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Structures for M-Channel Perfect-Reconstruction FIR 

QMF Banks Which Yield Linear-Phase Analysis 
Filters 

Abstract-In this paper, we develop structures for FIR perfect-re- 

construction QMF banks which cover a subclass of systems that yield 

linear-phase analysis filters for arbitrary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. The parameters of these 

structures can be optimized in order to design analysis filters with min- 

imum stopband energy which a t  the same time have linear-phase and 

satisfy the perfect-reconstruction property. If there are M subbands, 

then depending upon whether the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh , ( n )  of each analysis 

filter is symmetric or  antisymmetric, several combinations of filter 

banks are possible. Some of these permit perfect-reconstruction and 

some do not. For a given M, we develop a formula for the number of 

combinations for a subclass of linear-phase perfect-reconstruction 

structures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an example, we elaborate on a perfect-reconstruction 

linear-phase lattice structure for three channels and develop a lattice 

structure for this case. The lattice structure is such that, regardless of 

the parameter values, the QMF bank enjoys perfect-reconstruction 

property while at the same time the analysis filters have linear phase. 

These parameters can therefore be optimized to obtain analysis filters 

with good magnitude response, without losing the above two features. 

A design example, based on optimization of the parameters in the lat- 

tice structure, is presented, along with tables of impulse response coef- 

ficients. 

I. INTRODUCTION 

UADRATURE mirror filters (in short, QMF) are 
used in many speech and communications applica- 

tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11-[3]. Throughout this paper, we consider the 
maximally decimated M-channel quadrature mirror filter 
(QMF) bank shown in Fig. 1. The analysis filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH k ( z )  
split the transmitted signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx( n )  into M subband signals 
which in turn are decimated by M and encoded prior to 
transmission. At the receiving end, the M subband signals 
are decoded, interpolated, and recombined using the syn- 
thesis filters Fk( z ) .  Ignoring the nonideal channel char- 
acteristic and the nonlinear encoding/decoding error, the 
signal 2 ( n )  suffers from four errors [ 5 ] ,  namely, aliasing 
due to decimation, imaging due to interpolation [2], am- 
plitude distortion, and phase distortion. The last two er- 
rors are due to the nonideal nature of the analysis filters. 
I n  this paper, we deal with FIR QMF banks in which all 
four above distortions are eliminated (aliasing effects 
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Fig. 1. The M-channel maximally decimated parallel QMF bank 

being cancelled by imaging effects), so that P ( n )  is a de- 
layed version o f x ( n ) ,  i.e., i ( n )  = cx(n - no) ,  c # 0. 
Such structures are called perfect-reconstruction (abbre- 
viated as PR) structures, and the QMF bank of Fig. 1 is 
then said to be a PR system. 

Each analysis filter Hk ( z )  and synthesis filter Fk ( z )  in 
Fig. 1 can be written in the form H k ( z )  = EEG' 
z- 'Ekl(zM) and F k ( z )  = CrA' Z - ' ~ - I - ' ) R ~ ~ ( Z ~ ) ,  re- 
spectively. The quantities E k l ( z )  and R l k ( z ) ,  0 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 5 M 
- 1 are the M polyphase components [2], [13], [14] of 
H k ( z )  and F k ( z ) ,  respectively. Defining the two M X M 
matrices E ( z )  = [Ekl(z)] and R ( z )  = [Rlk(z)], which 
are called the polyphase component matrices for the anal- 
ysis bank and synthesis bank, respectively, the QMF bank 
of Fig. 1 can be redrawn as in Fig. 2. Using standard 
identities in multirate signal processing [2], [13], Fig. 2 
can be further reduced to Fig. 3. Therefore, we can obtain 
a perfect-reconstruction system if we choose [ 121 R ( z )  = 

E - ' ( z ) .  If the analysis filters are FIR, the choice R ( z )  = 

E - ' ( z )  gives rise to FIR synthesis filters as well, pro- 
vided that det E ( z )  = bz-', where b and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY are a nonzero 
constant and a nonnegative integer, respectivkly . In this 
paper, the term "perfect-reconstruction" is taken to be 
synonymous to the condition det E ( z )  = bz-' (even 
though this is not a necessary condition with IIR perfect- 
reconstruction systems). 

The theory of perfect reconstruction when M is a power 
of 2 is well known [6], [15]. The design method in [6] is 
based on spectral factorization of an FIR halfband filter. 
Some methods of perfect reconstruction for arbitrary 
number of channels have been reported recently [9] , [ 121. 
The method described in [12] constrains the polyphase 
transfer matrix E ( z )  to be FIR and lossless (i.e., E (  e l W )  
to be unitary for all U). The coefficients here are assumed 
to be real. Under this condition, if the matrix R ( z  ) is cho- 
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Fig. 3.  An equivalent structure of Fig. 2 

sen as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAET(z - ’ ) ,  then the system of Fig. 1 is 
forced to be a PR system. In [ 101 and [ 161, a procedure 
for design of two-channel perfect-reconstruction systems 
with linear-phase FIR filters is given, based on judicious 
factorization of a linear-phase FIR halfband filter. The 
number of possible spectral factors, hence, grows expo- 
nentially with respect to the degree of the filters; besides, 
the resulting filters are not guaranteed to be optimal. In a 
recent paper [ 171, the authors discussed several properties 
of M-channel linear-phase perfect-reconstruction systems 
which yield equal length analysis filters. They also stud- 
ied lattice structures for the two-channel linear-phase per- 
fect-reconstruction bank in [ 181; the analysis filters Hk ( z )  
of these structures obey several conditions as follows: 

1) the sum of their lengths is a multiple of 4, and 
2) the filters have odd degrees and opposite symmetry 

or they have even degrees and same symmetry. 
In a similar way, one of our goals in this paper is to 

obtain corresponding results for the M-channel linear- 
phase perfect-reconstruction FIR QMF bank. ’ This is 
done in Section 11. As in the two-channel case, these re- 
sults should reflect into the sum of the lengths of the anal- 
ysis filters. Moreover, we also give a count of the number 
of distinct combinations which could yield linear-phase 
FIR analysis filters for a subclass of PR structures. (We 
will state which subclass we consider here in Section 11.) 
Our restriction to this subclass is primarily motivated by 
analytic tractability. 

