
StructureNet: hierarchical graph
networks for 3D shape generation

Item Type Article

Authors Mo, Kaichun; Guerrero, Paul; Yi, Li; Su, Hao; Wonka, Peter; Mitra,
Niloy J.; Guibas, Leonidas J.

Citation Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N. J., &
Guibas, L. J. (2019). StructureNet. ACM Transactions on Graphics,
38(6), 1–19. doi:10.1145/3355089.3356527

Eprint version Post-print

DOI 10.1145/3355089.3356527

Publisher Association for Computing Machinery (ACM)

Journal ACM Transactions on Graphics

Rights © ACM, 2019. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in ACM
Transactions on Graphics, {[Volume], [Issue], (2019-11-08)} http://
doi.acm.org/10.1145/3355089.3356527

Download date 27/08/2022 16:52:14

Link to Item http://hdl.handle.net/10754/660309

http://dx.doi.org/10.1145/3355089.3356527
http://hdl.handle.net/10754/660309


StructureNet: Hierarchical Graph Networks for 3D Shape Generation

KAICHUN MO∗, Stanford University

PAUL GUERRERO∗, University College London

LI YI, Stanford University

HAO SU, University of California, San Diego

PETER WONKA, KAUST
NILOY J. MITRA, University College London and Adobe Research

LEONIDAS J. GUIBAS, Stanford University and Facebook AI Research

source 

point cloud

target

image

structured geometry interpolation in STRUCTURENET latent space

Fig. 1. StructureNet is a hierarchical graph network that produces a unified latent space to encode structured models with both continuous geometric and

discrete structural variations. In this example, we projected an un-annotated point cloud (left) and un-annotated image (right) into the learned latent space

yielding semantically segmented point clouds structured as a hierarchy of graphs. The shape interpolation in the latent space also produces structured point

clouds (top) including their corresponding graphs (bottom). Edges correspond to specific part relationships that are modeled by our approach. For simplicity,

here we only show the graphs without the hierarchy. Note how the base of the chair morphs via functionally plausible intermediate configurations, or the

chair back transitions from a plain back to a back with arm-rests.

The ability to generate novel, diverse, and realistic 3D shapes along with

associated part semantics and structure is central to many applications re-

quiring high-quality 3D assets or large volumes of realistic training data.

A key challenge towards this goal is how to accommodate diverse shape

variations, including both continuous deformations of parts as well as struc-

tural or discrete alterations which add to, remove from, or modify the shape

constituents and compositional structure. Such object structure can typically

be organized into a hierarchy of constituent object parts and relationships,

represented as a hierarchy of n-ary graphs. We introduce StructureNet, a

hierarchical graph network which (i) can directly encode shapes represented

as such n-ary graphs; (ii) can be robustly trained on large and complex

shape families; and (iii) can be used to generate a great diversity of realistic

structured shape geometries. Technically, we accomplish this by drawing

inspiration from recent advances in graph neural networks to propose an

order-invariant encoding of n-ary graphs, considering jointly both part ge-

ometry and inter-part relations during network training. We extensively

evaluate the quality of the learned latent spaces for various shape families

and show significant advantages over baseline and competing methods. The

learned latent spaces enable several structure-aware geometry processing

applications, including shape generation and interpolation, shape editing, or

∗joint first authors

Webpage: https://cs.stanford.edu/∼kaichun/structurenet/.
Emails: kaichun@cs.stanford.edu; paul.guerrero@ucl.ac.uk; ericyi@stanford.edu;
haosu@eng.ucsd.edu; peter.wonka@kaust.edu.sa; n.mitra@ucl.ac.uk;
guibas@cs.stanford.edu.

shape structure discovery directly from un-annotated images, point clouds,

or partial scans.

CCS Concepts: · Computing methodologies → Spatial and physical

reasoning;Hierarchical representations;Neural networks; Learning

latent representations; Mesh geometry models; Shape analysis.

Additional Key Words and Phrases: shape analysis and synthesis, graph

neural networks, object structure, autoencoder, generative models

1 INTRODUCTION

A long-standing problem in shape analysis and synthesis is how to

build generative models that support the creation of new, diverse,

and realistic shapes. A key challenge is to accommodate diverse

shape variations, including both continuous deformations of parts

as well as structural or discrete alterations which add, remove, or

modify the shape substructures present. We seek a continuous latent

space that can incorporate all this diversity [Hinton 1990] and is

able to encode, for example, chairs with or without armrests, chairs

having four legs or swivel bases, as well as high or low backs, thin or

thick legs, etc. Such a latent space, in turn, enables many non-trivial

applications including generating shapes with both novel structure

and geometry, discovering object structures from raw unannotated
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Fig. 2. N-ary part hierarchies. Shape parts can naturally be organized

into n-ary hierarchies. Here we show the part hierarchies of two shapes as

defined by PartNet [Mo et al. 2019]. The top row shows oriented bounding

boxes of leaf parts and the hierarchy is illustrated below. Hierarchy nodes

have the same color as the corresponding part. Note how geometrically

dissimilar shapes may have consistent hierarchies. Our shape representation

captures this consistency.

point clouds or images by ‘projecting’ them to the learned latent

space, manipulating shapes in a structure-aware fashion, etc.

One path to this goal is to represent shapes as structured ob-

jects [Mitra et al. 2014] comprising of a collection of parts that are

organized according to part-level connectivity and inter-part re-

lationships. Further, these parts can naturally be organized into

hierarchies [Wang et al. 2011a] encoded as n-ary trees, with objects

coming from the same shape family sharing similar hierarchies (see

Figure 2). It is important to note, however, that many semantically

significant relationships in the geometry of 3D shapes, such as sym-

metries, can connect distant nodes in the hierarchy, which may

be spatially separated. These horizontal relations pose additional

constraints on shape encoders. In this paper, we refer to such hi-

erarchical n-ary trees with horizontal connections as hierarchy of

n-ary graphs, or simply hierarchy of graphs. Access to large volumes

of 3D data (e.g., Turbosquid, 3DWareHouse) has now opened the

possibility of learning latent shape spaces from data, aided by signif-

icant part annotation efforts within these databases. In the case of

ShapeNet [Chang et al. 2015], both coarse-grained and fine-grained

part annotations are available [Mo et al. 2019; Yi et al. 2016].

A notable work that creates such generative models is the GRASS

framework [Li et al. 2017]. Inspired by recursive neural networks

introduced in the context of natural language processing for encod-

ing binary trees, GRASS further refines part-level object hierarchies

into binary trees, and then recursively utilizes an encoder-decoder

network [Socher et al. 2011] to build a latent space from which

both a hierarchical structure and geometry at the leaves can be

decoded. However, because of the binary constraint, GRASS has to

additionally search over possible binarizations of the n-ary hierar-

chies found in objects, so that the binarized versions are consistent

across objects in the same shape family. While this works nicely on

small- to medium-sized datasets, the setup is difficult to train on

large to very large shape families (e.g., PartNet [Mo et al. 2019]), as

the task of finding a canonical binary tree representation becomes

increasingly challenging (see Section 6).

We introduce StructureNet, a hierarchical graph network that

directly encodes more general graphs with parents having a variable

number of children and horizontal relationships between siblings.

StructureNet relies on three main innovations: Firstly, by directly

working with n-ary graphs for object structures, we have funda-

mentally avoided unnecessary data variation that is introduced

with binarization, thus can significantly simplify the learning task.

Secondly, we achieve invariance with respect to part-level sibling

ordering at both encoding and decoding time, by using symmet-

ric functions (e.g., max-pooling) during encoding, and solving for

a linear assignment problem to establish correspondences during

decoding. Finally, we make use of horizontal inter-part relation-

ship edges following a novel graph-based message passing protocol.

These features enable us to robustly train StructureNet on large to

very large shape families so as to effectively capture both structural

and geometric variations.

Building such a latent space for structured shapes has several

advantages that can be exploited by various applications. First, the

structure (i.e., part hierarchy and inter-part relationship) itself is

useful for down-stream applications. Editors, for example, can edit,

swap, or model parts individually, and make use of structural con-

straints such as symmetries. Second, structure is often more con-

sistent inside a shape category than geometry. Chairs, for example,

usually have a seat, a backrest and a base at a coarse hierarchy level,

even if there is large variability in the geometry of these parts (see

Figure 2). Finally, the ability to project raw unstructured shapes

(e.g., images, point clouds, partial scans) onto such a latent space

automatically induces structures on the raw input (i.e., provides a

hierarchical part segmentation, capturing part-level contacts and/or

symmetry relationships) and subsequently enables a diverse set of

structure-aware manipulations.

A broad range of applications is enabled by our hierarchical

graph networks, which can be grouped as follows: (i) abstracting

raw inputs including point clouds, images, partial scans to obtain

their structure; (ii) creating novel shapes in parameterized form

or point cloud form based on a set of training shapes; (iii) allow-

ing structure-aware interpolation between source and target shapes

while displaying both topological and geometric variations; and

finally, (iv) structure-aware object manipulation to smartly modify

a part or replace a part. For example, in Figure 1, the input source

point clouds and target image are first independently abstracted,

and then directly interpolated in a latent space that was learned on

5K chairs from the PartNet dataset.

