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et Marié Curie, Université Paris Diderot, 24 rue Lhomond, 75005 Paris, France

(Received 3 April 2013; accepted 20 September 2013; published online 10 October 2013)

The topological and dynamical features of small scales are studied in the context of

decaying magnetohydrodynamic turbulent flows using direct numerical simulations.

Joint probability density functions (PDFs) of the invariants of gradient quantities re-

lated to the velocity and the magnetic fields demonstrate that structures and dynamics

at the time of maximum dissipation depend on the large scale initial conditions at the

examined Reynolds numbers. This is evident in particular from the fact that each flow

has a different shape for the joint PDF of the invariants of the velocity gradient in con-

trast to the universal teardrop shape of hydrodynamic turbulence. The general picture

that emerges from the analysis of the invariants is that regions of high vorticity are

correlated with regions of high strain rate S also in contrast to hydrodynamic turbulent

flows. Magnetic strain dominated regions are also well correlated with region of high

current density j. Viscous dissipation (∝S2) as well as Ohmic dissipation (∝ j2) re-

sides in regions where strain and rotation are locally almost in balance. The structures

related to the velocity gradient possess different characteristics than those associated

with the magnetic field gradient with the latter being locally more quasi-two dimen-

sional. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824195]

I. INTRODUCTION

Various studies have questioned the key assumptions of isotropy and locality in different con-

texts of magnetohydrodynamic (MHD) turbulence.1, 2 MHD has been shown to be anisotropic3, 4 and

although asymptotically local5 it is more non-local than hydrodynamic turbulence.6 Therefore, the

validity of the classical phenomenology of Kolmogorov (K41),7 which provides to a good approx-

imation the power law of the energy spectrum in hydrodynamic turbulence (besides intermittency

corrections), is questionable in MHD turbulence, where several debatable phenomenological theo-

ries exist.8–14 In summary, the power law scaling exponents obtained in the various MHD turbulence

phenomenologies based on weak and strong turbulence arguments both for isotropic and anisotropic

fields are −5/3, −3/2, and −2.

Numerical simulations to date are unable to provide a definitive answer to the scaling of the

energy spectrum in MHD turbulence15, 16 possibly because the high enough Reynolds numbers have

not been reached yet.17 Recently, large resolution simulations by Lee et al.18 (using a code that

enforces the symmetries of the Taylor-Green vortex to achieve higher resolution) demonstrated

different scaling of the total energy spectra at the peak of dissipation for different initial conditions.

Thereby, they suggested that freely decaying MHD turbulent flows could be non-universal. The lack

of the detailed knowledge of the energy spectrum in MHD turbulence has many implications. For

example, to predict heating rates in solar and magnetospheric plasmas, the energy dissipation rate is

required, which is intimately connected to the slope of the energy spectrum. This is also the reason

why sub-grid scale models, required for numerical modelling in astrophysics and geophysics, are

less developed in MHD.
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On the other hand, several universal small scale features have been observed in a variety of

hydrodynamic turbulent flows since the seminal works by Perry, Chong, and Cantwell19–21 on

the analysis of the velocity gradient tensor invariants. One of the most important universal results is

the well known teardrop shape22–24 of the joint probability density function (PDF) of the invariants

of the velocity gradient tensor, which describes the topology and dynamics of small scales in hydro-

dynamic turbulence. Other important directions of research in hydrodynamic turbulence involving

the study of such invariants has been the topological classification of the coherent structures25, 26 and

the use of the invariants in sub-grid scale modelling.27

In this paper, we try to provide an alternative tool to investigate universality due to the limited

information that can be extracted just from the slopes of the energy spectra. Therefore, we analyse

the joint PDFs of the invariants of the velocity gradient, magnetic field gradient, and related gradient

statistics to try and gain insight on small scale universality in MHD turbulence, which is one of the

key assumptions of inertial range phenomenologies. In addition, through this analysis we attempt

to provide a classification of the structures in MHD turbulence. This investigation was carried out

using Direct Numerical Simulation (DNS) data of incompressible, homogeneous, decaying MHD

turbulence with no imposed symmetries and no magnetic flux either in or out of our periodic

boxes.

The paper is organised as follows. The numerical method, the initial conditions, and the param-

eters of our DNS of decaying MHD turbulent flows are provided in Sec. II. In Sec. III we present the

energy spectra of our flows. Before presenting our results we give an outline for the classification

of fluid flow topology in Sec. IV. Then, in Secs. V and VI we unravel our joint PDF analysis for the

invariants of gradient quantities related to the velocity and magnetic field, respectively, delineating

the structure and dynamics of the examined MHD flows. At the end, in Sec. VII, we summarise our

results.

II. DNS OF DECAYING MHD TURBULENCE

A. Governing equations and numerical method

We consider the three-dimensional, incompressible MHD equations of fluid velocity u and

magnetic induction b to be

∂t u − ν�u = (u × ω) + ( j × b) − ∇P, (1)

∂t b − κ�b = ∇ × (u × b), (2)

∇ · u = ∇ · b = 0, (3)

with ν the kinematic viscosity, κ the magnetic diffusivity, ω ≡ ∇ × u the vorticity, j ≡ ∇ × b

the current density of the magnetic field, and P = p/ρ + 1
2
u2 the fluid pressure, composed by

the plasma pressure p, the constant mass density ρ, and the hydrodynamic pressure 1
2
u2. Note

that magnetic induction has units of Alfvén velocity, i.e., b/
√

ρμ0, where μ0 = (κσ )−1 is the

permeability of free space with σ the electrical conductivity. In ideal MHD, where ν = κ = 0, the total

energy Et ≡ 1
2
〈|u|2 + |b|2〉 = Eu + Eb, the magnetic helicity Hb ≡ 〈a · b〉 and the cross helicity

Hc ≡ 〈u · b〉 are conserved, where the angle brackets 〈.〉 in this study denote spatial averages. Here,

a is the magnetic potential, which is defined as a ≡ −�
−1(∇ × b), since one can define b ≡ ∇ × a

with ∇ · a = 0.

Our numerical method is pseudo-spectral,28 where each component of u and b is represented

as truncated Galerkin expansions in terms of the Fourier basis. The nonlinear terms are initially

computed in physical space and then transformed to spectral space using fast Fourier transforms.29

Aliasing errors are removed using the 2/3 dealiasing rule, i.e., wavenumbers k ∈ [1, N/3], where

N is the number of grid points in each Cartesian coordinate of our periodic box with period 2π .

