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Structures of electromagnetic type on

vector bundles

E. Reyes, V. Cruceanu & P.M. Gadea

Abstract

Structures of electromagnetic type on a vector bundle are introduced
and studied. The metric case is also defined and studied. The sets of com-
patible connections are determined and a canonical connection is defined.

1 Introduction

Structures of electromagnetic type (em-structures) and structures of metric elec-
tromagnetic type (mem-structures) on a manifold were progressively introduced
in [9, 11, 7] (see also [6]) and studied in detail in [5, 7, 8, 13, 14]. In the present
paper we define similar structures for the case of a vector bundle ξ = (E, π,M),
and relate them to product, complex, para-Hermitian, Hermitian, para-Kähler
or indefinite Kähler, structures. (In the sequel, by a pseudo-Riemannian met-
ric we shall understand a metric of any signature, and by an indefinite (met-
ric) structure a structure including a pseudo-Riemannian metric.) Then, we
determine the set of connections on ξ compatible with those structures and
we introduce a canonical connection. Considering an almost para-Hermitian
(resp. indefinite Hermitian) structure on the base manifoldM and an indefinite
Hermitian (resp. para-Hermitian) structure of the bundle ξ, we prove that the
corresponding diagonal lift of these structures, with respect to a connection on
ξ, are mem-structures on the total space E. Finally, some properties of those
mem-structures are established.

We recall the physical origin of the topic ([9, 11]). Let M4 be a spacetime of
general relativity, with gravitational tensor g of signature −+++. Let F be the
electromagnetic field of type (0, 2), which is skewsymmetric, that is a 2-form.
Setting F (X, Y ) = g(JX, Y ), the tensor field J so defined is the electromagnetic
tensor field of type (1, 1) associated to F . We have g(JX, Y ) + g(X, JY ) = 0.
The characteristic equation of J is det(J −λI) = 0, which is satisfied by J , and
we have

J4 + 2kJ2 + lI = 0, k = −
1

4
trace J2, l = det J.

If x ∈M4, it is said that Jx is of 1st, 2nd, or 3rd class at x if, respectively,

lx 6= 0, lx = 0, kx 6= 0, lx = 0, kx = 0.
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It is said that J is of 1st, 2nd, or 3rd class if it is of such class at every x. The
characteristic polynomial of the second class is J2(J2 + 2k), but the minimal
polynomial is J(J2 + 2k), so that the condition J(J2 + 2k) = 0 characterizes
the second class. The field of an electromagnetic plane wave is of 3rd class. The
field of a moving electron is of 2nd class. More complicated fields belong to the
1st class. The equation one gets from the minimal polynomial in the 1st class is

(1.1) (J2 − f2)(J2 + h2) = 0.

with f, h nowhere-vanishing C∞ functions on M4. Such a tensor field J on a
general manifold M determines a G-structure on M .

To handle the nonconstant local cross-section situation corresponding to
(1.1), one can use the relationships among G-structures, related sections of
an associated bundle and functions of certain kind on M , as follows: Let
(P, πP ,M,H) be a principal bundle with group H , H ×W → W a left action
of H on a manifold W , and (E = P ×H W, πE,M,W ) the associated bundle. A
J-subset S of W with corresponding group G, a subgroup of H , is defined by
the conditions: (1) S ⊂ fixpoint set of G, (2) h ∈ H , h(S) ∩ S 6= ∅ ⇒ h ∈ G.
For instance, points are J-subsets with G the corresponding isotropy group.
A cross-section K of πE is a J-section if it can be locally represented as the
“product” of a cross-section σ of πP and a S-valued function K̃, so that

Kx = σx · K̃x = equivalence class of (σx, K̃x) in E.

Then K̃ is globally defined, and the σ generate a principal subbundle of P. K is
a constant J-section if and only if K̃ is constant. Different sections can generate
the same subbundle, and in fact, every principal subbundle can be generated by
a constant J-section.