In summary, our contributions include:

• introducing an encoding for shape hierarchies of n-ary part

graphs that is general enough to allow for a consistent hier-

archical representations of shapes within a category;

• learning to encode and decode rich geometric relationships

(e.g., adjacency, symmetry) between sibling parts, represented

as edges in the hierarchical graphs, with graph neural net-

works to constrain realistic shape generation;

• developing a generative model StructureNet that allows

shape synthesis for both box-structures and point clouds with

diverse and valid geometrical and structural variations; and

• illustrating the use of StructureNet in both analysis and

synthesis tasks, including shape reconstruction, novel shape

generation, structure-aware shape interpolation, abstraction

of un-annotated point clouds or images, and various shape

editing applications.
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2 RELATED WORK

Our work is primarily related to structure-aware shape represen-

tations (see [Mitra et al. 2014]) that go beyond local geometry and

depict shapes through the arrangement and relations between shape

parts, as well as to 3D shape generative models that aim to model the

variations of 3D shapes and to synthesize novel 3D shapes. Finally,

our work is inspired by recent developments in neural networks for

graph structured data.

Structure-Aware Shape Representations. Understanding high-level

shape structure such as parts and their relations is a central re-

search topic in shape analysis. Recent work suggests that parts are

a natural way to describe shapes [Achlioptas et al. 2019]. Most ex-

isting approaches focus on identifying shape parts [Golovinskiy

and Funkhouser 2009; Hu et al. 2012; Huang et al. 2011; Kalogerakis

et al. 2017, 2010; Makadia and Yumer 2014; Sidi et al. 2011; Xie et al.

2014; Yi et al. 2016], or part parameters and relations [Chaudhuri

et al. 2011; Fish et al. 2014, 2016; Ganapathi-Subramanian et al. 2018;

Kalogerakis et al. 2012; Kim et al. 2013; Müller et al. 2006; Sung et al.

2017; Yumer et al. 2015]. These approaches are usually restricted in

the complexity and variety of part layout they can handle. To be

able to process complex structures frequently appearing in the real

world, several methods parse object parts in hierarchies [Mo et al.

2019; Van Kaick et al. 2013; Wang et al. 2011a; Yi et al. 2017a; Yu

et al. 2019]. We also adapt a hierarchical structure representation

for 3D shapes. However, we additionally augment the part hier-

archy with ‘horizontal’ relations so as to encode shape structure

into a more general n-ary graph. Our goal is to model and capture

the distribution of such graphs in a shape collection. Structured

3D representations are also widely adopted for scene synthesis ap-

plications [Li et al. 2019a; Liu et al. 2014; Zhao et al. 2016]. These

approaches usually target generating a scene hierarchy and rely on

object retrieval to complete the scene, while we focus on object-level

structure synthesis with corresponding part-level geometric details.

3D Deep Generative Models. Recently, deep neural networks have

been successfully leveraged to create generative models for 3D

shapes. Wu et al. [2016] learn to generate 3D shapes in a volumetric

representation through a deep belief network. [Goodfellow et al.

2014] also use volumetric representations for 3D shapes but capture

the distribution of objects through a generative adversarial network

(GAN). To improve the generation quality, researchers have not only

explored novel architecture designs for volumetric representations

[Choy et al. 2016; Gwak et al. 2017; Yan et al. 2016], but also studied

various 3D representations, such as point clouds [Achlioptas et al.

2018; Fan et al. 2017; Li et al. 2019b], multi-view depth maps [Ar-

salan Soltani et al. 2017], oct-tree representations [Tatarchenko et al.

2017; Wang et al. 2018b], surface meshes [Groueix et al. 2018; Sinha

et al. 2017], string-based shape synthesis [Kalojanov et al. 2019], etc.

These approaches, however, focus on low-level geometry without

considering the overall object structure in the generation process.

An alternate approach is to model structure along with geometry,

which not only factorizes the complex distribution of 3D objects to

facilitate learning but also makes the generation results more useful

for downstream applications. Nash and Williams [2017] developed

a variational auto-encoder (VAE) [Kingma and Welling 2014] to

learn a latent representations for 3D objects, where they could

synthesize new shapes in a part-by-part manner. However, they

represent shapes as ordered vectors and require one-to-one dense

correspondences among training shapes, which is not easy to obtain

for shapes with large topological differences. Wang et al. [2018a]

first learn to synthesize voxel-based shape structures with parts and

labels using a GAN on a set of segmented shapes, and then refine

the geometry of each part through an auto-encoder. Wu et al. [2019]

jointly learn and embed the geometry of parts and the pairwise

relationship among parts using a VAE, where the geometry and

structure features are intertwined in the encoder while disentangled

in the decoder, to make the generation process structure-aware.

The above approaches do not consider the hierarchical nature of

object structures and simply focus on a flat arrangement of parts,

making them less applicable to complex structures as defined by Mo

et al. [2019]. Tian et al. [2019] generate structured 3D object through

executing a series of 3D shape programs, but do not provide a way

to sample and generate such shape programs freely.

Most relevant to ours is GRASS [Li et al. 2017], which learns

a distribution of binary symmetry hierarchies of shapes. Novel

shape structure can be sampled and generated from the distribution.

However, the required binary symmetry hierarchy can introduce
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Fig. 3. Interpolation compared to GRASS. We compare interpolations

between several pairs of chairs using StructureNet (colored boxes), and

using GRASS (blue boxes). We interpolate between shapes from our test set

shown on the left-most and right-most sides, after being reconstructed by

both methods (marked as ‘source’ and ‘target’). Our interpolations use a

larger number of smaller structural changes to reach the target shape.



4 • Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J. Mitra, and Leonidas J. Guibas

arbitrary ordering in nodes and make the hierarchy inconsistent

across shapes. Instead, StructureNet allows direct handling of

n-ary graphs and further explicitly models relationship between

parts in the graph. Hence it can be robustly trained on much larger

datasets (see Figure 3 for a comparison).

Neural Networks for Graph Structured Data. The shape structure

we aim to generate, which is essentially the layout of parts and

the relationship among them, can be represented as a hierarchy

of n-ary graphs. A wide variety of works have explored how to

design deep neural networks that can analyze graph structured

data. To encode a tree structure, [Li et al. 2017; Socher et al. 2012,

2011] use recursive neural network (RvNN) to sequentially collapse

edges of the graph. In graph convolutional networks [Bruna et al.

2014; Defferrard et al. 2016; Duvenaud et al. 2015; Hamilton et al.

2017; Kipf and Welling 2017; Veličković et al. 2017; Xu et al. 2019],

concepts frommature image CNNs are transferred to generic graphs.

This approach has been widely applied in various shape processing

methods where shapes are treated as mesh graphs [Boscaini et al.

2015; Masci et al. 2015; Wang et al. 2019; Yi et al. 2017b]. With a

similar motivation, we design a novel graph encoding framework

that combines RvNNs with graph convolutions to process a shape

represented as a hierarchy of graphs.

Our framework is also related to various graph neural networks

for synthesis purposes. There is a significant amount of work from

the natural language processing and program synthesis commu-

nities on tree-like graph generation [Dyer et al. 2016; Maddison

and Tarlow 2014; Socher et al. 2011; Vinyals et al. 2015], but most

of these works are restricted to trees and not capable of handling

more generic graphs. On the other hand, recent works like [Li et al.

2018; You et al. 2018] aim at general graph generation and do not

specialize their method to any domain. In comparison, our graph

generation network is not restricted to trees, but is specialized to

our shape representation that encodes both shape geometry and

structure, and can thus fully leverage domain-specific knowledge.

3 OVERVIEW

We represent the hierarchy of shape parts as an n-ary tree, where

each node is a part or part assembly. Geometric relationships of parts,

such as symmetries and adjacencies, are captured by additional

edges between siblings of the tree, forming a graph among siblings.

See Figure 4 for an example. Each node contains information about

the geometry of the part, capturing in total the geometry of the

shape. In a given category, such as chairs, shapes tend to have

consistent part hierarchies, as shown in the PartNet dataset [Mo

et al. 2019]. Most chairs, for example, naturally decompose into

backrest, seat, and base at the top hierarchy level. The n-ary tree

in our shape representation can directly capture this hierarchy,

giving us a shape representation with a high degree of consistency

between shapes of a given category. Section 4 describes our shape

representation in detail.

This shape representation, including structure and geometry, is

mapped into a latent space with a Variational Autoencoder. We

introduce hierarchical graph networks for the encoder and decoder,

which are recursive networks [Socher et al. 2011] that perform

graph convolutions [Kipf and Welling 2017; Xu et al. 2019] at each

recursion level. They are described in Section 5.

This gives us a rich latent representation of both the structure

and the geometry of shapes in a category, that can be used in several

applications. In Section 6 and the Supplementary, we demonstrate

shape generation, interpolation, retrieval, editing, as well as the

discovery of structure from unannotated images, point clouds, or

raw scans.

4 A HIERARCHY OF GRAPHS FOR SHAPE STRUCTURE

We introduce a shape representation that captures both the geome-

try and structure of a shape, and is suitable for processing by our

hierarchical graph network. We assume that the shapes we work

with can be decomposed into a meaningful set of parts. A shape

S = (P,H,R) is then represented by a set of parts P = {P1, . . . , PN },

describing the geometry of the shape, and a structure (H,R) that

describes how these parts are organized and related to each other.