We first derive the necessary form of E ( z  ) such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hk(z), 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k I M - 1 are linear phase FIR analysis 
filters in Section 11. Having limited our study to a subclass 
of these PR structures, the conditions on the lengths and 
the symmetries of Hk ( z )  are derived by imposing the per- 
fect-reconstruction condition on the above E ( z ) .  We will 

‘Independent work in this direction has also been reported in [22]. 

also give the exact number of linear-phase perfect-recon- 
struction structures for this subclass. In Section 111, we 
demonstrate the practical feasibility of these structures by 
concentrating on obtaining a lattice structure for the 
3-channel case. Once this linear-phase perfect-recon- 
struction lattice structure for 3-channel QMF bank is ob- 
tained, the pairwise-symmetric property [ 191 is incorpo- 
rated on it to speed up the convergence time in the design 
process. A design example is also included in Section 111. 

Notations Used in the Paper: We consider only real- 
coefficient linear-phase FIR filters in this paper. Bold- 
faced italic letters indicate vectors and matrices, whereas 
superscript T denotes transposition. If the impulse re- 
sponse h ( n )  of H ( z )  is symmetric, we say “ H ( z )  is sym- 
metric,” and so on. The center of a linear phase FIR 
transfer function is defined to be the center of symmetry 
or antisymmetry of h ( n ) .  Clearly, the center of H ( z )  
could be either an integer or an odd multiple of ( 1 /2).  
The tilde accent - on a function F ( z )  is defined such that 
E ( z )  = F T ( z - ’ ) .  The mirror image of H ( z ) ,  denoted by 
f i ( z )  is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ~ - ( ~ - l ) H ( z - * ) .  Here h ( N  - 
1 )  is the highest nonzero coefficient of H ( z )  and N - 1 
is called the degree of H ( z ) .  For brevity, “linear phase” 
and “perfect reconstruction” are abbreviated as LP and 
PR, respectively. 

11. M-CHANNEL LP PR FIR QMF BANKS 

Let H k ( z ) ,  0 I k I M - 1 be the M (causal) linear- 
phase analysis filters with center ck. We define the degree 
of H k ( z )  as Nk - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb 2ck. For a given M, we can uniquely 

write Nk - 1 as mkM + ik where 0 I ik 5 M - 1 and 
mk are integers. This representation will be used subse- 
quently. In terms of the polyphase components E k j ( z ) ,  the 
filter Hk ( z )  is represented as [ 121 

M -  1 

H k ( z )  = c z-’Ekj(zM). (1)  J = o  

We shall define the center of E k j  ( z )  as ckj where 

. .  
1 I l k ;  

j > ik. mk - 1, 
2Ckj A 

First, let us find the relations among the polyphase com- 
ponent Ekj ( z )  which yields linear-phase analysis filters. 
Once these relations are known, we can further study the 
perfect-reconstruction aspect of these structures. 

The impulse response of a linear-phase filter Hk(z) 
could be either a symmetric or an antisymmetric se- 
quence, i.e., 

(3 )  

where 

1, Hk( z )  is symmetric; 
(4) 

Jk = ( -1, H k ( z )  is antisymmetric. 
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Using (1) in (3) and noting that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmkM + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAik, we 
obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M -  I 

c Z . ' E k j ( Z M )  
. j  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ii 

M -  I 

l h  

= JL c 
J = o  

M- I 
+ J k  C z ( M + ~ A - J ) [ z ( J n k - l ) M E  ( ")I. 

kJ 
J = f A + l  

Making changes of variables, the above equation 
comes 

M -  I 

c Z J E L J ( Z M )  
/ = o  

fi 

M -  I 

( 5 )  

be- 

Comparing like powers of both sides of (6), we have the 
following necessary form of E ( z )  which yields linear- 
phase analysis filters. Thus, 

The above relation has been known before in a slightly 
different notation [ l  11. Let us now concentrate on a sub- 
class of systems that satisfy (7), namely, the class where 
all ik are equal, i.e., io = i l  = * = iM-l = I .  From 
now on, we only consider this class. The restriction of 
our discussion to this class is motivated primarily by the 
tractability of the possible combinations of PR systems 
belonging to this subclass. 

Recalling that Nk = mkM + ik + 1, we see that for this 
particular subclass, the sum of the lengths of the analysis 
filters is a multiple of M .  E ( z )  in (7) becomes 

The above form of E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  yields a linear-phase QMF struc- 
ture. It does not, however, guarantee perfect reconstruc- 
tion yet. To achieve this additional goal, namely, perfect 
reconstruction, let us study E ( z )  carefully. It can be ver- 

ified that (8) is equivalent to 

where Al(z)  and & ( z )  are diagonal matrices such that 

Here, P is a permutation matrix of the form 

where 

For a PR system, det E ( z )  = bz-'. Taking the determi- 
nant of both sides in (9), 

det E ( z )  = det Al(z) det P det E T ( z )  det & ( z )  

(13)  

or, equivalently 

- ( M -  1 -I) z - r  z (C:=-,hk) (:@: J k )  det P. bz' = bz 

(14)  

Comparing both sides of (14), we have the two following 
conditions: 

(go J k )  det P = 1. 

The first equation in (15) yields the same condition on the 
filter lengths as above. Namely, the sum of the lengths of 
the analysis filters is a multiple of M .  From (15b), one 
can obtain the total number of possible combinations of 
analysis filters which yield LP PR systems. 

We have shown in [18] that, in the case of two-channel 
LP PR FIR QMF banks, there are only two structures in 
which all ik are the same. Moreover, they are the only 
structures that yield nontrivial filters. For an arbitrary 
number of channels, partly due to the two choices that Jk 
can take (namely, Jk can be either 1 or - 1 ), and partly 
due to the M choices that I can take (i.e.,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 5 M - 
1 ), the counting of combinations which yield LP PR FIR 
QMF banks is not simple. For instance, if M = 3, there 
are 3 possible combinations which the triplets Jo,  J l ,  and 
J2 can take. These are the combinations in which either 
one or two or all three of the Jk are 1. (The case where 
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none of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJk is 1, i.e., all Jk are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, cannot be a PR 
structure. In other words, the DC component of the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n )  cannot be reconstructed since all analysis filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk ( z )  
have zeros at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = O!) Moreover, for each of the above 
triplets Jo,  J 1 ,  and J2 ,  there are 3 possibilities because I 
can be either 0 or 1 or 2. Thus, there are in total 3* struc- 
tures that yield LP analysis filters in our subclass. In gen- 
eral, there are M2 LP structures. Which one of these can 
be both LP and PR? 

Let us turn our attention to (15b) which governs the 
number of combinations of analysis filters that yield LP 
PR FIR filters. Let 

A, = number of combinations of Jk such that r s-1 

be either 1 or - 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs mentioned above, the case where 
all Jk = -1 is excluded since PR system is not possible 
for this case. 