Now, let P be the principal bundle of frames over M , so that H = GL(n,R),
and let W be a real vector space. If J ∈W is given with the conditions stated
above, a J-section generates a J-structure with group G, which is a G-structure.
The tensor K has in principle variable components in adapted frames. This
is a slight generalization with respect to the usually considered G-structures,
given by tensors with constant components, which here correspond to constant
J-sections. Since every J-structure is generated by some constant J-section,
this generalization is useless for the study of the J-structure itself; but if the
emphasis shifts to the study of variable J-sections, the results are significant,
specially with respect to the parallelizability of the tensors.

In the particular case of a (1, 1) tensor field J satisfying (J2−f2)(J2 +h2) =
0, with characteristic polynomial (x − p)r1 (x − p)r2 (x2 + q2)s, r1, r2, s ≥ 1,
r1 + r2 + 2s = n = dimM , the J-subset consists of matrices of the form




pIr1

−pIr2

−qIs
qIs



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and the structural group is G = GL(r1,R)×GL(r2,R)×GL(s,C). It is proved
([7]) that the G-structure defined by J above is also defined by a tensor field, say
again J , satisfying (J2 − 1)(J2 + 1) = 0, that is, the relation J4 = 1 considered
in the present paper.

Notice that the G-structure is exactly the same, not an associated or equiv-

alent one. In the 4-dimensional case the group reduces to G = GL(1,R) ×
GL(1,R) × GL(1,C). It is also proved ([7]) that there exists an adapted Rie-
mannian metric so that the group can be reduced to G = O(r1)×O(r2)×U(s),
and in the 4-dimensional case to Z2 × Z2 × U(1), that is, essentially to the
unitary group U(1).

2 Structures of electromagnetic type on a vector

bundle

Let ξ = (E, π,M) be a C∞ vector bundle with total space E and projection
map π over a connected paracompact base manifold M . The rank of E is the
(common) dimension of the fibres. Let C∞(M) denote the ring of real functions,
T p

q (M) the C∞(M)-module of (p, q)-tensor fields, and T (M) the C∞(M)-tensor
algebra of M . We respectively denote by T p

q (ξ) and T (ξ) the C∞(M)-module
of tensor fields of type (p, q) and the C∞(M)-tensor algebra of the bundle ξ.

We recall that an almost product (resp. almost complex) structure on a
manifold M is defined by a tensor field J of type (1, 1) satisfying J2 = I (resp.
J2 = −I). An almost para-Hermitian (resp. indefinite almost Hermitian) struc-
ture onM is defined by a couple (J, g), given by an almost product (resp. almost
complex) structure J and a pseudo-Riemannian metric compatible with J in the
sense that g(JX, Y )+ g(X, JY ) = 0, X, Y ∈ X(M); that is, as an anti-isometry
(resp. isometry). A para-Kähler (resp. indefinite Kähler) manifold is a manifold
M endowed with an almost para-Hermitian (resp. indefinite almost Hermitian)
structure such that the Levi-Civita connection of g parallelizes J .

Definition 2.1. A structure of electromagnetic type on ξ = (E, π,M) is an
M -endomorphism J of ξ satisfying

J4 = I,

with characteristic polynomial (x − 1)r1 (x + 1)r2 (x2 + 1)s, where r1, r2, s are
constants greater than or equal to 1 such that r1 + r2 + 2s = rankE.

Setting P = J2, we have P 2 = I, so P is a product structure on ξ, admitting
J as a “square root”. Conversely, if P is a product structure admitting a “square
root” J , then J is an em-structure on ξ. Denoting by ξ1 and ξ2 respectively the
+1 and −1 eigen-subbundles of P , it is easy to see that ξ1 and ξ2 are invariant
by J and that J1 = J |ξ1

defines a product structure of ξ1 and J2 = J |ξ2
a

complex structure of ξ2. So, one has

(2.1) ξ = ξ1 ⊕ ξ2, J = J1 ⊕ J2.
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Conversely, if ξ1 and ξ2 are two supplementary subbundles of ξ, J1 is a product
structure of ξ1, and J2 a complex structure of ξ2, then J = J1 ⊕ J2 is an
em-structure on ξ. Denoting by P1 and P2 the projections of ξ on ξ1 and ξ2
respectively, we obtain

P = P1 − P2, J = J1 ◦ P1 + J2 ◦ P2.

