
Information Systems and e-Business Management manuscript No.
(will be inserted by the editor)

Structuredness and its Significance for
Correctness of Process Models

Ralf Laue1, Jan Mendling2

1 Chair of Applied Telematics, University of Leipzig, Klostergasse 3, 04109 Leipzig,
Germany
(e-mail: laue@ebus.informatik.uni-leipzig.de)

2 Institute of Information Systems, Humboldt-Universität zu Berlin, Unter den
Linden 6, 10099 Berlin, Germany
(e-mail: jan.mendling@wiwi.hu-berlin.de)

Key words Business Process Modeling, Structuredness, Correctness, Predic-
tion

The date of receipt and acceptance will be inserted by the editor

Abstract Recent research has shown that business process models from
practice suffer from several quality problems. In particular, the correctness
of control flow has been analyzed for industry-scale collections of process
models revealing that error ratios are surprisingly high. In the past the struc-
turedness property has been discussed as a guideline to avoid errors, first
in research on programming, and later also in business process modeling.
In this paper we investigate the importance of structuredness for process
model correctness from an empirical perspective. We introduce definitions
of two metrics that quantify the (un)structuredness of a process model, the
Degree of Structuredness and the Unmatched Connector Count. Then, we
use the Event-driven Process Chain (EPC) models of the SAP Reference
Model for validating the capability of these metrics to predict error prob-
ability. Our findings clearly support the importance of structuredness as a
design principle for achieving correctness in process models.

1 Introduction

The importance of conceptual models for facilitating a systematic design
of information systems has already been recognized in the 1960s (Wand
and Weber, 2002). In more recent years, the modeling of business processes
became more and more important (Davies et al., 2006). Models resulting
from such efforts are commonly referred to as business process models, or
process models for short. They are used to support the analysis and design

2 Ralf Laue, Jan Mendling

of, for example, process-aware information systems (Dumas et al., 2005),
service-oriented architectures (Erl, 2005), and web services (Ferris, 2003).

Process models typically capture in some graphical notation what tasks,
events, states, and control flow logic constitute a business process. A busi-
ness process that is in place to deal with complaints may, for example,
contain a task to evaluate the complaint, which is followed by another one
specifying that the customer in question is to be contacted. Process mod-
els may also contain information regarding the data that is processed by
the execution of tasks, which organizational and IT resources are involved,
and potentially capture other artifacts such as external stakeholders and
performance metrics, see e.g. Scheer (2000). Similar to other conceptual
models, process models are first and foremost required to be intuitive and
easily understandable, especially in IS project phases that are concerned
with requirements documentation and communication (Dehnert and Van
der Aalst, 2004).

The quality of such business process models has been discussed for a
while, for instance in Guidelines of Modeling (Becker et al., 2000) and the
SEQUAL framework (Lindland et al., 1994; Krogstie et al., 2006). On the
downside there is a notable gap of empirical research on process model
quality aspects (Moody , 2005). There are only few empirical contributions
reported that partially help the modeler to come up with a good design. In
particular, the works of Gruhn and Laue (2007b), Vanhatalo et al. (2007),
and Mendling et al. (2008) show that business process and workflow models
from practice have considerable error ratios with 5% to 30% of the models
having control flow problems. Structuredness is an important property in
this context, requiring that splits have always a matching join, and that
these pairs are nested within each other. The prediction function estimated
in Mendling et al. (2007a) reveals that unstructuredness is a factor that is
connected with a higher probability of errors. What would be informative in
this context is strong empirical evidence on the connection between certain
styles of modeling and quality aspects. In this way, respective modeling
guidelines can be established. Also, good and bad modeling practices can
be made part of the process modeling curriculum at universities.

Earlier research into software engineering, e.g. Oulsnam (1982) and Am-
marguellat (1992), emphasizes structuredness as a desirable property and
proposes techniques for translating unstructured flowcharts into structured
ones. However, these techniques are only partially applicable when concur-
rency is introduced. Situations, where unstructured process models cannot
be translated into behavior equivalent structured ones, are discussed in Kie-
puszewski et al. (2000). Therefore, the business process modeler has a much
higher responsibility to structure the model from the very beginning since
an automatic refactoring is not possible in the general case. To put it dif-
ferently, “the current unstructured style of business process modeling [. . .]
leads to similar problems as spaghetti coding” (Holl and Valentin, 2004). In
particular, the transformation of process models to executable BPEL that
impose certain structuredness constraints becomes a sophisticated problem

Structuredness and its Significance for Correctness of Process Models 3

that cannot be automated in the general case (Mendling et al., 2006; Ouyang
et al., 2006; Aalst and Lassen, 2008). Yet, unstructured models can both
be adequate for certain business processes, and they can also be correct
from a behavioral point of view. Therefore, a modeler should strive for as
much structuredness as possible, but might not always be able to avoid
unstructured parts.

While the negative impact of unstructuredness on quality of process
models is supported by previous research, there is an ongoing debate on
how to measure the degree of (un)structuredness. Essentially, there are two
approaches to capture it: reduction of structured parts, and identification
of unstructured patterns. This paper contributes to the discussion by com-
paring the Degree of Structuredness measure with a new metric called Un-
matched Connector Count. We use formal notations to define both metrics.
Furthermore, we provide an empirical validation based on the SAP reference
model. It serves as a sample to evaluate in how far the different metrics are
statistically associated with formal control flow errors such as deadlocks.
We use Event-driven Process Chains (EPCs) to illustrate our arguments,
basically because EPCs cover the typical routing elements that are also
used in other languages like YAWL and BPMN, and because we can use
existing EPCs from practice (those of the SAP reference model) to test the
predictive power of the metrics regarding error probability.

Against this background, the remainder of the paper is structured as
follows. In Section 2 we define EPCs and EPC Soundness. Section 3 intro-
duces the two structuredness metrics, the Degree of Structuredness (DoS)
and the Unmatched Connector Count (UCC). Subsequently, in Section 4
we calculate these metrics and EPC soundness for each of the EPCs in the
SAP reference models. Based on this data, we apply statistical analysis in
order to assess the impact of the two metrics on error probability of the
EPC models. Section 5 discusses the findings in relation to related work.
Finally, Section 6 concludes the paper.

2 Preliminaries

In this section we define EPCs and EPC soundness. Both formalizations
are important later in the paper for the definition of structuredness metrics
and for understanding the correctness criterion that we use for validating
the capability of these metrics to predict error probability.

2.1 Event-driven Process Chains (EPCs)

The Event-driven Process Chain (EPC) is a business process modeling lan-
guage for the representation of temporal and logical dependencies of activi-
ties in a business process (Keller et al., 1992). This language is widely used
in the industry, mainly due to the fact that it has been used as the modeling
language of the ERP software SAP R/3.