Even S: Since S is even, and furthermore since Jk can 
be either 1 or - 1, the number of Jk that takes the value 
- 1 has to be even. In other words, there will be 0, or 2, 
. . .  , or S values of Jk that take the value - 1. That gives 
us, in total, (S /2  + 1) combinations. Excluding the case 
where all Jk are - 1, we have a net total of S /2  combi- 
nations in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII,”:; Jk = 1. 

Odd S: Similar to the above even case, the number of 
Jk that takes the value -1 in this case has to be even. 
Thus, there will be 0, or 2, * * , or (S - 1 ) values of 
Jk that takes the value - 1, and thus, As = (S  + 1 ) /2 .  
Combining both cases, A,  is 

It J k = l ,  
k = O  

8, = number of combinations of Jk such that 

Calculating 8,: Use the same counting argument as in 
the As case, where the only difference is that the number 
of Jk taking the values - 1 is odd. Thus 

S -  1 

k = O  n Jk = -1, 

R, = number of combinations of I such that 

det P = 1, 

In summary, the total number of LP PR FIR QMF 
then the total number of combinations of analysis filters 
which are LP PR and are obeying (15b) (denoted as To- structures is 

- -  
tal) is Total = R] (A ,  - e,) + Me,, (23) 

where R I ,  A,, and 8, are as in (20), (21), and (22). We 
have calculated Total for several M in Table I. We ob- 
serve that, for M = 2, this result agrees with previous 

Total = AMR1 + 8,(M - R , )  

= Rl(A, - e,) + Me,. (17) 

work [ 181. For this particular subclass, let us summarize 

Fact: For an M-channel FIR QMF bank in which all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAik 

Let us and as follOws‘ 
all results on the L p  PR QMF bank in the following fact, 

Calculating R I :  From ( 1  1 )  

are the same, the total number of combinations of LP PR 
analysis filter banks is given in (23). The polyphase trans- 
fer matrix E ( z )  satisfies (8) or, equivalently, (9). The 
lengths of the analysis filters Hk(z), Nk satisfy the con- 
dition: Er=-; Nk = M ( 2 r  + M ) ,  where r i s  some positive 
integer and Nk - 1 = mkM + ik. 

From the above discussions, it is clear that there are 

det P = det 1’1+1 det r,,,-l-l ( 

where 

1; 

-1; 

k = 4r, 4r + 1, 

k = 4r + 2, 4r + 3 .  
(19) det rk = 

several possible combinations of analysis filters which 
yield Lp PR FIR QMF banks. In order to develop a de- 
sign procedure for such systems, we shall adopt the same 

Here, r is a positive integer. By taking I in the range from ’ to - l and using (19) in (18), One can verify that 

strategy as in some of our previous work [12], [15]. This 
strategy is to construct a lattice structure for the analysis 
bank such that the properties of interest are structurally 
enforced. In other words, regardless of the values of the 
multipliers in the structure, the FIR filter bank would sat- 
isfy the LP PR property. If we invent such a structure, we 
can optimize the multipliers in the structure to obtain 
analysis filter with good stopband attenuations, without 
sacrificing the LP PR property. 

M/2; M is even, 

(20) M = 4 r +  1, 

M = 4r + 3, 

where r is a positive integer. 
Calculating As: We are interested in the number of 

combinations of Jk for which II,”:; Jk = 1 where Jk can 
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TABLE 1 
N L I M H I - R  01. C O M B I N A ~ I O N S  OF LP PR SYSTEMS FOR T H E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACASE WHERE ALL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i, A R E  THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAME 

Now, because of the existence of several possible com- 
binations of analysis filters giving rise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the LP PR prop- 
erty, it is not possible to find a single general lattice struc- 
ture that covers all of these cases. Our main purpose in 
the next section is to demonstrate that it is indeed possible 
to obtain lattice structures if we restrict the filter bank to 
be a subclass of all the possible combinations. To be spe- 
cific, if we set I = M - 1 in the above discussions, it 
turns out to be easy to obtain such lattice structures. 

The purpose of the next section is to demonstrate this 
with the help of a three-channel QMF bank so that we 
have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = 3 and I = M - 1 = 2. Even with this restric- 
tion, we shall find in Section I11 that the analysis filters 
have very good attenuation characteristics. However, the 
theoretical development is fairly complicated. We have 
therefore attempted to make the presentation as complete 
as possible in order to enable the reader to appreciate the 
complexity of deriving such QMF bank. Once such a 
structure is constructed theoretically, its implementation 
is, however, not nearly as complicated! This is demon- 
strated at the end of next section by a design example, 
and in Section IV by an explicit complexity count. 

111. AN LP PR FIR QMF LATTICE STRUCTURE FOR 

3-CHANNEL QMF BANK 

From Table I, there are three possibilities here. For one 
of them, it is easy to see how to decompose E ( z )  which 
satisfies the property det E ( z )  = bz-‘ under the linear- 
phase constraint. We shall address only this case as the 
other two appeared to be not easily tractable. Here, we 
discuss the case where I = M - 1 = 2 and H k ( z )  have 
the same degrees. Recalling the form for E ( z )  in (8) 
which yields LP analysis filters and simplifying it for this 
particular case, we have 

From ( 1  1) 

and thus from (15b), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII:=, Jk = -1. Consequently, two 
analysis filters are symmetric, whereas the remaining one 
is antisymmetric. Recall that H o ( z )  and H 2 ( z )  are low- 

pass and high-pass filters, respectively. H o ( z )  thus, can- 
not be antisymmetric since antisymmetric LP filters have 
a zero at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 0. Likewise, odd-degree symmetric LP fil- 
ters have a zero of w = T and, therefore, H,(z )  should 
not be symmetric. Of course, even-degree symmetric 
H 2 ( z )  would also work; however, it would limit our de- 
sign to only filters of even length. Consequently, the first 
two filters, H o ( z )  and Hl(z), are symmetric while H 2 ( z )  
is antisymmetric. In other words, Jo = JI = 1 and J2 = 

- 1. Writing E ( z )  from (24) explicitly results in 

where E,, ( z )  and E l ,  ( z )  are symmetric polynomials, 
whereas E2,( z )  is an antisymmetric polynomial. The 
above E ( z )  guarantees that the corresponding analysis fil- 
ters are linear phase. To impose the PR condition, namely, 
det E ( z )  = bz-‘, we decompose E ( z )  into lower order 
building blocks as follows: 

The strategy here is to find A ( z )  such that E’( z )  has the 
same form as E ( z ) .  If we continue to decompose E’( z )  
by repeatedly applying (26), we will able to obtain a cas- 

cade of building blocks in the form of E ( z )  = B ( z )  

added. Here, B is the first-order block which has the same 
form as in (25). This decomposition is not a general way 
to decompose E ( z ) .  In other words, the resulting struc- 
ture obtained from this decomposition procedure is not 
guaranteed to cover all triplets of LP PR analysis filters 
in which n;=,Jk = -1 and I = 2. 