Summing up we have

Proposition 2.1. An em-structure on the vector bundle ξ = (E, π,M) can be

defined by each one of the following conditions:

(1) An M -endomorphism J of ξ satisfying J4 = I,
(2) A product structure P of ξ admitting a “square root” J ,

(3) Two supplementary subbundles ξ1 and ξ2 of ξ respectively endowed with

a product structure and a complex structure.

Remark 2.1. A product structure P which admits a “square root” is a particular
one because rank ξ2 must be even.

Definition 2.2. A structure of metric electromagnetic type (mem-structure)
on the vector bundle ξ is a pair (J, g), where J is an em-structure and g a
pseudo-Riemannian metric on ξ satisfying the compability condition

(2.2) g(JX, Y ) + g(X, JY ) = 0, X, Y ∈ ξ.

Denoting by δJ the derivation defined by J in the tensor algebra T (ξ), the
relation (2.2) can be written as

δJg = 0,

from which it follows g(PX, PY ) = g(X, Y ), X, Y ∈ X(M). Therefore, the pair
(P, g) is a pseudo-Riemannian product structure of ξ and so the subbundles ξ1
and ξ2 are mutually orthogonal with respect to g. Denoting respectively by g1
and g2 the restrictions of g to ξ1 and ξ2, from (2.2) we obtain

(2.3) δJ1
g1 = 0, δJ2

g2 = 0,

which may be written
(2.4)
g1(J1X, J1X) = −g1(X, Y ), g2(J2X, J2Y ) = g2(X, Y ), X, Y ∈ X(ξ).

Hence (J1, g1) is a para-Hermitian structure of ξ1 and (J2, g2) is an indefinite
Hermitian structure of ξ2. Conversely, if ξ1 and ξ2 are two supplementary
subbundles of ξ such that ξ1 is endowed with a para-Hermitian structure (J1, g1)
and ξ2 with an indefinite Hermitian structure (J2, g2), then considering J as
given by (2.1) and setting

g = g1 ⊕ g2,

one obtains a mem-structure on ξ. So we have
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Proposition 2.2. A mem-structure (J, g) on ξ is equivalent to a pair of sup-

plementary subbundles ξ1 and ξ2 respectively endowed with a para-Hermitian

structure (J1, g1) and an indefinite Hermitian structure (J2, g2).

Remark 2.2. If (J, g) is a mem-structure on ξ, then we have: rank ξ1 and rank ξ2
are even; trace J1 = trace J2 = 0; signg1 = 0.

Setting for a mem-structure (J, g) on ξ:

Ω(X, Y ) = g(JX, Y ), Ωi(X, Y ) = gi(JiX, Y ), i = 1, 2,

it follows that Ω, Ω1, and Ω2 are 2-forms which determine almost symplectic
structures of ξ, ξ1 and ξ2, so that

Ω = Ω1 ⊕ Ω2.

These 2-forms satisfy

(2.5) δJΩ = 0, δJ1
Ω1 = 0, δJ2

Ω2 = 0.

Remark 2.3. The meaning of conditions (2.2), (2.3) and (2.5) is the following:
The groups of automorphisms of X(ξ1), X(ξ2), and X(ξ) given by

αt = I1 cosh t + J1 sinh t, βt = I2 cos t+ J2 sin t, γt = αt ⊕ βt,

t ∈ R, determine actions on the tensor algebras T (ξ1), T (ξ2), and T (ξ), which
respectively preserve the structures (J1, g1,Ω1), (J2, g2,Ω2), and (J, g,Ω).

3 Compatible connections

3.1 The general case

Definition 3.1. A connection D on the vector bundle ξ is said to be compatible

with an em-structure J if

(3.1) DJ = 0.