The nonlinear terms along with the pressure term are computed in such a way that u and b are

projected on to a divergence-free space so that Eqs. (3) are satisfied. The temporal integration of
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Eqs. (1) and (2) is performed using a second-order Runge-Kutta method. The code is parallelised

using message passing interface (MPI) with one-dimensional domain decomposition.30

B. Initial conditions and numerical parameters

The initial conditions that we consider in this study are the three different cases studied in

Ref. 18. In particular, the initial velocity field is the Taylor-Green (TG) vortex31 defined as

uT G(x) = u0(sin x cos y cos z,− cos x sin y cos z, 0) (4)

and the initial conditions of the magnetic field are generalisation of the TG vortex symmetries. In

detail, the insulating case (run “I” hereafter) is

bI (x) = bI
0(cos x sin y sin z, sin x cos y sin z,−2 sin x sin y cos z), (5)

where j I = ∇ × bI is parallel to the faces of a subvolume [0, π ]3, which can thereby be considered

as electrical insulators. Note that in this case the magnetic field bI = −(bI
0/u0)∇ × uT G and the

magnetic as well as cross helicity are globally restricted to vanish for all times due to the TG

symmetries. The conducting case (run “C” hereafter) takes the following form

bC (x) = bC
0 (sin 2x cos 2y cos 2z, cos 2x sin 2y cos 2z,−2 cos 2x cos 2y sin 2z) (6)

with jC = ∇ × bC perpendicular to the faces of a subvolume [0, π ]3, which can consequently be

considered as electrically conductive. In this configuration, Hb = 0 for all times but Hc �= 0 although

negligible (i.e., Hcℓ/Et < 0.04 at its maximum over time, where ℓ is a typical length scale). The final

case that is considered by Lee et al.18 is an alternative (run “A” hereafter) to the insulating initial

conditions above (see Eq. (5)), namely

bA(x) = bA
0 (cos 2x sin 2y sin 2z,− sin 2x cos 2y sin 2z, 0) (7)

for which again Hb = Hc = 0 for all times, at least up to the peak of dissipation.

The above TG fields exhibit several intrinsic symmetries within a cubic box of size [0, 2π ]3,

where periodic boundary conditions are applied. These are mirror (anti)symmetries about the planes

x = 0, x = π , y = 0, y = π , z = 0, and z = π as well as rotational (anti)symmetries of angle

Nπ about the axes (x, y, z) = (π
2
, y, π

2
) and (x, π

2
, π

2
) and of angle Nπ /2 about the axis (π

2
, π

2
, z)

for N ∈ Z. The above mentioned planes that possess mirror symmetries form the insulating and

conducting walls of [0, π ]3 sub-boxes, also called impermeable boxes,32 for the corresponding initial

conditions.

It is important to mention that Lee et al.18 imposed numerically these symmetries in order to gain

substantial savings in computational resources. Unlike Ref. 18, our computations were performed

without imposing any symmetry constrains, allowing thus the turbulence to evolve freely with the

view that the initial TG vortex symmetries will break at high enough Reynolds numbers. However,

even for our highest resolution simulations with Taylor Reynolds number of the order of 100 the TG

symmetries are not broken within the time interval of reaching the peak of dissipation. They seem

to be a strong property of the MHD equations, preserved by time evolution of the solutions (see also

Ref. 33).

Due to the fact that there are special global restrictions on these TG flows, we further consider

a run with random initial conditions (run “R” hereafter) for comparison, ensuring that Hb = Hc = 0

and kinetic helicity Hu ≡ 〈u · ω〉 = 0 at time t = 0. During the time evolution magnetic and cross

helicity remain zero for all times relative to the total energy. However, the kinetic helicity reaches

an approximate value of Huℓ/Et < 0.2 at its absolute maximum over time but when dissipation is

maximum Huℓ/Et < 0.04.

We report results based on the analysis of decaying MHD turbulence simulated with N = 10243

grid points. In order to obtain the broadest inertial range, runs I, A, and C are initialised at the
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TABLE I. Numerical parameters of the DNS. The values presented are taken at the peak of total dissipation. Note that kmax

= N/3, using the 2/3 dealiasing rule.

ν Lt λt ηt

Run N (×10−4) Reλt (×10−1) (×10−1) (×10−3) u′ b′ kmaxηt

R 1024 5.5 140.7 8.33 2.15 7.80 0.36 0.48 2.66

I 1024 4.5 121.8 6.84 2.03 6.54 0.27 0.62 2.23

C 1024 4.5 138.0 6.23 1.35 5.82 0.46 0.35 1.97

A 1024 4.5 115.1 3.76 1.40 5.77 0.37 0.46 1.99

largest scales and run R at wavenumbers k = 1 and 2, adding extra randomness. At time t = 0 the

fields are normalised such that the kinetic and magnetic energies are in equipartition, i.e., Eu(t = 0)

= Eb(t = 0) = 0.125. Note that all flows have unit magnetic Prandtl number (i.e., ν = κ). The

numerical parameters of our computations are provided in Table I.

The rms velocity u′ is defined as

u′ ≡
(

2

3

∫

Eu(k)dk

)1/2

, (8)

and similarly for b′, the rms of the magnetic field. The integral length scales are then defined as the

total, kinetic, and magnetic integral length scales, respectively,

L t,u,b ≡
3π

4

∫

k−1 Et,u,b(k)dk
∫

Et,u,b(k)dk
(9)

and likewise for the Taylor scales

λt,u,b ≡
(

5

∫

Et,u,b(k)dk
∫

k2 Et,u,b(k)dk

)1/2

. (10)

In Table I, we report the total integral and Taylor length scales as well as the Reynolds number based

on λt given by Reλt
≡ u′λt/ν. Finally, the smallest length scale in our flows is defined based on K41

scaling ηt ≡ (ν3/ǫt)
1/4, where ǫt = ν〈|ω|2〉 + κ〈| j |2〉 is the total dissipation. The time we address in

this study is the moment which the dissipation reaches its maximum value and therefore the highest

scale separation occurs ηt ≪ ℓ ≪ Lt, where ℓ is a typical length scale in the inertial range. Therefore,

the values provided in Table I correspond to that moment. The temporal behaviour of these initial

conditions has been discussed in more detail in Refs. 18 and 34. We should confirm, however, that

for run I there is still a decrease of the peak of ǫt as Reynolds number is increased with no asymptote

for these resolutions as it has been already observed by Ref. 34.

III. ENERGY SPECTRA

Figure 1 presents the three-dimensional compensated total energy spectra kpEt(k) that we obtain

at the peak of dissipation for all the runs of Table I. The spectra are compensated with the scaling

exponents p = 2, 5/3, and 3/2. The small increase in the spectrum right before the cut-off wavenumber

kmax shows the quality of our simulations. The adequate spatial resolution of our simulations is also

confirmed from the values of kmaxηt in Table I.

According to Lee et al.,18 the energy spectrum of the magnetically dominated flow I, i.e., Eb/Eu

> 1 (see also u′ and b′ values in Table I), is close to a k−2 power law (see Fig. 1(b)), which is

the weak turbulence (WT) theory expectation.13, 14 Here, we would like to emphasise, however, that

the WT scaling (E⊥ ∝ k−2
⊥ ) is for an anisotropic energy spectrum, where perpendicular denotes the

direction relative to an imposed large scale mean magnetic field B0 that does not exist in this flow.

