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Abstract.- In this paper we prove that if G is a group acting on a tree X such that G is fixing no vertex of X, the 
stabilizers of the edges of X  are finite, and the stabilizers Gv of the vertices of X act on  trees Xv where  Xv  X,             
Xu  Xv for all vertices u,v of X, where u  v, and the stabilizer Ge of each edge contains no edge x of the tree Xo(x) 
such that g(x) = �̅� for every edge gGx, then there exists a tree denoted �̃� and is called the fiber of X such that G 
acts on �̃�. 
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1 Introduction 
Let G be a group and HG such that H acts on the set 
X. Define the relation  on GX as follows. If f,gG 
and u,vX let (f,u)  (g,v) if there exists an element 
hH such that f = gh, and u = h-1(v). It is clear that  
is an equivalent relation on on GX. The equivalent 
class containing the element (g,v)GH is denoted 
by gHv. Thus,                                                           
gHv = {(gh, h-1(v)hH}(gH)H(v), where             
gH = {ghhH} is the left coset of g and H(v) is the 
orbit of v under the action of H on X.                           
Let 𝑔𝐺, 𝑥𝑋, 𝐴 ⊆ 𝐺, and 𝑌 ⊆ 𝑋. We have the 
following notation.                                                                                                                                         
(1) 𝑔 ⊗𝐻 Y = { 𝑔 ⊗𝐻 a |𝑎𝑌},    
 (2) 𝑔 ⊗𝐻 X = { 𝑔 ⊗𝐻 b |𝑏𝑋},                                                                                                                  
(3) 𝐴 ⊗𝐻 x { 𝑐 ⊗𝐻 x |𝑐𝐴},                                                                                                                             
(4) 𝐴 ⊗𝐻 Y = { 𝑎 ⊗𝐻 y |𝑦𝑌},                                                                                                                                                                                                                   
(5)𝐺 ⊗𝐻 Y =  { 𝑔 ⊗𝐻 y |𝑔𝐺, 𝑦𝑌},                                                                                                
(6)𝐺 ⊗𝐻 X =  { 𝑔 ⊗𝐻 x |𝑔𝐺, 𝑥𝑋},                                             
(7)𝐺 ⊗𝐻 (𝐻 𝑋⁄ ) = { 𝐺 ⊗𝐻 O|𝑂𝐻/𝑋},  where 
𝐻/𝑋 =  {𝐻(𝑥)|𝑥𝑋}, the set of  the orbits of the 
action of H on X, and H(x) = {h(x)|hH}, the orbit 
that contains the element xX. It is clear that if 𝑔𝐺, 

ℎ𝐻, and 𝑥𝑋, then 𝑔 ⊗𝐻 h(x) = 𝑔ℎ ⊗𝐻x and                                       
𝑔 ⊗𝐻 x = 𝑔ℎ−1 ⊗𝐻 ℎ(x). 
 
The aim of this paper is to use above notation  to 
show that groups acting on trees with inversions, 
fixing no vertex of the tree and of given trees on 
which the stabilizers of the vertices act and of finite 
edges stabilizers induce a new tree called the fiber 
tree of the group. 
 
 
2 Concepts of Graphs 
A graph X is the disjoint union of vertices V(X) and 
edges E(X). An edge e is called a loop if the initial 
vertex o(e) equals its terminal vertex t(e). If all edges 
in a graph are loop we call the graph a loop graph. 
Moving on, if a graph has at least on loop then it is 
called quasi-graph. A graph that all its initial vertices 
and terminals and inverses in a graph X is called a 
subgraph of X, say Y.  Define  Y̅ to be the set           
   Y̅ =  {e̅|eE(Y)} where e̅ is the invers of e. 
Let e1, e2, . . . , en be edges in the graph X.                       
P = (e1, e2, ..., en) is called a path in X if                     
t(ei) = o(ei+1) for i = 1,2, ..., n-1. If u = o(e1) and              
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v = t(en) then P is called a path in X joining (or 
liking) the vertices u and v, or a path in X from u to 
v. If o(e1) = t(en) then P is called a closed path in X. 
If ei+1  ei̅ for i = 1,2, ..., n,  then P is called a reduced 
path in X. o(P) = o(e1) is the initial of P,                      
t(P) =  t(en) is the terminal of P,                                       
P̅ = (en̅̅ ̅, en−1̅̅ ̅̅ ̅̅ , ..., e2̅̅̅, e1̅) is the inverse of P. It is clear 
that  P̅  is a path in X joining the vertices t(P) and 
o(P). The edges in the path P = (e1, e2, ..., en) are 
called the edges of P. If Q is a path in X such that 
t(P) = o(Q), then PQ is a path in X such that  o(PQ) = 
o(P) and t(PQ) = t(Q). |P| = n is called the length of 
P. It is clear that if eE(X) such that t(e) = o(P), then 
(e, P) = (e, e1, e2, ..., en) is a path in X. A path P is 
called a simple circuit if it is close and contains no 
repeated edges. The set of all paths in the graph X is 
denoted by Path(X). We recommend readers to [2, 9] 
for the structures of groups acting on graphs without 
inversions and [1, 4, 5, 6] for with inversions, when 
an edge of the graph equals its inverse is allowed. For 
further studies see [10, 11]. 

 
A group G acts on a graph X if there exists a unique 
element denoted by g(x)X for every gG and every 
xX. G acts on X with inversions if there exist an 
element gG and an edge eE(X) such that          
g(e) =  e̅.                                                               
Remark. We write (G;X) to mean that G is a group 
acting on the tree X. 
 

Definition 2.1. A subtree T is called a tree of 
representatives for the action of G on  X  if  T has a 
unique vertex from each vertex orbit. A subtree Y is 
called a transversal it has a unique edge y such that  y̅ 
move in different orbit than y. The pair (T;Y) is 
called a  cover or (a fundamental domain). See [3]. 

 
The following are some properties of the tree of the 
representatives T and the transversal Y.                                                                                                                                                                                             
(1) For any vV(X), we have a unique vertex 
denoted v* where v*V(T) and  G(v) = G(v*). That 
is, v = g(v*), gG, where G(v) = {g(v): gG} is the 
orbit containing v.                                                                                                                                                                                                                                                                                                 
(2) For every vV(X) we have  gG where           
g(v*) = v.                                                                                                                                                                                                                                                                                                       
(3) v* = v for all vV(T).                                                                                                                   
(4) (v*)* = v* for all vV(X).                                                                                                             
(5) (g(v))* = v* for all gG and all vV(X).                                                                                     
(6) If gG  where g(u) = v then   u = v.                                                                              

(7) If gG and u,vV(X) where g(u) = v then  
(g(u))* = u* = v*.                                                                
(8) If eE(Y) where  o(e)V(T), then                 
(o(e))* = o(e), and if t(e)V(T), then (t(e))* = t(e).  
(9) If eE(T), then (o(e))* = o(e), (t(e))* = t(e) and 
o(e)  t(e).   
(10) For every aE(X) we have gG and bE(Y) 
where  a = g(b).                                                       
(11) If gG and a,bE(Y) on which g(a) = b, then        
a = b or a = b̅.                                                                                                                                                                                                                                                                                                                                                              

For the rest of this section G will be a group acting 
on a tree X of cover (T;Y).                                         
The proofs of the following propositions are straight 
forward.                                                                                                                      
 

Proposition 2.2. 