4 Ralf Laue, Jan Mendling

EPCs offer function type elements to capture activities of a process and
event type elements describing pre-conditions and post-conditions of func-
tions. Furthermore, there are three kinds of connector types including AND
(symbol ∧), OR (symbol ∨), and XOR (symbol ×) for the definition of
complex routing rules. Connectors have either multiple incoming and one
outgoing arc (join connectors) or one incoming and multiple outgoing arcs
(split connectors). Control flow arcs are used to link these elements. The
informal (or intended) semantics of an EPC can be described as follows.
The AND-split activates all subsequent branches in concurrency. The XOR-
split represents a choice between one of several alternative branches. The
OR-split triggers one, two or up to all of multiple branches based on con-
ditions. The AND-join waits for all incoming branches to complete, and
then it propagates control to the subsequent EPC element. The XOR-join
merges alternative branches. The OR-join synchronizes all active incoming
branches. Its behaviour is called non-local since the state of all transitive
predecessor nodes has to be considered (Kindler, 2006).

Figure 1 gives the example of an EPC from the SAP reference model
(Keller and Teufel, 1998). It describes the functions and the related events
that establish the control flow of the Profit and Cost Planning process. The
process is started when a plan proposal for sales planning is to be created
(top right). Depending on whether the sales quantities have to be transferred
either the left or the right path is activated, while the event “sales plan is
available” will always become true. Therefore, this decision is modeled as
an OR-split. Based on different options for new period planning (left top),
the cost and activity function is executed. This leads to the product cost
planning. When the standard price is updated, the profit planning can be
conducted. This eventually contributes to the profit center planning (center
bottom).

While the EPC in Figure 1 accurately describes the profit and cost
planning, it is complicated by the fact that not all split connectors directly
have a matching join connector, i.e. it is not structured. Figure 2 shows three
further example EPCs that highlight the structuredness property, and how
certain patterns lead to unstructuredness. While the EPC in Figure 2(a) is a
structured one, the models in in Figure 2(b) and (c) have one split connector
in the left subbranch that is not properly matched by a join connector.
However, the unstructuredness in the right EPC is somewhat more severe
since there are multiple arcs from the split to unmatched connectors.

In the remainder of this section, we give some definitions that allow us
to describe the EPC syntax in a formal way. This way we can later define
metrics of structuredness, and in particular the concept of a not properly
matched connector.

Definition 1 (Preset and Postset of Nodes) Let N be a set of nodes
and A ⊆ N × N a binary relation over N defining the arcs. For each
node n ∈ N , we define •n = {x ∈ N |(x, n) ∈ A} as its preset, and
n• = {x ∈ N |(n, x) ∈ A} as its postset.

Structuredness and its Significance for Correctness of Process Models 5

Plan Proposal
for Sales

Planning ot be
created

Sales Planning

Plan Sales
Quantities are

to be
transferred ...

Sales Plan is
available

Plan Sales
quantities

transferred to
LIS

Activity
requirements
transferred

from...

New Period to
be planned

(copy of
preivous year)

New Period to
be planned

(copy of
actual)

New Period to
be planned

(new
definition of...

Cost and
Activity

Planning

Plan data for
order exists

Cost and
activity

planning
executed

Fiscal year/
period is to
be costed

Product Cost
Planning

Cost Estimate
needs to be

revised due to
variances

Stock
revaluated

Standard price
updated in
materila
master

Profit Planning

Control
measures

taken due to
variances

Results plan
transferred to

EC PCA

Profit center
planning is to
be prepared
(copy plan)

Profit center
planning to be
prepared (copy

actual)

Profit center
planning to be

prepared
(Excel plan)

Profit center
planning to be
prepared (new

definition)

Profit center
planning

Control
measures

set based on
variances

Figure 1 Profit and cost planning EPC from the SAP reference model

6 Ralf Laue, Jan Mendling

Start

F

E

End

F F

F

E

F

E E

F FF

Start

F

E

End

F F

F

E

F

E E

F FF

Start

F

E

End

F F

F

E

F

E E

F FF

(a) (b) (c)

Figure 2 Structured EPC in model (a) and unstructured EPCs in models (b)
and (c)

Definition 2 (EPC) An EPC = (E,F,C, l, A) consists of three pairwise
disjoint and finite sets E,F,C, a label function l : C → {and, or, xor}, and
a binary relation A ⊆ (E ∪ F ∪ C) × (E ∪ F ∪ C) such that

– An element of E is called event. E ̸= ∅. In particular,
Es = {e ∈ E | |•e| = 0 ∧ |e•| = 1} is the set of start events and
Ee = {e ∈ E | |•e| = 1 ∧ |e•| = 0} is the set of end events.

– An element of F is called function.
– An element of C is called connector. In particular,

J = {c ∈ C | |•c| > 1 and |c•| = 1} is the set of join-connector and
S = {c ∈ C | |•c| = 1 and |c•| > 1} is the set of split-connectors.

– The label l specifies the type of a connector c ∈ C as and, or, or xor.
– A defines the control flow. An element of A is called an arc.
– An element of the union N = E ∪ F ∪ C is called a node.

Definition 3 (Paths) Let EPC = (E,F,C, l, A) be an EPC and n1, nk ∈
N be two of its nodes. A path from node n1 to node nk (symbolized by
n1 ↪→ nk) is a sequence of EPC nodes ⟨n1, n2, . . . , nk⟩ such that for all
i = 1, . . . , k− 1, EPC has an arc from ai to ai +1, i.e. (ai, ai+1) ∈ A. This
includes the empty path of length zero, i.e. for any node a ∈ N there is by
definition a path a ↪→ a.

We refer to the set of all nodes on some path between n1 and nk as
Na↪→b = {n1, . . . , nk}.

Using these definitions of EPCs, preset, postset, and paths we can for-
malize the minimal structural requirements of an EPC.

Structuredness and its Significance for Correctness of Process Models 7

Definition 4 (Syntactically Correct EPC) An EPC = (E,F,C, l, A)
is called syntactically correct if it fulfills the following requirements:

1. EPC is a directed graph such that ∀n ∈ N : ∃e1 ∈ Es, e2 ∈ Ee such that
e1 ↪→ n ↪→ e2.

2. There is at least one start event and one end event: |Es| ≥ 1∧ |Ee| ≥ 1.
3. Events have at most one incoming and one outgoing arc.

∀e ∈ E : |•e| ≤ 1 ∧ |e•| ≤ 1.
4. Functions have exactly one incoming and one outgoing arc.

∀f ∈ F : |•f | = 1 ∧ |f•| = 1.
5. Connectors have at least one incoming and one outgoing arc such that

∀c ∈ C : (|•c| = 1 ∧ |c•| > 1) ∨ (|•c| > 1 ∧ |c•| = 1).

According to Definition 4 the EPCs of Figure 1 and 2 are syntactically
correct.

2.2 EPC Soundness

Soundness is an important correctness criterion for business process mod-
els. The original soundness property is defined for a Workflow net (Aalst,
1997), and cannot be used directly for EPCs since the latter may have mul-
tiple start and end events. Based on the EPC semantics formalization as a
transition system in Mendling and Aalst (2007), we define EPC soundness
analogously to soundness of Workflow nets. In this formalization the state
of an EPC instance is described based on a so-called marking that assigns
tokens to an arc (symbol: σ(a) = ±1). The work progress of an EPC in-
stance is described as transitions (or firings) between different markings. We

use the symbol a → b for a transition from marking a to marking b and
∗→

for describing the fact that there is a sequence of transitions starting with
marking a and ending with marking b. Events and functions simply forward
tokens to their output arcs. Connectors process input tokens according to
their behavioral semantics, e.g. an XOR-split forwards one input token to
one output arc while an AND-join consumes tokens from all input arcs to
create one token on its output arc. An EPC starts with an initial marking
and terminates with a final marking. The initial marking defines the state
of a newly started process by assigning tokens to so-called start arcs. The
set of start arcs AS includes those arcs that point away from start event. A
final marking is one for which only incoming arcs of end events are marked.
For details see Mendling (2008) and Kindler (2006).