Let the elements of E ‘ ( z )  and A ( z )  be EL[(z)  and 
A k l ( z ) .  Then (26) yields (assuming that the orders of 
E & ( z )  are the same and so are the degrees of A k l ( z ) )  

n L - 1  r = O  AL- l - , ( z ) .  For clarification, subscript on A is 

Similarly to E ( z ) ,  E & ( z )  and E ; , ( z )  are symmetric poly- 
nomials, whereas E; , ( z )  is an antisymmetric one. We 
would like to find the conditions on A k l ( z )  such that both 
E (  z )  and E’( z )  have the form as in (25). From (27), these 
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We wish to choose A U ( z )  such that the above equations 
hold for any E'(z) of the form as in (25). In particular, 
let Eb,(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 and E~,(z) = 0. From the first and the 
fourth equations in (28), we haveA12(z) = ~ I O ( Z ) ,  A I I ( Z )  

= a l l ( z ) .  Using these relations, (28) is reduced to 

To find the corresponding relations of the remaining 
A,(z) ,  let E&(z) = E;o(z) = 1 .  Thi:choiceofE'(z) will 

yield Azo(z) = ao2(z), A 2 2 ( ~ )  = AOO(Z) and A ~ I ( z )  = 
Aol(z) .  In summary, A U ( z )  has to satisfy the following 
conditions if (28) holds for all choices of E'(z) of the 
form as in (25) 

A 2 0 ( Z )  = a 0 2 ( z ) ?  

A 2 2 ( Z )  = a,(z), A 2 1 ( Z )  = aodz ) ,  (29) 

A 1 2 ( Z )  = a,o(z>> 

i 4 d z )  = a , l ( d .  

A ( z )  then takes the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  ,( z )  is symmetric. Continuing the decomposition 
process and putting subscript on A ( z ) ,  we see that E(z) 
is realized as a cascade of lower order building blocks, 
i.e., 

L - l  

E(z) = B(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,JI A L - I - i ( Z )  (31)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=0 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL is the number of Ai(z)  blocks in the structure. 
The analysis bank in Fig. 2 thus becomes Fig. 4 where 
Ai ( z )  is as in (30) and B ( z )  has the same form as in (25). 
We now can impose the PR condition det E(z) = z - ~  on 
each building block so that the overall structure is a PR 
system. 

The simplest B ( z )  which satisfies simultaneously (25) 
and det B(z) = z - ~  is 

Since the above choice for B(z) is a constant matrix, 
Ai(z)  must be a function of z. From (30) 

A,(z) = r3di(z)r3 (33)  

where r3 is defined in (12). Let the highest degrees of the 
elements Ai,kl ( z )  of Ai ( z )  be r, , and let the determinant 
of Ai ( z )  be z-". We would like to find the minimum val- 
ues of both rl and r2 such that (33) is satisfied. Taking the 
determinant of both sides in (33), we obtain 

det Ai(z) = det di(z) = det [z-"Ai(z-')] 

z-r2 = z - 3 r ~ + r 2  

Thus, the minimum values for both rl and r2 are rl = 2 
and r2 = 3, respectively. Consider the following form for 

A ~ ( z ) :  

A ~ ( z )  UjA(z)Vj (34)  
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Fig. 4.  Decomposition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( z ' )  into a cascade of building blocks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  , ,  
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  The LP PR analysis bank. 

where U, and V, are nonsingular matrices and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdj through the analysis bank, the multipliers a i ,  bi, and c, 
in Wj are changed. The building block W, in Fig. 5 thus 
takes the following form: 

w, = i' ci ai 1 ci bi\ 

Clearly, det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( z )  = z - ~ .  To satisfy (33), U, and V, have 
to take special forms. Substituting (34) into (33), U, and 
V, satisfy where the set of lattice coefficients a,, b,, c, is different 

from the one in (40). In summary, Fig. 5 is the analysis 
bank of an LP PR FIR QMF structure which yields & ( z )  
of the same degrees. Moreover, H O ( z )  and H , ( z )  are sym- 

U, = r3u,r3, 
(36) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v, = r3v,r3. 
In other words, both U, and Vi have the form 

metric, whereas H 2 ( z )  is antisymmetric. The degree of 
& ( z ) ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k 5 2 is 6L - 4 where L is the number of 
W, ( z )  blocks in the analysis bank. 

Without loss of generality, let us assume that H o ( z ) ,  
U, = V, = c, d, c, . (37) H , ( z ) ,  and H 2 ( z )  are low-pass, bandpass, and high-pass 

filters, respectively. To design Hk(z), we define an ob- 
jective function which represents both the stopband and 
passband errors as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I, 1: :) 

With the above A , ( z )  and B ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( z )  becomes 

Observing from (37), V,U, satisfies ViU, = r3 Vi U,r3, 
and has the same form as Ui in addition to being a non- 
singular matrix. Therefore, we can use the general sym- 
bol W, for U; ,  Vi and V, UJ . The polyphase transfer matrix 
E ( z )  in (38) is equivalent to 

E ( z )  = BWL-IA(Z) WL-~A(Z)  * * * WIA(z)Wo 

(39)  

where 

Fig. 4 thus becomes Fig. 5 where B, A ( z ) ,  and Wj are as 
in (32), (35), and (40). Assuming that di # 0, the above 
Wi can be factorized as 

Furthermore, we notice that the multiplier d, can be prop- 
agated through the entire analysis bank and can be grouped 
into the multiplier p2 at the end of Fig. 5. By propagating 

The optimization of the parameters of W, (so as to mini- 
mize +,) can be done by employing standard gradient al- 
gorithms [21]. This usually consumes time since the ob- 
jective function +, is a nonlinear function of many 
parameters. Suppose that Hk ( z )  has painvise-symmetry 
property [19], i.e., 

H2(z)  = Ho(-z ) ,  Hdz) = 4 z 2 >  

for some a,(z) .  It is shown in [19] that the structure pre- 
sented in Fig. 9 of [19] yields filters which satisfy the 
painvise symmetry condition for odd M .  For M = 3, Fig. 
9 of [19] simplifies to Fig. 6 where 

E,(z )  = W L - l h ( z )  WL-2 * * * A(z)  WO. (42) 

In other words, the structure in Fig. 6 is an analysis bank 
of an LP PR FIR QMF structure. Furthermore, Hk(z) sat- 
isfies the pairwise-symmetric property described above. 
Since E , ( z )  is a function of z 6  instead of z 3  as in Fig. 5 ,  
for a given order of the analysis filter, the structure in Fig. 
6 has approximately half the number of variables com- 
pared to the structure in Fig. 5. Consequently, the con- 
vergence of the optimization using pairwise-symmetric 
structure will be much faster than the one in Fig. 5. 
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Fig. 6. The painvise symmetric LP PR analysis hank. Fig. 7. The synthesis hank of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I /( PI  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA )  and u2 = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/Oz. 