From this it follows DP = 0, hence D preserves the subbundles ξ1 and ξ2, i.e.,
for X ∈ X(M), Y1 ∈ X(ξ1), Y2 ∈ X(ξ2), one has DXY1 ∈ X(ξ1), DXY2 ∈ X(ξ2).
Setting then

D1

XY1 = DXY1, D
2

XY2 = DXY2, X ∈ X(M), Y1 ∈ X(ξ1), Y2 ∈ X(ξ2),

we have that D1 and D2 are respectively connections on ξ1 and ξ2, so that

(3.2) DX = D1

X ◦ P1 +D2

X ◦ P2, D1

XJ1 = 0, D2

XJ2 = 0, X ∈ X(M).

Conversely, if D1 and D2 are respectively connections on ξ1 and ξ2, then D
given as in (3.2) is a connection on ξ satisfying DP = 0. If D1 and D2 satisfy
the respective conditions in (3.2), then D satisfies (3.1) too. Thus, it follows
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Proposition 3.1. A connection D on ξ is compatible with the em-structure J
if and only if there exist two connections D1 on ξ1 and D2 on ξ2, respectively

compatible with the product structure J1 and the complex structure J2, so that

(3.3) D = D1 ◦ P1 +D2 ◦ P2.

Consider now on the subbundles ξi of ξ, the operators ΦJi
and ΨJi

given by

(3.4) (ΦJi
Di)X = 1

2
(Di

X +J−1

i ◦Di
X ◦Ji), (ΨJi

Ai)X = 1

2
(Ai

X +J−1

i ◦Ai
X ◦Ji),

where X ∈ X(M), Di is a connection on ξi, and Ai ∈ Λ1(M) ⊗ X(ξi) ⊗ Λ1(ξi)
(now and in the sequel we take i = 1, 2). From [1, 13] and Proposition 3.1 we
obtain

Proposition 3.2. The set of connections on ξ compatible with the em-structure

J is given by

DX = {(ΦJ1
D◦1)X + (ΨJ1

A1)X} ◦ P1 + {(ΦJ2
D◦2)X + (ΨJ2

A2)X} ◦ P2,

where X ∈ X(M) and D◦i is an arbitrary fixed connection on ξi, Ai denotes

any element of Λ1(M) ⊗ X(ξi) ⊗ Λ1(ξi), and ΦJi
, ΨJi

are given by (3.4).

Definition 3.2. A connection D on ξ is said to be compatible with the mem-

structure (J, g) if
DJ = 0, Dg = 0,

From which it follows: DP = 0; D = D1 ◦ P1 + D2 ◦ P2, where Di are the
restrictions of D to ξ1 and ξ2; D

iJi = 0; and Digi = 0. Conversely, if D1 and
D2 are connections on ξ1 and ξ2, compatible with the para-Hermitian structure
(J1, g1) and the indefinite Hermitian structure (J2, g2) respectively, then the
connection D given by (3.3) is compatible with the mem-structure (J, g) on ξ.
So, we have

Proposition 3.3. A connection D on ξ is compatible with the mem-structure

(J, g) on ξ, if and only if there are two connections D1 and D2 on the subbundles

ξ1 and ξ2, respectively compatible with the para-Hermitian structure (J1, g1) and

the indefinite Hermitian structure (J2, g2), so that D is given by (3.3).

Setting then

(3.5) (Φgi
Di)X = 1

2
(Di

X + g−1

i ◦Di
X ◦ gi), (Ψgi

Ai)X = 1

2
(Ai

X + g−1

i ◦Ai
X ◦ gi),

we obtain from [1], Prop. 3.3, and (2.4)

Proposition 3.4. The set of connections on ξ compatible with the mem-struc-

ture (J, g) is given by

DX =
{
((Φg1

◦ ΦJ1
)D◦1)X + ((Ψg1

◦ ΨJ1
)A1)X

}
◦ P1

+
{
((Φg2

◦ ΦJ2
)D◦2)X + ((Ψg2

◦ ΨJ2
)A2)X

}
◦ P2,

where D◦i is an arbitrary fixed connection on ξi, Ai ∈ Λ1(M)⊗ X(ξi)⊗ Λ1(ξi),
and ΦJi