In particular, EPC soundness demands that there is a set of initial mark-
ings covering all start nodes, and that for each initial marking in it proper
completion is guaranteed. Furthermore, there must exist a set of final mark-
ings reachable from some of these initial markings such that there is at least
one final marking in which a particular end arc holds a positive token. If
that is fulfilled, every arc contributes to properly completing behavior of
the EPC. The requirement that the EPC has to be syntactically correct

8 Ralf Laue, Jan Mendling

excludes EPCs for which no semantics can be determined, for example, if
there are multiple input arcs of a function, or if there are loops without an
entry or exit connector.

Definition 5 (Soundness of an EPC) Let EPC = (E,F,C, l, A) be a
syntactically correct EPC, N = E ∪ F ∪ C its set of nodes, MEPC its
marking space, and IEPC and OEPC the set of possible initial and final
markings respectively. An EPC is sound if there exists a non-empty set of
initial markings I ⊆ IEPC and a non-empty set of final markings O ⊆ OEPC

such that:

1. For each start-arc as there exists an initial marking i ∈ I where the arc
(and hence the corresponding start event) holds a token. Formally:
∀as ∈ As : ∃i ∈ I : σi(as) = +1

2. For every marking m reachable from an initial marking i ∈ I, there
exists a firing sequence leading from marking m to a final marking o ∈ O.
Formally:
∀i ∈ I : ∀m ∈ MEPC : (i

∗→ m) ⇒ ∃o ∈ O (m
∗→ o)

3. The final markings o ∈ O are the only markings reachable from a mark-
ing i ∈ I such that there is no node that can fire. Formally:
∀m ∈ MEPC : ((i

∗→ m) ∧ ̸∃m′(m → m′)) ⇒ m ∈ O

According to Definition 5 the Profit and Cost Planning EPC of Figure 1 is
not sound. Consider the start event Activity requirements transferred from
production planning at the top in the middle. There is no initial mark-
ing including its respective start arc that guarantees proper completion. It
might not always get control from the OR-split on the right-hand side. In
contrast to that, the EPCs of Figure 2 are sound. Since they have only
XOR-connectors, they relate to the Petri net class of state machines that is
trivially correct.

3 Structuredness of EPC Business Process Models

There are different characteristics of structuredness, in particular, its extent
in relation to the overall model and absolute number of unstructured parts.
In this section we describe structuredness in these terms and formalize two
metrics: the Degree of Structuredness (DoS) and Unmatched Connector
Count (UCC).

3.1 Informal Description of Structuredness

In a well-structured EPC model, splits and joins are properly nested such
that each split has a corresponding join of the same type. A pair of splits
and joins is properly nested if they are the entry node and the exit node
of a single-entry-single-exit component. Such components can be identified
using graph parsing techniques Vanhatalo et al. (2007). Structured models

Structuredness and its Significance for Correctness of Process Models 9

can be built iteratively from the building blocks shown in Figure 3. If we
look at the splits in such a well-structured model, the following observations
can be made:

– For each split s, there is exactly one matching join j.
– For this pair (s, j) the connector labels match, i.e. l(s) = l(j).
– Split s is either the starting split of a structured block or a loop exit.
– If s and j form a loop, l(s) and l(j) must both have an xor label.

Function Event

1. Trivial Constructs

1

2

2. Structured Block 3. Structured Loop

1

2

Event 1 Event 2

4. Start Component

Event 1 Event 2

5. End Component 6. Final Reduction

Event 1

Event 2

Figure 3 Building Blocks of Structured EPCs (Mendling, 2008)

In the following sections we discuss how the Degree of Structuredness (DoS)
and the Unmatched Connector Count (UCC) measure structuredness.

3.2 Degree of Structuredness

In this section we discuss structuredness in terms of a relation between
structured and unstructured parts of a process model. Cognitive research
into visual programming informs us that ‘design is redesign’ (Gilmore and
Green, 1984): a computer program is not written sequentially; a program-
mer typically works on different chunks of the problem in an opportunistic
order which requires a constant reinspection and comprehension of the cur-
rent work context. In a structured model, the designer can easily trace the
matching pairs of split and join connectors. Therefore, it is quite unlikely

10 Ralf Laue, Jan Mendling

that he or she introduces an error in the model. This is difficult if several
parts of the model are unstructured. For such parts it is arguably more
difficult to understand the control flow. Therefore, errors should be more
likely to appear in models with a low degree of structuredness. Measur-
ing structuredness as a degree has obviously some drawbacks. A degree of
structuredness will hardly be able to describe how serious the deviations
from structuredness are. The fact that the Degree of Structuredness will
decrease when the model is enlarged by adding a sequence of events and
functions (without any connectors between them) is a property that is usu-
ally regarded as undesired for complexity metrics (Weyuker, 1988; Bache,
1990). Furthermore, there may be a single piece of structure that causes a
large part of the model to be unstructured. Clearly, a single metric can only
give partial information on a potentially quite complex problem. Still, the
degree of structuredness captures one aspect of structuredness that appears
important for assessing the design quality of a process model.

Technically, structuredness relates to how far a process model can be
built by nesting blocks of matching join and split connectors, see Kie-
puszewski et al. (2000). The degree of structuredness can be determined
by applying reduction rules and comparing the size of the reduced model
to the original size. We specify a reduction rule T as a binary relation that
transforms a source EPC1 to a simpler target EPC2 with less arcs and
nodes. In particular, we define the reduction of trivial constructs, struc-
tured blocks and loops, and of structured start and end components. In
this paper, we provide an abbreviated definition of the rules ignoring arc
redirection. A complete definition is given in Mendling (2008).

Definition 6 (Structured Reduction Rules) Let EPC1 and EPC2 be
two syntactically correct EPCs, l a label function, N1, N2 their sets of nodes,
E1 ⊂ N1, E2 ⊂ N2 their sets of events, A1, A2 their sets of arcs and C1, C2

their sets of connectors. The pair (EPC1, EPC2) belongs to the binary re-
lation T if one of the following conditions holds:

1. Trivial Constructs: ∃n ∈ N1 : |•n| = |n•| = 1.
Construction: N2 = N1 \ {n}

2. Structured Blocks: ∃c1, c2 ∈ C1 : |•c1| = |c2•| = 1 ∧ l(c1) = l(c2) ∧
(c1, c2) ∈ A1

Construction: C2 = C1 \ {c1, c2}
3. Structured Loops: ∃c1, c2 ∈ C1 : c1 ̸= c2 ∧ l(c1) = l(c2) = xor ∧

|•c2| = |c1•| = 1 ∧ (c1, c2) ∈ A1 ∧ (c2, c1) ∈ A1

Construction: A2 = A1 \ {(c2, c1)}
4. Structured Start Components: ∃c ∈ C1, e1, e2 ∈ E1 ∧

|•e1| = |•e2| = 0 ∧ a1, a2 ∈ A1 : e1 ̸= e2 ∧ a1 = (e1, c), a2 = (e2, c) ∈ A1

Construction: N2 = N1 \ {e2, c}
5. Structured End Components: ∃c ∈ C1, e1, e2 ∈ E1 ∧

|e1•| = |e2•| = 0 ∧ a1, a2 ∈ A1 : e1 ̸= e2 ∧ a1 = (c, e1), a2 = (c, e2) ∈ A1

Construction: N2 = N1 \ {e2, c}

Structuredness and its Significance for Correctness of Process Models 11

6. Final Reduction: N1 = {n1, n2} ∧A1 = (n1, n2)
Construction: N2 = ∅, A2 = ∅

These rules can be applied iteratively until the EPC cannot be reduced any
further. We refer to this resulting reduced model as EPC ′ and define the
Degree of Structuredness (DoS) based on its size related to the original size.