With the above pairwise-symmetry property enforced 
in the structure, it is now sufficient to optimize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P 912 

where E depends on the desired stopband edges. There- 
fore, if we can impose the pairwise-symmetry condition 
on the structure of Fig. 5 ,  then we would save approxi- 
mately half of the computation time in terms of the stop- 
bands and passband error-computations in the objective 
function. Thus, together with the saving in the number of 
variables to be optimized, we would expect a faster con- 
vergence time for the painvise symmetric LP PR structure 
in Fig. 6. 

Comments on the Synthesis Filters Fk (2): The synthe- 
sis filters F k ( z )  of the PR structure are obtained as 

2 

& ( z )  = c z-(*-"R,(z3) (44) 
/ = 0  

where R ( z )  = E- ' ( z ) .  By computing E - ' ( z )  explicitly, 
we will show that F k ( z )  are also linear-phase filters of the 
same symmetries as that of H k ( z ) .  Calculating R ( z )  from 
(25), we observe that Rlk ( z )  satisfies the condition 

R " l k ( Z )  = Z M L J k R ( 2 - , ) , k ( 4  (45) 

which has the same form as in (24) (except for the trans- 
position). Thus, F k ( z )  is also linear phase of the same 
type of symmetry as Hk(z ) .  By inverting the analysis bank 
in Figs. 5 and 6, we will conclude below that F k ( z )  has 
the same degree as Hk (z ). 

In general, Fk (2) has higher degree compared to Hk ( z )  
due to the inversion process of E ( z ) .  Hence, if we im- 
plement the analysis bank as in (39), then 

R ( z )  = W&'A-'(z) W,' * - . A-'(z) Wi!lB-'. 

By noting that A-'(z) = Y2r3A(z)r3,  the correspond- 
ing synthesis bank of Fig. 5 is drawn in Fig. 7. It is clear 
from Fig. 7 that, in this particular instance, F k ( z )  actually 
has the same degree as Hk ( z ) .  Further conclusions can be 
drawn for the synthesis filters corresponding to the anal- 
ysis bank in Fig. 6, namely, the synthesis filters also sat- 
isfy the pairwise symmetric property. In other words, 

F2(z) = -Fo( -z) and F l ( z )  = zP3a2(z2 )  for some func- 
tion a2(z) .  In short, if we implement the analysis filters 
as in Figs. 5 or 6, then the synthesis filters are also linear 
phase with the same corresponding symmetries as HL ( z ) ,  
and their degrees are the same as that of H k ( z ) .  

Comments on the LP PR Painvise Symmetry Analysis 
Bank of Fig. 6: Fig. 6 is an LP PR analysis bank which 
yields pairwise symmetric analysis filters. We obtain this 
structure by using E l ( z )  in (42) with z replaced by z 2 .  
The degrees of Ho(z) ,  H l ( z ) ,  and H2(z )  are thus (12L - 
5),  (12L - S ) ,  and (12L - 5) ,  respectively. In addition 
to the pairwise-symmetric property, namely, h2(n )  = 

( - 1 )"/lo( n )  and hl(  n )  = 0 for even n,  the coefficients of 
Hk(z) also satisfy 

ho( 1) = h,( 12L - 6) = h2( 1) = h2( 12L - 6)  = 0, 

h,(n)  = 0, n odd. 

1 ( 4 L - 3  4 L - 2  4 L - 3  

4 L - 3  4 L - 2  4 L - 3  

i 
Using the above fact to compute the degrees of E k J ( z ) ,  
we have 

deg [ E ( z ) ]  = 4L - 4 4L - 3 4L - 4 . (46) 

From the above lengths of H k ( z ) ,  I = 1 instead of I = 2 
as in the structure of Fig. 5 .  Moreover, the lengths of 
H k ( z )  are not the same. This, however, is not surprising 
since we have taken an LP PR structure in which I = 2 
and Nk are the same, and have transformed it into a struc- 
ture in which I = 1 and Nk are not the same by imposing 
the pairwise-symmetric property. 

Example 3.1: Using the structure in Fig. 6 and taking 
the number of W, blocks to be L = 5, we design H k ( z )  
for E = 0 . 1 ~ .  The degrees of the analysis filters are 55, 
52, and 55, respectively. The 15 variables in the lattice 
structure and the 2 additional multipliers at the output were 
optimized using the IMSL subroutine [21] on a computer 
to minimize (43). The resulting frequency response mag- 
nitudes are shown in Fig. S(a). The lattice coefficients and 
impulse responses of Hk ( z )  are given in Tables I1 and 111, 
respectively. Table I11 only displays half the number of 
coefficients of H k ( z )  since they are linear-phase filters. 
The painvise-symmetry property is apparent in Table 111. 
The frequency response magnitudes of the synthesis fil- 
ters associated with the analysis filters in Example 3. l are 
shown in Fig. S(b). We display only half the number of 
coefficients of Fk ( z )  in Table IV since Fk ( z )  are linear- 
phase filters. 
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1 

2 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

NORMALIZED FREQUENCY 

(b) 

5.4771339365037 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo4 -1.7872270513189 x 10' -1.9882974847877 x lo-' 
-1.3351781493993 x'106 1.3096283152688 x 10' -7.4289672830093 x lo-' 
-8.6710986182818 x loG 4.3087219824673 x 10' -2.1443436695392 x lo-' 
-3.7906401528742 x lo8 -6.8094743277621 x 10' -6.3599130248406 x lo-' 

-~ 

m .  R . i 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.200 2.300 0.00@ 0.500 

NORMAI,I%ED FREQUENCY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( c )  

Fig. 8. (a) Example 3.1: Magnitude response plots for the optimized anal- 
ysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfilters. (b) Example 3.1: Magnitude response plots for the corre- 
sponding synthesis filters. (c) Example 3.1: The plots of E:=, I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH A (  e'") 1' 
(solid line) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE:=, lF,(e '")  1' (broken line). 