In fact, it is argued that in MHD turbulence there is no prescribed cascade in the parallel direction.35

This is based on the idea that small-scale turbulent fluctuations become anisotropic, as it is easier
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FIG. 1. Three-dimensional compensated total energy spectra kpEt(k) with scaling exponents p = 2, 5/3, 3/2 for (a) run R,

(b) run I, (c) run C, and (d) run A of Table I.

to shuffle strong magnetic field lines than to bend them due to the preventing action of the Lorentz

force j × b.

Furthermore, Lee et al.18 argue that the kinetic energy dominated flow C, i.e., Eb/Eu < 1 (see

also Table I), is compatible with a k−3/2 slope (Fig. 1(c)) and the less magnetically dominated flow

A is near a k−5/3 scaling (Fig. 1(d)). In addition, we report that the power law of the total energy

spectrum for our also magnetically dominated run R (see Table I) seems to be between k−5/3 and

k−3/2. The difference between these two power laws is subtle enough that any type of contamination,

such as intermittency or any dissipative small-scale effects, will blur the results. However, even a k−2

spectrum which is slightly more transparent in these high Reynolds numbers can be misinterpreted.

For example, in contrast to Ref. 18, we claim that the total energy spectrum of run A (Fig. 1(d))

scales like Et ∝ k−2 but we leave this to the readers’ judgement.

Therefore, the following questions are raised: How can we circumvent this ambiguity of the

results? Is there a dependence of small scales on the large scale initial conditions and thereby non-

universality in decaying MHD turbulence? Since limited information can be extracted just from the

slopes of the spectra, we try to answer these questions by examining the topology of the small scales

through the invariants of related gradient statistics, which some have shown universal characteristics

for hydrodynamic turbulent flows.

IV. CLASSIFICATION OF THE FLUID FLOW TOPOLOGY

An approach that provides a well-defined and unambiguous language to describe eddying

motions and flow patterns is the framework of critical point concepts from bifurcation theory.36

This framework was studied extensively in the context of hydrodynamic turbulent flows by Perry,

Chong, Cantwell, and co-workers19, 37–39 but only in Ref. 40 for MHD turbulence. Here we provide
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a brief outline on the background material related to the geometric invariants of second-order

tensorial quantities in turbulence before going to consider various statistics of these invariants in

Secs. V and VI. Extensive reviews on the subject can be found in Refs. 22, 23, and 41 and references

therein.

Geometric invariants remain unchanged under the full group of rotations (i.e., rotations plus

reflections),22 therefore being independent of the frame of reference, regardless of the form of

the time evolution equations. Any traceless second-order tensor M has the following characteristic

polynomial:

det[M − λi I] = 0 ⇒ λ3
i + Pλ2

i + Qλi + R = 0, (11)

where λi are the eigenvalues of M and its invariants are

P = −tr (M) = −(λ1 + λ2 + λ3) = 0, (12)

Q =
1

2
[P2 − tr (M2)] = λ1λ2 + λ2λ3 + λ3λ1, (13)

R = − det(M) = −λ1λ2λ3. (14)

The value of the discriminant for P = 0 is

D = 27
4

R2 + Q3 (15)

and provides a general classification for the solutions of the cubic equation (11) dividing the (Q,R)

space into the following regions:

1. D > 0: 1 real and 2 complex-conjugate eigenvalues,

2. D = 0: 3 real eigenvalues of which 2 are equal,

3. D < 0: 3 real distinct eigenvalues,

which correspond to various local flow topologies. In this study, the first invariant is P = 0 from

definition (12) since the vector fields that we consider are solenoidal.

V. INVARIANTS OF THE VELOCITY GRADIENT, THE STRAIN RATE

AND ROTATION RATE TENSORS

A. Joint PDFs of the velocity gradient invariants

The velocity gradient tensor A = ∇u can be decomposed into a symmetric and skew-symmetric

component,

A = S + � = Si j − 1
2
ǫi jkωk, (16)

where S = 1
2
(∇u + ∇uT ) and � = 1

2
(∇u − ∇uT ) are the strain rate and rotation rate tensors,

respectively. According to Eqs. (13) and (14), the second and third invariants of A are

Q A = 1
4
[ω2 − 2tr (S2)] (17)

and

RA = − 1
3
[tr (S3) + 3

4
ωiω j Si j ], (18)

respectively. Here we are interested in the joint probability density function of these invariants. A

diagram of this joint PDF called the (RA, QA) invariant map is presented in Fig. 2, labelling the

various topological classifications.

If QA > 0 then enstrophy ω
2 dominates over tr (S2) and vice versa if QA < 0. For positive values

of RA the topologies are unstable, whereas for negative RA the topologies are stable. Moreover, the

DA = 0 line (see Fig. 2), where DA = 27
4

R2
A + Q3

A is the discriminant, divides the invariant map into

two regions. One where DA > 0 with one real and two complex-conjugate eigenvalues as solutions
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Stable tube
structure

Unstable sheet

stretching
Stable vortex

compressing
Unstable vortex

AD   = 0

Q
A

RA

AD   < 0

AD   > 0

structure

FIG. 2. Diagram of the (RA, QA) invariant map indicating the local flow topologies related to each zone.

of Eq. (11) for the velocity gradient tensor and the other where DA < 0 with three real distinct

eigenvalues. Note that along the vertical RA = 0 axis one of the eigenvalues is zero and therefore

locally the flow topology is invariant in this direction.

Now, if QA is much greater than zero (i.e., DA > 0) then RA ≈ − 1
4
ωiω j Si j . In this case,

for RA < 0 vortex stretching dominates over vortex compression, whereas for RA > 0 vortex

compression dominates (see Fig. 2). On the other hand, if QA is much less than zero and DA < 0

then RA ≈ − 1
2
tr (S3). In this case, RA > 0 locally is related to a sheetlike structure (or unstable

node/saddle/saddle topologies according to the terminology of Chong et al.19) whereas RA < 0

with a tubelike structure (or stable node/saddle/saddle topologies19). This will also become more

transparent when we will deal later with the third invariant of the strain rate tensor (see Sec. V B).

In hydrodynamic turbulent flows, ranging from atmospheric boundary layers to free shear flows

in wind tunnels and even simulations of compressible turbulence, there is the prominent tendency of

the joint PDF of (RA, QA) to develop an inclined teardrop shape. This shape aligns with the second

and fourth quadrants, with a cusp lying along the RA > 0, DA = 0 branch (see, for example, Fig. 10.1

in Ref. 22) and is considered to be a universal feature. Therefore, there is a preference for vortex

stretching and sheetlike structures. In many visualisations of enstrophy in hydrodynamic turbulent

flows the dominant structures seem to be tubelike structures but between these vortex-tubes there

are sheetlike structures, where most of the dissipation is located.22, 42

Before analysing the results, we would like to note that the aspect ratio of the axes of all joint

PDFs, that are reported in this paper, has been kept the same but the abscissa and the ordinate

are different to reflect the change in magnitude of the plotted quantities in the four flows that we

consider. In addition, the points near the origin correspond to low gradient values associated with

the large scale motions, whereas points far away characterise the high-gradient small scales. All the

joint PDFs were computed at the instant of maximum dissipation.