, Φgi
, ΨJi

, Ψgi
are given by (3.4) and (3.5).
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3.2 The case of the tangent bundle

We now consider the case of ξ being the tangent bundle of the manifoldM , i.e.,
ξ = (TM, π,M). In this case, for a mem-structure (J, g) on M , the pair (P, g) is
a pseudo-Riemannian almost product structure on M , and (J1, g1), (J2, g2), are
respectively a para-Hermitian [4] and an indefinite Hermitian structure [10] on
ξ1 and ξ2. If ∇ is a linear connection on M , compatible with P , i.e., ∇P = 0,
then its restrictions ∇1 and ∇2 to ξ1 and ξ2 are connections on these subbundles.
If T is the torsion tensor of ∇, we shall call torsion tensor of ∇i to the tensor
fields T i given by T i = Pi ◦ T |ξi

, or in more detail

T i(Xi, Yi) = ∇Xi
Yi −∇Yi

Xi − Pi[Xi, Yi], Xi, Yi ∈ X(ξi).

We call tensors of nonholonomy of the distributions ξ1 and ξ2 to the tensor
fields S1 = P2 ◦ T |ξ1

and S2 = P1 ◦ T |ξ2
, respectively. We obtain

S1(X1, Y1) = −P2[X1, Y1], S2(X2, Y2) = −P1[X2, Y2].

It follows

Proposition 3.5. The distribution ξ1 (resp. ξ2) is involutive if and only if

S1 = 0 (resp. S2 = 0).

After some computations we obtain from [3, 10, 14]

Proposition 3.6. For a mem-structure (J, g) on a manifold M , there exists a

unique linear connection ∇ with torsion tensor T , satisfying the conditions

∇P = 0, T (PX, Y ) = T (X, PY ),(3.6)

∇i
Xi
Ji = 0, ∇i

Xi
gi = 0, T i(JiX, IiY ) = T i(IiX, JiY ).(3.7)

Definition 3.3. We shall call the canonical connection associated to the mem-
structure (J, g) on the manifold M to the connection given by the conditions
(3.6) and (3.7).

Remark 3.1. Notice that this connection slightly differs from that given in The-
orem 5.3 in [14].

For the canonical connection we obtain from (3.6):

∇1

X2
Y1 = P1[X2, Y1], ∇2

X1
Y2 = P2[X1, Y2].

Denoting by ξ1
1
, ξ2

1
the eigen-subbundles of J1 corresponding to ε = +1, ε = −1,

by π1

1
, π2

1
the projection maps of ξ1 on ξ1

1
, and ξ2

1
and by Xi

1
, Y i

1
any elements

of X(ξi
1
), we obtain from the first equation in (3.7)

∇1

X2

1

Y 1

1
= π1

1
P1[X

2

1
, Y 1

1
], ∇1

X1

1

Y 2

1
= π2

1
P1[X

1

1
, Y 2

1
],

g1(∇
1

X1

1

Y 1

1
, Z2

1
) = X1

1
g1(Y

1

1
, Z2

1
) − g1([X

1

1
, Z2

1
], Y 1

1
),

g1(∇
1

X2

1

Y 2

1
, Z1

1
) = X2

1
g1(Y

2

1
, Z1

1
) − g1([X

2

1
, Z1

1
], Y 2

1
).
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From the second equation in (3.7) above it results, exactly as in [14, Th. 5.1],
the expression for ∇2

X2
Y2.

For J and g we obtain

(∇X1
J)Y1 = 0, (∇X2

J)Y2 = 0, (∇X1
J)Y2 = (∇2

X1
J2)Y2,

(∇X2
J)Y1 = (∇1

X1
J1)Y1, (∇X1

g)(Y1, Z1) = 0, (∇X2
g)(Y2, Z2) = 0,

(∇X2
g)(Y1 , Z1) = (LX2

g)(Y1 , Z1), (∇X1
g)(Y2, Z2) = (LX1

g)(Y2, Z2),

where L stands for the Lie derivative.