2 9.5537638547501 x 
3 2.7942540296973 x 

4 2.2689555060244 x 

5 -6.5056107748452 x 

In most of the earlier designs of PR systems [ 121, [ 151, 
[19], the LBR condition is enforced on the structure, and 
consequently the analysis filters satisfied the power-com- 
plementary property, i.e., Cy=-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,Hk(ej") l 2  = 1. How- 

2.3259087841885 x 9.5537638547501 x 
0. -2.7942540296973 x lo-' 

5.5238789890867 x 2.2689555060244 x lo-' 
0. 6.5056107748452 x 

TABLE I1 
LATTICE COEFFICIENTS OF THE OPTIMIZED ANALYSIS BANK I N  EXAMPLE 

3.1. p ,  = -4.1034794220864 x AND p2 = 1.5707941418142 x 
lo-'  

m 11 Lattice Coefficients a, 1 Lattice Coefficients b, 1 Lattice Coefficients e ,  
0 11 -2.3282102148565 x lo3 1 -5.5293447341746 x lo3 I 6.1485544476533 x lo-' 

TABLE 111 
IMPULSE RESPONSES OF THE OPTIMIZED ANALYSIS FILTERS I N  EXAMPLE 

h,(N, - 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ) ,  h , ( m )  = h , ( N ,  - 1 - m )  AND h,(m) = (-l)"h,(m) 
3.1, HERE No - 1 = 55 AND N ,  - 1 = 52. FURTHERMORE, h,(m) = 

m 11 Filter Coefficients ho(m) 1 Filter Coefficients hl(m) 1 Filter Coefficients hz(m) 
0 11 -4.1034799150810 x lo-' 1 -9.9901150220313 x IO-' 1 -4.1034799150810 x lo-' 
1 I1 0. I 0. I 0. 

17 1 1  -1.2145874803718 x lo-' j 0. 1 1.2145874803718 x lo-' 
18 11 -1.5561448572774 x lo-' I -4.7294831413144 x lo-' 1 -1.5561448572774 x lo-' 

. . . . . . . . . . . . . . . . . . - 
26 I] 2.0762730202796 x lo-' 1 3.8301848634403 x lo-' I 2.0762730202796 x 10-I 

27 II 3.3497547410063 x 1n-l I 

ever, the LBR condition is not necessary for PR systems, 
and as demonstrated in Fig. 8(c) for our design example, 

IHk(ej")12 # 1 (solidline)andC;=o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI F k ( e J W ) J 2  # 
1 (broken line). In other words, the filters Hk(z) are not 
power-complementary triplets. 

Implementation of this system on a fixed-point machine 
might require a very large number of bits because of the 
large dynamic range spanned by the coefficients in Tables 
I1 and 111. However, a single precision floating-point im- 
plementation was found to be very satisfactory in this 
case. In order to demonstrate the perfect-reconstruction 
property of the QMF bank characterized by the impulse 
responses in Tables I11 and IV, and by the lattice coeffi- 
cients in Table 11, the complete systems of Fig. 1 (direct- 
form) and of Fig. 6 (lattice-form) were simulated in For- 
tran on a VAX 11/750 machine using both single and dou- 
ble precisions. Table V shows an arbitrary input x( n )  and 
the reconstructed signal i ( n ) .  It is clear that the system 
has a perfect-reconstruction property except for roundoff 
errors. From the double-precision implementation, the 
lattice structure seems to be numerically much more ro- 
bust than the direct form. 
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13 3.6701223936154 x lo-' 
14 2.5801957392175 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
15 2.8033633714558 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
16 1.6293136197350 x 
17 -6.4013608859602 x 
18 -1.4974601249272 x lo-? 
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-1.9730196839034 x 3.6701223936154 x lo-' 
0. -2.5801957392175 x 

-8.4270347872648 x 2.8033633714558 x 
0. -1.6293136197350 x 

1.8738254668239 x lo-* -6.4013608859602 x 
0. 1.4974601249272 x lo-? 

TABLE IV 
IMPULSE RESPONSES OF THE SYNTHESIS FILTERS IN EXAMPLES 3.1. HERE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANA 
- 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA55, AND N ;  - 1 = 58. FURTHERMORE,~~(WZ)  - 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW Z ) ,  

SI(?%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f , ( N ;  - 1 - m)ANDfz(m)  = ( -1 ) ( " '+ 'yO(m)  

19 1.7020623944998 x 
20 2.2605984154776 x lo-? 
21 2.9538667731008 x lo-? 
22 -4.7736225613466 x 
23 -5.7106872050697 x lo-? 

24 -5.8850606121214 x lo-* 

25 3.9318475835318 x lo-? 

- 26 2.0744767026860 x lo-' 
27 3.3879421236868 x lo-' 

- 

,,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 11 Filter Coefficients fo(m) 1 Filter Coefficients f,(m) 1 Filter Coefficients f?(m) 

0 I/ -5.0856051950609 x lo-' 1 0. I 5.0856051950609 x 

_ _ ~  
8.8661384068888 x 1.7020623944998 x 

0. -2.2605984154776 x lo-' 

-4.8496302353281 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 10.' 

3.2040864597603 x lo -*  

9.9810904531240 x lo-? 

-2.8455714941648 x lo-' 

2.9538667731008 x lo-' 

0. 4.77362256134Ffi x 
-5.7106872050697 x 10.' 

0. 5.?8%506121214 x 10.' 

3.9318475835318 x lo-' 
0. -12.0744767026800 x lo-' 

3.3879421236868 x lo-' 

._ .______~ 

we would require infinite precision to implement each 
multiplier in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,-' since it involves a division by A , .  These 
terms A I ,  however, can be grouped with the multipliers 
p, at the end of the structure. Each multiplier in the above 
WI-l thus requires only 2b bits to implement. Therefore, 
to preserve the PR property of the system, we need b and 
2b bits to implement each multiplier in the analysis and 
synthesis banks, respectively. 

Suppose that exact PR is not required under coefficient 
quantization, then we can efficiently realize the QMF bank 
as follows. 

Implementation of Hk (2) and Fk (2): At first sight, w, 
in (41) requires 6 multipliers to implement. The total 
number of multipliers required to implement the analysis 
bank in Fig. 5 is therefore (6L  + 3 ) .  However, W, can 
be factorized as 

I L O  1 1  
29 ll 

TABLE V 
AN ARBITRARY INPUT SEQUENCE x ( n )  AND THE RECONSTRUCTED SIGNAL 

a ( n )  FORTHE DESIGN EXAMPLE. HERE f ( t 2  f N - 1 )  IS SHOWN IN ORDER 

TO ALIGN THE SAMPLES 

Note that single precision corresponds to 24 bits of 
mantissa and 8 bits of exponent, which is identical to the 
arithmetic operations in the AT&T DSP 32 signal proces- 
sor. The conclusion is that the perfect-reconstruction sys- 
tem can be implemented on such a commercial DSP chip 
easily, and the fact that the filter coefficients span a large 
dynamic range is immaterial in such implementations. 