In Fig. 3, we present the joint PDFs of RA versus QA for all the decaying MHD runs of Table I.

The most important outcome from the plots in Fig. 3 is that the shape of the joint PDF of RA with

QA is not universal in decaying MHD turbulence and small-scales seem to depend on the large-scale

initial conditions. However, we should be cautious here as it is not clear whether the self-preservation

of the TG vortex symmetries during the evolution restrict the dynamics in some way.

On the other hand, it is clear that there is a modest but still present trend of the (RA, QA) map

to align along the second and fourth quadrants for our simulation with random initial conditions

(Fig. 3(a)). It is noteworthy that the shape of the joint PDF is more symmetric with respect to the

RA = 0 axis in comparison to hydrodynamic flows (see, for example, Ref. 39). Run I gives a striking

joint PDF (Fig. 3(b)) with a significant percentage of its points lying in the first quadrant and with

high absolute values of QA in comparison to the rest of the runs. Points of the joint PDF in the first

quadrant that are far from the origin (see Fig. 3(b)) are associated with very low rates of kinetic

energy dissipation. This suggests that the structure is likely to be quite long-lived. Run C seems

to resemble more the teardrop shape of hydrodynamic turbulence with the classic narrow cusp in
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FIG. 3. Joint PDFs of the second invariant QA and the third invariant RA of the velocity gradient tensor normalised

appropriately by powers of the mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The line

DA = 27
4

R2
A + Q3

A = 0 is plotted for reference.

RA > 0, DA = 0 branch (Fig. 3(c)). Finally, Fig. 3(d) shows the (RA, QA) map of run A, which has

a shape with features in between the random MHD and hydrodynamic turbulence. In other words,

there is a modest tendency of the joint PDF to align with the second quadrant like in the random

MHD run (Fig. 3(a)) but there is a high correlation between RA > 0 and QA < 0 values forming a

long cusp in analogy to hydrodynamic turbulent flows.

B. Joint PDFs of strain rate invariants

Setting � to zero or essentially ω to zero in Eqs. (17) and (18), we can obtain the invariants of

the strain rate tensor, which are

Qs = − 1
2
tr (S2), (19)

Rs = − 1
3
tr (S3). (20)

The (Rs, Qs) invariant map features the geometry of the local straining of the fluid elements (see

Fig. 4). The second invariant Qs is related to viscous dissipation ǫ = 2νS2 through Qs = − 1
4
ǫ/ν

because the strain rate tensor is symmetric, i.e., S2 = Si j S j i = tr (S2). So, locations with Qs much

less than zero are highly dissipative regions. Note that Qs is negative definite. The third invariant

Rs has two important physical meanings. First, it is proportional to strain skewness SijSjkSki, which

appears as part of the production term in the evolution equation of S2 (see Ref. 22). Second, it can

be written as a function of the eigenvalues of Sij, viz.

Rs = − 1
3
(λ3

1 + λ3
2 + λ3

3) = −λ1λ2λ3 (21)
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1:1:−2

D = 0s
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3:1:−4

Hydro.

turbul.
2:−1:−1

0

1:0:−1

2D flow

Q

R

s

Sheet

FIG. 4. Diagram of the (Rs, Qs) invariant map. Each plotted curve corresponds to the following flow geometries: λ1: λ2:

λ3 = 2: −1: −1 (axisymmetric contraction), 1: 0: −1 (two-dimensional flow), 3: 1: −4 (biaxial stretching), and 1: 1: −2

(axisymmetric stretching).

since tr (S) = λ1 + λ2 + λ3 = 0 due to incompressibility, with λ1 ≥ λ2 ≥ λ3. Owing to the symmetry

of Sij all eigenvalues are real and therefore the (Rs, Qs) invariant map is contained only in the region

where Ds = 27
4

R2
s + Q3

s ≤ 0 (see Figs. 4 and 5). So, Rs > 0 implies production of S2 and hence

of viscous dissipation with λ1, λ2 > 0 and λ3 < 0 related to sheetlike structures. On the contrary,

Rs < 0 indicates destruction of S2 with λ1 > 0 and λ2, λ3 < 0 associated with tubelike structures.

FIG. 5. Joint PDFs of the second invariant Qs and third invariant Rs of the strain rate tensor normalised appropriately by

powers of the mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The line Ds = 27
4

R2
s + Q3

s = 0 is

plotted for reference.
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Note, therefore that sgn(Rs) = sgn(λ2). We should point out here that if we define the following

ratio a = λ2/λ1 of the eigenvalues of Sij, then each value of a corresponds to a line in the (Rs, Qs)

plane with the following expression:

Rs = (−Qs)3/2a(1 + a)(1 + a + a2)−3/2, (22)

where each line is associated with a flow topology (see the caption of Fig. 4).25, 41

The (Rs, Qs) invariant map in many hydrodynamic turbulent flows away from boundaries

manifests a tendency for the Rs > 0 region, implying a predominance of sheetlike structures related

to the strain rate (see, for example, Fig. 8(c) in Ref. 39). In particular, numerical and experimental

evidences in homogeneous hydrodynamic turbulence propose the ratios of the mean eigenvalues of

Sij to be 〈λ1〉:〈λ2〉:〈λ3〉 = 3:1:−443, 44 (see the corresponding curve in Fig. 4).

The joint PDFs of Rs versus Qs for the four runs of Table I are illustrated in Fig. 5. Their

dependence on initial conditions is clearly depicted. The shape of the (Rs, Qs) map for run R

(Fig. 5(a)) moves away from the Ds = 0 line towards the Rs = 0 axis expressing a more quasi

two-dimensional (2D) character of the structures related to Sij than in hydrodynamic turbulent flows

away from the boundaries. We should point out, however, that this particular shape is reminiscent

to the joint PDFs of (Rs, Qs) found in the buffer layer, i.e., a region very close to the wall, of

wall-bounded turbulent shear flows (see, for example, Fig. 6(f) in Ref. 25). The joint PDF of run

I (Fig. 5(b)) is aligned along the Rs = 0 with some highly dissipative small scales in contrast to

the rest of the runs. The local topology in this case seems to have a strong tendency towards quasi

two-dimensionality. Part of the shape of this joint PDF can be explained through two-dimensional

shearing (or vortex sheet), i.e.,

Ai j =

⎛

⎜

⎝

0 ∂yux 0

0 0 0

0 ∂yuz 0

⎞

⎟

⎠
(23)

which gives Qs = − 1
4
[(∂yux )2 + (∂yuz)

2] and Rs = 0 in analogy to the influence of the wall on the

velocity gradient in wall-bounded flows.25 The (Rs, Qs) invariant map of run C in Fig. 5(c) also falls

away from the Ds = 0 branch with low correlations between Rs and Qs. Finally, the joint PDF of run

A (Fig. 5(d)) is almost identical in shape but less correlated with respect to Fig. 5(a).