4 Structures of electromagnetic type on the to-

tal space of a vector bundle

Let ξ = (E, π,M) be a vector bundle and (xj), (ya), (xj , ya), local coordinates
in adapted charts onM , ξ, and E, respectively. We denote by (∂j), (ea), (∂j , ∂a)
the corresponding local bases, where ∂j = ∂/∂xj , ∂a = ∂/∂ya, j = 1, 2, . . . , m,
a, b, c = 1, 2, . . . , n (see [2]). Setting for each z = (x, y) ∈ E, VzE = Ker π∗z,
we obtain the vertical distribution and so the vertical subbundle of TE, denoted
by V E. Let C∞v = {fv = f ◦ π : f ∈ C∞(M)} be the subring of C∞(E)
naturally isomorphic to C∞(M). Setting for each µ ∈ Λ1(ξ), locally given by
µ(x) = µa(z)ea,

γ(µ)(z) = µa(x)ya,

we obtain a class of functions on E enjoying the property that every vector field
A ∈ X(E) is uniquely determined by its values on those functions. The mapping
γ may be extended to tensor fields S ∈ T 1

1
(ξ) by

(γS)(γ(µ)) = γ(µ ◦ S), µ ∈ Λ1(ξ).

If S(x) = Sa
b (x)ea ⊗ eb, then γS(z) = Sa

b (x)yb∂a, i.e., γS is a vertical vector
field on E. Now, let D be a connection on ξ and X ∈ X(M), u ∈ X(ξ). Setting

Xh(γµ) = γ(DXµ), uv(γµ) = µ(u) ◦ π, µ ∈ Λ1(ξ),

we obtain two vector fields Xh and uv on E, respectively called the horizontal

lift of X and the vertical lift of u. We have the useful formulas [2]:

(fX)h = fvXh, (fu)v = fvuv, [Xh, Y h] = [X, Y ]h − γRD
XY , [uv, wv] = 0,

[Xh, uv] = (DXu)
v, f ∈ C

∞(M), X, Y ∈ X(M), u, w ∈ X(ξ).

Now, putting

Q(Xh) = Xh , Q(uv) = −Xv , X ∈ X(M), u ∈ X(ξ),

we obtain an almost product Q structure on E whose +1 and −1 eigendistribu-
tions, are respectively called the horizontal distribution HE of the connection
D and the vertical distribution V E of the bundle.

8



For f ∈ T 1

1
(M), ϕ ∈ T 1

1
(ξ), g ∈ T2(M), ψ ∈ T2(ξ), we define the horizontal

lift or the vertical lift fh, ϕv, gh, ψv, respectively by

(4.1) fh(Xh) = f(X)h , fh(uv) = 0, ϕv(Xh) = 0, ϕv(uv) = ϕ(u)v,

gh(Xh , Y h) = g(X, Y )v, gh(Xh, uv) = gh(uv, Xh) = gh(uv, wv) = 0,

ψv(Xh, Y h) = ψv(Xh, uv) = ψv(uv, Y h) = 0, ψv(uv, wv) = ψ(u, w)v,

X, Y ∈ X(M), u, w ∈ X(ξ).

We then define the diagonal lifts J and G for the pairs (f, ϕ) and (g, ψ) by

(4.2) J = fh + ϕv, G = gh + ψv.

From (4.1) and (4.2) we have

Jn(Xh) = (fn(X))h , Jn(uv) = (ϕn(u))v, n ∈ N
∗.

So J4 = I, that is J is an em-structure on E, if and only if f4 = I1 and ϕ4 = I2,
that is, either f and ϕ are both em-structures or one is an em-structure and the
other an almost product or almost complex structure, or finally f is an almost
product (resp. almost complex) and ϕ is a complex (resp. product) structure on
M and ξ respectively. In the sequel we only consider the last case.

Hence, let J be an em-structure on the total space E of ξ given by the
diagonal lift in the first equation in (4.2) of an almost product (resp. almost
complex) structure f on the base manifold M and a complex (resp. product)
structure ϕ on the bundle ξ, that is, which satisfy

f2 = εI1 , ϕ2 = −εI2, ε = 1 (resp. ε = −1),

with respect to a connection D on ξ. For the almost product structure P
associated to J , we obtain P = εQ, that is, P coincides up to the sign with the
almost product structure Q above associated to D.

