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Abstract: Alkaloids are a wide family of basic N-containing natural products, whose research has
revealed bioactive compounds of pharmacological interest. Studies on these compounds have
focused more attention on those produced by plants, although other types of organisms have also
been proven to synthesize bioactive alkaloids, such as animals, marine organisms, bacteria, and fungi.
This review covers the findings of the last 20 years (2002–2022) related to the isolation, structures, and
biological activities of the alkaloids produced by mushrooms, a fungal subgroup, and their potential
to develop drugs and agrochemicals. In some cases, the synthesis of the reviewed compounds and
structure−activity relationship studies have been described.

Keywords: fungi; mushrooms; alkaloids; structure; biological activity; structure-activity relationship;
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1. Introduction

Natural sources have a great diversity of N-containing compounds. Numerous studies
have been performed on the isolation and chemical and biological characterization, and
these studies are still increasing. These investigations have also confirmed that families
such as alkaloids [1], peptides [2], phenoxazines [3], amines [4], or nitrogenous sesquiter-
penoids [5] could show outstanding activities of pharmacological or agronomic interest.
The alkaloid family is one of the most relevant of these, given its production by a wide
range of living beings, its structural variety, as well as the biological activities that have
been discovered a long time ago.

Alkaloids are a large group consisting of diverse subgroups of natural products that
are most extensively studied in plants. Some examples of well-known alkaloids of a vegetal
origin are morphine, which possesses common anesthetic and pain reliever activities [6];
caffeine, which is a stimulant in commonly consumed beverages [7]; or nicotine, which
is an addictive constituent in tobacco [8]. Among the plant alkaloids, there is a large
group produced by hundreds of species of Amaryllidaceae, for which their chemistry and
biological activities have also been reported on in previous reviews [9]. These alkaloids have
an assumed importance, not only for their chemistry, but also for their several biological
activities [10–16]. Lycorin is the main Amaryllidaceae alkaloid, which has been known
for a long time as lycorine, and has essentially been studied for its anticancer activity as
well as for its natural and synthetic analogs and close isocarbostyryls [17–20]. However,
several studies have shown the presence of alkaloids with promising medicinal properties
in other types of organisms, including animals, insects (an animal subgroup), marine
sources, bacteria, fungi, and mushrooms (one of the subgroups of fungi). Figure 1 provides
an overview of the type of organisms involved in studies on alkaloids. From these data, it
is possible to conclude that mushrooms are one of the least studied sources for alkaloids,
which are only surpassed by lichens. Nevertheless, a sufficient number of scientific articles
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have reported the isolation and the biological activities of diverse mushroom alkaloids.
The example of psilocybin and its metabolic product psilocin could be hilighted, which are
two of the most studied hallucinogenic compounds from the psilocybin mushrooms [21].
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Thus, on the basis of these results, we report the biological and chemical characteriza-
tion of mushroom alkaloids, as this source has been lesser studied than the others.

This review is focused on studies carried out on mushrooms over the last 20 years
in relation to the alkaloids they produce. Considering Figure 1, 390 of the 506 references
available in the literature for this topic, that is, 77%, were published throughout this period.
This study intends to highlight the most significant developments found in the reviewed
period, thereby giving rise to take perspective to carry out new research on this promising
field. In some cases, the synthesis reported in the literature for some of the reviewed
compounds will be highlighted. This is the case for laccarin, an alkaloid isolated at a low
yield from the mushroom Laccaria vinaceoavellanea, which can become available through the
enantioselective synthesis developed by Bower et al. (2007) [22].

The bibliography was selected from the database SciFinder by combining the key-
words “alkaloid” and “mushroom”. The search was restricted to the period of 2002–2022.
Additionally, some references were collected through complementary searches through
SciFinder or Google Scholar. After a critical reading of the articles, 144 articles were selected
and their main results and conclusions are included in this review.

The review is divided into subheadings considering the carbon skeleton of the re-
viewed compounds, in their chronological order of publication. Moreover, this review
covers diverse structure-activity relationship (SAR) studies carried out during the reviewed
period. These studies are generally based on the synthesis and evaluation of the bioactivity
of a number of structural analogs, providing the best cases for the specific structural modi-
fications that improve the activity levels. The study by Yuan et al. (2017) [23] represents a
recent example of this kind of this study, and also provides the enantioselective synthesis
of the already-known mushroom alkaloid lysergol.

2. New Alkaloids Found in Mushroom since 2002

Section 2 reports, in detail, the new alkaloids discovered in mushrooms during 2002–
2022 (30 May). Given the larger number of compounds found for β-carbolines, pyrroloquino-
lines, pyrroles, and indoles, they have been grouped and described independently according
to their carbon skeleton in Sections 2.1–2.4. The alkaloids that have not been grouped are
described in Section 2.5 in chronological order according to their year of discovery.

A structural consideration to take into account is that alkaloids are natural products
whose nitrogen atom has basic properties. By extension, compounds that differ in this
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respect but are biogenetically related to them could be included [24], and this classification
has been adopted in this review.

Thus, Table 1 shows the new alkaloids and related compounds produced by mush-
rooms discovered during the period covered by the review, together with their isolation
source and the biological activities that were described for them.

Table 1. Alkaloids and related compounds produced by mushrooms discovered in the period covered
by the review (2002–2022).