Implementation of the PR System: From (41) 

1 
I - a,c, a,(b,  - 1) a,c, - b, 

A, li a,c, - b, a l (b ,  - 1 )  1 - a,c, 

W,-' = - c,(b, - 1) 1 - b; ~ , ( b ,  - 1 )  , 

where A, = ( 1  - b, ) (  1 + b, - 2a,c,) .  Let us use b bits 
to implement each multiplier in W, . It appears at first that 

(47 1 
Defining W; to be 

W, Wi+l is implemented as follows: the two multipliers ai 
and c , + ~  can be combined, so Fig. 5 is equivalent to Fig. 
9. In general, the total number of multipliers needed to 
implement the analysis bank (Fig. 9) is only (4L  + 3 ). 
The corresponding synthesis bank of Fig. 9 is shown in 
Fig. 10 where (W:)- '  is 

whereAj = ( 1  - b i ) ( ( l  + b i ) / a j c j - 2 ) . T h u s , ( W l ) - '  
appears to require 9 multipliers to implement and the 
overall synthesis bank of Fig. 10 requires in total ( 1OL + 
3 )  multipliers to implement. But (W;) - '  can be realized 
as 

( 5 0 )  
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Fig. 9. Implementation of the analysis bank of the approximate PR sys- 
tem. 

where 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aic; 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 1 -  

1 1 -  

1 + bi 
1 

1 - bi 

1 
1 

ai ci 
__ 

ai ci 

- 1  

Using the same grouping argument as in the implemen- 
tation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH k ( z ) ,  Fig. 10 is equivalent to Fig. 11 where 

. L - 1  , L - 1  

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 i = O  

(bi - 1 -. 

(53) 

) : otherwise. 
/ (b:- l)(bi-.l - 

V i  = 

\ aiciPl 

The number of multipliers in this implementation is (6L 
+ 3) .  Note that all multipliers in both analysis and syn- 
thesis banks of Figs. 9 and 11 are quantized to b bits and, 
consequently, the PR property is lost. 

Implementation Complexity: To demonstrate the ad- 
vantage of the lattice structure implementation in Fig. 6 
over the direct-form implementation in Fig. 1, let us com- 
pare the number of multiplication and addition operations 
per unit time (abbreviated as MPU and APU, respec- 
tively) .2 

Direct-Form Implementation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA direct-form imple- 
mentation of the filter triplet [ H o ( z ) ,  H l ( z ) ,  H 2 ( z ) ]  would 
appear to require C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = o  Nk MPU and C z = o  Nk - 1 APU. 
Writing them in terms of L and noting that No - 1 = N2 
- 1 = 12L - 5 and N I  - 1 = 12L - 8, it requires 

C:=O Nk = (36L - 15) MPU and Nk - 1 = (36L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'A uni t  of time is defined to be the sampling period of the input sequence 

x 0 1 )  in Fig. I .  

Fig. 11. Implementation of the synthesis bank of the apptoximate PR sys- 
tem. 

- 18) APU. However, there are three simplifying factors 
involved, viz., a) the pairwise-symmetry condition; b) the 
linear-phase property; and c) the decimation by a factor 
of 3.  As elaborated next, all of the above factors can be 
exploited to some extent. 

Suppose that we implement the analysis bank of the PR 
system in Fig. 1 by taking advantages of only a) and b), 
then the linear-phase condition yields a factor of 2 saving 
in MPU. In addition, the MPU and APU can be further 
cut down by a factor of 2 since H 2 ( 2 )  = Ho( - z ) .  More- 
over, in the implementation of H l ( z )  which is a function 
of z 2, a factor of 4 saving in MPU and a factor of 2 savitlg 
in APU are obtained. In summary, the total MPU and 
APU required to realize the structure in Fig. 1 in direct 
form without utilizing the decimation factor is (12L - 
4 ) / 2  + (12L - 8 ) / 4  + 1 = (9L  - 3 )  = 42MPUand 
(12L - 3 )  + (6L - 4 )  = (18L - 7 )  = 83APU, re- 
spectively. 

On the other hand, let us first decimate by a factor of 3 
as in Fig. 3 and implement the system at a lower rate. In 
doing so, we would need to realize the polyphase com- 
ponents EkJ ( 2 )  directly. Since I = 1 in this system, E ( z )  
in (8) becomes 
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Due to the special form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE k , ( z )  in (55), let us consider 
the implementation complexity of EkJ ( z )  for k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 2 and 
for k = 1 separately. 

k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 2: We would expect a factor of 4 in saving 
from the special relation of Eko(z)  and E L l ( z )  forAk = 0, 
2 in (56). However, the minus sign in front of Eoo( - z )  
in the last row denies us a factor of 2 in saving. In other 
words, we cannot fully utilize the above relation. The 
saving is thus only a factor of 2 and, consequently, the 
complexity is 2 (4L - 3 )  = (8L - 6 )  = 34 MPU and 
4(4L - 4 )  + 2 = (16L - 14) = 66 APU. From (46) 
and (55), Ekz(z )  are odd degree linear phase functions and, 
therefore, their complexity is (2L - 1 )  = 9 MPU and 

k = I :  Taking advantage of the special form of 
E,,(z)  in (55), the number of MPU and APU required to 
realize E,&) and E,  , ( z )  is (2L - 1 ) = 9 MPU and 2 (2L 
- 2 )  + 1 = (4L - 3 )  = 17 APU. The remaining com- 
ponent EI2( z )  is an even-degree linear-phase function as 
well as a function of z 2 ,  therefore, its complexity is L = 

5 MPU and (2L - 2 )  = 8 APU. With the additional 
factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 due to decimation, the total complexity of the 
analysis bank implemented in polyphase direct form is 
thus (13L - 8 ) / 3  = 19 MPU and (30L - 2 2 ) / 3  = 43 
APU. 

Lattice Structure implementation: At each stage of the 
lattice structure in Fig. 6, the new sequences are com- 
puted at a lower rate as (Fig. 12) 

2(4L - 3 )  = (8L - 6 )  = 34 APU. 

The above operation requires 4 multiplications and 6 ad- 
ditions. Together with the multipliers P I ,  P2 and the 
2-point DFT at the output of the lattice structure, the total 
complexity here is (4L + 3 )  MPU and (6L + 2 )  APU. 
Due to the decimation factor of 3, the complexity of the 
analysis bank implementation using lattice structure is (4L 
+ 3 ) / 3  = g M P U a n d ( 6 L  + 2 ) / 3  = 11 APU. 