We now try to summarise and clarify our arguments by tabulating the mean eigenvalues of the

strain rate tensor and their ratios for all our runs in Table II but also by plotting the curves that can

be constructed from Eq. (22) using the mean eigenvalues of Table II (see Fig. 6).

In Fig. 6, we plot for reference the curve that corresponds to 3:1:−4, the characteristic eigenvalue

ratios for homogeneous hydrodynamic turbulent flows that we denote as “HD”. In that respect, all

the ratios of the mean eigenvalues that we obtain are different than 3:1:−4. However, all the cases

represent biaxial expansion apart from run I, which is characterised by quasi two-dimensionality

with weak biaxial contraction (see Table II and Fig. 6). Figure 6 makes clear that on average the flow

topologies related to Sij of runs C and A are close to run R giving weight to our argument for the

similarity of their (Rs, Qs) joint PDFs. The curve for run I also summarises Fig. 5(b) by demonstrating

that the quasi 2D structures associated with the strain rate tensor are weakly contracted in a average

sense.

TABLE II. Mean eigenvalues of the strain rate tensor Sij and their ratios.

Run 〈λ1〉 〈λ2〉 〈λ3〉 〈λ1〉: 〈λ2〉: 〈λ3〉

R 0.14 0.03 −0.17 5 : 1 : −6

I 0.25 − 0.00 −0.25 1 : 0 : −1

C 0.25 0.04 −0.29 6 : 1 : −7

A 0.25 0.04 −0.29 6 : 1 : −7
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FIG. 6. Plot of Eq. (22) using the mean eigenvalues of Sij from Table II. The dashed line Ds = 27
4

R2
s + Q3

s = 0 is plotted

for reference. With HD we label the curve that corresponds to 3:1:−4, the characteristic eigenvalue ratios for homogeneous

hydrodynamic turbulence.

C. Joint PDFs of the second invariants of the strain and rotation rate tensors

Another important joint PDF we analyse is the one of −Qs versus the second invariant of the

rotation rate tensor, Qω, which is in fact the only invariant for �. To see this, set S to zero in

Eqs. (17) and (18), then

Qω = − 1
2
tr (�2) = 1

4
ω

2 (24)

which is positive definite and it is related to the second invariants of A and S through Qω = QA

− Qs. The (Qω, −Qs) invariant map that is shown schematically in Fig. 7 identifies the relative

importance of the straining and rotational part of velocity gradient tensor. A good example that

describes simply the physical meanings of Fig. 7 is the Burger’s vortex tube.45 As it was mentioned

before Qs characterises the topology associated with viscous dissipation. So, points near the −Qs

axis reflect nearly pure straining motions, i.e., regions of strong dissipation but negligible enstrophy,

like outside and away from the Burger’s vortex tube. On the other hand, points close to the Qω

axis are in nearly pure solid-body rotation, like at the centre of the Burger’s vortex tube with high

Vortex

sheet

Solid−body

rotation

Straining

motion

s
−Q = Q

    ω

0

s

ω

−Q

Q

FIG. 7. Diagram of the (Qω , −Qs) invariant map pointing out the important regions related to strain and rotation.
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FIG. 8. Joint PDFs of the second invariants of strain rate and rotation rate tensors normalised by the mean enstrophy for

(a) run R, (b) run I, (c) run C, and (d) run A of Table I.

enstrophy but very weak dissipation. Regions with comparable strain rate and rotation map to points

close to the Qω = −Qs line, which correspond to vortex sheets.

Generally, from observations in many hydrodynamic turbulent flows, regions of intense en-

strophy tend to be concentrated in tubelike structures, whereas regions of high dissipation are not

correlated with regions of concentrated enstrophy.22 So, the joint PDF of Qω versus −Qs is very

spread for many hydrodynamic turbulent flows away from walls (see results in Refs. 25 and 46).

Figure 8 shows the joint PDFs of Qω versus −Qs, normalised with the mean enstrophy, for the

four runs of Table I. The dependence on initial conditions is pronounced once more in these plots.

The (Qω, −Qs) invariant map of run R (Fig. 8(a)) is very different to hydrodynamic turbulence

away from walls. Here, the joint PDF is concentrated around the Qω = −Qs line demonstrating

stronger correlation between these two variables. This result in conjunction with the outcome from

Fig. 6 confirms many visualisations of homogeneous MHD turbulent flows,35 which illustrate large

population of sheetlike rather than tubelike structures.

The shape of the joint PDF (Qω, −Qs) for run I is even more extreme with a very narrow

distribution along the main diagonal (Fig. 8(b)), where regions of high dissipation are strongly

correlated by high levels of enstrophy particularly for points far from the origin. The high gradients

in this flow can be well approximated by Eq. (23) where Qω = −Qs = 1
4
[(∂yux )2 + (∂yuz)2]. Ac-

cording to Cantwell41 the presence or absence of points very far from the origin, associated with

quite long-lived structures, is closely related to the regularity of the initial conditions. He further

mentions that such structures are much less prominent in a flow with randomised initial conditions.

Here, this is transparent if one compares the run with random initial conditions (Fig. 8(a)) with run I

(Fig. 8(b)). Moreover, it could be argued that the core of the joint PDF (Qω, −Qs) of run I is similar

to the joint PDF obtained in the buffer layer of wall-bounded flows (see results by Refs. 25 and 38).

The (Qω, −Qs) map of run A (Fig. 8(d)) resembles Fig. 8(a) but with weaker correlations between
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high dissipation and high enstrophy regions. Finally, the joint PDF of Fig. 8(c), which corresponds

to run C, presents the weakest correlations between Qω and −Qs among the four cases with a weak

trend of alignment along the main diagonal.