Definition 7 (Degree of Structuredness) Let EPC = (E,F,C, l, A) be
a syntactically correct EPC, EPC ′ the reduced model derived by iteratively
applying the reduction rules on EPC, and NEPC and NEPC′ their respective
sets of nodes. Then, the degree of structuredness DoSEPC of the EPC is
defined as one minus the number of nodes in EPC ′ divided by the number
of nodes in the original process graph EPC, formally:

DoSEPC = 1− |NEPC′ |
|NEPC |

For the Profit and Cost Planning EPC of Figure 1 there are only a few
structured parts, i.e. the three and the four start events running into XOR-
joins as well as all functions and events with one input and one output
arc. Altogether, these are 18 of the 40 nodes. Accordingly, its degree of
structuredness is rather low with 18/40 = 0.45. In the second and the
third EPCs of Figure 2 only the sequential functions can be deleted by the
reduction rule which reduces the number of nodes by 5, i.e. from 11 to 6 for
the left EPC and from 13 to 8 for the right EPC. Based on the definition
the Degree of Structuredness is 1 − 6/11 = 0.454 and 1 − 8/13 = 0.285,
respectively. The first EPC of Figure 2 is completeness structured which is
correctly reflected in the metric.

3.3 Unmatched connector count

In this section we discuss structuredness in terms of patterns that cause
unstructuredness. The motivation for this discussion again builds on insights
from cognitive research (Gilmore and Green, 1984). As mentioned before, in
a structured model, the designer can easily trace the matching pairs of split
and join connectors. Therefore, it is quite unlikely that he or she introduces
an error in the model. In contrast to the degree of structuredness, we might
assume that the occurrence of a particular pattern of unstructuredness is a
potential source of bad understanding. Accordingly, we deem it worthwhile
to consider occurrence of unstructured parts as a unit of measurement.
Measuring structuredness as a number of pattern occurrences also has some
drawbacks. Most notable, it neglects that deviations from structuredness are
much more serious if the model is large. Furthermore, our set of patterns
is not complete but builds on a thorough investigation of process models
from practice. Yet, we still deem a pattern based approach well suited as
it has proven to be appropriate in the related domain of compiler research
(Oulsnam, 1982). Of course, and as much as the degree of structuredness,

12 Ralf Laue, Jan Mendling

it captures only a single aspect of structuredness, but a one that appears
important for assessing the design quality of a process model.

In this section we will define the concepts to measure how much an EPC
deviates from structuredness. First, we define cycle entries and cycle exits
which we need to formalize the notion of an unmatched connector.

Definition 8 (Cycle Entry and Cycle Exit) Let EPC = (E,F,C, l, A)
be a syntactically correct EPC and N = E ∪ F ∪ C its set of nodes. Then
we define the following notations:

– The set of nodes on a directed, non-empty path Na↪→a = {n1, . . . , nk}
with a = n1 = nk is called a cycle.

– A node j ∈ N is called cycle entry into a cycle Nj↪→j, if there exist a
directed path from a start event to j such that j is the only element of this
path that is in the cycle, i.e. if ∃es ∈ Es ∧Nes↪→j : Nes↪→j∩Nj↪→j = {j}.

– A node s ∈ N is called cycle exit from a cycle Nj↪→j, if there exists a
directed path from s to an end event such that s is the only element of this
path that is in the cycle, i.e. if ∃ee ∈ Ee ∧Ns↪→ee : Ns↪→ee∩Ns↪→s = {s}.

– The relation match(s, j) (split s is matched by join j) holds iff there exist
two directed paths P = ⟨s, p1, p2, . . . , pn, j⟩ and Q = ⟨s, q1, q2, . . . , qm, j⟩
from s to j whose only common elements are s and j, i.e. ∀i ∈ {1, . . . , n},
j ∈ {1, . . . ,m} : pi ̸= qj.

Using the above definitions, we can formally count the connectors in an EPC
for which one of the structuredness requirements defined in Section 3.1 is
violated. Examples for the symptoms for unstructuredness that are con-
sidered in the definition are depicted in Figure 4 a) to i). In the following
definition we formalize these patterns of unstructuredness. The indices a)
to i) directly refer to the figure.

Definition 9 (Not Properly Matched Connectors)
Let EPC = (E,F,C, l, A) be a syntactically correct EPC, s ∈ S be a split
and j ∈ J a match to s such that match(s, j) is true. We call s not properly
matched, if at least one of the following properties holds:

(a) There is more than one j for which match(s, j) holds.
(b) For a j with match(s, j), the labels differ: l(s) ̸= l(j).
(c) Beyond match(s, j), s is also a cycle exit.
(d) For a j with match(s, j), there is a path from a start node to j which

does not pass s or a path from s to an end node which does not pass
j.

(e) For a j with match(s, j), there is a cycle j ↪→ j which does not pass
s.

(f) The split s is a cycle exit and l(s) ̸= XOR.
(g) The cycle s ↪→ s has more than one cycle exit.
(h) The cycle s ↪→ s has more than one cycle entry.
(i) There exist two cycles N1

s↪→s and N2
s↪→s, and one cycle entry into

N1
s↪→s is not a cycle entry into N2

s↪→s.

Structuredness and its Significance for Correctness of Process Models 13

F2

s s s

j

s
F1

F1 F2

F1

s

F2
F1

F2

a) b) c)

E1

s

j

d)

s

e)

F

f)

s

g)

j

s

h)

s

i)

s

Figure 4 Unstructuredness according to Definition 9

The set of all not properly matched splits is referred to as S△.

The idea of our Unmatched Connector Count metric is to count connectors
with problems as described in the above definition. However, so far Defini-
tion 9 considers only the splits for which no matching join can be found. For
both models in Figure 2, only one split that is not properly matched would
be counted. However, this would not reflect the fact that the right model
has more than one “unstructured arc” originating from this split. In order
to consider unmatched joins as well, we make use of the following definition
of the inverse of an EPC:

Definition 10 (Inverse EPC) Let EPC = (E,F,C, l, A) be a syntacti-
cally correct EPC. Then, we call EPC−1 = (E,F,C, l, A−1) its inverse, if
(y, x) ∈ A−1 if and only if (x, y) ∈ A.

