairwise error probability depends

on�y`�k = �
y
0

k�`�0, and if j` � kj � T then
k�` has indepen-

dent uniformly distributed eigenvalue phases. BecauseL is often very
large(L = 280), most of the pairwise signals have an effective
k�`

with this phase distribution, even if
 is itself isotropic. We, therefore,
look briefly at the performance of a constellation that is generated by a
single rotation matrix
 that is not isotropic, but rather has independent
uniformly distributed eigenvalue phases. As we show, this constellation
does not perform as well as the constellation (9).

B. Rotation Matrix With Independent, Uniform-Phase Eigenvalues

Consider the construction (6) where�0 is isotropic but
 has eigen-
values with independent, uniform[0; 2�) phases (its eigenvectors are
still isotropic). Then all of the signals are marginally isotropically dis-
tributed and any two distinct signals have the same joint distribution.
We are unable to take the expectation of the pairwise probability of
error (5) analytically, so we use Monte Carlo integration. The resulting
union bound is shown in Fig. 4. We used 105 trials to generate each pair-
wise probability of error so the curves(T; M) = (8; 3)and(T; M) =
(16; 7) are only approximate; nevertheless, a comparison with Fig. 2
shows that the single-rotation matrix construction is worse than the
construction (9).
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Fig. 3. The power of a3� 3 real, isotropically distributed orthogonal matrix is not isotropically distributed. Upper left: single application of random rotation to
the unit vectore results in a unit vector that is equally likely to lie anywhere on the unit sphere. Upper right: an even number of applications of the same random
matrix is biased towarde . Lower left: an odd number of applications of the same random matrix is biased toward�e .

Fig. 4. Upper bound on block probability of error versus transmission rate (bits/symbol) for codebook of unitary space–time signals, generated froma single
rotation matrix having independent, uniform-phase eigenvalues, forN = 4, � = 18 dB, and(T; M) = (2; 1); (4; 2); (8; 3); (16; 7).
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V. CONCLUSION

The realization of the space–time autocoding effect requires two
things: 1) a good, extraordinarily large, constellation of unitary
space–time signals, and 2) a decoding algorithm that avoids exhaustive
search over the constellation. We have addressed the first problem
with a construction that is random but highly structured. TheL
signals are specified bylog2 L isotropically distributedT � T unitary
matrices. These constellations can support transmission rates that
are a significant fraction of the autocapacity with extremely low
probabilities of error, and their low complexity makes them practical
for the transmitter to employ. Their ultimate utility, however, depends
entirely on the discovery of a good decoding algorithm.

APPENDIX A
THE ISOTROPICALLY RANDOM UNITARY MATRIX; SOME UNUSUAL

OPERATIONSINVOLVING DIRAC DELTA FUNCTIONS

A T � T random unitary matrix� is isotropically distributed if its
probability density is unchanged when� is pre-multiplied by anyT�T
deterministic unitary matrix. This operational definition leads directly
to the unique probability density [10] as a function of theT column
vectorsf�1; . . . ; �T g

p(�) = p(�1) �

T

s=2

p(�sj�1; . . . ; �s�1)

=
�(T )

�T
� �

y
1�1 � 1

�

T

s=2

�(T + 1� s)

�T+1�s
� �ys�s � 1

s�1

t=1

� �ys�t (A1)

where the Dirac delta function of a complex-valued argument is inter-
preted as�(z) = �(Refzg) � �(Imfzg). This density, defined with
respect to Lebesgue measure, is invariant to postmultiplication of its
argument by any deterministic unitary matrix.