Now, let G be the diagonal lift in the second equation in (4.2), with respect
to D, for the pair (g, ψ) of metrics on M and ξ. From (4.2) we obtain

δJG = (δfg)
h + (δϕψ)v ,

and so δJG = 0 if and only if δfg = 0 and δϕψ = 0. It follows

Proposition 4.1. The pair (J,G) of diagonal lifts, with respect to a connection

D on ξ, of an almost product (resp. almost complex) structure f on M and a

complex (resp. product) structure ϕ of ξ, and the nondegenerate metrics g on M
and ψ on ξ, is a mem-structure on the total space E of ξ if and only if the pair

(f, g) is an almost para-Hermitian (resp. indefinite almost Hermitian) struc-

ture on M . The pair (ϕ, ψ) is an indefinite Hermitian (resp. para-Hermitian)
structure on ξ.
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Denoting by ω and τ the 2-forms associated to the structures (f, g) onM and
(ϕ, ψ) on ξ, and by Ω1,Ω2,Ω, the 2-forms associated to the structures (fh, gh)
on HE, (ϕv, ψv) on V E and (J,G) on TE, we obtain

Ω1 = ωh, Ω2 = τv, Ω = ωh ⊕ τv.

From the hypotheses of Prop. 4.1 it follows

δfg = 0, δfω = 0, δϕψ = 0, δϕτ = 0, δJG = 0, δJΩ = 0.

Remark 4.1. The groups of automorphisms of X(M),X(ξ),X(E), given respec-
tively for ε = 1 and ε = −1, by

αt = I1 cosh t + f sinh t, βt = I2 cos t + ϕ sin t, γt = αh
t ⊕ βh

t , t ∈ R,

αt = I1 cos t + f sin t, βt = I2 cosh t + ϕ sinh t, γt = αh
t ⊕ βh

t , t ∈ R,

determine on the tensor algebras T (M), T (ξ), and T (E), actions which preserve
the structures (f, g, ω), (ϕ, ψ, τ ) and (J,G,Ω).

For two connections ∇ on M and D on ξ, we define the horizontal lift ∇h

on the subbundle HE and the vertical lift Dv on the subbundle V E (each one
with respect to the connection D), respectively by

∇h
XhY

h = (∇XY )h, ∇h
uvY h = 0, Dv

Xhw
v = (DXw)v, Dv

uvwv = 0.

Putting them

DAX = ∇h
AHX +Dv

AVX, A,X ∈ X(E),

where H and V denote the horizontal and vertical projectors of TE on HE
and V E, we obtain a linear connection D on E, called the diagonal lift of the
pair (∇, D) with respect to the connection D (see [2]), whose restrictions to
the subbundles ξ1 = HE and ξ2 = V E are D1 = ∇h and D2 = Dv. The
nonvanishing components of the torsion and curvature tensors of D are given
by

T (Xh , Y h) = T∇(X, Y )h + γRD
XY ,(4.3)

RXhY hZh = (R∇

XY Z)h, RXhY huv = (RD
XY u)

v,

where T∇, R∇, and RD stand for the torsion tensor of ∇ and the curvature
tensors of ∇ and D.

For the covariant derivatives, with respect to D, of the horizontal lift of f
and g, and the vertical lift of ϕ and ψ we obtain

DXhfh = (∇Xf)
h, Duvfh = 0, DXhgh = (∇Xg)

h, Duvgh = 0,

DXhϕv = (DXϕ)v, Duvϕv = 0, DXhψv = (DXψ)v, Duvψv = 0.
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So, for the diagonal lifts J and G of the pairs (f, ϕ) and (g, ψ), it follows

DXhJ = (∇Xf)
h + (DXϕ)v, DuvJ = 0,(4.4)

DXhG = (∇Xg)
h + (DXψ)v, DuvG = 0.