It is easy to show that the inverse of an EPC is an EPC as well. Splits in
EPC become joins in EPC−1 and vice versa. Using this definition, we can
formalize the Unmatched Connector Count of an EPC as follows:

Definition 11 (Unmatched Connector Count) Let EPC = (E,F,C, l, A)
be a syntactically correct EPC, and EPC−1 its inverse. Then, the Un-
matched Connector Count UCCEPC is the sum of the number of not prop-
erly matched splits of the EPC plus the number of not properly matched
splits in the inverse EPC−1, formally

UCCEPC = |{s ∈ S△}|+ |{s ∈ S−1
△ }|

14 Ralf Laue, Jan Mendling

In the first EPC of Figure 2 there is one mismatched connector in the EPC
and one in its inverse. Accordingly, the Unmatched Connector Count is 2.
In the second EPC there is also one mismatched connector, but three in
its inverse. Thus, its Unmatched Connector Count is 4. In the Profit and
Cost Planning EPC of Figure 1 there are altogether 12 unstructuredness
patterns.

4 Statistical Prediction of Error Probability

In this section we investigate in how far the two metrics defined in the previ-
ous section are capable to predict error probability in EPC process models.
An implication of a good predictive power is that a metric can accurately
distinguish between models with errors and without errors. We use the
EPC soundness criterion as defined in Section 2.2 for determining whether
an EPC has errors or not. We assume that a deviation from structuredness
is likely to result in errors. Therefore, our hypotheses are:

H1: An decrease in DoS implies an increase in error probability.
H2: An increase in UCC implies an increase in error probability.

We use the EPCs of the SAP Reference Model for evaluating these hy-
potheses. The development of the SAP reference model started in 1992 and
first models were presented at CEBIT’93 (Keller and Teufel, 1998, p.VII).
Since then, it was developed further until version 4.6 of SAP R/3 which
was released in 2000. The SAP reference model includes 604 non-trivial
EPCs. The advantage of considering this set of models is that there is ex-
tensive literature available that explains its creation, e.g. Keller and Teufel
(1998). Furthermore, it is frequently referenced in research papers as a typ-
ical reference model and used in previous quantitative analyses reported in
Mendling (2008); Mendling et al. (2007a, 2008). This way, our results can
be compared to these related works. In a preprocessing step, we checked
syntactical correctness according to Definition 4. From the 604 models, 600
are interpretable, i.e. they do not include functions and events with more
that one input or output arc (Mendling, 2008, p.145). From these models,
we also excluded models that were not strongly connected. Altogether, we
consider 540 syntactically correct EPCs in the analysis.

As a first step, we use correlation analysis. A significant correlation in
this context would be a sign that the metrics are closely related to error
probability. Technically, we investigated in how the two metrics are capable
to rank non-error and error models. This capability can be estimated using
the rank correlation coefficient as defined by Spearman. For both metrics
there is a strong and 99% significant correlation which matches the expecta-
tion of the hypotheses H1 and H2: for UCC it is +0.777 and for DoS -0.500.
Furthermore, there is a significant negative correlation between both metrics
of -0.45. This suggests that both measure inversely related aspects, which
is indeed the case. Furthermore, this signification correlation supports the
assumption that both metrics are strongly connected with error probability.

Structuredness and its Significance for Correctness of Process Models 15

Table 1 Six Logistic Regression Models

UCC C-UCC DoS C-DoS UCC- C-UCC-
DoS DoS

Constant -3.673 6.534 -0.054
sign. 0.000 0.000 0.954

DoS -1.858 -10.063 -4.368 -4.307
sign. 0.000 0.000 0.000 0.000

UCC 0.156 0.865 0.748 0.75
sign. 0.000 0.000 0.000 0.000

Classification 0.217 0.906 0.783 0.859 0.902 0.902
Nagelkerke R2 0.097 0.707 0.482 0.416 0.835 0.732

In a second step, we use multivariate logistic regression, a statistical
method that is often used in software measurement (Basili et al., 1996).
In this way, we can check whether the metrics are significant factors for
explaining error probability, and whether they have the assumed effect on
error probability. Technically, this statistics tool estimates the coefficients
of a linear combination of input parameters for predicting event versus non-
event based on a logistic function. In our case, we predict error versus non-
error for the EPCs in the SAP reference model based on the two metrics
and a constant. The constant captures whether there is some intrinsic er-
ror probability, no matter if the model is structured or not. The general
idea of logistic regression is to describe the probability of a binary event by
its odds; that is the ratio of event probability divided by non-event prob-
ability. In the logistic regression (or logit) model the odds are defined as

logit(p) = ln(p
1−p) = β0 +

∑k
i=1 βixi for an observation of k independent

input variables (in our case metrics). From this follows that

pi =
eβ0+β1x1+···+βkxk

1 + eβ0+β1x1+···+βkxk

The parameters βi are estimated through maximization of the log-likelihood.
The cut value of 0.5 defines whether event or non-event (i.e. in our

case whether the EPC is sound) is predicted. Exp(βk) gives the multiplica-
tive change of the odds if the input variable βk is increased by one unit
(Exp(βk) > 1 increases and Exp(βk) < 1 decreases error probability).

The accuracy of the estimated model is assessed based on the significance
level of the estimated coefficients, the percentage of cases that are classified
correctly, and the share of the variation that is explained by the regression.
This share is typically measured using the Nagelkerke R2 ranging from 0 to
1. For technical details of logistic regression refer to Hosmer and Lemeshow
(2000). For applications in predicting errors in process models see Basili
et al. (1996); Mendling (2008); Mendling et al. (2007a, 2008).

Table 1 summarizes the six logistic regression models that we estimated
for all combinations of Unmatched Connector Count (UCC), Degree of
Structuredness (DoS), and a constant (C). For each of the factors we in-

16 Ralf Laue, Jan Mendling

dicate the estimated coefficient and the significance level. The sign of the
coefficient shows if the factor has a positive or negative impact on error
probability. A significance level lower than 0.05 demonstrates that the fac-
tor is meaningful in the combination with the other factors of the same
column. The two rows at the bottom with Classification ratio and Nagelk-
erke R2 show how good the explanation of the combination of factors of
that column is. Usually, values higher than 0.4 are considered as good. The
following conclusions can be drawn.

1. Both metrics perform well in predicting error probability. The univari-
ate regression models for both metrics (UCC, C-UCC, DoS, C-DoS)
classify 85.9% and 90.6% of the EPCs correctly (using 0.5 as cut-value)
with Nagelkerke R2 ranging between 0.416 and 0.707 if a constant is in-
cluded. As mentioned before, values greater than 0.4 already indicate an
excellent explanatory power of the regression which are rare in real-world
applications.

2. Both metrics complement each other. The multivariate regression mod-
els including both metrics (UCC-DoS, C-UCC-DoS) have a much better
explanation (an excellent Nagelkerke R2 of up to 0.835) than each uni-
variate regression model alone. Since the constant is not significant in
the multivariate model (significance of 0.954), it can be concluded that
both metrics together leave only a little share of variation unexplained.