D. Flow structures and enstrophy dynamics

Various flow field quantities were viewed interactively using a visualisations software47 to get

an idea of the spatial structures in our flows. In order to substantiate our approach, we present

indicatively plots of iso-contours of the vorticity field in our [0, 2π ]3 periodic boxes at the moment

of maximum dissipation for the four runs of Table I (see Fig. 9). Figure 9 displays iso-contours of

vorticity for |ω| ≥ 3ω′ where ω′ ≡ (|ω|2)1/2. The predominant structures in Fig. 9(a) (run R) are

randomly oriented sheetlike structures in support of our joint PDF analysis. In comparison to the

randomly oriented structures of run R, the TG vortex symmetries become apparent in Figs. 9(b)–9(d)

revealing their preservation in time. Remember that we did not impose any symmetries during the

evolution of our runs. According to the above analysis, the peculiar run I should be prevailed by

quasi two-dimensional sheetlike structures, which are shown in Fig. 9(b). These flat structures are

formed on the insulating faces of the [0, π ]3 boxes and on their mid-planes in the vertical direction,

i.e., z = π /2. The structures of run A (Fig. 9(d)) are also sheetlike but more randomly oriented

in contrast to run I. In the end, run C is a more complicated TG flow as it is demonstrated in

Fig. 9(c) for |ω| ≥ 3ω′. It is generally interesting that runs I and A are mainly dominated by quasi

2D sheetlike structures in contrast to run C.

According to Jiménez et al.,46 in hydrodynamic turbulent flows away from walls, it is qualitative

clear that there is no other way of production of enstrophy other than straining of weak vorticity to

form stronger vortex regions. Then, strain itself is induced by vorticity and the process may become

nonlinear. This mechanism is called self-amplification of velocity derivatives.22, 48

FIG. 9. Vorticity field iso-contours with |ω| ≥ 3ω′ for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.
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In order to have an initial picture of this mechanism and in particular of the formation of the

vorticity fields in our MHD flows, we examine the rate of vortex stretching

 =
ω · S · ω

|ω|2
=

Rs − RA

Qω

(25)

which is essentially the part of the strain that is aligned with the local vorticity and it is the term that

stretches or compresses the vortex lines in the evolution equation of the enstrophy

dt (
1
2
ω

2) = ω · S · ω + νω · �ω + ω · ∇ × ( j × b). (26)

Notice that  can be written as a function of the invariants RA, Rs, and Qω (see Eq. (25)).

Figure 10 shows joint PDFs of essentially the enstrophy (i.e., Qω) with the rate of vortex

stretching  appropriately normalised for all the flows of Table I. Various common features can

be observed in Fig. 10. To be more specific, the highest values of enstrophy are associated with

positive but low values of , i.e., stretching of vorticity, whereas high rates of stretching as well

as compression correlate with regions of low Qω. So, there is little evidence of self-stretching

by structures in the flow which have large enstrophy in analogy to hydrodynamic turbulence.39, 46

Another common feature in all the plots of Fig. 10 is the tilt towards positive values, i.e., vorticity

vectors are being more stretched than compressed.

On the other hand, quantitative differences are evident, such as the asymmetry of the (, Qω)

joint PDFs, which seems to be different for each flow. In other words, the joint PDF of run C

(Fig. 10(c)) is shifted more towards  > 0 values, akin to hydrodynamic turbulence (see results in

Refs. 39 and 46), in comparison to run A (Fig. 10(d)) which is closer to the joint PDF of run R

(Fig. 10(a)). Another quantitative difference between the four flows is the very high values of

FIG. 10. Joint PDFs of the second invariant of the rotation rate tensor Qω and the vortex stretching rate  normalised

appropriately by powers of the mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.
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enstrophy (Qω ≃ 6〈|ω|2〉) that are obtained in run I (Fig. 10(b)) for values of vortex stretching rate

of the same order for all the flows (i.e.,  < 0.3〈|ω|2〉1/2).

Another important mechanism for amplification or reduction of enstrophy that exists only in

MHD turbulence is that due to the Lorentz force. This process essentially manifests from the last

term of Eq. (26), which we write here as

L =
ω · ∇ × ( j × b)

|ω|2
, (27)

so that it is comparable with  (see Eq. (25)). In order to shed light on the dynamics of this term

with respect to the enstrophy, we consider in Fig. 11 the joint PDFs between L and Qω, normalised

appropriately, for the four runs of Table I.

It is characteristic for all the plots of Fig. 11 that there is a preference for L > 0 for most of the

local topology in the flow. It is also common in all the four cases that the highest values of Qω are

associated with regions of low but positive L, whereas high values of |L| are related to regions of

low enstrophy in a similar fashion to the self-amplification mechanism. Once more, the quantitative

differences between the plots of Fig. 11 are evident with the most notable being the joint PDF of run

I (Fig. 11(b)) with the highest values of Qω in terms of L.

A comparison between the two mechanisms of amplification and reduction of enstrophy reveals

the cause of high and low enstrophy regions. For the MHD flow with random initial conditions, L is

more correlated with regions of higher enstrophy than  but the opposite is true for the TG flows.

On the other hand, the lowest enstrophy regions present correlations with higher absolute values of

L than  for all the runs.

FIG. 11. Joint PDFs of the second invariant of the rotation rate tensor Qω and L normalised appropriately by powers of the

mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.
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VI. INVARIANTS OF THE MAGNETIC FIELD GRADIENT, THE MAGNETIC STRAIN RATE

AND THE CURRENT DENSITY RATE TENSORS

In this section, we try to classify the topology related to the magnetic field by extending the

above joint PDF analysis for the invariants of magnetic field gradient tensor as well as for the

invariants of its symmetric and skew-symmetric components.

A. Joint PDFs of the magnetic field gradient invariants

The magnetic field gradient X = ∇b can be also decomposed into its symmetric and skew-

symmetric components

X = K + J = Kαβ − 1
2
ǫαβγ jγ , (28)

where K = 1
2
(∇b + ∇bT ) and J = 1

2
(∇b − ∇bT ) are the magnetic strain rate and current density

rate tensors, respectively. The skew-symmetric part of X is related to the electric current through

Ampere’s law ∇ × b = μ0 j where μ0 = (κσ )−1 is the permeability of free-space and σ is the

electrical conductivity. When the magnetic field lines are bended, current is produced providing a

Lorentz force that inhibits the bending of the field lines. On the other hand, the symmetric part of X

characterises the force-free regions in the magnetic field, where j = 0 and therefore j × b = 0. An

important relation one can easily derive by taking the divergence of Eq. (1) and using the fact that

our fields u and b are solenoidal is the following Poisson equation:

∇
2 P = ∇ · [(u × ω) + ( j × b)]

= (�2
αβ − S2

αβ) + (K 2
αβ − J 2

αβ). (29)

What is interesting in this expression is the interchange between the symmetric and skew-symmetric

tensors of ∇u and ∇b related to ∇
2 P . It is also appealing that the viscous dissipation is related to

the symmetric part of the velocity gradient, whereas the Ohmic dissipation to the skew-symmetric

part of the magnetic field gradient.