Alkaloid Mushroom Source Biological Activity References

Subgroup: β-Carboline alkaloids (Figure 2)

4-(Methylthio)canthin-6-one (5);
5-(methylthio)canthin-6-one (6);
9-(methylthio)canthin-6-one (7);

11-(methylthio)canthin-6-one (8);
2-methyl-β-carbolinium-1-propanoate (11)

Boletus curtisii - [25]

Brunnein A (12) Cortinarius brunneus
Different Hygrophorus spp. - [26,27]

Brunnein B (13); brunnein C (14) C. brunneus - [26]
C-1 diastereomer of brunnein B (15) Cyclocybe cylindracea Antioxidant [28]

10-Hydroxy-infractopicrin (17) Cortinarius infractus Inhibition of
acetylcholinesterase [29]

Metatacarboline family (19–25) Mycena metata
Anticancer, for

metatacarbolines D (23) and F
(25)

[30,31]

1-Acetyl-7-hydroxy-9H-pyrido
[3,4-b]indole-3-carboxylic acid (27) Sarcomyxa edulis Anti-inflammatory [32]

Subgroup: Pyrroloquinoline alkaloids (Figure 3)

Mycenarubin A (29) Mycena haematopus, Mycena
pelianthina and Mycena rosea - [33–35]

Mycenarubin B (30) M. rosea - [33]
Mycenarubin D (31) M. haematopus Antibacterial [36]

Mycenarubin E (32); mycenarubin F (33) M. haematopus - [36]
Mycenarubin C (34) M. rosea - [37]

Sanguinone A (35); sanguinone B (36);
sanguinolentaquinone (37);

decarboxydehydrosanguinone A (38)
Mycena sanguinolenta - [38]

Haematopodin B (39) M. haematopus Antibacterial [34,36]
Pelianthinarubin A (41); pelianthinarubin B (42) M. pelianthina - [35]

Mycenaflavin A (43) M. haematopus Moderate antibacterial [34]

Mycenaflavin B (44) M. haematopus Moderate antibacterial and
cytotoxic [34,39]

Mycenaflavin C (45); mycenaflavin D (46) M. haematopus - [34]

Subgroup: Pyrrole alkaloids (Figure 4)

Inotopyrrole B (50) Inonotus obliquus and
Phlebopus portentosus

Neuroprotective against H2O2
damage [40,41]

2-[2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-
yl]acetic acid

(51)
Leccinum extremiorientale Low cytotoxic [42]

4-[2-Formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]
butanoic acid (53)

Basidiomycetes-X, Grifola
frondosa and L. extremiorientale

Hepatoprotective, low
inhibition of α-glucosidase

and low cytotoxic
[42–45]

Phlebopine A, also pyrrolefronine (54) G. frondosa and P. portentosus
Inhibition of α-glucosidase,
and mild neuroprotective

against H2O2 damage
[41,45]

Phlebopine B (55); phlebopine C (56);
1-isopentyl-2-formyl-5-hydroxy-methylpyrrole

(57)
P. portentosus

Moderate or mild
neuroprotective against H2O2

damage
[41]
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Table 1. Cont.

Alkaloid Mushroom Source Biological Activity References

2-[2-Formyl-5-(methoxymethyl)-1H-pyrrole-1-
yl]propanoate

(58)
P. portentosus

Inhibition of pancreatic lipase
activity, and mild

neuroprotective against H2O2
damage

[41,46]

5-Hydroxymethyl-1-methyl-1H-pyrrole-2-
carbaldehyde (59);

5-hydroxymethyl-1-ethyl-1H-pyrrole-2-
carbaldehyde (60);

5-hydroxymethyl-1-acetic
acid-1H-pyrrole-2-carbaldehyde (62)

G. frondosa Inhibition of α-glucosidase [45]

Pyrrolezanthine (61) G. frondosa Anti-inflammatory and strong
inhibition of α-glucosidase [45,47]

4-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]
butanamide (63) Basidiomycetes-X Weak antioxidant [43]

Subgroup: Indole alkaloids (Figure 6)

5-Methoxy-4-methoxymethyl-2-methyl-1H-
indole

(75)
Tricholoma caligatum - [48]

1-(1-β-Glucopyranosyl)-3-(methoxymethyl)-1H-
indole (76);

1-(1-β-glucopyranosyl)-1H-indole-3-
carbaldehyde

(77)

C. brunneus - [49]

Macrolepiotin (79) Macrolepiota neomastoidea - [50]
7-Methoxyindole-3-carboxylic acid methyl ester

(80);
1-methylindole-3-carboxaldehyde (81)

Phellinus linteus - [51]

5-Hydroxyhypaphorine (82) Astraeus odoratus - [52]
4-(Ethoxymethyl)-1H-indole (85) Tricholoma flavovirens Plant growth [53]

Corallocin C (87) Hericium coralloides Stimulation of neurite
outgrowth [54]

Terpendole N (88); terpendole O (89) Pleurotus ostreatus - [55]

Subgroup: Miscellaneous alkaloids (Figures 7 and 8)

Dictyoquinazols A–C (92–94) Dictyophora indusiata Neuroprotective [56]
Concavine (95) Clitocybe concava Weak antibacterial [57]

Pyriferines A–C (96–98) Pseudobaeospora pyrifera - [58]
Pycnoporin (99) Pycnoporus cinnabarinus Moderate antitumoral [59]

Sinensine (100) Ganoderma sinense Protective against H2O2
oxidation [60]

Sinensines B-D (101–103) G. sinense - [61]

Sinensine E (104)
Ganoderma cochlear, Ganoderma

luteomarginatum, and G.
sinense

- [61–63]

(+)-6S-Hydroxyganocochlearine A and
(−)-6R-hydroxyganocochlearine A (105) G. luteomarginatum - [62]

Ganocochlearine A (106) Ganoderma australe, G. cochlear,
and Ganoderma lucidum

Neuroprotective and
anti-inflammatory [64–66]

Ganocochlearine B (107) G. cochlear - [64]
Ganocalicine A (108) Ganoderma calidophilum Anti-allergic [67]
Ganocalicine B (109) G. australe and G. calidophilum - [65,67]

Ganocochlearine C (110);
ganocochlearine H (115) G. australe and G. cochlear - [63,65]

Ganocochlearines D-F (111–113);
ganocochlearine I (116) G. cochlear - [63]

Lucidimine A (117); lucidimine D (120) G. lucidum - [66,68]
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Table 1. Cont.