The structure consists of two superimposed graphs: a hierarchi-

cal decomposition H of the shape into parts, and a set of geometric

relationships R among the parts. Figure 4 illustrates an example.

base backseat

surfaceregular

leg leg runner …

frame

bar barτrτₒτt τₐ

τₐ

τrτₒτt

τₐ τₐ

Fig. 4. Shape Representation. Shapes are represented by their hierarchi-

cal decomposition into parts (black edges), with geometric relationships

between siblings (orange arrows): adjacency (τa), translational symmetry

(τt), reflective symmetry (τr), and rotational symmetry (τo). A pair of parts

may have multiple relationships of different types. The part geometry can be

represented as point clouds or oriented bounding boxes. Here we show the

latter, colored by semantic (see Supplementary for a full list of semantics).

Part representation. In our experiments, we support the use of two

alternative representations for the geometry of a part Pi . Either, we

represent a part’s geometry with its minimum oriented bounding

box Bi = (ci ,qi , ri ), where c ∈ R3 are the world coordinates of

the box center, q ∈ H is the orientation of the box encoded as

quaternion, and r ∈ R3 is the size of the box; or, we represent a part

by a corresponding point cloud Ai = {x1, . . . ,xk }, where x ∈ R3

are the world coordinates of a point. In addition to geometry, each

part also has a semantic label li , such as back, seat, or base, that is

consistent across shapes of the same category. We refer readers to

the supplementary material for the details of the consistent semantic

hierarchies we use.



StructureNet: Hierarchical Graph Networks for 3D Shape Generation • 5

Hierarchical decomposition. The hierarchical decomposition starts

with the entire shape as root, which is split into a set of constituent

parts, such as seat, back, and base for chairs. These parts are then

recursively decomposed into their constituent parts, until reaching

the most fine-grained parts at the leafs. We represent this decompo-

sition with a tree (P,H), where P are the shape parts and H ⊂ P
2 are

directed edges from a parent part to all the children it is composed

of. Note that a node may have any number of children, and the tree

need not be balanced, that is, paths to leaves from a node can differ

significantly in length.

Geometric relationships. In addition to vertical composition in the

hierarchy, parts may also be related ‘horizontally’ by relationships

such as adjacency and/or symmetry. These relationships can be

crucial characteristics of shapes. Chairs, for example, often exhibit

a reflective symmetry, as well as adjacency between several parts,

and failing to take these relationships into account often results

in the generation of unrealistic chairs. On the other hand, taking

into account potential relationships between all pairs of parts in the

hierarchy would require a number of relationships in the order of

Θ(N 2), whereN is the total number of parts, and auto-encoding such

a large set of relationships accurately poses significant difficulties. In

our experiments, we found, however, that encoding all relationships

is not necessary, as the most important relationships occur between

siblings of the hierarchy (e.g., legs of a chair, drawers in a cabinet,

armrests of a couch) and relationships between other parts of the

hierarchy are usually less significant or indirectly implied via a chain

of relations following the hierarchy tree. Thus, we choose to only

capture geometric relationships between siblings in the hierarchy,

significantly sparsifying the relationship graph.

We represent these relationships with additional undirected edges

Ri between siblings {Pj , Pk } among the children Ci of a parent part

Pi . We denote these edges as ({Pj , Pk },τ ). Each edge has an asso-

ciated relationship type τ from a list of possible relationship types

T . In our experiments, we use four relationship types: adjacency,

reflective symmetry, rotational symmetry, and translational sym-

metry. These edges form a graph (Ci,Ri) among siblings, and our

hierarchy effectively becomes a hierarchy of graphs, where each

shape part is expanded into a graph at the next lower level. We call

each of these graphs an n-ary graph, to emphasize the n-ary nature

of the hierarchy over these graphs.

5 HIERARCHICAL GRAPH NETWORKS

We propose a novel Variational Autoencoder (VAE) [Kingma and

Welling 2014] for our shape representation that can be used for

generation, interpolation, and several other applications we will

demonstrate in Section 6. Our VAE consists of an encoder e , that

maps a shape S to a latent feature vector z = e(S), and a decoder d ,

that maps the feature vector back to a shape, so that approximately

d(e(S)) ≈ S . As described later, we measure the quality of this

approximation based on both geometric and structural similarity.

We introduce StructureNet or hierarchical graph networks as a

new network architecture for the encoder and decoder that can

efficiently encode and decode both the geometry and the structure of

our shape representation. Figure 5 shows the network architecture.

5.1 Encoder

The encodermaps a shape represented as a hierarchy of n-ary graphs

to a latent feature vector z. We set the dimensionality of the feature

space to 256, i.e. z ∈ R256. Each (leaf or intermediate) node i in the

tree (P,H) is also mapped to a feature vector fi ∈ R
256. The code z

for a complete shape is simply the feature vector describing the root

node z = f1. The encoder works recursively in a bottom-up manner

using two types of encoders (See Fig. 5). First, we compute feature

vectors for the leaf nodes using a geometry encoder. Then, we encode

intermediate nodes using a graph encoder. The recursive nature of

this approach is similar to previous work on structure encoding [Li

et al. 2017, 2019a], which in turn was inspired by natural language

processing [Socher et al. 2011]. However, since we need to encode

n-ary graphs, that may additionally have a variable number of parts,

the architecture of both our encoder and especially our decoder are

significantly different.

Geometry encoder. The geometry encoder fi = egeo(Pi ) encodes

the geometric representation of a leaf node Pi into a feature vector fi .

The geometric representation of a part can either be the bounding

box Bi of the part or its point cloud Ai . We employ specialized

geometry encoders for each of these representations. The bounding

box encoder consists of a single layer perceptron (SLP). Since the

part encoder is always followed by one or more applications of the

graph encoder, a single layer is sufficient. Point clouds Ai are first

centered at their mean and uniformly scaled to have a unit bounding

sphere. The center and scale are then encoded using another SLP,

while the normalized point cloud is encoded with a PointNet [Qi

et al. 2017a]. Both of these outputs are merged and encoded by

another SLP into the feature vector fi .

Graph encoder. The child graph of a part Pi is given by (Ci,Ri),

where Ci are the child parts and Ri their relationship edges. Each

part Pj ∈ Ci in the child graph is represented by the concatenation

of its feature vector and label f̂j = (fj , lj ), while relationship edges

in Ri have as feature only their type τ . Both the part label and edge

type are encoded as one-hot vectors. Note that we do not store the

relationship parameters, such as the axis of a rotational symmetry.

The graph encoder fi = egraph({ f̂j | Pj ∈ Ci},Ri) encodes this child

graph into a fixed-length feature vector fi .

The architecture of the graph encoder is inspired by the recent

Graph Isomorphism Networks (GIN) [Xu et al. 2019] and Dynamic

Graph CNNs [Wang et al. 2019]. To encode the child graph, we

perform several iterations of message passing along the edges of the

graph. In each iteration, a node aggregates features of its neighbors

to compute an updated feature vector. Since we also have features

for edges, we include them in each message that is passed over an

edge. In each iteration t , a part’s feature vector is updated with,

f
(t )
j =

1

M

∑

({Pj ,Pk },τ )∈Ri

h(t )
(

f
(t−1)
j , f

(t−1)
k

,τ
)

, (1)

whereM is the number of neighbors for Pj and h
(t ) are SLPs, one

for each iteration; h(t ) encodes the message that is passed over an

edge, consisting of the source part’s feature vector f
(t−1)
k

, the target

part’s feature vector f
(t−1)
j and the edge type τ . The messages from
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Fig. 5. Hierarchical Graph Networks.Our variational autoencoder consists of two encoders and two decoders that both operate on our shape representation.

The geometry encoder egeo encodes the geometry of a part into a fixed-length feature vector f , illustrated with a gray circle. The graph encoder egraph encodes

the feature vectors of each part in a graph, and the relationships among parts, into a feature vector of the same size using graph convolutions. The graph

encoder is applied recursively to obtain a feature vector z that encodes the entire shape. The reverse process is performed by the graph and geometry decoders

dgraph and dgeo to reconstruct the shape. The decoder also recovers the geometry of non-leaf nodes.

all neighboring parts are averaged to get the updated feature f
(t )
j .

Iterations start with f
(0)
j = f̂j and we perform two iterations of

message passing for each graph in our experiments. After message

passing, the feature vector for the entire graph is computed by

max-pooling over all child parts Pj ∈ Ci:

f
(t )
i = max{ f

(t )
j }. (2)

Finally, we concatenate the graph feature vectors computed after

each iteration, and pass them through another SLP д:

fi = дskip

(

f
(0)
i , f

(1)
i , f

(2)
i

)

. (3)

Note that this acts like skip connections for the iterations and allows

the network to make use of features from all iterations.

5.2 Decoder

The decoder transforms the root feature vector z back into a shape

represented as a hierarchy of graphs. It expands nodes in a top-

down fashion. In each step, it first performs the reverse operation

of the graph encoder, using the graph decoder dgraph to transform

a latent code fi into its child graph. The decoder then transforms

the resulting feature vector of each child back into the geometry

representation of the child with the geometry decoder dgeo. Unlike in

the encoder, we decode the geometry of each part in the hierarchy,

not only the leaf parts. This gives additional opportunity for super-

vision during training in the form of a reconstruction loss on the

decoded intermediate geometry, as we will describe in Section 5.3.

Geometry decoder. Wehave two alternative decoders for the bound-

ing box representation Bi = dgeo(fi ) and the point cloud represen-

tation Ai = dgeo(fi ) of a part. Both transform the feature vector

of a part back to the part’s geometry representation. The bound-

ing box decoder is implemented as a multi-layer perceptron (MLP)

with two layers, that transforms a feature vector fi to a bounding

box Bi = (ci ,qi , ri ). The point cloud decoder obtains a normalized

point cloud from the feature vector with a three-layer MLP, and the

center and scale of the point cloud using an SLP. We pre-train the

geometry encoder and decoder for point clouds, as a separate au-

toencoder for the point cloud geometry of shape parts. This gives us

greatly increased training stability at the cost of a slightly decreased

reconstruction accuracy.