Comparing the complexity of both implementations, 
i.e., direct form and lattice structure, we observe that lat- 
tice structure is a very efficient implementation. It should 
be noticed, however, that the lattice structure is not min- 
imal in terms of number of delays because this number 
exceeds the filter degrees. 

Comments on the Generality of the LP PR Struc- 
tures: The above structures in Fig. 5 (and Fig. 6) for 
three-channel LP PR QMF filter bank are, by no means, 
general. That is, they do not cover all possible three-chan- 
ne1 LP PR QMF banks. There are two reasons for its non- 
generality. First of all, these are special cases where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = 

2 for the structure of Fig. 5 and Z = 1 for the structure in 

Fig. 6. Second, even for these special classes, the above 
decomposition in (26) with the choices of A, ( z )  in (35) 
and B ( z )  in (32) does not cover all LP PR FIR analysis 

Fig. 12. One stage of the implementation of the analysis bank in Fig. 6 .  

banks satisfying the above constraints on filter lengths. 
However, the importance of these structures and the cor- 
responding decomposition technique should not be over- 
looked because we are able to design filters with high at- 
tenuations which have not been done before. In other 
words, the filter in Example 3.1 is the first of its kind 
which can incorporate both linear phase and perfect re- 
construction for three-channel QMF banks. Moreover, its 
complexity is low due to its pairwise-symmetry property. 
Furthermore, immediate generalization of the above 
structures in Figs. 5 and 6 is possible by using the same 
form with the appropriate dimensions. We will elaborate 
on this issue below. 

Generalization of the Structure of LP PR FIR QMF 
Banks for  Odd M: The LP PR structure for Fig. 5 can be 
generalized to cover QMF banks which have more than 3 
channels. Since M is odd, we represent it as M = 2L' + 
1. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk(z) be the analysis filters of degrees Nk - 1, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I k I M - 1. Furthermore, assume the first (L '  + 1)  
filters to be symmetric and the remaining L' filters to be 
antisymmetric. B and A(z )  in (32) and (35), respectively, 
can be generalized to be 

B =  

. .  * . .  . .  . .  . . .  . .  . .  . . .  

. .  
* .  

. .  . .  * . .  . . .  . .  . .  

The matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA i ( z )  satisfies the condition (33), namely, 
A, ( z )  = r3Ai ( z )  r3. Carrying through the same argument 
as in Section 111, Wj thus takes the form 

WO, WO2 

wj = WlO 1 WlOr3 ) (59) i" nL, wo2rL8 rLr WO, rL, wOOrL, 
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Fig. 13. The lattice structure for M-channel LP PR QMF analysis bank. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 

2 2  

-2 

Fig. 14. The lattice structure for M-channel pairwise-symmetric LP PR 
QMF analysis bank. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArLf is defined as in (12), and Woo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWO*, WO], and 
Wl0 have dimensions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( L ’  x L ’ ) ,  ( L ’  x L ’ ) ,  (L ’  x l ) ,  
and ( 1  X L ’ ) ,  respectively. The generalized structure is 
shown in Fig. 13 where Wi and B are as in (59) and (58), 
respectively. 

On the other hand, the pairwise-symmetric LP PR FIR 
QMF analysis bank in Fig. 6 can be appropriately gen- 
eralized. Let us first consider the pairwise-symmetric 
structure in Fig. 9 of 1191. Redrawing it using the above 
B in (58) yields Fig. 14. Here E l ( z )  is as in (42) where 
A ( z )  and Wj are as in (58) and (59), respectively. The 
matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi in Fig. 14 is an orthogonal matrix of unit norm 
[ 191. In summary, Fig. 14 is the analysis bank of the LP 
PR FIR QMF structure which yields pairwise-symmetric 
analysis filters. 

IV. CONCLUDING REMARKS 

We have studied a subclass of the PR FIR QMF struc- 
tures which yield LP analysis filters for arbitrary number 

of channels M .  A number of conditions on these structures 
and their analysis filters are derived; subsequently, we 
gave a formula for the number of LP PR FIR QMF struc- 
tures. To demonstrate the theory of general M ,  we elab- 
orately studied one of the LP PR structures for the case 
of 3-channel. The synthesis filters in this case turn out to 
be linear phase with the same symmetries and orders as 
that of the analysis filters. 

Price Paid for Perfect Reconstruction: It is often as- 
sumed that perfect-reconstruction QMF banks are much 
more expensive than approximate-reconstruction systems 
with comparable stopband attenuations for Hk( z ) ’ s .  This 
impression, however, is not necessarily true. In fact, per- 
fect-reconstruction systems implemented with lattice 

To demonstrate this point, notice that, in Example 3.1, 
the computational complexity of the PR lattice is only 8 
MPU and 11 APU. Suppose now that we design a linear- 
phase equiripple FIR filter Go( z )  with precisely the same 
passband and stopband ripples, and the same transition 
band as Ho(z ) .  Such a filter has order 19. Similarly, if we 
design a linear-phase equiripple filter GI( z )  comparable 
to Hl(z) ,  its order is 20. Finally, define G2(z) = Go( - z )  
so that we have a linear-phase triplet [ G&), G,(z), 
G2( z ) ] with exactly identical properties as the perfect-re- 
construction triplet [ H o ( z ) ,  Hl(z) ,  H2(z)]. Using the 
above complexity calculation in the polyphase direct-form 
implementation, the pair of filters Go( z )  and G2( z )  can be 
realized using 13 MPU and 28 APU. Taking advantage 
of the special form of Gl(z) ,  namely, linear phase and 
function of z 2 ,  its complexity is 6 MPU and 10 APU, 
respectively. In total, this triplet can be implemented with 
19/3 = 7 MPU and 38/3 = 13 APU. 

In summary, the perfect-reconstruction triplet [ Ho( z ) ,  
H l ( z ) ,  H2(z)] (implemented as a lattice) requires 8 MPU 
and 1 1 APU, whereas the comparable nonperfect-recon- 
struction triplet [Go(z), Gl(z), G2(z)] requires 7 MPU 
and 13 APU. (The non-PR triplet of course can be imple- 
mented only in direct form.) The PR system thus has com- 
petitive complexity, which appears to be counterintuitive! 
The fact of the matter is that the PR property permits the 
use of a computationally efficient lattice structure which 
does not exist for arbitrary (non-PR) triplets. 

The principal price we actually pay for perfect recon- 
struction lies in the group delay created by the analysis/ 
synthesis system. In the PR case, this is 55 samples, 
whereas for non-PR triplet, this is only 20. 
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