 The edges E(Y) of Y can be split in to the following 
sets of edges, called the sets of splitting edges of Y.                                                                                                                           
(1) E0(Y) = {mE(Y): o(m), t(m)E(T)} = E(T).                                                                                 
(2) E1(Y) = {yE(Y): o(y)E(T), t(y)E(T),           
G(y)  G(y̅)}.                                                               
 (3) E2(Y) = {xE(Y): o(x)E(T), t(x)E(T),           
G(x) = G(x̅)}.                                                              
 

Proposition 2.3.  For  eE(Y), o(e)V(T), there 
exists an element denoted [e]G where          
[e]((t(e))*) = t(e).  We choose [e] = 1 in case eE(T) 
and [e](e) = e̅ if G(e̅) = G(e).                                        
Proposition 2.4.  Let mE0(Y), yE1(Y), and 
xE2(Y). Then [m] = 1, [y̅] = [y]-1,  [x̅] = [x], and 
[x]2Gx.                                                                                                                                 
Proposition 2.5. ([4]) The element gG, g  1 can 
be written as a product                                                    
g = g0[e1]g1[e2]g2 ..., gn-1[en]gn, where  e1, e2, ..., en are 
edges of Y and  g0, g1, g2 ..., gn-1, gn, are elements of 
G such that (t(ei))* = (o(ei+1))* for i = 1, 2, ..., n-1, 
g0𝐺(𝑡(𝑒𝑖))∗ and gi𝐺(𝑜(𝑒𝑖+1))∗ for i = 1, 2, ..., n. 
Definition 2.6. For eE(Y) define the sign +e of e                                   
to be the edge +e = e if o(e)V(T) and +e = [e](e) if   
t(e) V(T).  
It is clear that if  o(p)V(T) and t(p) V(T), then 
pE(T), [p] = 1 and +p = p.                                                                                        
 

Proposition 2.7. (1) For eE(Y) we have the 
following.                                                                                     
(i) o(+e) = (o(e))*, t(+e) = [e]((t(e))*), and                   
+𝑒̅̅ ̅̅   = [𝑒](+�̅�). 
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(ii) G+e  G(o(e))* and [e]-1G[e] = G[e]−1(e)= G+e.                                                                                                                 
(iii) If eV(T) or G(e) = G(�̅�) then G+e = Ge.                                                                                      
(2) If p,qE(Y) on which +p = +q then p = q or            
p = �̅�.                                                                               
(3) If gG and, p,qE(Y) on which g(+p) = +q then 
+p = +q.                                                                                                                                                                     
(4) If mE0(Y), yE1(Y), xE2(Y) and gG, then 

+m = m, +y = y, +y̅ = [�̅�](�̅�) =  [y]−1(y)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,   +x = x, 
and +�̅� = x.                                                                                                                                                 
                                                                                                                                    
Definition 2.8. Let gG and eE(X). The sum of g 
and e is denoted by ge and is defined to be the pair   
ge = (gG+e, +e).                                                          
Let X* be the set X* = {gegG, eE(Y)}.                                                                                                 
 

We have the following facts. The proofs are clear. 
(1) gm = (gGm,m), g[m]m̅ = (gGm,m̅) = gm̅                                                                             

(2) gy = (gGy,y), g�̅� = (𝑔𝐺[𝑦]−1(𝑦), [𝑦]−1(�̅�)), 
g[y]�̅� = (𝑔[𝑦]𝐺[𝑦]−1(𝑦), [𝑦]−1(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ).                           
(3) gx = g[x]�̅� = (𝑔[𝑥]𝐺𝑥, 𝑥) = g[x]x.                                                                                      
(4) X* = {gm, gy, gy̅, gxmE0(Y), yE1(Y), 
xE2(Y)}.                                                                      
(5) If f,gG and  p,qE(Y) such that fp = gq, 
then   f = gh, where hG+p and +p = +q. 
 
Proposition 2.9.  X*  E(X).                                                                        
Proof. It is clear that the mapping :X*E(X) 
giving by (ge) = g(+e) is one-one and onto. 
 

 

3 Inversion Elements   
Definition 3.1. If G is a group acting on a graph X, 
gG and eE(X) where g(e) = �̅�, we say that g is an 
inversion element of G and e is called an inversion 
edge of X under g. It is clear that if X is a quasi-
graph on which G acts then we have eE(X) on 
which  �̅� = e. Then 1G(e) = �̅�. In this case 1G is an 
inversion element of G and e is an inversion edge of 
E(X) under 1G, the identity element of G                                                                                           
Proposition 3.2.  Let X be a graph where the group 
G acts.  Then the following imply each other.                                                                                                                                           
(1) The action of G on X is with inversions.                                                                                                   
(2)  E(X) has an inversion edge and G has an 
inversion element.                                                     
(3) The orbit space G/X is a quasi-graph.  
Proposition 3.3. Let X be a graph on which the 
group G acts such that G has inversion element gG 
and eE(X) be an inversion edge of X under g. Let 

u{o(e), t(e)}. Then                                                                           
(1)  �̅� is an inversion under g, g2Ge and g2Gu.                                                                                                                             
(2) gGu if X is a tree.                                                                                                             
Proof. Clear.  
Lemma 3.4. Let (G;X) and HG.  Then                               
(i) If H has an element that is an inversion, then H is 
not contained in the stabilizer of any vertex of X.                                                                                                                                                        
(ii)  If H is finite and contains no inversion element 
then H is contained in a stabilizer of a vertex of X, H 
fixes a vertex of X, and has a trivial orbit for the 
action of H on X . Moreover, if u,vV(X) are two 
vertices of X such that HGu and  HGv, then 
HeGe, where e is an edge of the reducing path in X 
joining u and v.                                                                                                                                                                                                                        
Proof.  (i) Let gH be an inversion element. Then 
there exists an inversion edge eE(X)  of X under g. 
So g(e) = �̅�. Let u{o(e), t(e)}. Since X is a tree, 
Proposition 3.3-(2) implies that gGu. If u = v we are 
done. Now assume that u  v. We need to show that 
gGv.  X being a tree implies that there exists a 
unique reduced path P = ( e1, e2, ..., en)Path(X)  
joining u and v. So the edges e1, e2, ..., en are distinct 
and n 1. The properties of groups acting trees imply 
that   Q:  g(e1), g(e2,), ..., g(en) Path(X) , where  Q is 
a unique reduced liking g(u) and g(v) of length n 1. 
Assume that gGv. Then g(v) = v. Let u = o(e). We 
consider the following cases.                                                                                                                              
Case 1.  e = e1. So P is the path P = ( e, e2, ..., en). The 
property g(e) = �̅�  implies that Q is the reduced path   
Q = (�̅�, g(e2,), ..., g(en)) Path(X) linking g(u) and 
g(v) = v. Since   t(�̅�) = o(e) = u = o(e2), then o(g(e2,)) 
= g(u) and  R = (g(e2,), ..., g(en))Path(X) such that 
R is reduced and linking  g(u) and g(v) = v  and of 
length n-1.  Hence Q and R are two reduced paths in 
Path(X) joining g(u) and g(v) = v of different lengths 
n and n-1. This is impossible because X is a tree. 
This implies that gGv.                                                                                                                                                                                                            
Case 2. e  e1. Then (�̅�, e1, e2, ..., en)Path(X) such 
that it is reduced and linking o(�̅�) = t(e) and v.  Then 
(g(e), e1, e2, ..., en)Path(X)  is reduced and linking  
t(e) and v.  As X is a tree, S = (g2(e), g(e1), g(e2,), ..., 
g(en))Path(X) is a unique and reduced linking  
g(t(e)) and g(v) = v. Since u = o(e) and g(�̅�) = g2(e), 
therefore by  Proposition 3.3-(2), g2Gu. So g2(u) = 
u. So S is a reduced path in X joining u and v. Thus, 
R and S are two distinct reduced paths in X joining u 
and v. Since X is a tree, this contradicts a property of 
a tree that two distinct vertices of a tree are joined by 
exactly one reduced path. This implies that gGv.                                                           