Graph decoder. The graph decoder transforms a parent feature

vector fi back into the child graph ({ f̂j | Pj ∈ Ci},Ri) = dgraph(fi ),

where each child part Pj ∈ Ci is represented by a feature vector and

its label f̂j = (fj , lj ). Since child graphs have a variable number of

parts and edges, we always decode a fixed maximum number np of

child parts and all n2p edges between them, together with a binary

probability that a predicted part or edge exists in the child graph.

Note that parts and their relations are simultaneously decoded. In

our experiments, we use a maximum of 10 parts. Parts and edges

that are predicted not to exist in the graph are discarded.

We start by decoding initial feature vectors from the parent fea-

ture vector using an SLP дparts:

( f̃1, . . . f̃np ) = дparts(fi ) (4)

for the maximum number of child parts np . To predict the existence

of parts, we compute

pj = σ (дxp( f̃j )), (5)

where pj is the predicted probability that the child part j exists, σ is

a sigmoid, and дxp is a single linear layer. Parts with pj < 0.5 are

discarded.

To predict the existence of edges, we can proceed similarly. Recall

that the graph encoder accumulates information about the graph

neighborhood in the feature of each part. Thus, we can recover the

edges between a pair of parts based on their pair of feature vectors:

(p(j1, j2,τ1), . . . ,p(j1, j2,τ |T |)
) = σ (дxe( f̃j1 , f̃j2 )), (6)

where p(j1, j2,τ ) is the predicted probability that an edge between

child parts Pj1 and Pj2 of type τ exists, and |T | is the number of
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edge types. As дxe, we use a two-layer MLP. Edges are discarded if

any of the adjacent parts do not exist, or if p(j1, j2,τ ) < 0.5.

We perform two iterations of message passing along the predicted

edges, analogous to the message passing described in Section 5.1,

starting with the initial feature vectors f̃j and resulting in the final

child feature vectors fj . Experimentally, we found the message

passing to enable the parts to refine and coordinate their geometry

based on the relationships described by the edges, like symmetry

or adjacency. As a final step, we decode two additional values from

the feature vectors fj : the semantic labels lj and a probability pleafj

that Pj is a leaf part. If a part is predicted to be a leaf part, we do not

attempt to predict the existence of children for the node, making

it easier for the network to stop the recursion. We found that this

helps convergence especially in the early stages of training.

5.3 Training and Losses

We train our VAE on a dataset S of shapes from a given category.

We assume models in the dataset not to have parts with more than

np = 10 children. Each shape is represented as a hierarchy of graphs

with known structure.

Our goal is to train the encoder and decoder of our VAE to perform

a reversible mapping of each shape S to a feature vector z in a latent

space where manipulations of the shape such as generation and

interpolation are easier. To learn this mapping, we use a loss that is

composed of three parts:

Ltotal = ES∼S [Lr (S) + Lsc (S) + βLv (S)], (7)

where S is the distribution of shapes in a category and E denotes

the expected value. The reconstruction loss Lr encourages reversibil-

ity of the mapping, the structure consistency loss Lsc encourages

consistency between the reconstructed parts and reconstructed re-

lationship edges, and the traditional variational regularization Lv

of VAEs with regularization weight β that encourages the manifold

of shapes in latent space to be smooth and simple, see [Kingma and

Welling 2014] for a description. We empirically set β = 0.05 for

our experiments. We now define the reconstruction loss and the

consistency loss.

Reconstruction loss. The VAE is encouraged to learn a reversible

mapping by training it with a reconstruction loss:

Lr (S) = q
(

S, d(e(S))
)

, (8)

where q is a distance metric between reconstructed shapes and

ground truth shapes. The distance needs to be designed to provide

good gradients to the encoder and decoder.

To compare two shapes S and S ′ = d(e(S)), we first need to es-

tablish a correspondence between parts in the two shapes. Here we

need to choose between two strategies: we could either encode and

reconstruct the order of parts in S , or use an order-invariant en-

coder and establish a correspondence by matching the structure and

geometry of the reconstructed shape to the input shape. We choose

the second option, as we empirically found the order-invariant

network produces superior performance (similar conclusion was

reached for point cloud encoding [Qi et al. 2017a]). We compute

a linear assignment of the parts in the two shapes separately for

each child graph. Starting at the root, the assignment of parent

parts determines which child graphs are matched at the next lower

level. This gives an assignmentM ⊂ P × P
′ over all parts in the two

shapes, where P′ are the reconstructed parts. To train part and edge

existence predictions, we include the reconstructed parts that are

predicted not to exist in this assignment. Parts are matched based on

their geometry representations. We define the geometry difference

between parts with point cloud geometry as a squared version of

the chamfer distance [Barrow et al. 1977] between the point clouds:

qgeo(Pi , Pj ) = qchs(Ai , Aj ), (9)

with the squared version of the chamfer distance [Fan et al. 2017]

defined as:

qchs(Ai ,Aj ) =
1

|Ai |

∑

xi ∈Ai

min
x j ∈Aj

∥xi − x j ∥
2
2 +

1

|Aj |

∑

x j ∈Aj

min
xi ∈Ai

∥x j − xi ∥
2
2 .

(10)

For the bounding box representation, we cannot directly take the

difference of the box parameters, since the orientation and scale of

the box representation is ambiguous (e.g., a bounding box can ro-

tated by multiples of 90 degrees about any local axis and re-scaled to

give the same bounding box). Instead, we take the chamfer distance

between point samples on the boundaries of the two boxes:

qgeo(Pi , Pj ) = qchs(T (Bi )U, T (Bj )U), (11)

where U is a pre-computed set of samples on the unit cube, and

T (Bi ) is a 4D transformation matrix that transforms the unit cube

to the part’s bounding box Bi . Since non-uniformly scaling the unit

cube with T (Bi ) results in a non-uniform point density, qchamfer

weighs the transformed point samples with the area of the face they

were sampled from [Tulsiani et al. 2017]. Based on the assignment

M, the distance q between two shapes is composed of five loss terms,

as described next.

(i) Geometry loss. The geometry loss measures the distance be-

tween the geometry of two parts:

Lgeo(S, S
′) =

∑

(Pi ,P
′
j )∈M

qgeo(Pi , P
′
j ). (12)

Additionally, the geometry of unmatched parts is trained to be all

zeros to make the linear assignment more robust.

(ii) Normal loss. The geometry loss works well in general, but it is

less sensitive to the orientation of small bounding boxes, especially

if they have the same size along some of their dimensions, such

as a rotation of thin rods about their longest axis. To make the

reconstruction of part geometry represented as bounding boxes

more sensitive to the orientation of the boxes, we add the normal

loss that approximates the distance of the reconstructed box normals

to the input box normals:

Lnormal(S, S
′) =

∑

(Pi ,P
′
j )∈M

qchs(T (qi )N, T (qj )N), (13)

where N are the six unique normals of the unit cube. The trans-

formation T (qi ) rotates these normals to the orientation qi of part

Pi . As in Eq. 11, we use the squared chamfer distance between the

predicted and ground truth normals.
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(iii) Part existence loss. The part existence loss measures how ac-

curately the existence of parts is reconstructed:

Lxp(S, S
′) =

∑

Pj ∈P′

H (pj , ✶P′
M
(Pj )), (14)

where pj is the predicted part existence probability defined in Eq. 5,

✶ is the indicator function, P′ are all parts in S ′, and P′
M
is the subset

that has a match in S . The cross entropy H encourages existence for

parts that have a match, and non-existence for all other parts.

(iv) Edge existence loss. The edge existence loss measures how

accurately the existence of edges is reconstructed:

Lxe(S, S
′) =

∑

({P ′
j1,P

′
j2 },τ )∈R

′

H (p(j1, j2,τ ), ✶R′
M
({P ′j1, P

′
j2},τ )), (15)

where p(j1, j2,τ ) is the predicted edge existence probability defined

in Eq. 6, R′ are all edges in S ′, and R
′
M
the subset that has a match

of the same type τ in S . This loss encourages existence for edges

that have a match, and non-existence otherwise.

(v) Semantic loss. The semantic loss is the cross entropy between

the reconstructed label probabilities and the input labels, given as

one-hot vectors:

Lsem(S, S
′) =

∑

(Pi ,P
′
j )∈M

H (li , lj ), (16)

where li and lj are the input and reconstructed labels of the matched

parts.

(v) Leaf loss. Finally, the leaf loss measures the accuracy of the

leaf prediction pleafi :

Lleaf(S, S
′) =

∑

(Pi ,P
′
j )∈M

H (pleafj , ✶Pleaf (Pi )), (17)

where Pleaf is the subset of parts in S that are leafs.

Finally, the distance q between two shapes is the sum of these

five losses:

q(S, S ′) = αLgeo + γLnormal + Lxp + Lxe + λLsem + Lleaf. (18)

Empirically, we set (α ,γ , λ) = (20, 10, 0.1) in all our experiments.

Structure consistency loss. Some types of errors in the reconstruc-

tion of parts are more severe than others. If a part is not in a geo-

metric relationship with other parts, small reconstruction errors in

the position, orientation or scale of the part are often less noticeable.