Now, we consider the joint PDF of the second and third invariants of X, which are defined

according to Eqs. (13) and (14) as follows:

Q X = 1
4
[ j2 − 2tr (K 2)], (30)

RX = − 1
3
[tr (K 3) + 3

4
jα jβ Kαβ]. (31)

For the classification of the magnetic field structures, the DX = 27
4

R2
X + Q3

X = 0 line was included

in the plots of Fig. 12. The topological classification emerging from the joint PDFs of RX and

QX can be interpreted in analogy to the invariant map of the velocity gradient (Fig. 2). Note,

however, that the individual terms of the third invariant in Eq. (31) do not appear in any evolution

equation. Thus, RX does not have a physical meaning here but it is mathematically important for the

classification of the magnetic field structures, in terms of the eigenvalues of Xαβ associated with these

structures.

In contrast to the invariants of the velocity gradient, the (RX, QX) invariant map does not

show a particular tendency towards any quadrant (see Fig. 12). For all the runs the core shape

of the joint PDF is symmetric along the RX = 0 axes, meaning that there is a balance between

stable and unstable structures. The small scales, on the other hand, are slightly different espe-

cially for run I (Fig. 12(b)) and run C (Fig. 12(c)). Moreover, the joint PDF for runs C and A
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FIG. 12. Joint PDFs of the second invariant QX and the third invariant RX of the magnetic field gradient tensor normalised

appropriately by powers of the mean squared current density for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The

line DX = 27
4

R2
X + Q3

X = 0 is plotted for reference.

(see Figs. 12(c) and 12(d), respectively) diminish towards the origin of the axes. In general, one

could claim that this symmetric shape seems to be a general characteristic for the magnetic field

gradient for all initial conditions with some small deviations, which might be due to the TG vortex

symmetries.

B. Joint PDFs of the magnetic strain rate invariants

Looking at the joint PDFs of the second and third invariants of K we can study the geometry

of the local magnetic straining. The invariants of the magnetic strain rate tensor can be obtained by

setting j = 0 in Eqs. (30) and (31), which reduce to

QK = − 1
2
tr (K 2) (32)

and

RK = − 1
3
tr (K 3), (33)

where QK is negative definite due to the symmetric nature of K. Note that QK is not directly related

to Ohmic dissipation in contrast to the Qs for viscous dissipation. Then, the physical interpretation

of the (RK,QK) invariant map is quite different from Fig. 4 but similar in terms of flow topology. So,

very low values of QK in Fig. 13 can be physically interpreted as regions of high magnetic-strain

or regions where the Lorentz force is small. The third invariant RK can be written as the product of

the eigenvalues of Kαβ in analogy to Rs (see Eq. (21)). Then, the interpretation of RK in terms of

sheetlike and tubelike structures is also determined by sgn(RK ) = sgn(λ2).
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FIG. 13. Joint PDFs of the second invariant QK and the third invariant RK of the magnetic strain rate tensor normalised

appropriately by powers of the mean squared current density for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The

line DK = 27
4

R2
K + Q3

K = 0 is plotted for reference.

The joint PDFs between RK and QK, representing the local topology of the structures related to

magnetic strain rate, appear to be symmetric along the RK = 0 axis for most of the runs of Table I

(see Fig. 13). In detail, the joint PDF of run R (Fig. 13(a)) illustrates an equipartition between tube-

like and sheetlike structures associated with K. The shapes of the (RK, QK) invariant map for runs

I and A (see Figs. 13(b) and 13(d), respectively) are also symmetric and they can be well approxi-

mated by a magnetic field gradient of the form of Eq. (23) with QK = − 1
4
[(∂ybx )2 + (∂ybz)2] and

RK = 0. In Fig. 13(b) there are very low values of QK correlated with RK = 0 in comparison to the

rest of the flows. Therefore, this approximation for X is especially valid for the small scale structures

that correspond to low values of QK in this joint PDF. Figure 13(c) (run C), on the other hand, is

slightly asymmetric, showing a tangible inclination of the joint PDF towards RK < 0. This implies

that there is a preference for the intermediate eigenvalue of Kαβ to be negative and hence a tendency

for tubelike structures.

Now, we attempt to provide an outline of the joint PDFs of Fig. 13 by tabulating the mean

eigenvalues of the magnetic strain rate tensor (see Table III) and by plotting the analogous expression

to Eq. (22) for RK and QK using the mean eigenvalues of Table III (see Fig. 14). The values of the

mean eigenvalue ratios tell us that on average runs I and C are described by quasi two-dimensional

structures in agreement with the joint PDF analysis. Moreover, the values 1:0:−1 that we obtain for

run R agree with the argument that the joint PDF of Fig. 13(a) is symmetric but also express that in

an average sense the flow topology is locally invariant in one direction. The only case that deviates

from two-dimensionality is run C, which is on average characterised by biaxial contraction (i.e.,

〈λ2〉 < 0) and thereby tubelike structures.
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TABLE III. Mean eigenvalues of the magnetic strain rate tensor Kαβ and

their ratios.

Run 〈λ1〉 〈λ2〉 〈λ3〉 〈λ1〉: 〈λ2〉: 〈λ3〉

R 0.26 0.00 −0.26 1 : 0 : −1

I 0.44 0.00 −0.44 1 : 0 : −1

C 0.35 − 0.02 −0.33 18 : −1 : −17

A 0.44 0.00 −0.44 1 : 0 : −1

C. Joint PDFs of the second invariants of the magnetic strain

and current density tensors

The skew-symmetric part of the magnetic field gradient tensor, J has only one invariant in

analogy to the rotation rate tensor �. This can be obtained by letting K to be zero in Eqs. (30) and (31),

then

Q j = − 1
2
tr ( J2) = 1

4
j2, (34)

which is also related to the second invariants of X and K through Qj = QX − QK.

The (Qj, −QK) invariant map describes the relative importance between the straining and

rotational parts of the magnetic field gradient in analogy to (Qω, −Qs) map for the velocity gradient

(see Fig. 7). However, the important difference in this case is that the rotational part of X is directly

related to Ohmic dissipation and not the straining part. Hence, the points of the joint PDFs close to

the Qj axis that are nearly in solid-body rotation are regions in the flow of strong Ohmic dissipation

and negligible magnetic straining in contrast to the picture we get from Fig. 7. On the other side,

points adjacent to the −QK axis express nearly pure magnetic straining motions in regions of where

the current is negligible and thereby Lorentz force is suppressed.

The joint PDFs of Fig. 15 show that points near the axes are rare in MHD turbulent flows and

are related only to the large scales of the flows, where Qj and −QK are small in comparison to

〈| j |2〉. Most of the points in the plots of Fig. 15 lie near the main diagonal, in agreement with the

fact that Ohmic dissipation occurs in current sheets. Here, the magnetic field gradient tensor can be

well approximated by the form of Eq. (23), which gives Q j = −QK = 1
4
[(∂ybx )2 + (∂ybz)

2]. This is

particularly a good approximation for runs I and A (see Figs. 15(b) and 15(d), respectively), where
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FIG. 14. Plot of Eq. (22) using the mean eigenvalues of Kαβ from Table III. The dashed line DK = 27
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FIG. 15. Joint PDFs of the second invariants of magnetic strain rate and current density rate tensors normalised by the mean

squared current density for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.

