Structures of Five trans-2-Hydroxy and trans-2-Methoxy-2-methyl-3,4-dihydro-4-aryl-2H,5H-pyrano[3,2-c] benzopyran-5-ones

Edward J. Valente
University of Portland, valentee@up.edu
Drake S. Eggleston
Verner Schomaker

Follow this and additional works at: http:/ / pilotscholars.up.edu/chm_facpubs
Part of the Chemistry Commons

Citation: Pilot Scholars Version (Modified MLA Style)

Valente, Edward J.; Eggleston, Drake S.; and Schomaker, Verner, "Structures of Five trans-2-Hydroxy and
trans-2-Methoxy-2-methyl-3,4-dihydro-4-aryl-2H,5H-pyrano[3,2-c] benzopyran-5-ones" (1986). Chemistry Faculty Publications and Presentations. 9.
http://pilotscholars.up.edu/chm_facpubs/9

Structures of Five trans-2-Hydroxy and trans-2-Methoxy-2-methyl-3,4-dihydro-4-aryl-2H,5H-pyrano[3,2-c]benzopyran-5-ones

By Edward J. Valente
Department of Chemistry, Mississippi College, Clinton, MS 39058, USA
Drake S. EgGleston
Jepartment of Analytical, Physical and Structural Chemistry, Smith, Kline \& French Laboratories, Philadelphia, PA 19101, USA
and Verner Schomaker
Department of Chemistry, University of Washington, Seattle, WA 98195, USA

(Received 15 February 1986; accepted 4 July 1986)
ibstract. Derivatives of 2 -methyl-3,4-dihydro- $2 \mathrm{H}, 5 \mathrm{H}$ -yrano[3,2-c][1]benzopyran-5-one. (1) Racemic trans--methoxy-4-phenyl, $M_{r}=322.4$, monoclinic, $P 2_{1} / n$,

0108-2701/86/121809-05\$01.50
$a=5.858$ (1), $b=16.732$ (9), $c=16.383$ (9) $\AA, \beta=$ $94.82(3)^{\circ}, V=1600.1 \AA^{3}, Z=4, D_{x}=1.338 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=0.866 \mathrm{~cm}^{-1}, \quad F(000)=$ © 1986 International Union of Crystallography
$680, T=298 \mathrm{~K}$, final $R=0.047$ for 1513 intensities. The trans methyl ketal of warfarin $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}\right)$ contains a half-chair dihydropyran ring distorted toward the d,e-diplanar conformation. (2) Resolved ($2 R, 4 R$)-trans-2-methoxy-4-phenyl, $\quad M_{r}=322 \cdot 4$, orthorhombic, $P 22_{1} 2_{1}, \quad a=11.521$ (1),$\quad b=14.061$ (2),$\quad c=$ 10.055 (2) $\AA, \quad V=1628.9 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.314 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $0.851 \mathrm{~cm}^{-1}, F(000)=680, T=298 \mathrm{~K}$, final $R=0.056$ for 1660 intensities. The trans methyl ketal $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}\right)$ from $R(+)$-warfarin; its dihydropyran ring is a halfchair distorted toward the d, e-diplanar conformation. (3) Resolved trans-2-hydroxy-4-(4-methoxyphenyl), $M_{r}=338.4$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=10.584$ (1), $b=10.621$ (5), $c=14.778$ (2) $\AA, V=1661.2 \AA^{3}, Z$ $=4, \quad D_{x}=1.353 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \mu$ $=0.908 \mathrm{~cm}^{-1}, F(000)=712, T=298 \mathrm{~K}$, final $R=$ 0.044 for 1165 unique intensities. Compound $\mathrm{C}_{20^{-}}$ $\mathrm{H}_{18} \mathrm{O}_{5}$ spontaneously resolves on crystallization from acetone and water, and absolute configuration of data specimen was not determined. It has a dihydropyran ring with a half-chair conformation; hydroxyl and lactone carbonyl are intermolecularly H-bonded at $\mathrm{O} \cdots \mathrm{O}=2.79 \AA$. (4) Racemic trans-2-hydroxy-4-(2-methyl-6-methoxyphenyl), $M_{r}=372 \cdot 4$, monoclinic, $P 2_{1} / n, a=9.637$ (2), $b=14.345$ (4),$c=13.224$ (2) A, $\beta=91.09(1)^{\circ}, \quad V=1827.8 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.353 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $0.961 \mathrm{~cm}^{-1}, F(000)=784, T=298 \mathrm{~K}$, final $R=0.048$ for 2339 unique intensities. A synthetic derivative of warfarin, it crystallizes as the hydrate $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and has a dihydropyran ring with a half-chair conformation and intermolecular H bonds with $\mathrm{O} \cdots \mathrm{O}$ distances between 2.67 and $2.77 \AA$. (5) Racemic trans-2-hydroxy-4-(4-dimethylaminophenyl), $\quad M_{r}=$ 369.4, triclinic, $P \overline{1}, a=9.066$ (3), $b=9.509$ (2), c $=12.681$ (3) $\AA, \quad \alpha=98.50$ (2),$\quad \beta=91.25$ (3),$\quad \gamma=$ 116.96 (2) ${ }^{\circ}, V=958.8 \AA^{3}, Z=2, D_{x}=1.279 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=0.854 \mathrm{~cm}^{-1}, \quad F(000)=$ $392, T=298 \mathrm{~K}$, final $R=0.045$ on 2773 unique intensities. A synthetic derivative of warfarin, it also crystallizes as a hydrate, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, and has a dihydropyran ring with a half-chair conformation and intermolecular H bonds with $\mathrm{O} \cdots \mathrm{O}$ distances between 2.70 and $3.07 \AA$.