However, if these errors break existing relationships, such as symme-

try or adjacency relationships, even small errors can be much more

apparent. Hence, we add a loss that encourages the reconstructed

parts to be structurally consistent with the reconstructed geometric

relationships of a shape ś a self-consistency constraint between the

part relations and the part geometries which is an important aspect

of our loss design. This can be understood as a constraint violation

loss, where the relationships act as constraints.

Given a relationship edge (P ′i , P
′
j ,τ ) of the reconstructed shape,

we quantify how much the geometry of the parts P ′i and P
′
j violates

the relationship described by the edge. Additionally, a relationship

between two parts should also hold for their subtrees. For example,

a mirror symmetry between two parents should also constrain their

τr τr

τr

Fig. 6. Relationships between subtrees. A relationship between two non-

leaf parts also holds for their subtrees. The reflective symmetry τr of the

parent parts on the left also holds for their children on the right.

two subtrees to be mirrored in the same way, see Figure 6 for an

illustration. Hence, we also encourage the entire subtrees Di and

Dj of P
′
i and P

′
j to follow the same relationship. We first define the

point cloud representation of a subtree, including the root, as:

Di =

⋃

Pk ∈Di∪{Pi }

T (Bk )U. (19)

As in Eq. 11,U is a pre-computed set of samples on the unit cube, and

T (Bk ) is a 4D transformation matrix that transforms the unit cube

to a part’s bounding box Bk . When representing part geometries

with point clouds, we directly use the union of the point clouds.

Next, we introduce a loss for symmetries, and a loss for adjacencies.

For symmetries R′
sym, we first compute the closest configuration

of P ′j relative to P ′i that would not violate the relationship, and

vice-versa for P ′i relative to P
′
j . We use the distance from that con-

figuration as loss:

Lsym(S
′) =

∑

({P ′
i ,P

′
j },τ )∈R

′
sym

qchs

(

D j , ρτ (Bi ,Bj )Di

)

, (20)

where Bi and Bj are the bounding boxes of the two parts and ρτ is

a function that computes an affine transformation from Bi to the

closest configuration of Bj that does not violate the relationship

type τ . When representing part geometries with point clouds, we

first compute the oriented bounding box of the corresponding point

clouds to obtain Bi and Bj , respectively.

For adjacency realtions, R′
adj

, our loss is the minimum distance

qmin between the geometry representations of the leaf parts only:

Ladj(S
′) =

∑

({P ′
i ,P

′
j },τ )∈R

′
adj

qmin(Li , Lj ), (21)

where Li and Lj are subsets of Di and D j , representing only the leaf

parts of the subtrees.

Finally, the structure consistency loss is the sum of symmetry

and adjacency losses:

Lsc (S) = Lsym(S
′) + Ladj(S

′), (22)

where S ′ = d(e(S)) is the reconstructed shape.
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6 EXPERIMENTS

Accurately capturing structure in a smooth latent space gives us a

simple and effective approach to many shape understanding and

synthesis problems. In this section, we present quantitative and

qualitative evaluations to demonstrate the effectiveness of our hier-

archical graph networks on 5 tasks: shape reconstruction, genera-

tion, interpolation, abstraction, and editing. Additional results are

available in the Supplementary.

Data Preparation. We use PartNet [Mo et al. 2019] as the main

dataset for all the experiments in the paper. PartNet provides fine-

grained and hierarchical part annotations with consistent semantic

labels for 26,671 3D objects from 24 object categories. We use the

three largest categories for our experiments: cabinets, chairs, and

tables. In the Supplementary, we show results for three additional

categories: vases, trashcans can and beds. Also in the Supplementary

is a description of the semantic hierarchy in these categories. Since

we have a maximum number of child parts per parent part np = 10,

we remove shapes that have more than 10 children in any of their

parts. Note that this maximum could also be increased if needed,

slightly increasing memory consumption1. Additionally, we remove

shapes that have unlabeled parts. The remaining 4871 chairs, 5099

tables, and 862 cabinets are divided into training, validation and test

sets using the data splits published in the PartNet dataset, which

have a ratio of 7 : 1 : 2.

In PartNet, shapes are represented as meshes that are divided into

individual parts. Each shape in the dataset is scaled to be contained

in the unit sphere. To obtain bounding boxes Bi for each part, we

fit an oriented minimum-volume bounding box to the mesh of each

part. Point clouds Ai are obtained by uniformly sampling the part’s

surface with 1000 points. The part hierarchy H is given explicitly in

the dataset. To define geometric relationships R between parts, we

find symmetries using the method described by Wang et al. [Wang

et al. 2011b], and define two parts as adjacent if their smallest dis-

tance is below 0.05∗r̄ , where r̄ is the average bounding sphere radius

of the two parts. On average, our shapes have 16.94 parts, arranged

in a hierarchy of average depth 3.59, with an average number of

29.93 relationship edges. Each part has a semantic label chosen from

a list of labels specific to each category. The number of different

labels ranges from 36 for cabinets to 82 for tables.

6.1 Shape Reconstruction

As a first experiment, we measure the reconstruction performance

of our hierarchical graph networks to find out how accurately our

latent space can represent the shapes in the test set. To get an

accurate reconstruction performance, just for the experiments in

this section, we train an non-variational autoencoder version of our

network. We use two groups of errors to measure reconstruction

performance. Three reconstruction errors for the geometry, the

hierarchy, and the relationship edges, and two structure consistency

errors that measure the consistency of the reconstructed geometry

with both the reconstructed and the input relationship edges.

The geometry reconstruction error EP is defined analogously to the

geometry loss Lgeo, except that we use the non-squared chamfer

1with our current settings, the memory consumption is ∼ 1GB for a batch size of 32.

Table 1. Reconstruction performance on each shape category. We

compare the reconstruction performance of StructureNet on six shape cat-

egories. See the supplementary for a qualitative evaluation of the categories

bed, trashcan, and vase. The first three columns show the box geometry, hi-

erarchy, and edge reconstruction errors, respectively. The consistency of the

reconstructed shapes with the reconstructed relationship edges (recon) and

the ground truth relationship edges (gt) is shown in the last two columns.

Bed comes in last due to severe undersampling of the shape category, with

only 54 training shapes. Our performance is best for chairs, which have a

more balanced variety of training shapes than the other categories.

reconstruction error consistency error

EP EH ER Erc Egc

Bed 0.069 0.609 0.518 0.019 0.032

Cabinet 0.066 0.461 0.386 0.021 0.027

Chair 0.062 0.200 0.246 0.018 0.023

Table 0.073 0.309 0.357 0.021 0.026

Trashcan 0.083 0.073 0.110 0.014 0.015

Vase 0.147 0.214 0.391 0.014 0.060

distance. Since our shapes are contained in the unit sphere, this

gives us more easily interpretable distance values in [0, 2].

The hierarchy reconstruction error EH counts how many missing

or unmatched parts are in the reconstructed hierarchy, using the

assignmentM between the input and reconstructed shapes described

in Section 5.3:

EH =
1

|P|

(

|P \ PM | + |P′ \ P′M |
)

, (23)

where P and P
′ are the sets of parts in the input and reconstructed

shapes, respectively. PM and P
′
M

denote the corresponding subsets

of matched parts.

The edge reconstruction error ER uses the assignmentM to mea-

sure the precision and recall of the reconstructed edges, which we

summarize in an error metric defined as one minus the F1 score:

ER = 1 −

(

2
ep ∗ er

ep + er

)

, (24)

where the precision and recall are defined as ep = |R′
M
|/|R′ | and

er = |R′
M
|/|R|, respectively.

The reconstructed consistency error Erc measures the consistency

of the reconstructed geometry with the reconstructed relationship

edges. It is defined equivalent to Lsc, except that we use the non-

squared chamfer distance.

Similarly, the ground truth consistency error Egc measures the con-

sistency of the reconstructed geometry with the input relationship

edges.

The reconstruction performance of StructureNet on the three

shape categories chair, table and cabinet is given in Table 1. In

this experiment, we represent part geometry as oriented bounding

boxes. The largest cause of reconstruction error we encountered

when training our network is the unbalanced variety of shapes in

each category. The datasets typically contain some sub-types of a

category, such as square tables, more often than other sub-types,

such as triangular tables. As a consequence, the network may have

too few examples to learn a good representation of the more exotic
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input GRASS
Orig.

GRASS
PartNet

STRUCTURENET
(no edges)

STRUCTURENET

geometry reconstruction error EP

GRASS Orig. 0.103

GRASS PartNet 0.082

StructureNet (no edges) 0.065

StructureNet 0.061

Fig. 7. Reconstruction compared to GRASS. In the top three rows, we

show reconstructions of the left-most shape using the two variants of GRASS

described in Section 6.1, and then reconstructions using a version of Struc-

tureNet that does not use edges, and finally using our full method. Due

to our more consistent shape representation, our method scales better to

datasets with the size of PartNet. Using edges additionally improves part

relationships such as the symmetries between the armrests, as seen in the

third row. This is confirmed by the reconstruction error over the whole

dataset, shown in the table below.

shape varieties. The chair dataset is the most balanced among the

categories, giving us lower reconstruction errors than for the other

categories. Additionally, the cabinet and bed datasets contain shapes

with more complex structure on average, giving us higher hierarchy

and edge reconstruction errors.