Alkaloid Mushroom Source Biological Activity References

Lucidimine B (118) G. lucidum Antioxidant and
antiproliferative [66,68,69]

Lucidimine C (119) G. cochlear and G. lucidum Antioxidant [63,66,68,
69]

Lucidimine E (121) G. lucidum Anti-inflammatory [66]
Ganoapplanatumine A (122) Ganoderma applanatum - [70]
Ganoapplanatumine B (123) G. applanatum and G. cochlear - [63,70]

Australine (124) G. australe Neuroprotective [65]
Erinacerins M–P (125–128) Hericium erinaceus Moderate cytotoxic [71]

Erinacerin V (129) Hericium sp. - [72]
Rosallin A (130) Mycena rosella Herbicidal [73]
Rosallin B (131) M. rosella - [73]

Consoramides A–C (132–134) Irpex consors - [74]
Stereumamide A (135) Stereum hirsutum Antibacterial [75]

Stereumamide B (136); stereumamide C (137) S. hirsutum - [75]
Stereumamide D (138) I. consors and S. hirsutum Antibacterial [74,75]

2.1. β-Carboline Alkaloids

β-Carboline alkaloids are known for their various biological activities, including their
antioxidant, antimicrobial, antiparasitic, antiviral, antitumor, hallucinogenic, and DNA
intercalation activity, among others [30]. Norharman, and its methylated derivative har-
man (1 and 2, Figure 2), are among the most studied alkaloids from this family. They are
normal endogenous body constituents that possess pharmacological properties, includ-
ing cytotoxicity [76,77]. However, these two compounds might cause Parkinson’s and
cancer [78]. These alkaloids have also been found in tobacco smoke and in other diverse
plant species, as well as in food and drink [78–80]. Moreover, they are also produced by
bacteria [77,81] and fungi [82]. Their occurrence in mushrooms has also been reported, and
has been found in 27 species of the genus Hygrophorus [27] and in the Psilocybe species [83].
Harmine and harmaline (3 and 4, Figure 2) represent other known mushroom alkaloids
with pharmacological properties [84,85].

Canthin-6-one alkaloids 5–8 (Figure 2) were the first discovered β-carboline alkaloids
in the review period and were isolated from the fruiting bodies of Boletus curtisii [25].
Canthin-6-one (or canthinone, 9, Figure 2) alkaloids are a subclass of β-carboline alkaloids
that contain an additional D-ring [86]. Alkaloids 5–8 are characterized by the presence
of a sulfur atom in their structure. In particular, they are close to canthin-6-one (9), but
differ from it because of the presence of a thiomethyl group in different positions [25]. The
same authors also reported the first isolation of canthin-6-one (9) outside of higher plants.
Compound 9 has anti-fungal, anti-parasite, and cytotoxic properties [86,87]. As no activities
were reported for thiomethylated alkaloids 5–8, extensive studies on their pharmacological
activities would be of interest.

The harmane derivatives β-carboline-1-propanoic acid and 2-methyl-β-carbolinium-1-
propanoate (10 and 11, Figure 2), the latter as a new compound, were also isolated from
B. curtisii [25]. Compound 10 was also found in Cortinarius infractus [88] and in the plant
kingdom [89–91], including its tentative identification in extracts from the matrix plants of
the Ayahuasca tea beverage [92].
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Three new compounds, named brunneins A–C (12–14, Figure 2), were isolated from
Cortinarius brunneus [26]. Later, brunnein A (12) was also found in diverse Hygrophorus
species [27]. The diastereomer of brunnein B (15, Figure 2) was also isolated from Cyclocybe
cylindracea, and exhibited a marked antioxidant activity [28]. In addition, acid 16 (Figure 2)
was isolated from C. brunneus, which was the first time from a non-vegetal source [26].
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10-Hydroxy-infractopicrin (17, Figure 2) was isolated for the first time together with the
already-known infractopicrin (18, Figure 2) from the toadstool C. infractus [29]. Both com-
pounds 17 and 18 inhibited acetylcholinesterase with a higher selectivity than the reference
drug galanthamine, thus they were suggested as potential drugs for Alzheimer’s disease.

A new family of 16 compounds, named metatacarbolines, was identified in the fruiting
bodies of Mycena metata [30]. Each of these compounds is a β-carboline bonded to a specific
amino acid, with the exception of metatacarboline A and 6-hydroxymetatacarboline A
(19 and 20, Figure 2). 6-Hydroxymetatacarboline D (21, Figure 2) was the only isolated
compound in this study [30], although a later study focused on the synthesis of some
metatacarbolines. In particular, the syntheses of metatacarbolines A (19) and C–F (21–25,
Figure 2) were reported with 40–75% overall yields [31] and their availability allowed for
evaluating their anticancer activity. Metatacarbolines D (23) and F (25) showed a significant
antiproliferative activity by arresting the cell cycle at the sub G0/G1 and G2/M phases of
the cell cycle, respectively [31].

Flazin (26, Figure 2) was isolated from Suillus granulatus and Boletus umbriniporus
for the first time from mushrooms [93]. It is the only reviewed alkaloid containing the
β-carboline moiety joined with a furan ring.

The most recent β-carboline discovered in mushrooms (27, Figure 2) was isolated from
Sarcomyxa edulis [32]. Compound 27 is the only reviewed β-carboline with a ketone group
located in an exocyclic position. It showed a remarkable anti-inflammatory activity against
lipopolysaccharide-induced NO [32].

2.2. Pyrroloquinoline Alkaloids

Pyrroloquinolines are a family of natural compounds mostly isolated from marine
sponges, which gained interest with the discovery of the cytotoxic alkaloid discorhabdin
C (28, Figure 3) in 1986 [94,95]. Diverse studies developed during 2002–2022 proved that
mushrooms can also be sources of pyrroloquinolines, although a low number of studies
on their bioactivities were performed. Many of the pyrroloquinoline alkaloids belong
to the family of mycenarubins (29–34, Figure 3), which were discovered in 2007, with
the isolation of mycenarubin A (29) [33]. Mycenarubin A was isolated together with its
dimer mycenarubin B (30) from Mycena rosea, which represents the first occurrence of a
dimeric pyrroloquinoline alkaloid in nature. The synthesis of mycenarubin A (29) was
accomplished in 10 steps and produced a 21% total yield by Backenköhler et al. (2018) [39].
Later, mycenarrubins D–F (31–33) were isolated from Mycena haematopus [36]. Mycenarubin
A (29) was also obtained from M. haematopus [34] and Mycena pelianthina, with the last
species also being a source for the isolation of mycenarubin D (31) [35].