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.76

Abdullah Al-Husban, Doaa Al-Sharoa, 
Mohammad Al-Kaseasbeh, R. M. S. Mahmood

E-ISSN: 2224-2880 652 Volume 21, 2022



Let u = t(e).  Then u = o(�̅�) and by adjusting the cases 
above yields that gGv. Hence H is not contained in 
any stabilizer Gv. for any vertex vV(X) of X.                                                                                        
(ii) Since H is finite and contains no inversion 
element of G, by [2, Theorem 8.1, p. 27], there exists 
a vertex vV(X) such that HGv. Then the stabilizer 
Hv of the vertex vV(X) is HGv The case HGv 
implies that  H = Hv. So H fixes the vertex v. Since H 
is finite, the stabilizer Hv and the orbit H(v) = {h(v): 
hH}of v under the action of H on X are finite.  By 
the Orbit-Stabilizer Theorem [8, Lemma 4.11, p. 72], 
the orders of H, Hv, and H(v) satisfy the equation 
H = HvH(v). The case H = Hv implies that H = 
Hv. So H(v) = 1. So H has a trivial orbit for the 
action of H on X. If  u,vV(X) are two vertices of X 
such that HGu and  HGv then Gu  = Gv or HGu 

Gv and by Theorem 4.3 of [7], H is contained in the 
intersection of the stabilizers of the edges of the 
reduce path in X joining u and v.                          
Corollary 3.5.  Let (G;X), yE(X), o(y) = v,  Xv be a 
tree where (Gv ;Xv) and is finite and contains no 
inversion element of  Gv. Then we have w(y)V(Xv ) 
of Xv  on which  Gy(Gv)w(y), (Gv)w(y) is the stabilizer 
of the vertex w(y) under the action of  Gv on  Xv.                                                                                                                                                  
Proof. By Lemma 3.4-(ii).          
 

                                                                                                                                         
4 Basics of the Fibers                                                                            
 For the rest of this section, we have (G;X) of  a 
cover (T;Y) of the following assumptions.                                                                                                                 
(a) For each vV(T) let Xv be a graph such that 
XuXv =  for all uV(T), u  v, and the stabilizer 
of v Gv acts on Xv.                                                                                                                                           
(b) For gG, vV(T) let g⊗Gv

Xv = {g⊗Gv
x xXv} 

and   G⊗Gv
Xv = ⋃ 𝑓 ⊗𝐺𝑣

𝑋𝑣𝑓𝜖𝐺 = {g ⊗Gv
xgG, 

xXv}.                                                                                                                                                 
(c) Let  X̂  = ⋃ [G ⊗Gv

Xv]v∈V(T) , and  X̃ = X*X̂, 
where X* = {gegG,eE(Y)} and                            
ge = (G+e,+e) of Definition 2.8.                                                               
 

Definition 4.1. For eE(Y), let w(e)V(X(o(e))*) be 
chosen so that  G+e(G(o(e))*)w(e), where (G(o(e))*)w(e) is 
the stabilizer of w(e).  So w(�̅�)V(X(t(e))*) and                                  
𝐺+�̅� ≤ (𝐺(𝑡(𝑒))∗)𝑤(�̅�). 
 
Proposition 4.2. Let u,vV(T) and f,gG. Then                                                                               
(1) If u1V(Xu) and v1V(Xv) where                    

f⊗Gu
u1= g⊗Gv

v1then  u = v, Gu = Gv, and we have 
hGu where f = gh and v1 = h(u1)Xu.  
 (2) If u  v then [f⊗Gu

Xu][g⊗Gv
Xv] =  and 

[G⊗Gu
Xu][G⊗Gv

Xv] = .                                                                                                          
 

Lemma 4.3. (1) X̃ is a graph where                         
V(X̃ ) = ⋃ [G ⊗Gv

V(Xv)v∈V(T) ] and                                        
E(X̃ ) = X∗[⋃ (G ⊗Gv

E(Xv)v∈V(T) ], where the ends  
of E(X̃ ) are                                                                                                     
If X*, then  = ge = (gG+e, +e), where gG, and 
eE(Y).   Let o() = o(ge) = g⊗G

(o(e))
⋇w(e),         

t() = t(ge) = g[e]⊗G
(t(e))

⋇w(e̅), and                                    

α̅ =  g ⊕ e̅̅ ̅̅ ̅̅ ̅ = g[e] ⊕ e̅.  If 
(⋃ [G ⊗Gv

E(Xv)v∈V(T) ], then the ends of  are 
defined as follows. o() = o(g⊗Gv

e) = g⊗Gv
o(e),                                    

t() = t(g⊗Gv
e) = g⊗Gv

t(e), and,                               
α̅ =  g ⊗Gv

e̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = g ⊗Gv
e̅, where eE(Xv) and, o(e), 

t(e), and e̅ are the initial, the terminal and the inverse 
of the edge eE(Xv).                                                                                                              
(2) G⊗Gv

Xv, vV(X), and X̂ form subgraphs of  X̃.                                                                        
Proof. First we show that X̃ forms a graph. Since Xv 
is a graph, this implies that V(Xv)E(Xv) = . If 
[G⊗Gv

V(Xv)][G⊗Gv
E(Xv)]  , then there exists 

an element a[G⊗Gv
V(Xv)][G⊗Gv

E(Xv)]. So           
a = f ⊗Gv

x = g⊗Gv
e, where f,gG, xV(Xv), and 

eE(Xv). From ⊗Gv
 we have hGv where f = gh and  

e = h(x). The case h(x)V(Xv), because Gv acts on 
Xv, implies that eV(Xv) which contradicts above 
that V(Xv)E(Xv) = . So 
[G⊗Gv

V(Xv)][G⊗Gv
E(Xv) = .                                                             

Since X*(⋃ [G ⊗Gv
V(Xv)v∈V(T) ]) = , we have 

(⋃ [G ⊗Gv
V(Xv)v∈V(T) ])[X*

(⋃ [G ⊗Gv
E(Xv)v∈V(T) ])] = .  By taking the set of 

vertices V(X̃ ) to be V(X̃ ) = ⋃ [G ⊗Gv
V(Xv)v∈V(T) ] 

and  the set of edges E(X̃ ) to be                                 
E(X̃ ) = X*(⋃ [G ⊗Gv

E(Xv)v∈V(T) ]) we see that 
V(X̃ )E(X̃ ) = .                                                     
Now we show that for  X̃  we have o(α̅) =  t(), 
t(α̅) =  o(), and  α̿ =  .                                          
Let E(X̃ ).                                                                                                                                    
Case 1. X*. Then  = ge = (gG+e, +e), where 
gG, and eE(Y).                                                          
Then o(α̅) = o(g ⊕ e̅̅ ̅̅ ̅̅ ̅) = o(g[e] ⊕ e̅) = 
g[e]⊗G