Qj and −QK are strongly correlated for all scales. It can also be argued that this approximation is also

valid for the small scales of runs R and C (see Figs. 15(a) and 15(c), respectively) that correspond

to high values of Qj and −QK.

D. Structures in the current density field

To further validate our joint PDF approach, we present indicatively iso-contours of current

density (Fig. 16) in our [0, 2π ]3 periodic boxes at the moment of maximum dissipation for all the

runs that we have considered (see Table I). All the visualisations of Fig. 16 display current density

iso-contours with |j| ≥ 6j′ where j ′ ≡ (| j |2)1/2. The field of current density for run R (Fig. 16(a))

is composed by randomly oriented sheetlike structures which seem to be extremely thin, supporting

the fact that the values of the mean eigenvalue ratios for the magnetic strain rate tensor are 1: 0: −1.

It is clear that locally quasi two-dimensional structures are the dominant structures in Figs. 16(b) and

16(d) (runs I and A, respectively), validating the joint PDFs of (RK, QK). These 2D current sheets are

also the structures where most of the Ohmic dissipation occurs. For run I these dominant structures

are formed at the faces of the [0, π ]3 boxes, whereas for run A these are randomly oriented. On the

other hand, run C (Fig. 16(c)) seems to be dominated by tubelike structures but one can also observe

the coexistence of isolated thin current sheets in agreement to our analysis. Finally, the TG vortex

symmetries are clearly depicted in these visualisations with each TG flow having different degree of

randomness. This raises again questions as to what degree these symmetries restrict the dynamics

of the flows.

Here, we would like to emphasise that the structures related to the magnetic field gradient have

different characteristics than those related to the velocity gradient. This might well be a reason that

the energy spectra that we obtain, as well as other studies, for the kinetic and magnetic energy
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FIG. 16. Current density field iso-contours with |j| ≥ 6j′ for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.

(not shown here) seem to obey different power laws. Moreover, there is evidence that the quasi

two-dimensional organised structures that appear in run I are responsible for the k−2 scaling that we

observe in the total energy spectra in Fig. 1(b) (see Ref. 49).

VII. CONCLUSIONS

The universality of the energy spectrum in MHD turbulence is in doubt by various studies.

One aspect is the manifestation of different, dubious scaling exponents. In order to avoid ambiguity

between scaling exponents, we explore various statistics based on the invariants of the velocity

gradient and related tensors. Note that for a big family of hydrodynamic turbulent flows, the joint

PDF of the invariants of the velocity gradient is generally considered to be universal. We further

extend this analysis to the invariants of gradient statistics related to the magnetic field. In particular,

we explore DNS data of decaying MHD turbulence with random initial conditions as well as a set

of three different Taylor-Green type initial conditions without imposing any symmetry constrains

in our flows during their evolution. The TG flows were chosen to be examined since recently, Lee

et al.18 reported that the scaling of the energy spectrum at the peak of dissipation depends on the

initial conditions.

Our study attempts to classify the structures of our MHD flows. The structures related to the

strain rate tensor are predominantly sheetlike structures (i.e., 〈λ2〉 > 0) for all the flows apart from

run I (see Fig. 6), which is quasi two-dimensional (i.e., 〈λ2〉 ≃ 0). The biaxial stretching for our

MHD flows is different in comparison to hydrodynamic turbulence, namely 〈λ1〉: 〈λ2〉: 〈λ3〉 = 3: 1:

−4 (see Table II). Furthermore, the enstrophy dominated regions are well correlated with regions of
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high viscous dissipation in contrast to hydrodynamic flows. We also find that viscous dissipation is

an intrinsic element of vortex sheets.

On the other side, magnetic field consists of quasi two-dimensional structures, i.e., 〈λ2〉 = 0,

for all the cases apart from run C, which is on average dominated by tubelike structures, i.e., 〈λ2〉
< 0 (see Table III). The correlation between magnetic strain dominated regions and regions of

high Ohmic dissipation is generally stronger than the correlation between enstrophy and viscous

dissipation. We also corroborate that Ohmic dissipation resides in current sheets, which are thinner

than the vortex sheets in the same flow. Visualisations support further our joint PDFs analysis of the

invariants.

The present results demonstrate that at the examined Reynolds numbers small scales depend on

the initial conditions in decaying MHD turbulence. This is illustrated through the joint PDF of RA

with QA (see Fig. 3), which has a universal teardrop shape for hydrodynamic turbulence away from

walls. Lack of small scale universality in decaying MHD turbulence will have important implications

in modelling. Large-eddy simulation models are based on the assumption of small scale universality

(i.e., although large scales may be dependent on boundary conditions or initial conditions, smaller

scales are less flow dependent and more amenable to modelling). Therefore, if MHD turbulence

is non-universal or if different classes of universality exist, then the construction of sub-grid scale

models needs to be revisited.

However, there are various issues regarding the examined flows that one has to address before

claiming that small-scale universality is absent. One such issue is whether the attained values of

the Reynolds number are sufficiently large for universality to manifest itself. As mentioned in the

introduction, MHD is more non-local than hydrodynamic turbulence and higher values of Reynolds

numbers are in general needed to reach the asymptotic regime. Another point is that the time for

the flow to reach the peak of dissipation might not be long enough for universality to establish

itself. In the presented runs, however, not much difference has been observed in the duration of

the high resolution runs. A third element is the self-preservation of TG vortex symmetries during

the evolution of the flow, which seem to be a strong property of the MHD equations. To verify the

presence of different universality classes one needs to also demonstrate that the initial conditions,

which fall in a class, form a finite set (i.e., a small deviation from them remains in the same class).

Therefore, natural questions that emerge are: What happens if we perturb the TG flows in order to

break these symmetries before the peak of dissipation? Will the joint PDFs converge to a single

shape or/and the scaling of the energy spectra to a single value? What is the role of the symmetries

imposed by the initial conditions in terms of the dynamics? Do we have classes of universality for

these moderate Reynolds numbers or is there a universal power law in the high Reynolds number

limit? We plan to address these questions in our future work.
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46 J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,”

J. Fluid Mech. 255, 65–90 (1993).
47 A. Henderson, The ParaView Guide: A Parallel Visualization Application (Kitware, 2007).
48 P. Sagaut and C. Cambon, Homogeneous Turbulence Dynamics (Cambridge University Press, 2008).
49 V. Dallas and A. Alexakis, “Origins of the k−2 spectrum in decaying Taylor-Green magnetohydrodynamic turbulent flows,”

Phys. Rev. E (to be published), e-print arXiv:1306.1380.

Downloaded 10 Oct 2013 to 129.199.120.226. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1017/S0022112093002393
http://arxiv.org/abs/1306.1380