Mycenarubin D (31) showed an antibacterial activity against Azovibrio restrictus, Azoar-
cus tolulyticus, and Azospirillum brasilense, whereas mycenarubin A (29) was shown to be
inactive as an antibacterial compound [34,37]. Thus, the presence of the C=NH unit at
position 7 is a key group for the bioactivity of these pyrroloquinoline alkaloids.

Successively, mycenarrubin C (34, Figure 3) was isolated from M. rosea [37]. Compound
34 is a special pyrroloquinoline alkaloid with an eight-membered ring, which contains
an additional C1 unit. The same authors also suggested that mycenarubin A (29) is the
precursor of mycenarubin C (34).

Sanguinones A and B (35 and 36, Figure 3) were isolated from Mycena sanguinolenta,
with sanguinone A (35) being the main metabolite [38]. The same article also reported the
first isolation of sanguinolentaquinone (37, Figure 3), and the identification of decarboxy-
dehydrosanguinone A (38, Figure 3) as an oxidative decarboxylation artifact of sanguinone
A (35). The synthesis of 37 was later realized in eight steps and with a 28% total yield [39].

Haematopodin B (39, Figure 3) was isolated from M. haematopus, together with the
already known haematopodin (40, Figure 3) [36]. The authors suggested that haematopodin
(40) is the degradation product of haematopodin B (39). Haematopodin B (39) was shown
to be as active as the reference antibiotic drug gentamicin against A. tolulyticus.
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Pelianthinarubins A and B (41 and 42, Figure 3), two new pyrroloquinolines isolated
from M. pelianthina, possess a more complex structure than the usual pyrroloquinoline
alkaloids [35]. They might play a role in the chemical defense of M. pelianthina [35].

Mycenaflavins A–D (43–46, Figure 3) were first isolated from the fruiting bodies of
M. haematopus, with mycenaflavin D (46) being the first dimeric pyrroloquinoline alkaloid
with a C-C bridge between the two pyrroloquinoline units [34]. Compounds 43–45 differ
from other pyrroloquinolines by possessing an additional double bond between C-3 and
C-4, which generates a yellow color; whereas mycenaflavin D (46) is purple due to the
extended conjugated π system [34]. The synthesis of mycenaflavin B (44) was achieved



Biomolecules 2022, 12, 1025 9 of 25

in eight steps and with a 15% total yield by Backenköhler et al. (2018) [39]. Alkaloid 44
showed a moderate cytotoxicity against fibroblast and melanoma cells [39]. The authors
suggested that this bioactivity could be related to the planarity of the compound in relation
to the possibility of DNA intercalation [39].

2.3. Pyrroles

The structure of pyrroles, with a high electron density in their heteroaromatic ring,
is of special interest when developing new bioactive drugs [96]. The alkaloids of this
subgroup attract a great interest for their anticancer, antimicrobial, antiviral, antimalarial,
antitubercular, anti-inflammatory, and enzyme inhibiting properties [97]. Indeed, according
to the Scifinder database, 643 patents that used the term “pyrrole” in biological studies
were issued, 550 of them since 2002. Before this date, diverse alkaloids including a pyrrole
in their structure were known of mostly from a vegetal or marine origin. In mushrooms,
the discovery of sciodole (47, Figure 4) from Tricholoma sciodes [98], an alkaloid containing
both a pyrrole and indole moiety in its structure could be highlighted.
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It is worthy to note that pyrroles show acid properties, so they would not comply with
the essential requirement to define them as alkaloids. However, pyrrolizidine alkaloids
commonly accumulate as N-oxides, which are transformed into pyrrole derivatives during
their metabolism [99]. This consideration makes it possible to find in the bibliography
pyrrolic compounds cited as alkaloids by their authors, which is reviewed in this section.

From 2002, different pyrroles were discovered from mushrooms. All of them have an
aldehyde function at C-2 and a primary hydroxyl or methoxy group at C-5, being structural
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derivatives of 5-(hydroxymethyl)-1H-pyrrole-2-carboxaldehyde (48, Figure 4). In fact, 48
was found for the first time from Inonotus obliquus in 2014 [100], and successively also from
other mushroom species, as will be seen throughout this section.

Inotopyrrole (49, Figure 4), a benzyl derivative of 48 isolated from I. obliquus, was
reported as a new mushroom compound [100]. However, its isolation and structure
determination were previously reported when compound 49 was isolated from Ganoderma
capense and named as ganodine [66,101]. Inotopyrrole B (50, Figure 4), a related compound
formed by the bonding of the same pyrrole scaffold with an indole, was also found in I.
obliquus [40]. Both inotopyrrole (49) and inotopyrrole B (50) were also isolated from the
edible mushroom Phlebopus portentosus [41]. Structurally, inotopyrrole B (50) shares with
the aforementioned sciodole (47, Figure 4) the particularity of presenting a pyrrole and
indole moiety in its structure.

Three carboxylic acids (51-53, Figure 4) related to this family were isolated from the
fruiting bodies of Leccinum extremiorientale, with 51 being a new compound. Compounds 51–
53 showed a poor cytotoxicity [42]. Compound 53 had been already isolated from the plant
Lycium chinense [44] and successively from the mushroom Basidiomycetes-X [43]. Compound
53 showed a remarkable hepatoprotective activity, suggesting that the carboxylic group of
this pyrrole plays an important role in this biological activity [44].

Phlebopines A–C (54–56, Figure 4) were discovered in 2018 from P. portentosus [41], a
species that also produces compounds 49 and 50. The absolute configuration of phlebopine
B (55) was not identified. 1-Isopentyl-2-formyl-5-hydroxy-methylpyrrole and 2-[2-formyl-5-
(methoxymethyl)-1H-pyrrole-1-yl]propanoate (57 and 58, Figure 4), which were previously
found only from vegetal sources, were also reported as metabolites of P. portentosus [41,46].
Phlebopine C (56) and compound 58 are closely related, differing only in the length of
the alkyl chain of their ester group. Compound 58 showed a relevant inhibitory activity
towards pancreatic lipase [46].