(o(e̅))
⋇ w(e̅) = g[e]⊗G

(t(e))
⋇ w(e̅)  = t(),             

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.76

Abdullah Al-Husban, Doaa Al-Sharoa, 
Mohammad Al-Kaseasbeh, R. M. S. Mahmood

E-ISSN: 2224-2880 653 Volume 21, 2022



t(α̅) = t(g ⊕ e̅̅ ̅̅ ̅̅ ̅) = t(g[e] ⊕ e̅) =  
g[e][e̅] ⊗G

(t(e̅))
⋇ w(e̿) = g⊗G

(o(e))
⋇ w(e) = o(), 

because [e][e̅]G+eG(o(e))* and e̿ = e, α̿ = g ⊕ e̿̿ ̿̿ ̿̿ ̿ = 
g[e] ⊕ e̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = g[e][e̅] e̿ = ge = .                                                      
Case 2. (⋃ [G ⊗Gv

E(Xv)v∈V(T) ], then                       
 = g⊗Gv

e, where gG and eE(Xv) and,                                                                                                                     
o(α̅) = o( g ⊗Gv

e̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) = o(g ⊗Gv
e̅) = g ⊗Gv

o(e̅) = 
g⊗Gv

t(e) = t(g⊗Gv
e) = t().  Similarly, t(α̅) =

t( g ⊗Gv
e̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) = t(g ⊗Gv

e̅) = g ⊗Gv
t(e̅) = g⊗Gv

o(e) 
= o(g⊗Gv

e) = o(). Furthermore, α̿ = g ⊗Gv
e̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿ = 

 g ⊗Gv
e̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) = g ⊗Gv

e̿ = g⊗Gv
e =  . Then X̃ forms a 

graph.   
(2) From above we have V(G⊗Gv

Xv)E(G⊗Gv
Xv) 

= . If aE(G⊗Gv
Xv) is an edge of G⊗Gv

Xv, then     
a = g⊗Gv

e , where gG, eE(Xv). It is clear that 
o(a) = g⊗Gv

o(e),  t(a) = g⊗Gv
t(e), and                      

a̅ =  g ⊗Gv
e̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = g ⊗Gv

e̅ are the ends of a, where 
o(e), t(e), and e̅ are the ends of  eE(Xv).  So  
G⊗Gv

Xv forms a subgraph of  X̃. Since G⊗Gv
Xv X̃, 

therefore G⊗Gv
Xv forms a subgraph of X̃. Since 

V(X̃) = V(X̂) and X̂  X̃, this shows that X̂ is a 
subgraph of  X̃.  
 

Lemma 4.4. (G; X̃) where if f,gG, vV(T), 
xV(Xv), pE(Xv), and eE(Y) then           
f(g⊗Gv

x) =  fg ⊗Gv
x, f(g⊗Gv

p) =  fg ⊗Gv
p, and 

f(ge) = fge. (G; X̃) is with inversions if  the action 
of (G;X) is with inversions. 
 
Corollary 4.5. For each gG, xV(Xv), pE(Xv), 
and eE(Y), the stabilizers of the elements 
g⊗Gv

xV(X̃), g⊗Gv
pE(X̃), and geE(X̃) are 

the followings.  Gg⊗Gvx = g(Gv)xg-1, Gg⊗Gvp = 
g(Gv)pg-1, Gg⊕e = gG+eg-1.                                                                        
 

Proposition 4.6. If the stabilizer of every element of 
X is finite and the stabilizer of every element of Xv 
under the action of Gv on Xv is finite, then the 
stabilizer of every element of X̃ is finite.                                                                                                             
 

Definition 4.7. For vV(T) and  eE(Y), let                
Lv = (G/Gv){v} and Le = (G/G+e){+e}.  
 

Lemma 4.8. If gG, vV(T), xV(Xv), pE(Xv), 
and eE(Y) then the orbits of  g⊗Gv

xV(X̃), 
g⊗Gv

pE(X̂), and geE(X̃) are the following.                                                                

G(g⊗Gv
x) = G⊗Gv

Gv(x), and G(g⊗Gv
p) = 

G⊗Gv
Gv(p), G(g⊗Gv

p) = G⊗Gv
Gv(p), and,   

G(ge) = Le.                                                                                                                                  
 

Corollary 4.9. G/X̃ = 
vV(T)[G⊗Gv

(Gv/Xv)][eE(Y)Le], where            
Gv/Xv = {Gv(a)aXv}, the orbit space  
G⊗Gv

(Gv/Xv) = {G⊗Gv
Gv(a)aXv}.                                                         

 

Corollary 4.10. If  G/X, Gv/Xv, vV(T) , [G, Ga] are 
finite  aX, then  G/X̃ is finite.                                  
Proof. It is clear that Lv and Le are finite, vV(T) ,   
eE(Y). So  G/X̃ is finite.                                                                                                                                                             
 

Lemma 4.11. For vV(T) and  Xv = {v} be the 
trivial graph of one vertex v and no edges. Let X̂ and 
X̃ be the graphs defined above. Then                                                                     
(1) V(X)̂ = {LvvV(T) and E(X)̂ = .                                                                                                                       
(2) For eE(Y), w(e) = (o(e))*,  w(�̅�) = (t(e))*.                                                                            
(3) For  gG,  eE(Y), and  ge , o(ge) = 
g⊗G

(o(e))
⋇ (o(e))* and  t(ge) = g[e]⊗G

(t(e))
⋇ (𝑡(𝑒))∗.                                                                                                                                                                            

(4) V(X̃) = V(X)̂ = {G/GvvV(T)}and                        
E(X̃) = X* = {gegG,eE(Y)}, where                   
ge = (G+e,+e).     
(5) For gG, vV(T) and eE(Y), the stabilizers, the  
orbits of the vertex g⊗Gv

vV(X̃) and the edge  
geE(X̃)  are Gg⊗Gvv = gGvg-1, a conjugate of Gv in 
G,  Gg⊕e = gG+eg-1.                                                                                                                                                                            
(6) The orbit space G/X̂ is the set                                  
G/X̃ = {Lv, LevV(T), eE(Y)}.                               
(7) (G; X̃)  is with inversions if (G;X) is with 
inversions.                                                                    
Proof. Xv = {v}is a trivial graph of one vertex v and 
no edge for each vertex vV(T). That is, V(Xv) = 
{v} and E(Xv) = . Gv acts on Xv trivially.                                                            
(1) V(X)̂ = ⋃ [G ⊗Gv

V(Xvv∈V(T) )] = 
⋃ [Gv∈V(T) ⊗Gv

{v}] = {𝑔 ⊗𝐺𝑣
𝑣gG, vV(T)}. 