We will need to integrate coupled Dirac delta functions whose ar-
guments are nonlinear functions. Letf(x) be aK-component vector-
valued nonlinear function of aK-dimensional real-valued vectorx, and
consider the integral

dxh(x)�(f(x)) = dxh(x)

K

k=1

�(fk(x))

whereh(x) is scalar-valued. Furthermore, suppose that the function
has only a single zerof(x0) = 0. Clearly, the support for the integral
occurs atx = x0. A change of coordinatesy = f(x) gives

dxh(x)

K

k=1

�(fk(x))

= dy
h(x)

j detfrfT (x)gj x=f (y)

�

K

k=1

�(yk)

=
h(x0)

j detfrfT (x)gjx=x

where[rfT ]k` = @f`=@xk. Formally, this means that

�(f(x)) =
�(x� x0)

j detfrfT (x)gjx=x
: (A2)

This expression accommodates multiple zeros by taking a sum of delta
functions at the individual roots, and dividing by the appropriate Jaco-
bian determinants. It is modified for complex variables by squaring the
determinants.

APPENDIX B
PROBABILITY DENSITY OF EIGENVALUES OF `TH POWER OF

ISOTROPICUNITARY MATRIX

For aT � T isotropically random unitary matrix�, and for any
positive integer̀ , the eigenvector/eigenvalue decomposition is

�` = 	D`
�	

y

wheref�1; . . . ; �T g are distributed according to (10). Let the eigen-
values of�` be denoted by�t = �`t; t = 1; . . . ; T . Their conditional
density is

p�j�(�j�) =

T

t=1

�(�t � �`t)

=

T

t=1

�

`�1

j =0

�t � ei2�j =`�
1=`
t : (B1)

We obtain the marginal density for� by taking the expectation of the
conditional density

p�(�) = d�p�(�)

T

t=1

�

`�1

j =0

�t � ei2�j =`�
1=`
t

= d�p�(�)

`�1

j =0

� � �

`�1

j =0

T

t=1

� �t � ei2�j =`�
1=`
t

k 6=j

jei2�j =` � ei2�k =`j
2 : (B2)

The Jacobian factors that appear with the Dirac delta functions are eval-
uated as follows:

k 6=j

ei2�j=` � ei2�k=` =
k 6=j

1� ei2�(k�j)=`

=

`�1

k=1

1� ei2�k=`

=

`�1

k=1

w � ei2�k=`
w=1

=
w` � 1

w � 1 w=1

= w`�1 + w`�2 + � � �+ 1
w=1

= `: (B3)

The combination of (B2), (B3), and (10) gives

p(�) =
1

`2T

`�1

j =0

� � �

`�1

j =0

p� ei2�j =`�
1=`
1 ; . . . ; ei2�j =`�

1=`
T

=
1

T !�T `2T

`�1

j =0

� � �

`�1

j =0

T

t=1

�(j�tj
2=` � 1)

�
s>t

ei2�j =`� � ei2�j =`�
2

: (B4)

The transformation (A2) simplifies the Dirac delta functions to

�(j�tj
2=` � 1) = �

j�tj
2 � 1

`

= `�(j�tj
2 � 1) (B5)
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which when substituted into (B4) gives

p(�) =
1

T !�T `T

`�1

j =0

� � �

`�1

j =0

T

t=1

�(j�tj
2 � 1)

s>t

e
i2�j =`� � e

i2�j =`�
2

: (B6)

The change-of-variables�t = y
1=2
t ei , combined with the appro-

priate Jacobian, gives the joint density fory and. The integration
overy gives the joint density for the eigenvalue phases

p() =
2T �T

T !(2�)T `T

`�1

j =0

� � �

`�1

j =0

T

t=1 s>t

sin2
s � t + 2�(js � jt)

2`
: (B7)

Merely by inspection, one cannot verify that this complicated expres-
sion differs from the density for̀ = 1, though one could establish
this fact numerically. In the following, we show that, for` � T the
eigenvalue phases are independent and uniformly distributed, and that
a different density is obtained for every` < T . These results have also
been established in [11]; our treatment is more direct, and it avoids
using the Haar measure.