The first isolation of pyrrolefronine from Grifola frondosa was reported by Chen et al.
(2018) [45], although its structure corresponds with that of phlebopine A (54). Five other
already-known pyrroles (48, 49, and 59–61, Figure 4) and acids 53 and 62 (Figure 4) were
also isolated from G. frondosa [45]. Pyrrolezanthine (61), previously isolated from different
vegetal species and later from the fermentation of a fungus with a plant [47], correspond
with the phenolic form of inotopyrrole (49). An inhibitory activity against α-glucosidase
was found for compounds 59–62, specially for compound 61 [45], which also showed
anti-inflammatory effects [47].

4-[2-Formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanamide (63, Figure 4), the amide
form of 52, was isolated together with the already-known 48 and the acid 53 from the
edible Japanese mushroom Basidiomycetes-X. A weak antioxidant activity was described for
63 [43].

2.4. Indoles

Indole alkaloids are of great relevance for drug development. In fact, some natural
ones have been approved by the Food and Drug Administration (FDA), such as vin-
cristine, vinblastine, vinorelbine, and vindesine for the treatment of leukemia, lymphoma,
melanoma, breast cancer, and non-small cell lung cancer [102]. From a structural point of
view, the indole scaffold corresponds to a pyrrole bonded to a benzene. However, unlike
pyrrole compounds, for which there are not a remarkably high number of compounds
identified in mushrooms, indoles are more abundant in these species. In fact, more than 140
compounds bearing an indole heterocycle were found in mushrooms, with the amino acid
L-typtophan being the biogenic source of most of them [103]. Thus, structurally related
indoles with endogenous activities such as 5-hydroxy-L-tryptophan, tryptamine, serotonin,
melatonin, and bufotenin were identified in a diverse range of mushrooms [103].

Psilocin alkaloid, and its phosphorylated counterpart, psilocybin (64 and 65, Figure 5),
are among the most studied indole metabolites produced by mushrooms. They are hal-
lucinogens found in mushrooms of the genus Psilocybe, Panaeolus, Conocybe, Gymnopilus,
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Stropharia, Pluteus, and Panaeolina [21], which have been known of since the middle of the
last century after their isolation from Psilocybe mexicana [104]. Both compounds have been
extensively described in recent reviews [21,105,106].
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Both compounds 64 and 65 have special relevance in therapeutic treatments due to
their low toxicity and suitable physiological tolerance [21]. Because of these properties,
throughout the period 2002–2022, they have continued to be the object of study in numerous
investigations. The results are described in 280 articles and 101 patents that contain
the term “psilocin”, as well as 924 articles and 176 patents for “psilocybin“, as can be
found for this period in the Scifinder database. Indeed, psilocin-mushrooms containing
psilocin (64), psilocybin (65), and psilacetin (66, Figure 5) have been suggested as viable
chemotherapeutic agents against SARS-CoV-2 [107].

Norpsilocin, baeocystin, norbaeocystin, aeruginascin, and bufotenin (67–71, Figure 5)
are other examples of indoles with psychoactive properties produced by mushrooms,
although they have not been studied much other than psilocin or psilocybin [21,108]. The
syntheses and biological evaluation of some of these were carried out by Sherwood et al.
(2020) [108], and the antiviral activity of bufotenine (71) was reported [109]. Norpsilocin
(67) was isolated for the first time in 2017 (from Psilocybe cubensis) and its psychoactive
properties, with an agonist activity of the human 5-HT2A receptor close to that of psilocin
(64), were also described [110]. Recently, effects in time estimation and cognition in in vivo
assays for norpsilocin (67) were estimated, while both psilocin (64) and psilocybin (65)
produced unspecific effects in these two parameters [111].

In addition to new pharmacological properties, studies of agronomic interest have
also been developed with indolic compounds. In fact, the production of 6-hydroxy-1H-
indole-3-acetamide (72, Figure 5), which is an already-known mushroom compound, was
recently related to glyphosate resistance [112].

3-Chloroindole (73, Figure 6) was isolated from Hygrophorus paupertinus, the first
time from a terrestrial organism, together with indole (74, Figure 6) and was identified
as one of the compounds responsible for the fecal odor of this mushroom [113]. How-
ever, indole (74) is a bicyclic and heterocyclic aromatic compound, and not an alkaloid.
5-Methoxy-4-methoxymethyl-2-methyl-1H-indole (75, Figure 6) was only found in the
volatile components of Tricholoma caligatum, by Fons et al. (2006) [48]. Its synthesis was
accomplished in two steps and it achieved 17% global yield starting from 5-hydroxy-2-
methylindole [114].
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The three N-glucosylated indoles 76–78 (Figure 6) were isolated from the basid-
iomycete C. brunneus, with 76 and 77 being new compounds [49]. The endogenous role
of compound 78 was investigated, and it was suggested that it may either act as an in-
active transport or storage form of auxin (growth regulator), or that it is a detoxification
product [49].

Macrolepiotin (79, Figure 6) was isolated from Macrolepiota neomastoidea, a poisonous
mushroom that causes severe gastrointestinal symptoms [50].
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7-Methoxyindole-3-carboxylic acid methyl ester and 1-methylindole-3-carboxaldehyde
(80 and 81, Figure 6) were isolated from Phellinus linteus [51].

5-Hydroxyhypaphorine (82, Figure 6) was isolated for the first time from Astraeus
odoratus, a species that also produces the betaine hypaphorine (83, Figure 6) [52].

Echinuline (84, Figure 6), an indole alkaloid previously isolated from filamentous
fungi and vegetal species, was obtained for the first time from the basidiomycete Lentinus
strigellus [115]. Alkaloid 84 showed cytotoxicity and damage to the alveolar walls and liver,
and food and water containing this compound are refused by animals [116]. It belongs to
the family of echinulins, alkaloids whose biosynthesis is currently under study [117,118].