Hence, DJ = 0 if and only if ∇f = 0, Dϕ = 0; and DG = 0 if and only if
∇g = 0, Dψ = 0. From (4.3) and (4.4) it follows, for P = J2, that DP = 0 and
T ◦ P × I = T ◦ I × P for any connections ∇ on M and D on ξ. After that we
have

∇h
Xhg

h = (∇Xg)
h, Dv

uvϕv = 0, Dv
uvψv = 0,

∇h
Xhf

h = (∇Xf)
h , T 1(fhX, I1Y ) = (T∇(fX, I1Y ))h, T 2(ϕvX, I2Y ) = 0,

where T 1 = H ◦ T |HE and T 2 = V ◦ T |V E . So we obtain

Proposition 4.2. The diagonal lift D on E, for the connections ∇ on M and

D on ξ, is the canonical connection associated to the mem-structure (J,G) if

and only if

∇f = 0, ∇g = 0, T∇(fX, Y ) = T∇(X, fY ),

i.e., the connection ∇ is the canonical connection [2, 10] associated to the almost

para-Hermitian (resp. indefinite almost Hermitian) structure (f, g) on M .

Also from (4.3) and (4.4) we obtain DG = 0 and T = 0 if and only if ∇g = 0,
T∇ = 0, RD = 0 and Dψ = 0. Hence we have

Proposition 4.3. The diagonal lift D of the pair of connections (∇, D) coin-

cides with the Levi-Civita connection of G if and only if ∇ is the Levi-Civita

connection of g, D has vanishing curvature and ψ is covariant constant.

For the Nijenhuis tensor of J ,

NJ (A,B) = [JA, JB] + J2[A,B] − J [JA,B] − J [A, JB], A, B ∈ X(E),

we obtain

NJ (Xh, Y h) = Nf (X, Y )h + γ
(
εRD

XY −RD
fXfY + ϕ ◦ (RD

fXY + RD
XfY )

)
,(4.5)

NJ (Xh, uv) =
(
DfXϕu− εDXu− ϕ ◦ (DfXu+DXϕu)

)v
, NJ(uv, wv) = 0.

It follows

Proposition 4.4. The mem-structure J is integrable (i.e., NJ = 0, see [8])
if and only if f is a product (resp. a complex) structure in M , the connection

D has vanishing curvature and the complex (resp. product) structure ϕ on ξ is

covariant constant.

For the exterior differential of the 2-form Ω associated to the mem-structure
(J,G) we obtain

dΩ(Xh, Y h, Zh) = dω(X, Y, Z)v, 3dΩ(Xh, Y h, wv) = −γ(iwτ ◦R
D
XY ),

3dΩ(Xh, uv, wv) = DXτ (u, w)v, dΩ(uv, vv, wv) = 0.

Hence
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Proposition 4.5. The almost symplectic structure Ω associated to the mem-

structure (J,G) on E is integrable (i.e., dΩ = 0) if and only if the structure

(f, g) is almost para-Kähler (resp. indefinite almost Kähler), the connection D
has vanishing curvature, and the 2-form τ on ξ is covariant constant.

Finally we obtain

Proposition 4.6. For the mem-structure (J,G) on E, the structures J and Ω
are simultaneously integrable if and only if the structure (f, g) is a para-Kähler

(resp. indefinite Kähler) structure on M , D has vanishing curvature and the

pair (ϕ, ψ) is covariant constant.
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[3] V. Cruceanu & F. Etayo, On almost para-Hermitian manifolds, Algebras Groups
Geom. (to appear in 1999).

[4] V. Cruceanu, P. Fortuny & P.M. Gadea, A survey on Paracomplex Geometry,
Rocky Mountain J. Math. 26 (1996) 83–115.

[5] F. Etayo & E. Reyes, Normality and structure transfer in (J4 = 1)-manifolds,
Rend. Sem. Fac. Sci. Univ. Cagliari 62 (1992) 1–7.

[6] J.M. Hernando & P.M. Gadea, Sobre ciertas estructuras polinómicas, Act. VII
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