A. Eigenvalue Density for̀ � T

It is more convenient to work with the characteristic function

C(k) =E e
iky

=E e
i`ky�

=
1

T !(2�)T
d�e

i`ky�

t s>t

e
i� � e

i�
2

(B8)

which, because of the periodicity of the density, need only be consid-
ered for integer values of the components of the vectork. For all` � T ,
we wish to show thatC(k) = 0 for all k not identically equal to0.
Without loss of generality, suppose thatk1 6= 0. Then the integrand
of (B8) may be regarded as a trigonometric polynomial in�1, and the
integral with respect to�1 takes the form

d�1e
i`k �

(T�1)

j=�(T�1)

aje
i j �

:

Since` � T andjjj < T , for all nonzero integer values ofk1, `k1 +
j 6= 0, so the integral vanishes. It follows thatC(k) = 0, unlessk � 0,
so the eigenvalues phases are independent and uniformly distributed.

B. Eigenvalue Phases Are Not Independent for` < T

The converse also holds: for all1 � ` < T , the eigenvalue phases
arenot independent and uniformly distributed. We need only show that
C(k) 6= 0 for some nonzero value ofk. In the following, we establish
this fact fork1 = �1, k2 = 1, k3 = k4 = � � � = kT = 0. We use the
fact that the probability density for� is proportional to the magnitude
squared of a Vandermonde determinant, i.e.,

t s>t

e
i� � e

i�
2

= det

1 1

ei� ei�

... � � �
...

ei(T�1)� ei(T�1)�

2

=
q

aqe
iqy�

2

where the T components ofq range over all permutations of
f0; 1; . . . ; T � 1g, andaq = �1 depending on whether the permu-
tation is even or odd. We substitute this expression into (B8) to give

C(�1; 1; 0; . . . ; 0)

=
1

T !(2�)T
d�e

i`(�� +� )

q r

aqare
i(q�r)y�

: (B9)

It is apparent that the nonvanishing terms of (B9) satisfy the following:

�`+ q1 � r1 =0

`+ q2 � r2 =0

qt � rt =0; t = 3; . . . ; T:

We substitute the equivalent expressions forfrtg into (B9) to give

C(�1; 1; 0; . . . ; 0)

=
1

T !

T�1

q =`

T�1�`

q =0 q

� � �
q

aq ; q ; q ; ...; q aq �`; q +`; q ; ...; q :

Recall that thea’s are nonzero only when theirT arguments are dis-
tinct. Given the lastT � 2 arguments of thea’s, there are only two
possible values for the first two arguments. Eitherq1 = q1 � ` and
q2 = q2 + ` (an impossibility sincè 6= 0) or q2 = q1 � `, which
corresponds to exchanging the first two arguments of thea’s. Hence,

aq ; q ; q ; ...; q aq �`; q +`; q ; ...; q

= aq ; q �`; q ; ...; q aq �`; q ; q ; ...; q

= �1:

We apply this result, and sum over the(T�2)! values offq3; . . . ; qT g
to obtain

C(�1; 1; 0; . . . ; 0) =
(T � 2)!

T !

T�1

q =`

(�1)

=�
T � `

T (T � 1)

6=0; 8 ` = 1; . . . ; T � 1: (B10)

Therefore, we conclude that, for`=1; . . . ; T�1, the eigenvalue phases
arenot independent and uniformly distributed, and, furthermore, that
the eigenvalue density is different for every`=1; . . . ; T�1.

This yields the following lemma.

Lemma 1: The eigenvalue phases of the`th power of aT � T

isotropically distributed unitary matrix have a uniform joint distribu-
tion if and only if ` � T .
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A New View of Performance Analysis of Transmit Diversity
Schemes in Correlated Rayleigh Fading

Siwaruk Siwamogsatham, Student Member, IEEE,
Michael P. Fitz, Member, IEEE, and Jimm H. Grimm, Member, IEEE

Abstract—This correspondence provides a new formulation for the pair-
wise error probability for any coherently demodulated system in arbitrarily
correlated Rayleigh fading. The novelty of the result is that the error prob-
ability expression can be described as a function of the eigenvalues of a
“signal”-only matrix. We also provide the relationship between the pole
location of the characteristic function and the resulting error probability.
This result allows us to approximate and bound the desired probability.
A new simple bound on the pairwise error probability is derived that is
better than the standard Chernoff bound and asymptotically tight with the
signal-to-noise ratio (SNR) to the true probability.