We compare our reconstruction performance to two baselines:

GRASS [Li et al. 2017] as a state-of-the-art structure-aware shape

generation method, and an autoencoder based on PointNet++ [Qi

et al. 2017b], as a state-of-the-art point cloud autoencoder that

holistically encodes the point cloud of a shape without using any

explicit structure.

Comparison to GRASS. The comparison to GRASS is shown in Fig-

ure 7. A qualitative comparison is shown in the top three rows, and a

quantitative comparison on the chair dataset in the table below. The

oriented bounding box of each leaf part is illustrated as transparent

box, colored according to its semantic (see the Supplementary for

the full semantic tree of each category). GRASS results are colored

uniformly, since semantics are not available. We measure only the

geometry reconstruction error, since the structure of GRASS is not

directly comparable to our shape representation. GRASS requires a

binarization of shape hierarchies that are naturally n-ary. A binariza-

tion that is consistent between all shapes in a category is difficult

to find, and this difficulty grows with the number and variety of

shapes in a category. On our dataset, which has ∼10 times the size of

the dataset originally used in GRASS, this task becomes too difficult.

in
p
u
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Fig. 8. Reconstruction compared to a holistic approach. We recon-

struct the point cloud representation of the shapes in the top row with

a holistic approach (orange) that does not use structure, and compare to

StructureNet. The holistic approach suffers from noise that results in a

loss of detail, whereas reconstruction errors in our approach take the form

of slightly modified chair structures, such as the hole added to the backrest

in the third column. However, the functional realism of the shape is usually

preserved and the explicit structure allows us to preserve significantly more

detail.

For this reason, the authors provided us with two modified version

of their method, that each sacrifice some generality for a reduced

number of possible binarizations. The first version, which we call

GRASS Orginal, reduces generality and possible binarizations by

a small amount, resulting in a method very similar to the original

GRASS. Results for this method are shown in the second column of

Figure 7 and the first row of the table. Due to the large number of

possible binarizations, the performance is low. The second version,

which we call GRASS PartNet uses the semantic hierarchy of PartNet

to significantly reduce the number of possible binarizations. This

increases the performance of GRASS, as shown in the third column

of the figure and the second row of the table. Our approach, on the

other hand, can encode and decode n-ary hierarchies directly, lead-

ing to a more consistent representation of the structure that gives us

a significant improvement in reconstruction performance, as shown

in column four and row 3 of the table. Relationship edges provide

and additional boost to the reconstruction performance, by ensuring

that symmetries that are present in the input are maintained in the

reconstruction. Note that we evaluate this comparison on a reduced

subset of 4031 chairs, since the GRASS authors reported that their

pipeline failed to produce results for the remaining 840 chairs in

our dataset.

Comparison to a holistic autoencoder. We train an autoencoder

based on PointNet++ [Qi et al. 2017b] and PointSetGen [Fan et al.

2017] to compare the effects of encoding geometry only to our

structure-aware latent space. PointNet++ is used as encoder, fol-

lowed by a point cloud decoder network proposed in PointSetGen.

We train both this autoencoder and StructureNet on the chair

dataset, with part geometry represented as point clouds. For the

PointNet++ autoencoder, we merge the geometry of the leaf parts

into a single point cloud for the shape. Results are shown in Figure 8
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Table 2. Shape generation compared to GRASS.We compare the shape

distribution learned by the two version of GRASS described in Section 6.1 to

our method without edges and to our full method, using two metrics that

measure how close the shapes are to the data distribution (quality) and how

much of the data distribution is covered by the generated shapes (coverage).

We report the scores relative to our method, higher numbers indicate better

performance. Results show that our latent distribution better captures the

data distribution.

rel. quality rel. coverage

GRASS Orig. 0.714 0.818

GRASS Partnet 0.788 0.818

StructureNet (no edges) 0.984 0.989

StructureNet 1.0000 1.0000

where points are visualized as small spheres, colored by their se-

mantic in the same way as the bounding boxes in Figure 7. Note that

the holistic results have significantly more noise, making it harder

to recover details. Since we encode structure, errors in our approach

instead take the form of slight modifications to the structure and

layout of parts, such as added hole in the backrest of the chair in

the third column, or the slightly modified arrangement of bars in

the backrest of the chair in the last column. The structure, however,

tends to remain realistic and since we represent the point cloud

of each part separately, individual parts are sharper an details are

better preserved.

6.2 Shape Generation

A straight-forward application of our hierarchical graph network

is shape generation. In the remainder of Section 6, we use a VAE

with the variational regularization weight β = 0.05. This gives us a

dense and smooth distribution of shapes in latent space that we can

draw from to generate new samples of shapes, including geometry

and structure. We show both qualitative results and a quantitative

comparison to GRASS for this application.

Qualitative evaluation. Several examples of generated shapes are

presented in Figure 10, using both the bounding box representation

and the point cloud representation for part geometry. Our results

show a large variety in structure and part geometry, with a layout

of individual parts that is functionally plausible. For each shape,

we generate our full shape representation, including the geometry

of individual parts, the hierarchical decomposition of these parts,

symmetry and adjacency relationship edges between siblings, and

part semantics. This rich high-level representation of the shapes is

useful for several applications, some of which we will present in the

following sections.

Shape novelty and overfitting. To evaluate the novelty of our gen-

erated shapes, we show the top-five closest training samples to

several generated chairs in Figure 9, using the chamfer distance as

metric. We can see that the generated shapes are quite different in

both geometry and structure from the closest matches, suggesting

little overfitting to the training set.

Quantitative evaluation. Quantitatively, the goal of this applica-

tion is to cover as much of the data distribution as possible, while

Fig. 9. Novelty of generated shapes. In the first column we show three

generated shapes, and on the right the five closest matches in the training

set, measured with the chamfer distance. Our generated structure and

geometry is different from the shapes in the training set.

at the same time, avoiding unrealistic chairs that are distant from

the main mass of the data distribution. We quantify this goal with

two metrics. The quality, of a generated shape set is measured by

the average closest distance to any data sample, while the coverage

is measured as the average closest distance from each data sample

to a generated sample.

quality ≔
∑

S ′∈SG

min
S ∈S

dS (S
′
, S) and

coverage ≔
∑

S ∈S

min
S ′∈SG

dS (S
′
, S),

(25)

where S is the training set, SG is a set of generated shapes, and dS
is the chamfer distance between the point representations of two

shapes. To compare with GRASS using these metrics, we compute

a set of 1000 shapes using both StructureNet and GRASS, and

compute their quality and coverage. We show results relative to

the performance of StructureNet in Table 2 (i.e. StructureNet

scores divided by the method scores). We see an improvement over

GRASS in both quality and coverage of the generated shapes.

6.3 Shape Interpolation

We further examine the quality of our learned latent space with

interpolations between shapes, visualizing samples along line seg-

ments in the space. We show several examples of interpolations in

Figure 13. The left half of the figure shows interpolations between

shapes with bounding box geometry, the right half between shapes

with point cloud geometry. Note how the structure changes in small

intuitive steps between the source and target of an interpolation.

For example, in row 6 on the left side, the backrest of the chair is

simplified part by part, while on the base, bars between the legs

are added in multiple steps, and armrests are simplified to have

fewer parts before disappearing. At the same time, each of the steps

represents a valid and functional chair. We find it interesting to see

in which way the network learned to arrange shape configurations

in latent space, especially since these arrangements often seem to
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Fig. 10. Generated shapes.We show shapes in all categories decoded from random latent vectors, including shapes with bounding box geometry, and shapes

with point cloud geometry. Parts are colored according to semantics, see the Supplementary for the full semantic hierarchy for each category. Since we

explicitly encode shape structure in our latent representation, the generated shapes have a large variety of different structures.
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source target

Fig. 11. Interpolation compared to a holistic approach. We compare

our interpolation (colored) to a holistic approach (orange) that encodes

shapes as point clouds without any structure. Explicitly encoding structure

gives us a sequence of small structural changes in the intermediate steps,

whereas the holistic approach produces no significant structural changes.

Additionally, our per-part geometry is cleaner than the per-part geometry

in the holistic approach, where it is hard to identify detailed parts.

correspond to our own intuition. For example, the pedestal base of

the chair on the top right is first made smaller, before completely

disappearing, and reappearing again as 4 separate legs that increase

in size. Similarly, the transition from shelves with few boards to

shelves with many boards near the bottom right of the figure, tran-

sitions by increasing or decreasing the number of boards step by

step.

Comparison to GRASS. We provide a qualitative comparison of

these interpolations to GRASS PartNet in Figure 3. First, we see

issues with the reconstruction accuracy of grass, but looking at the

interpolations only, we see that some interpolation of the structure,

such as the reduction of the number of legs of the chairs happens

much less gradual than in our interpolations, with fewer, larger

steps.

Comparison to holistic interpolation. Figure 11 compares Struc-

tureNet for point cloud geometry to interpolating without struc-

ture using the same holistic point cloud network described in Sec-

tion 6.1, but using a VAE instead of an autoencoder. The VAE is

necessary to obtain a smooth latent space suitable for interpola-

tion, but makes the shapes much noisier than for the autoencoder,

whereas our point clouds do not suffer as much from this switch

to a VAE. Interpolations are smooth for the holistic VAE, but lack

interesting transitions between structural details. Parts such as the

armrests in the second row gradually disappear, whereas our arm-

rests get replaced by simpler, but still functionally valid variants

before being removed.