The fact that both metrics complement each other requires some further
comments. Apparently, one metric performs well with aspects related to
structuredness where the other has weaknesses, as we have discussed above
in the motivations and limitations of each metric. The Degree of Structured-
ness (DoS) has its strength in quantifying the relative share of the EPC that
is structured. Still, when the application of reduction rules stops there may
be structured parts left in which the unstructured component is nested. In
this regard, it captures a lower bound for relative structuredness. On the
other hand, the Unmatched Connector Count (UCC) provides absolute in-
formation of unstructuredness which might be difficult to compare across
EPCs of different size. Both together perform better than the count metrics
in Mendling et al. (2008) and almost as good as the regression model in
Mendling et al. (2007a) that requires seven metrics.

The different logistic regression models can also be used to predict the
error probability of the Profit and Cost Planning EPC that we introduced in
Figure 1. We already mentioned its low degree of structuredness (0.45) and
that it has numerous unstructuredness patterns (12). Given these values
we can calculate, for instance, the prediction for this EPC according to the
UCC regression as e0.156∗12/(1+e0.156∗12) = 0.867. This value is greater 0.5,
therefore the regression predicts that this EPC is likely to have errors (which
is correct). In contrast to that, the single parameter model DoS predicts no
errors (which is wrong for the example). All other regression models give a
correct prediction for the example.

Structuredness and its Significance for Correctness of Process Models 17

5 Related Work

This section discusses related work on business process metrics. In essence,
related work can be organized in two categories: conceptual work on process
model metrics, partially inspired by software measurement, and experimen-
tal work on validating process model metrics. In this section, we focus in
particular on metrics that consider overall structural aspects of the process
model beyond simple count metrics. For an overview of process model met-
rics in general refer to Cardoso et al. (2006), Gruhn and Laue (2006a), and
Mendling (2008).

The early development of process model metrics is greatly inspired by
and based on software quality metrics. The latter aim to help designing com-
puter programs that are less error-prone, easier to comprehend and easier to
maintain. A survey of existing software metrics can be found in e.g. Kafura
(1985) and Vaishnavi et al. (2007). A number of studies demonstrate the
significant correlation of software quality metrics with errors in the soft-
ware design, for instance Kang and Bieman (1999); Selby and Basili (1991);
Shen et al. (1985). In the tradition of this work, there are some works in
the 1990s that are mainly rooted in software quality measurement. Daneva
et al. (1996) introduce a set of complexity indicators for EPCs including
function cohesion, event cohesion and cohesion of a logical connector. From
a limited validation with 11 EPCs they conclude that their metrics help to
identify error-prone model fragments. Morasca (1999) proposes a set of sim-
ple metrics for software specifications designed with Petri-nets. He identifies
size, length, structural complexity, and coupling as interesting attributes of
a design without striving for an empirical validation. The works by Rei-
jers, Vanderfeesten, et al. introduce different coupling and cohesion metrics
for guiding the design of a workflow process (Reijers and Vanderfeesten,
2004; Vanderfeesten et al., 2007). Metrics motivated by cognitive consider-
ations are discussed in Gruhn and Laue (2006b) and Vanderfeesten et al.
(2008). Further metrics are proposed by Nissen (1998), Balasubramanian
and Gupta (2005), Cardoso (2005, 2006), and Rolón Aguilar et al. (2007),
but without directly taking structuredness into account.

Lassen and van der Aalst (2008) propose a complexity metric for work-
flow nets. They decompose a workflow net into components. Such compo-
nents are atomic patterns of the workflow nets such as sequence, choice, etc.
Each such component is given a component weight that aims to reflect the
difficulty to understand this component. After decomposing a workflow net
into components, a metric is calculated from the component weights. As
unstructured components are penalized by a larger component weight, this
metric is well-suited for measuring the structuredness of workflow nets. The
authors stress that the component weights are defined in a rather ad-hoc
way and serve just as an example based on experience. Experiences from
attempts to define weights for reflecting the difficulty of building blocks for
software show that finding such weights is a difficult task (Gruhn and Laue,
2007a). Nevertheless, the idea used in Lassen and van der Aalst (2008) is

18 Ralf Laue, Jan Mendling

well-established for measuring software structuredness (Fenton and Whitty,
1986).

Mendling et al. take an experimental approach towards process model
metrics that is driven by the explanatory power of a metric in an empirical
setting. In Mendling et al. (2007a) 28 business process metrics (including
size, density, structuredness, coefficient of connectivity, average connector
degree, control flow complexity, and others) are tested as error predictors
on a set of over 2000 process models from different samples. All metrics,
except for density and the maximum degree of a connector, are confirmed
to be correlated to error-proneness as expected. Another result of this study
is a logistic regression model based on the best seven of these metrics. This
regression model is able to classify 90% of the process models correctly. In
the research reported in this paper, we needed only 2 metrics to achieve the
same classification results. Furthermore, a survey on understandability of
process models is reported by Mendling et al. (2007b) in relation to the set
of metrics mentioned in the previous study. It is concluded that only five
metrics have an expected impact on understandability, of which only two
have significant values (density, average connector degree). The resulting
linear regression model is able to correctly explain in 45% of the cases.
Results from a similar experiment are reported in Mendling and Strembeck
(2008).

6 Conclusion and Future Work

In this paper we discussed the importance of structuredness for the correct-
ness of process models. In particular, we defined two metrics that capture
different aspects of (un)structuredness. Furthermore, we automatically cal-
culated these metrics for the SAP reference model and used the results for
estimating a logistic regression model. The multivariate regression based on
both metrics performed almost as good as the regression model in Mendling
et al. (2007a) that requires seven metrics.

Our findings strongly support the importance of structuredness for the
design quality of process models. The relationship of structuredness and
correctness is well investigated from a verification perspective, see e.g. Kie-
puszewski et al. (2000); Dehnert and Zimmermann (2005). Some authors
use transformation techniques to find behavior-equivalent structured mod-
els from unstructured ones, either for verification purposes (Zhao et al.,
2006) or for model-driven development (Aalst and Lassen, 2008). Still, such
a transformation is not always possible (Kiepuszewski et al., 2000). There-
fore, we agree with Aalst (1999): “If possible, non-well-structured constructs
should be avoided. If such a construct is really necessary, then the correct-
ness of the construct should be double-checked, because it is a potential
source of errors.” The metrics discussed in this paper can be used to check
the degree of deviation from this ideal.

Our findings have strong implications for the way process modeling is
taught and for guidelines on modeling. We already pointed out that un-

Structuredness and its Significance for Correctness of Process Models 19

structured process models might still be correct. Yet, the fact that they are
strongly connected with occurrences of errors suggests that structuredness
should be preferred. Apparently, and following the ‘design is redesign’ prin-
ciple described in Gilmore and Green (1984), unstructured models are likely
to be less maintainable and more difficult to understand. The metrics ana-
lyzed in this paper can help designers to assess the quality of their models
beyond the notions of formal control flow correctness. Deviations from a
high degree of structuredness and a high number of unmatched connector
counts can be used as a good hint for considering a rework of the model.
In this way, a quantitative support for quality assurance in large process
repositories with several hundred models can be provided.

Our work also has some limitations. Currently, we have investigated the
significance of our metrics for a large collection of EPC process models.
While we would argue that the conclusions from this work are likely to be
valid also for other activity-based modeling languages like BPMN or YAWL,
a respective validation is still missing. Most of the definitions can be easily
tailored to the specifics of these language, but some of their features are not
considered here. For instance, the BPMN metamodel is much more complex
than the one of EPCs. Therefore, we would assume that modelers have more
problems with understanding. An investigation of these questions is part of
future research.