Index Terms—Asymptotic bounds, diversity, pairwise error probability,
performance analysis, Rayleigh fading.

I. INTRODUCTION

Performance analysis of digital communications systems in fading
channels has been an area of long-time interest. Results were first ob-
tained in [1]. An elegant unified technique was presented in [2], [3] for
signals experiencing complex Gaussian fading and advanced textbooks
have significant sections discussing related results [4]. Improvements
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and generalizations have continued to be derived until today (e.g., [5],
[6]).

In this correspondence, we present some new results on performance
analysis of transmit diversity schemes or a generic coherent demodula-
tion scheme in independent and correlated Rayleigh-fading channels.
Unlike the traditional analysis [7] which derived the performance as
a function of the eigenvalues of a certain matrix that is composed of
signal and noise components, here we are able to describe the pair-
wise error probability (PWEP) as a function of the eigenvalues of a
signal-only matrix by employing an appropriate matrix identity. This
result provides a nice intuition to the current problem as it allows us
to describe the roots of the associated characteristic function as a func-
tion of signal and noise power. We also derive the relationship between
the pole location of the characteristic function and the resulting proba-
bility density function (pdf) of a generic quadratic form of a zero-mean
complex Gaussian random vector (CGRV). The result suggests that any
movement of a given pole toward the origin always produces a larger
error probability, and hence the desired probability can be lower- and
upper-bounded or approximated by appropriately moving the poles of
the characteristic function. Since we can explicitly describe these poles
as a function of signal and noise power, this result directly leads to a
new upper bound of the PWEP that is better than the standard Cher-
noff bound and asymptotically tight with SNR to the true PWEP. In
addition, this bound often can be put in a product form and used with
a transfer function union bound [8].

The correspondence is organized as follows. Section II provides a
formulation of a generic quadratic form of a zero-mean CGRV and de-
rives a useful property on the pdf of this quadratic form. Section III
gives the description of the system under consideration. Section IV de-
rives the PWEP for the system of interest in terms of the exact calcula-
tion, a simple approximation, and an asymptotic bound.

II. QUADRATIC FORMS OF ACGRV

In digital communications, performance analysis generally involves
the evaluation of the probability distribution of a generic quadratic form
of a CGRV. With an appropriate formulation of a quadratic form of
CGRV, the analysis is unified for all varieties of applications (e.g., see
[7], [4], [9], [10]). In this section, we formally describe the pdf of the
quadratic form of a CGRV, and derive a useful property on the density
function which will lead to later results of interest.

A quadratic form of anN � 1 CGRV ~Z is a real-valued random
variable given as

Qz = ~Z
H
KKK~Z (1)

whereKKK is a certainN �N Hermitian matrix. The form in (1) often
arises in performance analysis of digital communication systems and a
wide variety of results exist to characterize~Z andKKK for different ap-
plications. For a zero-mean CGRV~Z , the characteristic function (ChF)
of Qz is given by [11]

�Q (t) = E e
jQ t =

1

det(IIIN � jtCCCzKKK)
(2)

whereCCCz is the covariance matrix of~Z andIIIN is anN �N identity
matrix. DefiningWWW z = CCCzKKK, �Q (t) can be expressed as a function
of the nonzero eigenvalues ofWWW z . After some linear algebra manipu-
lation, we may express�Q (t) in the form

�Q (t) =
1

N

i=1

(jbi)(t� jpi)

(3)

0018-9448/02$17.00 © 2002 IEEE