Partial interpolation. Since shape structures in a category are con-

sistent, we can do interpolations between corresponding parts of a

b
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e
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Fig. 12. Part Interpolation.We interpolate either only the backrest (first

row) or only the base (second row) between the chairs on the left and right

side. Intermediate shapes preserve structural plausibility of the interpolated

result mainly through geometric differences to the target part, but faithfully

interpolate the structure. We observe that these interpolations are not

necessarily symmetric: the base interpolations follow different paths to be

compatible with the different back styles.

shape. We perform the partial interpolation by taking the encoded

part latent vector fi of a shape, interpolating it with the correspond-

ing part latent vector of another shape, and then re-encoding the

shape with the interpolated part latent vector. This ensures plausibil-

ity of the resulting shape by effectively projecting the shape to the

learned manifold of shapes. In Figure 12, we interpolate either only

the backrest or only the base for each of two chairs. The structure of

the interpolated part changes to resemble the target part, while the

other parts of the shape remain largely unchanged. We can also see

that the final step of the interpolation does not fully reach the target

part, because the network ensures the plausibility of the resulting

chair. For example, in the second interpolation, the short legs of

the sofa would result in an implausible shape when attached to the

chair. Thus, the interpolation depends on the context of the part.

Even though the geometry is not the same, the structure of the chair

bases is interpolated correctly and resembles the target structure at

the final interpolation step.

6.4 Shape Abstraction

Discovering higher-level structure in un-annotated point clouds and

images are long-standing vision and graphics problems. Our rich

latent representation provides us with an approach to tackle these

problems. We can encode images, point clouds, and shapes into a

common latent space, using separately trained encoders for images

and un-annotated point clouds. Given a trained StructureNet

autoencoder d(e(S)) for the box representation of our shapes, we

train additional encoders to take images I and un-annotated point

clouds O to the same latent space. From the latent space, we can

use our pre-trained decoder d to recover a shape S ′ that is similar

to the shape represented with the input image or point cloud, but

has all the information of our shape representation.
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source target source target

Fig. 13. Interpolation of shapes. We show interpolations between a source shape and a target shape from all categories. Interpolations are symmetric, so

source and target are interchangeable. Interpolations between shapes with box geometry is shown on the left side, and point cloud geometry on the right side.

Note how each interpolation is a smooth transition between two different structures that preserves functional plausibility in each step. In the interpolations

between shelves with different numbers of boards, for example (bottom right), the number of boards is gradually increased/decreased in each step, and each

step is a functional shelf.

Image abstraction. The image encoder eI is a ResNet18 [He et al.

2016] that was pre-trained on ImageNet [Deng et al. 2009]. In-

spired by the joint embedding approach of [Li et al. 2015], we re-

fine this encoder on a dataset of images rendered from the shapes

in our training set. We render the shapes with textures obtained

from ShapeNet [Chang et al. 2015], from 24 random angles around

the their up vector, from a random elevation between 25 and 30

degrees, and a random distance between 1.2 and 2.0 times the

bounding sphere radius. For each image, we additionally have the

corresponding latent vector in the latent space of the trained au-

toencoder d(e(S)). We train the image encoder to map each im-

age to the latent representation of the shape it was rendered from

LI = e(S)−eI (render(S,θ )), where θ are the random camera param-

eters. We test on images generated from shapes in our validation

and test sets, examples are shown in Figure 14, top. While the pro-

portions of objects are not completely accurate, the overall shape,
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Fig. 14. Image and point cloud abstraction. Images, synthetic point

clouds, and real-world scans from ScanNet [Dai et al. 2017] are embed-

ded into our learned latent space, allowing us to effectively recover a full

shape description that matches the raw input.

and even many of the details are represented accurately in the re-

covered shape, suggesting that the joint embedding successfully

aligns structurally similar images and shapes in the latent space.

Point cloud abstraction. The point cloud encoder eO is imple-

mented as PointNet++ [Qi et al. 2017b] and similar to the image

encoder, we train the network to encode 10k points obtained from

each shape in our training set into the latent representation of the

corresponding shape with LO = e(S) − eO (sample(S)). Examples of

abstractions computed for point clouds in our test set are shown in

Figure 14, rows 3 and 4. We also tested our approach on real-world

scans obtained from ScanNet [Dai et al. 2017]. Even though the

statistics of the point distribution on real-world scans is likely to be

different from our synthetic point sets, and the scans are missing

large regions, our shape abstraction can recover good matches for

each of the point clouds (see Figure 14, last two rows).

6.5 Shape Editing

Edits performed on a shape in a traditional 3D editor do not take into

account the plausibility of the resulting shape. Our learned latent

space gives us a definition of shape plausibility. Edits of a shape that

preserve plausibility can thus be performed by finding the shape in

our latent space that best satisfies the given edit. Below we present

two simple shape editing applications based on this approach.
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Fig. 15. Structure-aware part editing. We show editing results on two

shapes with box geometry (first four rows) and two shapes with point cloud

geometry (two bottom rows). For the two shapes with box geometry, we

perform five different edits each, one edit per column. The edited box is

highlighted in yellow, and the result is shown below. We see that the other

boxes in the shape are adjusted to maintain shape plausibility. For the two

shapes with point cloud geometry, we show intermediate results for one

edit each. From left to right, these are (a) the original point cloud; (b) the

predicted box abstraction; (c) the induced segmentation; (d) edited boxes;

and (e) the induced edit of the point-cloud.

Structure-preserving part edits. In our latent space, shapes with

similar structure are located close to each other. We can preserve

the structure of a shape during editing by working with shapes

that are close to the original shape in latent space. Starting from

a shape with bounding box geometry, we edit one of its boxes, by

translating, non-uniformly scaling, or rotating it. We then optimize

for a shape in our latent space that is as close as possible to the

original shape, while also satisfying the box edit:

argmin
z

(





z − z∗






2
2 + qchs(T (Be (z))U, T (B

t
e )U) + Lsc (d(z))

)

.

(26)

The first term is the squared distance between the latent vector of

the edited shape z and the latent vector of the original shape z∗. The

second term is minimized by shapes that satisfy the edit, using the

squared chamfer distance between the configuration of the edited

box Be in z and its target configuration Bte . Since the box edit is

likely to break existing symmetries, we also specifically optimize

for a shape S = d(z) that is consistent with its relationships using

the loss Lsc , as defined in Eq. 22.
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Figure 15 shows 5 edits on each of the two shapes shown on

the top left-hand side. Edited boxes are marked in yellow in the

top row of each shape, and the result of the edit is shown in the

bottom row. Since results only use shapes that can be found in

our latent space, the results maintain plausibility of the shapes,

adjusting the other parts in the shape as needed. Since we optimize

for proximity to the original shape in latent space, the resulting

shapes have similar structure, with a few minor exceptions, such as

the added bars between the chair legs in the fourth column. This

experiment suggests that structural differences are more distant in

the latent space than geometric differences. This can also be verified

by examining the visualization of the latent space provided in the

Supplementary.

Point Cloud Editing. We can extend this editing approach to unan-

notated point clouds using the abstraction approach described in

Section 6.4. The abstraction of the point cloud induces an instance

segmentation, where each point is assigned to the closest bounding

box. After editing the boxes with the method described above, we

can update the subset of points corresponding to each box with the

same transformation applied to the box, giving us an edited point

cloud. The bottom two rows of Figure 15 show these steps in two

examples edits. The edited point clouds show some artifacts due to

the hard boundaries between different segments, but closely resem-

ble the edited boxes. In the future, we could augment this method

with either soft assignments of points to boxes (where boxes act

similar to bones in character animation), or a segment refinement

step, where the segment boundaries are optimized to coincide with

surface discontinuities of the shape.

6.6 Limitations and Failure Cases

We discuss several limitations and failure cases: (i) StructureNet,

being a data-driven method, naturally inherits any data sampling

biases in the datasets (e.g., shape families with very few examples

such as pingpong tables). (ii) Even though our empirical experiments

demonstrate good performance on adjacency recovery and sym-

metry enforcement, the inferred latent space may contain models

with detached parts or asymmetric parts, especially for datasets that

contain exotic, poorly represented shape variants. (iii) We restrict

the maximum sibling count to np = 10, and hence cannot encode

shapes with more than 10 childs in any given part (the full shape can

have a much larger number of parts). The memory cost is quadratic

in np , although, at our current setting, this is still far from being the

most memory-consuming component (our current consumption is

approx. 1 − 2 GB). (iv) Noise that would make a point cloud more

blurry in holistic generation methods instead affects the structure

in our method. Strong noise may result in missing parts, duplicate

parts, detached parts, etc., although the structure, being discrete, is

quite robust to this type of noise. See the bed category in the Sup-

plementary for an example of structural noise. (v) Structure-aware

point cloud generation is still a new topic requiring further research.

In our experiments, to stabilize network training, we pretrain and

freeze the part point cloud networks, which increases training ro-

bustness at the cost of failing to recover fine-grained geometry

details (e.g., details on chair legs and chair backs). Figure 16 shows

different failure cases of StructureNet.

Fig. 16. Failure cases analysis. We present several failure cases we ob-

served for box-shape and point cloud generation. We see discrete errors

such as missing parts (e.g. first row, first column), duplicate parts (e.g. second

row, second column), detached parts (e.g. first row, third column), asymmet-

ric parts (e.g. second row, first column) and fuzzy point cloud generation

(e.g. second row, fifth column).