The case 𝑔 ⊗𝐺𝑣
𝑣 = {(gh,h-1(v)) hGv} = {(gh,v) 

hGv} = [G/Gv]{v} = Lv implies that                                  
V(X)̂ = {LvvV(T)}. Since E(Xv) = E({v}) = , 
therefore E(X)̂ = ⋃ [G ⊗Gv

E(Xvv∈V(T) )]=            = 
{𝑔 ⊗𝐺𝑣

𝑒gG, eE(Xv)}= {𝑔 ⊗𝐺𝑣
∅gG}= . So 

�̂� is a null graph. 
 (2) w(e)𝑋(𝑜(𝑒))∗ = {(𝑜(𝑒))∗}and w(�̅�)𝑋(𝑡(𝑒))∗ = 
{(𝑡(𝑒))∗}. Therefore w(e) = (o(e))* and   w(�̅�) =  
(t(e))*.                                                        
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 (3) For gG, eE(Y), the initial and the terminal of 
ge are     o(ge) = g⊗G

(o(e))
⋇w(e) =  

g⊗G
(o(e))

⋇ (o(e))*,  t(ge) = g[e]⊗G
(t(e))

⋇ w(�̅�) =  

g[e]⊗G
(t(e))

⋇ (𝑡(𝑒))∗.                                                                                                                            

(4) From (1), V(X̃) = V(X)̂ =  {G/GvvV(T)}  and,                                                                       
E(X̃) = 𝐸(�̂�)⋃ 𝑋∗ = X* = X* = 
{gegG,eE(Y)}, where ge = (G+e,+e).                             
(5)  By Corollary 4.5, Gg⊗Gvv = g(Gv)vg-1 = gGvg-1 
because (Gv)v = Gv and Gg⊕e = gG+eg-1, a conjugate 
of G+e. By Lemma 4.8, G(g⊗Gv

v) = G⊗Gv
Gv(v) = 

G⊗Gv
{v}= {g⊗Gv

vgG}=   = (G/Gv){v} = Lv, 
and G(ge) = {f(ge)fG}= {fgefG}=                  
= {(fgG+e ,+e)fG}= (G/G+e){+e} = Le.                                                                                                                              
(6) From above G/X̃ = {G(g⊗Gv

v), G(ge) 
vV(T), eE(Y)} = {Lv, LevV(T), eE(Y)}.    
(7) By Lemma 4.4.  
 

Corollary 4.12. For vV(T) let Xv = {v} such that 
the index of the stabilizer Gv  in G is of finite. Then  
X̃  X.                                                                                                                                               
 

 

5 Paths in the fiber graph �̃�  
Again, in this section, G will be a group acting on a 
connected graph X of fundamental domain (T;Y) 
such that for each vV(T), Xv is a graph such that 
XuXv = , uV(T), u  v, and the stabilizer  Gv 
acts on Xv. Furthermore, for eE(Y), w(e) is a vertex 
w(e)V(X(o(e))*) such that  G+e(G(o(e))*)w(e) and  
w(�̅�)V(X(t(e))*) where   𝐺+�̅�(G(t(e))*)w(�̅�).  Now we 
state and prove relations in the graphs X and X̃.                                                                                                                                     
 

Definition 5.1. Assume that gG and vV(T), 
a,bV(Xv), e1, e2, ..., enE(Xv). Let                                
P = (e1, e2, ..., en). Define g ⊗Gv

P = (g⊗Gv
e1, 

g⊗Gv
e2, ..., g⊗Gv

en).                                   
 

Lemma 5.2. (1) PPath(Xv) if and only if 
g ⊗Gv

PPath(g ⊗Gv
Xv). If o(P) = a and t(P) = b, 

then o(g ⊗Gv
P) = g ⊗Gv

a and t(g ⊗Gv
P) = g ⊗Gv

b.                                                                                  
(2) P is closed if and only if g ⊗Gv

P is closed.                                                                                   
(3) P is reduced if and only if g ⊗Gv

P reduced.                                                                                   
(4) P is a simple circuit if and only if g ⊗Gv

P is a 
simple circuit. 

 Proof. (1) By the definition of g ⊗Gv
Xv,  g ⊗Gv

a, 
g ⊗Gv

bV(𝑔 ⊗𝐺𝑣
Xv), and,  g⊗Gv

e1, g⊗Gv
e2, ..., 

g⊗Gv
enE(𝑔 ⊗𝐺𝑣

Xv) = 𝑔 ⊗𝐺𝑣
E(Xv). Let 

PPath(Xv). Then for each i we have o(ei+1) = t(ei). 
This implies that t(g⊗Gv

ei) = g⊗Gv
𝑡(ei) = 

g⊗Gv
𝑜(ei+1) = o(g⊗Gv

ei+1). So 
g ⊗Gv

PPath(g ⊗Gv
Xv). Conversely, if  

g ⊗Gv
PPath(g ⊗Gv

Xv), then g⊗Gv
𝑡(ei) = 

g⊗Gv
𝑜(ei+1). By the definition of   ⊗Gv

 we have 
fGv on which  g = gf and  f-1(𝑡(ei)) = 𝑜(ei+1). So           
g = 1 and 𝑡(ei) = 𝑜(ei+1). This implies that 
PPath(Xv). If o(P) = a then o(e1).  
(2), (3), and (4) are clear. 
 

Proposition 5.3. Let f, gG, vV(T), eE(Y), 
PPath(𝑓 ⊗𝐺𝑣

Xv), and the edge a = ge of X*.                                                                                                                                    
Then                                                                                                                                                     
(1) There exist two vertices denoted P and P of 
V(Xv) such that the initial of P is   o(P) = 𝑓 ⊗𝐺𝑣

P 
and the terminal of P is t(P) = 𝑓 ⊗𝐺𝑣

P.                                                                  
(2) If o(a) = t(P), then v = (o(e))* and we have  
he𝐺(𝑜(𝑒)∗ on which  g = fhe , he(w(e)) = P.                                                                                                                                         
(3) If t(a) = o(P), then v = (t(e))* and there exists an 
element ke𝐺(𝑡(𝑒))∗ such that g[e] = fke and          
ke(w(�̅�)) = P.                                                                                                                                  
Proof. (1) Since 𝑓 ⊗𝐺𝑣

Xv is a graph and PPath( 
𝑓 ⊗𝐺𝑣

Xv), therefore o(P) and t(P) are in V(𝑓 ⊗𝐺𝑣
Xv) 

= 𝑓 ⊗𝐺𝑣
V(Xv). Then o(P) = 𝑓 ⊗𝐺𝑣

P and t(P) = 
𝑓 ⊗𝐺𝑣

P, where  P,PV(Xv).    (2) If o(a) = t(P) 
then o(a) = g⊗G(o(e))∗

w(e) = t(P) =  f⊗Gv
P. Then       

v = (o(e))* and 𝐺(𝑜(𝑒)∗ = Gv and g⊗𝐺(𝑜(𝑒)∗ w(e) = 
f⊗𝐺(𝑜(𝑒)∗P. This implies we have he𝐺(𝑜(𝑒)∗, g = fhe 
and he(w(e)) = P.                                                                                                                       
(3) Similar to (2), v = (t(e))*, t(a) = 
g[e]⊗G𝐺(𝑡(𝑒)∗

w(�̅�) = o(P) = f ⊗𝐺(𝑡(𝑒)∗P and  we 

have   ke𝐺(𝑡(𝑒))∗ on which g[e] = fke and           
ke(w(�̅�)) = P.   
 