As future work, we also want to provide better design support for the
modeler in case that the process cannot be modeled in a structured way.
Research on structured programming has shown that under some circum-
stances unstructured elements like internal exits from loops (e.g. using
break) can improve the quality of programs (Roberts, 1995). To judge about
problems that could arise from unstructured parts of a model, we aim to ex-
tend the list of patterns reported in Gruhn and Laue (2007c) where unstruc-
turedness is unproblematic. Moreover, we aim to conduct further quantita-
tive analyses on error-probability and understandability beyond Mendling
et al. (2007a,b, 2008).

References

W.M.P. van der Aalst. Verification of Workflow Nets. In Pierre Azéma
and Gianfranco Balbo, editors, Application and Theory of Petri Nets
1997, volume 1248 of Lecture Notes in Computer Science, pages 407–426.
Springer Verlag, 1997.

W.M.P. van der Aalst. Formalization and Verification of Event-driven Pro-
cess Chains. Information and Software Technology, 41(10):639–650, 1999.

W.M.P. van der Aalst and K.B. Lassen. Translating unstructured workflow
processes to readable BPEL: Theory and implementation. Information
and Software Technology, 50(3):131–159, 2008.

Z. Ammarguellat. A control-flow normalization algorithm and its complex-
ity. IEEE Trans. Software Eng., 18(3):237–251, 1992.

20 Ralf Laue, Jan Mendling

R. Bache. Graph Theory Models of Software. PhD thesis, South Bank
University, London, 1990.

S. Balasubramanian and M. Gupta. Structural metrics for goal based busi-
ness process design and evaluation. Business Process Management Jour-
nal, 11(6):680–694, 2005.

V. Basili, L. Briand, and W. Melo. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineer-
ing, 22(10):751–761, 1996.

J. Becker, M. Rosemann, and C. von Uthmann. Guidelines of Business
Process Modeling. In W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management. Models, Techniques, and Empir-
ical Studies, pages 30–49. Springer, Berlin et al., 2000.

J. Cardoso. How to Measure the Control-flow Complexity of Web Processes
and Workflows. In L. Fischer, editor, Workflow Handbook 2005. Future
Strategies, Lighthouse Point, 2005.

J. Cardoso. Process control-flow complexity metric: An empirical validation.
In IEEE International Conference on Services Computing (IEEE SCC
06), pages 167–173. IEEE Computer Society, 2006.

J. Cardoso, J. Mendling, G. Neumann, and H. Reijers. A discourse on com-
plexity of process models. In J. Eder and S. Dustdar, editors, Proceedings
of the BPM 2006 Workshops, Workshop on Business Process Design BPI
2006, Lecture Notes in Computer Science Volume 4103, pages 115–126,
September 2006.

M. Daneva, R. Heib, and A.-W. Scheer. Benchmarking Business Process
Models. IWi Research Report 136, Institute for Information Systems,
University of the Saarland, Germany, 1996.

I. Davies, P. Green, M. Rosemann, M. Indulska, and S. Gallo, “How do
practitioners use conceptual modeling in practice?” Data & Knowledge
Engineering, vol. 58, no. 3, pp. 358–380, 2006.

J. Dehnert and W. M. P. van der Aalst, “Bridging the gap between business
models and workflow specifications,” International Journal of Cooperative
Information Systems, vol. 13, no. 3, pp. 289–332, 2004.

J. Dehnert and A. Zimmermann. On the suitability of correctness crite-
ria for business process models. In W.M.P. van der Aalst, B. Benatal-
lah, F. Casati, and F. Curbera, editors, Business Process Management,
3rd International Conference, BPM 2005, Nancy, France, September 5-8,
2005, Proceedings, volume 3649 of Lecture Notes in Computer Science,
pages 386–391, 2005.

M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede, Eds., Pro-
cess Aware Information Systems: Bridging People and Software Through
Process Technology. Hoboken, New Jersey: John Wiley & Sons, 2005.

T. Erl, Service-oriented Architecture: Concepts, Technology, and Design.
Upple Saddle Revier, New Jersey: Prentice Hall, 2005.

N.E. Fenton and R.W. Whitty Axiomatic approach to software metrication
through program decomposition. Computer Journal, 29(4):329–339, 1986.

Structuredness and its Significance for Correctness of Process Models 21

C. Ferris, “What are web services?” Communications of the ACM, vol. 46,
no. 6, pp. 31–32, 2003.

Gilmore, D.J., Green, T.R.G.: Comprehension and recall of miniature pro-
grams. International Journal of Man-Machine Studies 21(1) (1984) 31–48

V. Gruhn and R. Laue. Complexity metrics for business process models. In
Proceedings of the 9th international conference on business information
systems (BIS 2006), vol. 85 of Lecture Notes in Informatics, 2006a.

V. Gruhn and R. Laue. Adopting the cognitive complexity measure for
business process models. In Y. Yao, Z. Shi, Y. Wang, and W. Kinsner,
editors, Proceedings of the Firth IEEE International Conference on Cog-
nitive Informatics, ICCI 2006, July 17-19, Beijing, China, pages 236–241.
IEEE, 2006b.

V. Gruhn and R. Laue. On experiments for measuring cognitive weights
for software control structures. In D. Zhang, Y. Wang, and W. Kinsner,
editors, Proceedings of the Six IEEE International Conference on Cogni-
tive Informatics, ICCI 2007, August 6-8, Lake Tahoe, CA, USA, pages
116–119. IEEE, 2007a.

V. Gruhn and R. Laue. What business process modelers can learn from
programmers. Science of Computer Programming, 65(1):4–13, 2007b.

V. Gruhn and R. Laue. Good and bad excuses for unstructured business
process models. In Proceedings of 12th European Conference on Pattern
Languages of Programs (EuroPLoP 2007), 2007c.

A. Holl and G. Valentin. Structured business process modeling (SBPM).
In Information Systems Research in Scandinavia (IRIS 27) (CD-ROM),
2004.

D.W. Hosmer and S. Lemeshow. Applied Logistic Regression. John Wiley
& Sons, 2nd edition, 2000.

D. Kafura. A survey of software metrics. In ACM ’85: Proceedings of
the 1985 ACM annual conference on The range of computing : mid-80’s
perspective, pages 502–506, New York, NY, USA, 1985.

B.-K. Kang and J.M. Bieman. A quantitative framework for software re-
structuring. Journal of Software Maintenance, 11:245–284, 1999.

G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozessmodel-
lierung auf der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”.
Heft 89, Institut für Wirtschaftsinformatik, Saarbrücken, Germany, 1992.

G. Keller and T. Teufel. SAP(R) R/3 Process Oriented Implementation:
Iterative Process Prototyping. Addison-Wesley, 1998.

B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured work-
flow modelling. In B. Wangler and L. Bergman, editors, Advanced Infor-
mation Systems Engineering, 12th International Conference CAiSE 2000,
Stockholm, Sweden, June 5-9, 2000, Proceedings, volume 1789 of Lecture
Notes in Computer Science, pages 431–445. Springer, 2000.