Introduction. Michael-type addition of 4-arylbut-3-en-2-ones to 4 -hydroxycoumarin leads to 3 -substituted

4-hydroxycoumarins which exist in a solution equility rium with the two diastereomeric cyclic hemiket forms. Crystals invariably contain the cyclic structuf which incorporates a substituted dihydropyran ring Hemiketals can be converted to the cyclic methyl ketal? in acidic methanol. Diastereomeric cis and trafe (2-oxygen substituent relative to 4 -substituent) methy ketal methoxyls are found in axial orientations owiry to an operative anomeric effect. The structures of five 4 -aryl analogs of warfarin (2-hydroxy-2-methy 4-phenyl-3,4-dihydro- $2 \mathrm{H}, 5 \mathrm{H}$-pyrano[3,2-c][1] benzo-pyran- 5 -one) are presented here as part of a study o the conformational flexibility of dihydropyran ring near their ground state. A companion study of 4 -aliphatic warfarin analogs is in preparation.

(I)
(2) $\mathrm{C}_{6} \mathrm{H}_{5}$
(3) $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$
(4) $0,0-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)\left(\mathrm{CH}_{3}\right)$
(5) $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$

Experimental. Syntheses of hemiketals generally follow reported procedures (Ikawa, Stahmann \& Link, 1944) except for (5) (Bush \& Trager, 1983). The trans warfarin methyl ketal racemic compound (1) wa separated from the mixture of diastereomers produced on methylation (Valente, Lingafelter, Porter \& Trager, 1977). Warfarin, $R=\mathrm{C}_{6} \mathrm{H}_{5}, R^{\prime}=\mathrm{H}$, was resolved with quinidine and quinine (West, Preis, Schroeder \& Link, 1961) and the trans- $2 R, 4 R$-methyl ketal (2) was pre pared by refluxing $R(+)$ warfarin in acidic methanol, and fractionally crystallizing the product from ethanol. Hemiketal (3) crystallized as a conglomerate as determined by the crystal structure, and spontaneously resolves on crystallization from 1:1 water:acetone. Melting points: (1) $440 \cdot 3-441 \cdot 5$; (2) 451-453; (3) $431-432$; (4) 436-438; (5) 376-378 K. D_{m} 's were not measured. Data on the crystallographic specimens and for intensity measurements are given in Table 1. Cell constants were

Table 1. Crystal data, intensity measurements, refinements

| | Crystal
 size (mm) | $\theta_{\text {max }}\left({ }^{\circ}\right)$ | No. unique
 intensities | No.
 used | Scale
 factor | S | $w R$ | No.
 variables |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1($ racemic $)$ | $0.7 \times 0.2 \times 0.2$ | 27.5 | 3674 | 1513 | $0.395(1)$ | 1.42 | 0.057 | 289 |
| $2(2 R, 4 R)$ | $0.4 \times 0.3 \times 0.2$ | 27.5 | 2171 | 1660 | $0.638(2)$ | 1.93 | 0.028 | 280 |
| 3 | $0.75 \times 0.2 \times 0.2$ | 28 | 2268 | 1165 | $0.404(2)$ | 1.16 | 0.049 | 298 |
| 4 | $0.45 \times 0.45 \times 0.2$ | 30 | 5331 | 2339 | $0.306(1)$ | 1.32 | 0.057 | 333 |
| 5 | $0.6 \times 0.4 \times 0.25$ | 28 | 4626 | 2773 | $0.155(1)$ | 1.69 | 0.062 | 336 |