Lemma 5.4. Let PPath( X̃). Then                                                                                                                           
(i) If vV(T) and gG such that PPath(g ⊗Gv

Xv), 
then we have the edges e1, e2, ..., enE(Xv)  such that 
P = (g⊗Gv

e1, g⊗Gv
e2, ..., g⊗Gv

en),                           
o(P) = 𝑔 ⊗𝐺𝑣

𝑜(𝑒1) and  t(P) = 𝑔 ⊗𝐺𝑣
𝑡(𝑒𝑛).                                                                                                                                                   

(ii) If PPath(g ⊗Gv
Xv) for all vV(T), gG, then 

there exist elements f1, f2, ..., fn, fn+1, g1, g2, ..., gn of 
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G, vertices v1, v2, ..., vn, vn+1 of V(T), edges e1, e2, ..., 
en of E(Y), and paths  P1, P2, ..., Pn of f1 ⊗Gv1

Xv1
, 

f2 ⊗Gv2
Xv2

, ...,   f𝑛 ⊗Gv𝑛
Xvn

 such that                                                                     
P = (P1, g1e1, P2, g2e2, ..., Pn, gnen, Pn). 
Furthermore, the following properties of P hold.                                                      
(1) vi = (o(ei))*, vi+1 = (t(ei))* and (t(ei))* = (o(ei+1))*.                                                                             
(2) PiPath(fi ⊗G

(o(ei))
⋇V(𝑋(𝑜(𝑒𝑖))∗)) and there exist 

vertices 𝛼𝑃𝑖
, 𝛽𝑃𝑖

V(𝑋(𝑜(𝑒𝑖))∗) such that                                                                         
o(Pi) = fi ⊗G

(o(ei))
⋇ 𝛼𝑃𝑖

  and t(Pi) = fi ⊗G
(o(ei))

⋇ 𝛽𝑃𝑖
.                                                                           

(3) o(P) = o(P1) =  f1 ⊗G
(o(e1))

⋇ 𝛼𝑃1
  and t(P) = t(Pn) 

= fn ⊗G
(t(en))

⋇ 𝛽𝑃𝑛
.  So P joins the graphs 

f1 ⊗G
(o(e1))

⋇ V(𝑋(𝑜(𝑒1))∗) and 

f𝑛 ⊗G
(t(en))

⋇ V(𝑋(𝑜(𝑒𝑛))∗). That is, PPath(X̃) linking 

the vertices  f1 ⊗G
(o(e1))

⋇ 𝛼𝑃1
and fn ⊗G

(t(en))
⋇ 𝛽𝑃𝑛

 of 

V(X̃).                                                                                                                                
(4) o(giei) = t(Pi) =  fi ⊗G

(o(ei))
⋇ 𝛽𝑃𝑖

, and t(giei) = 

o(Pi+1) = fi+1 ⊗G
(o(ei+1))

⋇ 𝛼𝑃𝑖+1
.                                                        

(5) We have hi, kiG
(o(ei))

⋇ and                                      
gi = fihi, gi[ei] = fiki = gi+1hi,                                                                                                                               
w(ei) = hi(𝛼𝑃𝑖

), and 𝑤(𝑒�̅�) = ki(𝛽𝑃𝑖
).                                                                                                      

(6) If P is closed, then (o(e1))* = (t(en))*, f1 = fn+1h, 
and g1 = gn[en]l-1hkwhere h,k,l G(t(𝑒𝑛))∗ .                                                                                                                         
(7) If P is reduced, then Pi is reduced and +ei+1  +𝑒�̅�  
Proof. (i) From Proposition 5.3-(1) and Lemma 5.2 
where o(e1) =  P and t(en) = P the result follows.                                                                                                         
(ii) Since E(X̃ ) = E([⋃ (G ⊗Gv

Xvv∈V(T) ])X* = 
[⋃ (G ⊗Gv

E(Xvv∈V(T) )]X*, the edges of P consist 
of edges of the forms g ⊗Gv

𝑝(G ⊗Gv
E(Xv) and  

edges of the form geX*. By (i) above, P consists 
of edges from both of ⋃ (G ⊗Gv

E(Xv)v∈V(T) ] and 
X*. So the edges of P consist of the edges of paths in 
g ⊗Gv

Xv, vV(T), gG and edges of X*. This gives 
the required structure of P introduced above. Now the 
proofs of (1)-(7) of the lemma as follows.                                      
(1) Follows from Proposition 5.3 -(2).                                        
(2) Follows from Proposition 5.3-2.                               
(3)  From (2) above.                                                                                                                
(4) From (3) above.                                                      
(5) From Proposition 5.3-(3).                                                                                                   
(6) Since P is closed, therefore o(P) = t(P). So          
o(P1) = t(Pn). Since o(P1) =  f1 ⊗Gv1

𝛼𝑃1
,                                

t(Pn) =  fn+1 ⊗Gvn+1
𝛽𝑃𝑛

,v1 = (o(e1))* and                 

vn+1 = (t(en))*, therefore f1 ⊗Gv1
𝛼𝑃1

 =  
fn+1 ⊗Gvn+1

𝛽𝑃𝑛
 and v1 = vn+1. Then                      

(o(e1))* =  (t(en))*, f1 = fn+1h and h(𝛽𝑃𝑛
) = 𝛼𝑃1

,  
where h G(o(e1))∗ . Since P is a path of X̃, therefore 
t(P1) = o(g1e1)  and t(gnen) = o(Pn), therefore  
Then  f1 ⊗G

(o(e1))
⋇ 𝛽𝑃1

 = g1 ⊗G
(o(e1))

⋇w(e1)  and 

gn[en]⊗G
(t(en))

⋇ w(en̅̅ ̅) = fn+1 ⊗𝐺(t(en))∗
𝛼𝑃𝑛

. So            

g1 = f1k and gn[en] = fn+1l, where k,l G(t(𝑒𝑛))∗ . 
From above,     g1 = gn[en]l-1hk.                                                                                                                                   
(7) Since P is a reduced path, no edge of P is the 
inverse of its previous edge. So, if a,b are adjacent 
edges of a path Pi, then b  �̅�. So the path Pi is 
reduced. If for some i,  i = 1, 2, ..., n-1, we have +ei+1 

= +𝑒�̅�, then (t(ei))* = (o(ei+1))*  and have gi+1 = gi[ei]h, 
h𝐺(𝑡(𝑒𝑖))∗. This implies thatgi+1ei+1 = 
(gi+1𝐺+𝑒𝑖+1

, +𝑒𝑖+1) = (gi[ei]h𝐺+𝑒�̅�
,+𝑒�̅�) = 

(gi[ei]𝐺+𝑒�̅�
,+𝑒�̅�), because h𝐺(𝑡(𝑒𝑖))∗ and 

𝐺+𝑒�̅�
𝐺(𝑡(𝑒𝑖))∗ . This implies that gi+1ei+1 = gi[ei]𝑒�̅� 

=  𝑔𝑖 ⊕ 𝑒𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅. Then P contains the edge giei and its 

inverse 𝑔𝑖 ⊕ 𝑒𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅ = gi[ei]𝑒�̅�. Contradiction, because P 

is reduced path.           
 

Corollary 5.5. Let P = (P1, g1e1, P2, g2e2, ..., Pn, 
gnen, Pn) be the path in Lemma 5.4. Then              
(g1e1, g2e2, ..., gnen) is a path in the trivial fiber 
graph 𝑋1̃ where Xv = {v} for all vV(T).  
 

Proposition 5.6. Let P = (P1, g1e1, P2, g2e2, ..., Pn, 
gnen, Pn) be the path of Lemma 5.4. Let                      
P* = (g1(+e1), g2(+e2), ..., gn(+en)). Then                                                                                                
(1) P*Path( X).                                                                                                                                
(2) If P is closed so P* is closed.                                                                                                     
(3) If P is reduced so P* is reduced.                                                                                                
(4) If P is a simple circuit, so P* is a simple circuit.                                                                                                                                                                                                                                                                                                                                                       
Proof. Clear. 
 