4-(Ethoxymethyl)-1H-indole (85, Figure 6) was isolated together with its methoxylated
derivative 86 (Figure 6) from Tricholoma flavovirens. Alkaloid 86 was an already-known
indole previously found in other Tricholoma species. Both compounds have been shown to
be active in plant growth bioassays [53].

Corallocin C (87, Figure 6) was isolated for the first time from Hericium coralloides. Com-
pound 87 belongs to the family of corallocins, and has been characterized for containing an
indole moiety. It showed a remarkable activity for stimulating neurite outgrowth [54].

At this point, it is worth mentioning the previously detailed isolation of inotopyrrole
B (50, Figure 4) from I. obliquus, an alkaloid containing both an indole and a pyrrole moiety
in its structure [40].

Terpendoles N and O (88 and 89, Figure 6) were isolated as new compounds from
Pleurotus ostreatus [55]. The last time a new compound of the terpendole family was
discovered was in 1999, when terpendole M was isolated from the fungus Neotyphodium
lolii [119]. It should be noted that during the 2002–2022 period, new studies were carried
out evaluating the bioactivity of some terpendoles [120–126]. Three new terpendoles
produced by the fungus Volutella citronella, two of them named terpendoles N and O (90
and 91, Figure 6), were reported in another study [127], but their structures were different
to those published by Zhu et al. (2020) [55]. In fact, the new structure for terpendole N
differed significantly because the indole system contains an amide group. Compound 91
induced the inhibition of sterol O-acyltransferase isozymes, while 90 was not active [127].
Terpendoles N and O, with respect to most of the alkaloids cited in this review, presented
up to eight rings, including two epoxides, and were the only compounds reviewed that
contained an epoxide ring in their structure.

2.5. Miscellaneous Alkaloids

The family of dictyoquinazols was discovered in Dictyophora indusiata by Lee et al.
(2002) [56]. Dictyoquinazols A–C (92–94, Figure 7) showed a neuroprotective potential
against excitotoxicity in cultured mouse cortical neurons. They significantly protected the
neurons from glutamate-induced neurotoxicity (at 5–10 µM) and from toxicity induced by
N-methyl-D-aspartate (at 10–30 µM), although no antioxidant properties were found from
the radical scavenging assays. Diverse synthetic strategies obtaining dictyoquinazols were
later published [128–130]. In particular, the most recent one to synthesize dictyoquinazol A
(92) [131] also allowed for the preparation of structural analogs of 92 with neuroprotective
properties, which were used to carry out a SAR study whose conclusions will be reported
in Section 3.

Concavine (95, Figure 7), a new rearranged diterpene alkaloid, was isolated from
Clitocybe concava, and showed a weak antibacterial activity against Bacillus cereus and
Bacillus subtilis [57]. The total synthesis of compound 95 was accomplished in 16 steps and
it achieved a 4.2% global yield [132], as well as the synthesis of diverse chlorinated analogs
with an improved antibacterial activity [133].
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Pyriferines A–C (96–98, Figure 7), characterized for containing a heterocyclic eight-
membered ring, were isolated from the fruiting bodies of Pseudobaeospora pyrifera [58].

Pycnoporin (99, Figure 7), a new phenoxazone alkaloid, was isolated together with
the already-known phenoxazones cinnabarin (also named polystictin), tramesanguin, and
cinnabarinic acid from Pycnoporus cinnabarinus. Compound 99 showed a moderate antitu-
mor activity [59].

The new alkaloid sinensine (100, Figure 7) was isolated from the fruiting bodies of
Ganoderma sinense [60]. This compound was proven to be significantly active as a protecting
agent against the injury induced by hydrogen peroxide oxidation on human umbilical cord
endothelial cells (protective rate of 70.90% and EC50 = 6.2 mmol/L). Successively, sinensines
B–E (101–104, Figure 7) were isolated from the same mushroom, although no studies on
the bioactivity of these alkaloids were described [61]. Compounds 103 and 104 only differ
in the number of carbon atoms of their oxygenated ring. More recently, sinensine E (104)
was isolated together with the new alkaloid 105 (Figure 7) from Ganoderma luteomarginatum.
Both compounds appeared to be a racemic mixture [62].

Several new alkaloids (106–124, Figure 7) were also achieved from the Ganoderma
species and these findings will be detailed in the following paragraphs. Ganocochlearine
A (106), the non-hydroxylated form of 105, was isolated together with ganocochlearine B
(107) from Ganoderma cochlear [64]. Ganocochlearine A (106) was later isolated from Gano-
derma australe, showing the protective activity of SH-SY5Y cells from glutamate-induced
neural excitotoxicity and, consequently, its potential as a drug against neurodegenerative
disorders [65]. Ganocochlearine A (106) was also later obtained from Ganoderma lucidum
and exhibits remarkable neuroprotective (EC50 = 2.49 µM) and anti-inflammatory activities
(IC50 = 4.68 µM) [66].

Two new alkaloids close to sinensine E (104), named ganocalicines A and B (108 and
109, Figure 7), were isolated from Ganoderma calidophilum [67]. Compounds 108 and 109,
which are a methoxylated and non-hydroxylated form of sinensine E (104), respectively,
were tested in anti-allergic assays. Alkaloid 108 showed its potential as a preventative or
relieving drug against allergic symptoms: inhibitory effects on β-hexosaminidase activity
(IC50 = 9.14 µM) and on the production of the allergic cytokine IL-4 and the lipid mediator
LTB4 in antigen-stimulated RBL-2H3 cells (at 5–10 µM) [67].

Ganocochlearines C–I (110–116, Figure 7) are isolated from G. cochlear as racemic or
scalemic mixtures [63].