E. Kindler. On the semantics of EPCs: Resolving the vicious circle. Data
& Knowledge Engineering, 56(1):23–40, 2006.

J. Krogstie, G. Sindre, and H.D. Jørgensen. Process models representing
knowledge for action: a revised quality framework. European Journal of

22 Ralf Laue, Jan Mendling

Information Systems, 15(1):91–102, 2006.
K.B. Lassen and W.M.P. van der Aalst. Complexity metrics for Workflow
nets. Information and Software Technology, 51:610–626, 2008.

O.I. Lindland, G. Sindre, and A. Sølvberg. Understanding quality in con-
ceptual modeling. IEEE Software, 11(2):42–49, 1994.

J. Mendling, K.B. Lassen, and U. Zdun. Transformation strategies be-
tween block-oriented and graph-oriented process modelling languages. In
F. Lehner, H. Nösekabel, and P. Kleinschmidt, editors, Multikonferenz
Wirtschaftsinformatik 2006, XML4BPM Track, Band 2, pages 297–312,
Passau, Germany, February 2006.

J. Mendling. Metrics for Process Models: Empirical Foundations of Veri-
fication, Error Prediction and Guidelines for Correctness.. Volume 6 of
Lecture Notes in Business Information Processing. Springer-Verlag, 2008.

J. Mendling and W.M.P. van der Aalst. Formalization and Verification
of EPCs with OR-Joins Based on State and Context. In J. Krogstie,
A.L. Opdahl, and G. Sindre, editors, Proceedings of the 19th Conference
on Advanced Information Systems Engineering (CAiSE 2007), volume
4495 of Lecture Notes in Computer Science, pages 439–453, Trondheim,
Norway, 2007.

J. Mendling, G. Neumann, and W.M.P. van der Aalst. Understanding the
occurrence of errors in process models based on metrics. In R. Meersman
and Z. Tari, editors, OTM Conference 2007, Proceedings, Part I, volume
4803 of Lecture Notes in Computer Science, pages 113–130. Springer,
2007a.

J. Mendling, H.A. Reijers, and J. Cardoso. What makes process models
understandable? In G. Alonso, P. Dadam, and M. Rosemann, editors,
Business Process Management, 5th International Conference, BPM 2007,
Brisbane, Australia, September 24-28, 2007, Proceedings, volume 4714 of
Lecture Notes in Computer Science, pages 48–63, Brisbane, Australia,
2007b.

J. Mendling and M. Strembeck. Influence factors of understanding busi-
ness process models. In W. Abramowicz and D. Fensel, editors, Proc.
of the 11th International Conference on Business Information Systems
(BIS 2008), volume 7 of Lecture Notes in Business Information Process-
ing, page 142153. Springer-Verlag, 2008.

J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der Aalst,
and G. Neumann. Detection and Prediction of Errors in EPCs of the
SAP Reference Model. Data & Knowledge Engineering, 64(1):312–329,
January 2008.

D.L. Moody. Theoretical and practical issues in evaluating the quality of
conceptual models: current state and future directions. Data & Knowledge
Engineering, 55(3):243–276, 2005.

S. Morasca. Measuring Attributes of Concurrent Software Specifications in
Petri-nets. In Proceedings of the 6th International Symposium on Software
Metrics, pages 100–110. IEEE Computer Society, 1999.

Structuredness and its Significance for Correctness of Process Models 23

M.E. Nissen. Redesigning reengineering through measurement-driven infer-
ence. MIS Quarterly, 22(4):509–534, 1998.

G. Oulsnam. Unravelling unstructured programs. Computer Journal, 25
(3):379–387, 1982.

C. Ouyang, M. Dumas, S. Breutel, and A.H.M. ter Hofstede. Translating
standard process models to bpel. In E. Dubois and K. Pohl, editors, Ad-
vanced Information Systems Engineering, 18th International Conference,
CAiSE 2006, Luxembourg, Luxembourg, June 5-9, 2006, Proceedings, vol-
ume 4001 of Lecture Notes in Computer Science, pages 417–432. Springer,
2006.

H.A. Reijers and I.T.P. Vanderfeesten. Cohesion and Coupling Metrics for
Workflow Process Design. In J. Desel, B. Pernici, and M. Weske, edi-
tors, International Conference on Business Process Management (BPM
2004), volume 3080 of Lecture Notes in Computer Science, pages 290–305.
Springer-Verlag, Berlin, 2004.

E.S. Roberts. Loop exits and structured programming: reopening the de-
bate. In SIGCSE ’95: Proceedings of the twenty-sixth SIGCSE technical
symposium on Computer science education, pages 268–272, New York,
NY, USA, 1995.

E. Rolón Aguilar, F. Garćıa, F. Ruiz, and M. Piattini. An exploratory
experiment to validate measures for business process models. In First
International Conference on Research Challenges in Information Science
(RCIS), 2007.

A.-W. Scheer, ARIS - Business Process Modeling, 3rd ed. Berlin, Germany:
Springer, 2000.

R.W. Selby and V.R. Basili. Analyzing error-prone system structure. IEEE
Transactions on Software Engineering, 17:141–152, 1991.

V.Y. Shen, T.-J. Yu, S.M. Thebaut, and L.R. Paulsen. Identifying error-
prone software. IEEE Transactions on Software Engineering, 11:317–324,
1985.

V. K. Vaishnavi, S. Purao, and J. Liegle. Object-oriented product metrics:
A generic framework. Information Sciences, 177:587–606, January 2007.

I. Vanderfeesten, J. Cardoso, and H.A. Reijers. A weighted coupling metric
for business process models. In Johann Eder, Stein L. Tomassen, Andreas
Opdahl, Guttorm Sindre, editor, Proceedings of the CAiSE 2007 Forum,
volume 247 of CEUR Workshop Proceedings, pages 41–44, Trondheim,
Norway, June 2007.

I. Vanderfeesten, J. Mendling, H. Reijers, W. van der Aalst, and J. Cardoso.
On a quest for good process models: The cross-connectivity metric. In
CAiSE 2008, Proceedings, Lecture Notes in Computer Science, 2008.

J. Vanhatalo, H. Völzer, and F. Leymann. Faster and more focused control-
flow analysis for business process models through sese decomposition.
In B.J. Krämer, K.-J. Lin, and P. Narasimhan, editors, Service-Oriented
Computing - ICSOC 2007, Fifth International Conference, Vienna, Aus-
tria, September 17-20, 2007, Proceedings, volume 4749 of Lecture Notes in
Computer Science, pages 43–55. Springer, 2007. ISBN 978-3-540-74973-8.

24 Ralf Laue, Jan Mendling

Y. Wand and R. Weber, “Research Commentary: Information Systems and
Conceptual Modeling–A Research Agenda,” Information Systems Re-
search, vol. 13, no. 4, p. 363, 2002.

E.J. Weyuker. Evaluating Software Complexity Measures. IEEE Transac-
tions on Software Engineering, vol. 14, no. 9:1357–1365, 1988.

W. Zhao, R. Hauser, K. Bhattacharya, B.R. Bryant, and F. Cao. Compil-
ing business processes: untangling unstructured loops in irreducible flow
graphs. Int. Journal of Web and Grid Services, 2(1):68–91, 2006.