Lemma 5.7. Let g = g0[e1]g1[e2]g2 ..., gn-1[en]gn be a 
product of the element g. For i = 1, 2, ..., n, let                                          
fi = g0[e1]g1[e2]g2 ..., gi-2[ei-1]gi-1 with convention that 
f1 = g0, let qi = fi(+ei), and  pi = fiei. Then 
 (1) q = (q1, q2, ..., qn)Path(X ) linking (o(e1))*  to 
g((t(en))*).                                                                                                          
(2) o(pi)𝑓𝑖 ⊗𝐺

(𝑜(𝑒𝑖))
∗  𝑋

(𝑜(𝑒𝑖))
∗ and 

t(pi) 𝑓𝑖+1 ⊗𝐺
(𝑜(𝑒𝑖+1))

∗  𝑋
(𝑜(𝑒𝑖+1))

∗.                                             

(3) For  i = 1, 2, ..., n, assume that 
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PiPath(𝑓𝑖 ⊗𝐺
(𝑜(𝑒𝑖))

∗  𝑋
(𝑜(𝑒𝑖))

∗ such that t(P1) = o(p1),             

o(Pi) = t(pi), t(Pi) = o(pi+1) for i = 2, ..., n-1. Then           
P = (P1, p1, ..., pn-1, Pn) is a path in X̃ joining the 
vertices o(P1) and t(Pn).                                                                                                                                    
(4) P* = q.                                     
Proof. (1) We need to show that o(q) = (o(e1))*,          
t(q) = g((t(en))*),  t(qi) = o(qi+1),   i = 1,2, ..., n-1. 
Now o(q) = o(q1) = o(f1(+e1)) = fi(o(+ei)) =  
f1((o(e1))*)  =  (o(e1))* because  f1 = g0𝐺

(𝑜(𝑒1))
∗,                             

t(q) = t(qn) = t(fn(+en)) =  t(g0[e1]g1[e2]g2 ..., gn-1[en] 
t(+en )  = g0[e1]g1[e2]g2 ..., gn-1[en]gn((t(en))*) = 
g((t(en))*), and t(qi) = t(fi(+ei) =  fi(t(+ei)) =  
fi[ei]((t(ei))*) = fi[ei]((o(ei+1))*) = o(qi+1).                                                                                              
(2) o(pi) = o(fiei) = 
𝑓𝑖 ⊗𝐺

(𝑜(𝑒𝑖))
∗w(𝑒𝑖) 𝑓𝑖 ⊗𝐺

(𝑜(𝑒𝑖))
∗  𝑋

(𝑜(𝑒𝑖))
∗ and,                                                  

t(pi) = t(fiei) = 𝑓𝑖[𝑒𝑖] ⊗𝐺
(𝑡(𝑒𝑖))

∗w(𝑒�̅�) =

𝑓𝑖[𝑒𝑖]𝑔𝑖+1 ⊗𝐺
(𝑡(𝑒𝑖))

∗w(𝑒�̅�) =

𝑓𝑖+1 ⊗𝐺
(𝑜(𝑒𝑖+1))

∗w(𝑒�̅�) because (t(ei))* = (o(ei+1))* and 

gi+1𝐺
(𝑜(𝑒𝑖+1))

∗. This shows that 
t(pi) 𝑓𝑖+1 ⊗𝐺

(𝑜(𝑒𝑖+1))
∗  𝑋

(𝑜(𝑒𝑖+1))
∗.                                

(3) By Lemma 5.4-(ii), the cases 
o(pi)𝑓𝑖 ⊗𝐺

(𝑜(𝑒𝑖))
∗  𝑋

(𝑜(𝑒𝑖))
∗ and 

t(pi) 𝑓𝑖+1 ⊗𝐺
(𝑜(𝑒𝑖+1))

∗  𝑋
(𝑜(𝑒𝑖+1))

∗ of (2) above 

implies that P is a path in X̃  linking o(P1) and t(Pn).                                                                                                                                                      
(4) This follows from Proposition 5.4.  
 

 

Definition 5. 8. The path P of Lemma 5.7 is called 
the path in  X̃ obtained from the product of the 
element g = g0[e1]g1[e2]g2 ..., gn-1[en]gn and q is the 
path obtained by collapsing the vertices of P.               
 
Lemma 5.9. (I) If  X and Xv are connected,  vV(T), 
so  X̃ is connected.                                                                
(II) If X and Xv are trees, vV(T), so X̃ is a tree.                                                                             
Proof. (I) The following steps imply that   X ̃ is 
connected.                                                                                                                                                
(1) 𝑓 ⊗𝐺𝑣

Xv = {f ⊗Gv
xxXv} is connected , fG 

vV(T).                                                                          
(2) 1 ⊗𝐺𝑢

Xu and 1 ⊗𝐺𝑣
Xv are linked by a path in X̃, 

u,vV(T).                                                                      
(3) 1 ⊗𝐺𝑣

Xv and 𝑔 ⊗𝐺𝑣
Xv are linked by a path in X̃ , 

gG , vV(T).                                                              

(4) 𝑓 ⊗𝐺𝑢
Xu and 𝑔 ⊗𝐺𝑣

Xv are linked by a path in X̃ , 
f,gG,  u,vV(T).                                                          
(1) Let p,qV(f ⊗Gv

Xv) =  f ⊗Gv
V(Xv), q  q be 

two distinct vertices of f ⊗Gv
Xv. By the definition of 

f ⊗Gv
Xv, we have vertices a,bV(Xv) where                

p = f⊗Gv
a and q = f⊗Gv

b. If a equals b, then p = q. 
This contradicts the assumption that q  q. Since Xv 
is a connected graph, we have PPath(Xv) on which 
o(P) = a and t(P) = b. By Lemma 5.2, 
f ⊗Gv

PPath(f ⊗Gv
Xv), o(f ⊗Gv

P) = f ⊗Gv
a = p 

and, t(f ⊗Gv
P)  =  f ⊗Gv

b = q. So 𝑓 ⊗𝐺𝑣
Xv is 

connected.                                                                                                                                             
(2) For u,vV(T), there exist edges e1, e2, ..., 
enE(T) such that  p = (e1, e2, ..., en)Path(T),        
o(p) = u, t(p) = v, t(ei) = o(ei+1), and w(𝑒�̅�) = w(ei+1),      
i = 1, 2, ..., n-1. Then for each e{e1, e2, ..., en},             
[e] = 1, +e = e, +𝑒 ̅ =  �̅�, (o(e))* = o(e), and           
(t(e))* = t(e), w(e)V(Xo(e)), w(�̅�)V(Xt(e)), G+e = Ge, 
𝐺+�̅� = 𝐺�̅� = Ge. Consider the edges                             
1e1, 1e2, ..., 1en of X*. Then                             
o(1e1) = 1⊗𝐺𝑜(𝑒1)

w(e) = 1⊗𝐺𝑢
w(e)1 ⊗𝐺𝑢

Xu,  
t(1en) = [en]⊗𝐺𝑡(𝑒𝑛)

w(𝑒𝑛̅̅ ̅)  =1⊗𝐺𝑣
w(𝑒𝑛̅̅ ̅)1 ⊗𝐺𝑣

Xv, 
and,  t(1ei) = [ei]⊗𝐺𝑡(𝑒𝑖)

w(𝑒�̅�) = 1⊗𝐺𝑜(𝑒𝑖+1)
w(ei+1). 