Lucidimines A–D (117–120, Figure 7), four new alkaloids, were isolated from the fruit-
ing bodies of G. lucidum [66,68], with lucidimine C (119) also being found in G. cochlear [63].
The total syntheses of lucidimines B (118) and C (119) was realized by Chen and Lan
(2018) [69]. The antioxidant properties and relevant antiproliferative activity against MCF-7
cells (EC50 = 0.27) of compound 118 were also reported [69]. The poorer or null activities of
compound 119 should be attributed to the presence of a methoxy group on the cyclopentene
ring which 118 lacks. Lucidimine E (121, Figure 7) was successively isolated from the same
mushroom and showed a significant anti-inflammatory activity [66].

Ganoapplanatumine A (122) and ganoapplanatumine B (123), the latter as a racemic
mixture, were alkaloids obtained from Ganoderma applanatum [70]. Alkaloid 123 was also
isolated from G. cochlear [63].

A new alkaloid, named australine (124, Figure 7), a disubstituted pyridine, and two
new meroterpenoids, named australins A and B, were isolated together with five known
compounds from the fruiting bodies of G. australe. The known compounds were identified
as lingzhine C; ganocalicine B (109); and ganocochlearines A, C, and H (106, 110 and
115). Australine (124) and ganocochlearine A (106) and showed a significant protection
ability against SH-SY5Y cells from glutamate-induced neural excitotoxicity at 10 µM [65].
Previously, a new tetrahydroxy pyrrolizidine alkaloid, named australine, was isolated from
the seeds of Castanospermum australe and was shown to be a potent and specific inhibitor of
amyloglucosidase [134]. However, the two alkaloids have a very different structure.
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Erinacerins M–P (125–128, Figure 8) were isolated from the medicinal mushroom
Hericium erinaceus [71]. They showed a moderate cytotoxic activity. Later, erinacerin V (129,
Figure 8) was described as a new alkaloid purified from the mycelial culture of a unique
North American edible Hericium mushroom [72].
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Rosellin A (130) and B (131) (Figure 8) were isolated as new glycosylated diketopiper-
azine alkaloids from the fruiting bodies of Mycena rosella, with 130 being obtained in a
better yield [73]. Compound 130 showed a herbicidal activity, inducing strong bleaching of
the leaves of Lepidium sativum [73].

Consoramides A–C (123–134, Figure 8) were isolated from Irpex consors as new zwit-
terionic alkaloids, together with different stereumamides, including stereumamide D
(138) [74]. The closely related stereumamides A–D (135–138, Figure 8), which were the
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first example of a sesquiterpenes combined with α-amino acids to form quaternary am-
monium hybrids, were previously isolated from Stereum hirsutum. Stereumamides A (135)
and D (138) showed an antibacterial activity against Escherichia coli, Staphylococcus au-
reus, and Salmonella typhimurium, with minimum inhibitory concentration (MIC) values of
12.5–25.0 µg/mL [75].

3. Structure−Activity Relationship Studies

Throughout Section 2, more than 100 compounds discovered in 2002–2022 (Table 1)
were described, as well as their bioactivity (if it has been evaluated). Section 3 focuses on the
most relevant SAR results found assaying the activity of different interrelated compounds,
or of the synthetic analogs of the reviewed alkaloids.

Regarding the β-carboline alkaloids, 16 analogs structurally related to harman alka-
loids (Figure 2) were synthetized. These analogs presented diverse substituents at positions
1 or 9 (see 139, Figure 9), and it was found that both type of analogs had an improved
broader spectrum of bactericidal activity. An improved activity was observed when the
methyl or propyl groups were at C-1, whereas the benzyl group at position 9 could reduce
it. On the other hand, all of the analogs showed an insecticidal activity, proving that the
modifications applied did not generate a significant improvement in this context [135]. In
a later study, a wide group of harman analogs were synthesized to improve the antibac-
terial activity of this alkaloid. This was achieved by diverse analogs, with 140 being the
most active one, which also improved the activity of the positive control. Different SAR
conclusions were obtained from this study. The methoxy group at C-6 (see 140, Figure 9) is
beneficial for its antibacterial activity. Furthermore, it was concluded that the type of halo-
gen substituents (CF3 > Br > Cl or CH3 > F or NO2), the position of the halogen atom (para
> meta > ortho), and the kind of aromatic substituent R are significant for the antibacterial
activity of the tested analogs [136].

Flazin (26, Figure 2) is a compound with a weak antiviral activity; thus, a wide
collection of analogs to improve this activity were synthesized [137]. The results suggest
that certain substituents at positions 3, 1′, and 5′ of flazin (see 141, Figure 9) might play
a key role. The best result was obtained assaying flazinamide (141) (therapeutic index of
312.0, and EC50 = 0.38 µM). Therefore, the optimal combination is the one provided by the
CONH2 group at C-3, an O-atom in position 1′, and the CH2OH group at C-5′.

SAR results were also obtained after testing the cytotoxicity of β-carboline alkaloids.
Thus, the shift of the methoxy group of harmine (3, Figure 2) from C-7 to C-4 enhanced
the cytotoxic activity; in addition, the substitution of C-1 is essential for achieving high
activity levels [138]. Other authors have also reported the potential cholinesterase inhibitory
activity of β-carbolines, and it was found that the quaternary ones are about one-sixth as
potent as the reference alkaloid physostigmine [26]. A recent review on a wider overview
on the bioactivities of β-carbolines and canthinones was recently published by Farouil et al.
(2022) [86].

A complete report on SAR studies carried out on pyrrole compounds was published by
Ahmad et al. (2018) [139]. As detailed in Section 2.3, this reviewed subgroup of compounds
consists of derivatives of 5-(hydroxymethyl)-1H-pyrrole-2-carboxaldehyde (48, Figure 3).
Compound 48 has moderate or low antifungal, antibacterial, and cytotoxic activities, as well
as being inactive as an antioxidant or insecticidal compound [140]. It also showed moderate
enzyme (α-glucosidase) inhibition [45]. On the other hand, some of the new pyrroles
with different substituents on the nitrogen atom (49, 54, and 59–62, Figure 3) significantly
improved this activity, especially compound 61. Thus, it could be pointed out that the
higher substitution of this N atom favors the inhibition of the tested enzymes. Regarding
the anti-proliferative activity against cancer cell lines, these substituted alkaloids did not
show improved levels over 48 [45]. These results suggest that it cannot be generalized
that the substitution on the N atom induces a general activity improvement, which is
in accordance with the results observed for other pyrrole compounds reported in the
literature [139].
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Figure 9. Related compounds and some synthetic structural analogs employed in SAR studies of the
reviewed alkaloids 139–160.