7 CONCLUSION

We have presented StructureNet as a VAE that directly encodes

shape structure and geometry represented as a hierarchy of n-ary

graphs. We have achieved this by proposing a recursive/hierarchical

encoder-decoder architecture that simultaneously considers both

geometry of parts, either as oriented bounding boxes or point clouds,

and inter-part structures capturing adjacency and symmetry rela-

tions. Our key technical novelty is the handling of n-ary graphs by (i)

explicitly predicting the presence or absence of parts or relationship

edges; (ii) designing the encoder and the decoder to be invariant

of the ordering of siblings across instances of the n-ary graphs;

and (iii) introducing novel losses that enforce consistency between

geometry and structure at all levels of the hierarchy. The learned

n-ary structural graph latent space, by jointly capturing geometric

and structure, greatly simplifies several applications. For example,

we can ‘enter’ the latent space by projecting un-annotated data (e.g.,

partial scans, point clouds, or images) onto the latent space; perform

structure-aware edits on individual shapes; do hierarchy-preserving

interpolation between multiple shapes, or generate novel and di-

verse variations by directly sampling the encoded latent shape.

In future work we plan to (a) obtain user feedback to improve

the estimated structure of un-annotated data and use this feedback

to improve the latent embedding; (b) look at more nuanced repre-

sentations of fine-grained part geometry and its correlations with

structural motifs; (c) estimate point-level correspondences between

raw shape data from images or point clouds and the learned mod-

els so as to transfer textures and other appearance information to

the model and more generally study style-content factorizations;

and (d) extend these ideas from individual objects to entire scenes,

where the objects now become the parts and we now focus on object

relationships in scenes.
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A JOINT EMBEDDING OF SHAPES AND IMAGES

The joint embedding of multiple modalities described in Section 6.4

of our paper can also be used for retrieval. For example, instead of

looking up the encoded shape that is closest to an encoded image,

we can look up the images that are closest to an encoded shape, and

thereby get the top-k image matches for a given shape. In Figure 17

we show the top-3 images and point clouds for a given query shape.

Qualitatively, most of the retrieved results are a good match to the

query shape.

Joint embedding. A two-dimensional t-SNE embedding [Maaten

and Hinton 2008] of the joint multi-modal latent space is shown

in Figure 18. We show representative samples on a grid, choosing

at each location randomly one of the modalities: shapes, images

or point clouds. We can see that the distributions of the different

modalities align well; nearby samples tend to represent similar

shapes. Sofa chairs, for example, are clustered on the left side of the

diagram for all modalities, and on the right side, we find chairs with

backrests that have multiple vertical bars. Furthermore, the learned

latent space is ‘structurally smooth’ that nearby regions tend to

be connected by natural transitions between the structures of the

chairs, which is also confirmed by the interpolation experiments in

Section 6.3. of the paper.

Part-based retrieval. Retrieval based on individual parts, for exam-

ple, retrieving chairs with backrests similar to a query shape, can be

done by training a separate encoder for each part type that we want

to retrieve. The bottom three rows of Figure 17 show part-based

retrieval results for the base and backrest of chairs, compared to

performing a retrieval based on the full shape. To retrieve images

with similar bases, for example, we train an encoder similar to Sec-

tion 6.4 of our paper, but trained to using the latent space of chair

bases only instead of full chairs. Unlike the latent space of the full

shape, the latent space of parts is not specifically regularized to be

smooth. Still, we can see from the successful retrieval results, that

the latent space of individual parts tends to be meaningful, where

feature vectors that have a small distance in latent space correspond

to similar parts.

https://doi.org/10.1111/j.1467-8659.2011.01885.x
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Fig. 17. Image and point cloud retrieval. Images and point clouds are

retrieved using on a query shape based on the distance from the query

in the multi-modal latent space. The bottom three rows compare retrieval

with the full shape as query to part-based retrieval using the backrest and

chair base only. The retrieved shapes are similar to the query, showing that

similar shapes have a small distance in latent space, even across modalities.

B ABLATION STUDY

We performed an ablation study to evaluate the contribution of

individual components to our method for the shape reconstruction

experiments. Results are shown in Table 3. Specifically, we trained 5

variations of our method, removing a combination of components in

each. Components we examined are the message passing performed

in the decoder, where, different from the encoder, it is not strictly

necessary to handle relationship edges, the normal reconstruction

loss Lnormal, and the structure consistency loss Lsc. The normal re-

construction loss noticeably decreases the geometry reconstruction

error EP and together with the structure consistency loss Lsc, low-

ers the consistency errors. The normal and structure consistency

losses come at the cost of a slightly increased hierarchy error EH,

presumably since these losses encourage the network to focus more

resources on the part geometry, as opposed to the hierarchy. This

cost is reduced by message passing, which significantly lowers the

hierarchy error. Finally, we also compare to removing edges all-

together, which results in a significant increase in the geometry

reconstruction error.

C IMPLEMENTATION

We implement StructureNet in PyTorch [Paszke et al. 2017]. All

sub-networks of our hierarchical graph networks are implemented

as simple Multilayer Perceptrons (MLPs) with ReLU non-linearities,

Table 3. Ablation study. We compare our full method (bottom row) to a

version without combinations of message passing (mp), the normal loss

Lnormal (nl), and the structure consistency loss Lsc (scl). In the top row

we show a version that does not use relationship edges. The normal and

edge loss both increase consistency significantly, at a small cost in the

hierarchy reconstruction. Message passing improves coordination between

parts, reducing this cost.

reconstruction err. consistency err.

EP EH ER Erc Egc

no edges 0.0662 0.194 0.0288

- (mp, scl, nl) 0.0649 0.192 0.240 0.0323 0.0365

- (mp, scl) 0.0616 0.198 0.243 0.0216 0.0259

- (nl) 0.0631 0.201 0.254 0.0323 0.0380

- (scl) 0.0649 0.201 0.249 0.0194 0.0242

- (mp) 0.0621 0.212 0.250 0.0186 0.0223

StructureNet 0.0620 0.200 0.246 0.0183 0.0226

andwithout batch normalization [Ioffe and Szegedy 2015], except for

the specialized encoders for images and unannotated point clouds,

and the pre-trained point cloud autoencoder for the part geometry.

We use a batch size of 32 shapes. Due to the difficulty of batched

training with recursive networks, we compute the loss for each

shape separately before summing the per-shape losses up to obtain

the loss for the batch. Back-propagation is performed on the batch

loss. Typically, our networks for bounding box geometry converge

in 1−2 days, whereas the networks for point cloud geometry require

2 − 4 days to train on a single GeForce RTX 2080 Ti and an Intel

i9-7940X CPU. Memory consumption is at approximately 1 − 2 GB.

D SEMANTIC HIERARCHIES

We present the PartNet [Mo et al. 2019] semantics hierarchies for

chairs (Figure 19), tables (Figure 20) and storage furnitures (Fig-

ure 21) that we use in this paper. We assign the semantic labels

in the figures with the colors that we use for box-shape and point

cloud visualization in the main paper.

E MORE OBJECT CATEGORIES

Figures 22 and 23 show shape generation and interpolation results

for two additional object categories in PartNet: vases and trash

cans. Additionally, we show a training attempt on a severely under-

sampled dataset in Figure 24. See the captions for more detailed

descriptions.

F ADDITIONAL GENERATED SHAPES

We show more StructureNet VAE generation results for box-

shapes in Figure 25 and for point cloud shapes in Figure 26.

G ADDITIONAL SHAPE INTERPOLATIONS

We show more StructureNet VAE interpolation results for box-

shapes and point cloud shapes in Figure 27.

H ADDITIONAL SHAPE ABSTRACTIONS

We show more StructureNet shape abstraction results from 2D

images, 3D point clouds or partial scans in Figure 28.
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Fig. 18. Joint embedding of images, point clouds and shapes. We visualize the multi-modal latent space as a two-dimensional embedding. At each grid

point, we randomly show one of the modalities.
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Fig. 19. PartNet semantic hierarchy for chairs. Dash lines show the OR-nodes and solid lines show the AND-node in PartNet. We assign the semantic

labels in the figures with the colors that we use for box-shape and point cloud visualization in the main paper.
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Fig. 20. PartNet semantic hierarchy for tables. Dash lines show the OR-nodes and solid lines show the AND-node in PartNet. We assign the semantic

labels in the figures with the colors that we use for box-shape and point cloud visualization in the main paper.
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Fig. 21. PartNet semantic hierarchy for storage furnitures. Dash lines show the OR-nodes and solid lines show the AND-node in PartNet. We assign the

semantic labels in the figures with the colors that we use for box-shape and point cloud visualization in the main paper.
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Fig. 22. Shape generation results for vases and trash cans. The datasets for these categories are smaller than for our main categories: 505 samples for

vases and 83 for trashcans. Vases have a less complex structure compared to the other categories, making the quality of the generated geometry more

important, while trashcans have a wider range of structures.

source targetvases trashcanssource target

Fig. 23. Shape interpolation results for vases and trash cans. Similar to our main categories, structure is interpolated smoothly. The last rows for vases

and trash cans show that the part geometry is interpolated smoothly as well.
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Fig. 24. Shape generation results for beds. We also test on this third, severely under-sampled category, with a training set size of 54. As we can see in

Figure 24, the network is experimenting with different structures, but the size of our dataset is not large enough for the network to reliably distinguish between

realistic and unrealistic beds.
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Fig. 25. More Box-shape Generation Results.
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Fig. 26. More Point Cloud Generation Results.
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source target source target

Fig. 27. More Shape Interpolation Results.
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Fig. 28. More Shape Abstraction Results.
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