So  Q = (1e1, 1e2, ..., 1en)Path( X̃ ) and liking  
the subgraphs  1 ⊗𝐺𝑢

Xu and 1 ⊗𝐺𝑣
Xv of  X̃.                                                                          

(3) If g = 1, we have case (1). Assume that g  1. By 
Proposition 2.5, the element g has the product                                    
g = g0[e1]g1[e2]g2 ..., gn-1[en]gn where                      
(o(e1))* = (t(en))* = v. Then Pg = (P1, p1, ..., pn-1, Pn) 
of Lemma 5.8, Pth( X)̃ and liking  the subgraphs 
1 ⊗𝐺𝑣

Xv and 𝑔 ⊗𝐺𝑣
Xv. Similarly, for fG, uV(T) 

we have PfPath( X̃) liking the subgraphs 1 ⊗𝐺𝑢
Xv 

and 𝑓 ⊗𝐺𝑢
Xu.                                                                      

(4) Let 𝑃𝑓
−1 be the converse of the path Pf of (3) 

above. Then the composition 𝑃𝑓
−1QPg of the paths 

𝑃𝑓
−1, Q and Pg,Path( X̃)  liking  the subgraphs  

𝑓 ⊗𝐺𝑢
Xu and 𝑔 ⊗𝐺𝑣

Xv of  X̃. Consequently,  X̃ is a 
connected graph.                                                                                              
(II) First we show that for gG, vV(T), the 
subgraph 𝑔 ⊗𝐺𝑣

Xv forms a subtree. If 𝑔 ⊗𝐺𝑣
Xv 

contains a loop, then there exists an edge 
E(𝑔 ⊗𝐺𝑣

Xv) = 𝑔 ⊗𝐺𝑣
E(Xv) such that o() = t(). 

Then  = 𝑔 ⊗𝐺𝑣
e where eE(Xv). For the case           

o() = t() we have                                                           
o() = 𝑜(𝑔 ⊗𝐺𝑣

e) = 𝑔 ⊗𝐺𝑣
o(e) =  t() = 𝑡(𝑔 ⊗𝐺𝑣

e) = 
𝑔 ⊗𝐺𝑣

t(e). The definition of  ⊗𝐺𝑣
implies  that              
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o(e) = t(e). So e is a loop in the tree Xv. This 
contradicts the assumption that Xv is a tree. If  
𝑔 ⊗𝐺𝑣

Xv contains a simple circuit                                  
P = (P1, P2, ..., Pn)Path(𝑔 ⊗𝐺𝑣

Xv), then                       
o(P1) = t(Pn), t(Pi) = o(Pi+1) and Pi+1  𝑃�̅� for                       
i = 1, 2, ..., n-1. 𝑔 ⊗𝐺𝑣

Xv being a subgraph of  X̃  
implies that there exist edges e1, e2, ..., enE(Xv) such 
that Pi = 𝑔 ⊗𝐺𝑣

ei, i = 1, 2, ..., n. Then o(e1) = t(en),        
t(ei) = o(ei+1), and ei+1  𝑒�̅�, i = 1, 2, ..., n. This implies 
that (e1, e2, ..., en)Path(Xv) is a simple circuit. This  
is a contradiction because Xv is a tree.  𝑆𝑜 𝑔 ⊗𝐺𝑣

Xv 
is a subtree of X̃. If PPath(X̃) is a simple circuit, 
then from above, PPath(𝑔 ⊗𝐺𝑣

Xv). Then P is the 
path of the form of Lemma 5.4-(ii). Then Lemma 5.7 
shows that the path P* obtained by collapsing the 
vertices of P is a simple circuit in X. Since X is a 
tree, we get contradiction because a tree contains no 
simple circuits. Hence X̃ is a tree.  
 

 

6 The Main Result  
Theorem 6.1. Assume (G;X) of a given cover (T;Y) where 
Xv is a tree, XuXv =  for all uV(T), u  v. 
Furthermore, for dE(Y), assume that Gd of d is finite and 
containing no inversions of the tree X(o(d))*. Then                                                                                                                                         
(1) There exists v(d)V(X(o(d))*) where G+d(G(o(d))*)v(d),  
and v (d) = w(d), w(d) is the vertex of Definition 4.1.                                                                                                                                                  
(2) The fiber  X̃ is a tree.                                                                                                                      
(3) If (G;X) is with inversions or for vV(T), if          (Gv; 
Xv) is  with inversions, then (G; X̃)  is with inversions.                                                                                             
(4) The structures of the stabilizers of the elements of X̃ 
are Gf⊗Gvx = f(Gv)xf-1,   Gf⊗Gvp = f(Gv)pf-1, and Gf⊕d = 
fG+df-1 for all fG, zV(Xv), pE(Xv), and dE(Y). 
(5) structures for the orbits of the elements of X̃ are 
G(f⊗Gv

z) = G⊗Gv
Gv(z),                                                                                                     

G(f⊗Gv
p) = G⊗Gv

Gv(p), and, G(fd) = (G/G+d){+d}, 
fG, zV(Xv), pE(Xv), and dE(Y).                                                             
(6) The orbit space G/X̃ has the form G/X̃  = 
vV(T)[G⊗Gv

(Gv/Xv)][dE(Y) (G/G+d){+d}].  
The edges of X̃  have the properties that                
o(f⊗Gv

p) = f⊗Gv
o(p),  t(f⊗Gv

p) = f⊗Gv
t(p), and, 

 f ⊗Gv
p̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = f ⊗Gv

p̅, and o(fd) = f⊗G
(o(d))

⋇v(d), t(fd) = 

f[d]⊗G
(t(d))

⋇v(d̅) and    f ⊕ d̅̅ ̅̅ ̅̅ ̅ = f[d] ⊕ d̅  for all fG 

pE(Xv), and dE(Y).                                             Proof. 
(1) Since the stabilizer of each edge eE(Y) is finite, 
therefore G+e is finite. Since 𝐺+𝑒 ≤ 𝐺(𝑜(𝑒))∗,  and  G+e 
contains no inverter edges of the tree 𝑋(𝑜(𝑒))∗, therefore by 
Corollary 2.5, there exists a vertex denoted v(e) where 
G+e((𝐺(𝑜(𝑒)∗)𝑣(𝑒). Since w(e) is arbitrary, we take w(e) = 

v(e).                            (2) Th assumptions that X and Xv, 
vV(Y) are trees,  Lemma 5.9-(II) implies that the fiber  X̃ 
is a tree.         (3) Lemma 4.4.  (4) Corollary 4.5.                                                            
(5) Lemma 4.8. (6) Corollary 4.9. 
 

Corollary 6.2. If (G;X) is  without inversions and  
Gd , dE(Y) is finite, then X̃ forms a tree.                                                                                                                            
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[10] J. Świą kowski, "The dense amalgam of metric 
compacta and topological characterization of 
boundaries of free products of groups", Groups, 
Geometry, and   Dynamics, 2016.   

[11] B. Ward. "Intertwining for semidirect product 
operads", Algebraic & Geometric Topology, 2019. 

 

 

CREATIVE COMMONS ATTRIBUTION 

LICENSE 4.0 (ATTRIBUTION 4.0 

INTERNATIONAL, CC BY 4.0) 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en_
US 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.76

Abdullah Al-Husban, Doaa Al-Sharoa, 
Mohammad Al-Kaseasbeh, R. M. S. Mahmood

E-ISSN: 2224-2880 658 Volume 21, 2022

https://www.zbmath.org/serials/?q=se%3A00000456
https://www.zbmath.org/?q=in%3A00109894
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