Inotopyrroles (49 and 50, Figure 3) possess a remarkable neuroprotective activity,
especially 50 [41]. On the other hand, alkaloids 54–58 (Figure 3) showed a lower activity.
This result suggests that pyrroles bonded to another aromatic ring may improve this kind of
pharmacological activity. It is worth highlighting that, in the case of 50, this aromatic ring is
contained in an indole system. Indeed, pyrrolezanthine (61, Figure 3), the phenolic form of
49, has a strong inhibitory activity (IC50 = 28.65 µM) against mammalian α-glucosidase [45],
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as well as diverse anti-inflammatory effects, sometimes presenting different behaviors
according to the concentration [47].

Regarding indole alkaloids, the antifungal activity of the new indoles described in
Section 2.4 has not been tested. However, the indole moiety appeared essential for the
antifungal activity, as reported for some of the analogs reviewed [141]. Thus, the study of
the reviewed mushroom indoles and of new analogs in antifungal bioassays could be of
interest. A wide overview of SAR conclusions obtained for indoles, covering many of the
most relevant biological activities for the medical field, has been reported by Thanikacha-
lam et al. (2019) [142]. A SAR study regarding the psychoactive activity of psilocybin (65,
Figure 5) was carried out. In this study, 17 analogs containing different N,N-dialkyl sub-
stituents, and either a 4-hydroxy or 4-acetoxy group, were tested in in vivo bioassays. All
of them were highly or moderately active, where bulkier N-alkyl groups and O-acetylation
were found to affect the potency of the 5-HT receptors studied. It was also suggested that
the O-acetylated compounds may be deacetylated in vivo, which make them act as pro-
drugs [143]. The SAR results reported by Sard et al. (2005) [144] found that the psilocybin
analogs 1-methylpsilocybin (142) and 4-fluoro-N,N-dimethyltryptamine (143) (Figure 9)
are potential efficient compounds for the treatment of obsessive compulsive disorders.
Moreover, 1-methylpsilocin (144) would be of interest as it has been described as a selective
agonist at the h5-HT2C receptor.

A SAR study was also performed on indoles 90 and 91 (Figure 6) related to the
inhibitory activity of the sterol O-acyltransferase isozymes of terpendole compounds. Thus,
it was concluded that the opening of the A-ring (see 91) had a negative effect, the presence
of a hydroxyl group at the N-ring was not relevant, while the isoprenyl residue in the
aromatic ring was not essential [127].

SAR conclusions were also described for the reviewed miscellaneous alkaloids. A
group of analogs of dictyoquinazol A (92, Figure 7) were synthesized. Analogs 145–150
(Figure 9) equaled or improved the neuroprotective activities of dictyoquinazol A (92)
against three injury stimuli (L-glutamate, H2O2, and staurosporine). The results showed
that the methoxy groups linked to the benzene rings decreased the glutamate protection, but
improved H2O2 protection; the modification of the heterocycle ring could improve H2O2
protection without compromising glutamate or staurosporine protection; and changing
the hydroxyl group could improve glutamate protection, without compromising H2O2 or
staurosporine protection [131].

Concavine (95, Figure 7) is an alkaloid with a weak antibacterial activity [57]. Diverse
analogs were synthesized based on the incorporation of a chlorinated aromatic ring in its
structure. This modification significantly improved its antibacterial activity [133]. Thus, 151
showed an antibiotic activity against B. subtilis, 152 and 153 against S. aureus, 154 against P.
fluorescens, and 152 against E. coli (MIC = 6.25 µg/mL for all these cases) (Figure 9) [133]. The
most active of the analogs reported was 155, followed by 156 (Figure 9), both characterized
as being acyclic derivatives of concavine with MIC values always between 1.56–12.5 µg/mL
for all of the bacterial species tested.

Cinnabarin (157) showed an antitumor activity with an IC50 value of 13 µM [59].
It should be noted that other phenoxazones, particularly Phx-1 and Phx-3 (159 and 160,
Figure 9), are well-studied compounds for the development of anticancer drugs, as re-
viewed by Zorrilla et al. (2021) [3]. In the SAR study [59], pycnoporin (99, Figure 7) showed
a moderate antitumor activity, whereas cinnabarinic acid (158, Figure 9) was not active.
These compounds only differ in one substituent, allowing for concluding that the carboxyl
group negatively affected the antitumor activity of this kind of phenoxazone, whereas
the presence of the moiety -CH(OCH3)OH or -CH2OH at C-9 (see 158, Figure 9) could
significantly improve this activity.

4. Conclusions

Here, the new alkaloids and related compounds produced by mushrooms since 2002
have been reviewed. Although mushrooms are a source that has not been studied as
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much as others in this context, it has been found that 114 new compounds with differ-
ent structures (Table 1) have been isolated and identified. Different studies have shown
the promising levels of bioactivity that many of them have, most of which are activities
of pharmacological interest, such as antioxidant, anti-inflammatory, neuroprotective, an-
tibacterial, and enzyme inhibition properties. This affords the opportunity to thoroughly
explore these new compounds in future studies, in addition to the alkaloids that have
been more studied, such as psilocin and its analogs. Furthermore, it is worth highlighting
the low amount of references of studies on activities of agronomic interest, for example,
aiming at exploring the phytotoxic potential of alkaloids produced by mushrooms. On
the other hand, the development of new syntheses that allow for access to alkaloids in
sufficient quantities for their study and to the improvement of their biological activity
through structural modifications are also of high interest in this field.

For all of these reasons, mushrooms could be viewed as a source of potential active
products, thereby potentially leading to further research on them.
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