determined by careful centering of 25 [(1),(3)-(5)] or 30 (2) reflections having higher θ 's. Crystal symmetry and space groups were initially assigned from systematic absences; for (1) and (4): $h 0 l, h+l$ odd; $0 k 0, k$ odd; for (2) and (3): $h 00, h$ odd; $0 k 0, k$ odd; $00 l, l$ odd; and they were later confirmed by structure determination. Standard reflections were monitored for orientation and crystal stability, and no unusual trends were seen. Intensities were collected on a CAD-4 diffractometer except for (2) for which data were taken on a Picker FACS-1 instrument. Intensities were corrected for coincidence, polarization and specimen deterioration but not for absorption, and converted to F 's. Associated $\sigma\left(F_{o}\right)$'s are based on counting statistics
alone. Data less than three times their estimated standard deviations were marked weak and not used in refinements. A secondary-extinction correction seemed necessary only for (4) and was later applied, g $=2.53(1) \times 10^{-7}$. Structures were discovered with MULTAN (Germain, Main \& Woolfson, 1971). NonH -atom positions were refined with $U_{\text {iso }}$'s by full-matrix least squares, then with their $U_{i j}$'s. H atoms were refined from calculated positions with their $U_{\text {iso }}$'s. Least-squares weights were taken as $4 F_{o}^{2} / \sigma^{2}(I)$ where $\sigma^{2}(I)=\sigma^{2}(I)_{c}+p(I)_{c}^{2}$ as defined by Corfield, Doedens \& Ibers (1967); $p=0.05$. Scattering factors from

Table 4. Positions ($\times 10^{4}$) and $B_{e q}$'s for (3)
E.s.d.'s in parentheses.

Table 3. Positions ($\times 10^{4}$) and $B_{\text {eq }}$'s for (2)

E.s.d.'s in parentheses.				
	\boldsymbol{x}	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
0 (1)	7739 (1)	4146 (1)	1097 (2)	$3 \cdot 56$ (5)
0 (2)	6585 (2)	3330 (1)	2425 (2)	4.50 (7)
0 (3)	8806 (2)	784 (1)	680 (2)	3.82 (5)
0 (4)	10137 (1)	1992 (1)	1101 (1)	2.69 (5)
c(2)	7531 (2)	3369 (2)	1901 (2)	$3 \cdot 32$ (6)
C(3)	8416 (2)	2651 (2)	2016 (2)	2.74 (7)
C(4)	9343 (2)	2702 (2)	1227 (2)	2.72 (7)
c(5)	10634 (2)	3686 (2)	-261 (2)	3.39 (8)
C(6)	10798 (3)	4525 (2)	. 946 (3)	3.76 (9)
c(7)	9934 (3)	5217 (2)	-970 (2)	3.81 (9)
C(8)	8912 (3)	5076 (2)	-300 (2)	3.51 (9)
c(9)	8770 (2)	4249 (2)	418 (2)	2.98 (7)
c(10)	9599 (2)	3540 (2)	446 (2)	2.74 (7)
C(11)	8202 (2)	1852 (2)	2954 (2)	3.21 (7)
C(12)	9218 (3)	1151 (2)	2888 (3)	3.45 (8)
C(13)	9715 (2)	1057 (2)	1517 (2)	3.05 (7)
C(14)	10773 (3)	422 (2)	1444 (4)	4.06 (9)
C(15)	9091 (4)	731 (3)	-728(3)	5.4 (1)
C(16)	8021 (2)	2161 (2)	4392 (2)	$3 \cdot 10$ (9)
C(IT)	8766 (3)	2781 (2)	4982 (3)	4.7 (1)
C(18)	8634 (4)	3023 (3)	6329 (4)	5.6 (1)
C(19)	7776 (4)	2634 (3)	7051 (3)	5.5 (1)
C(20)	7031 (3)	2010 (3)	6479 (3)	6.1 (1)
C(21)	7150 (3)	1794 (3)	5156 (3)	5.0 (1)

$O(1)$
$O(1)$
$O(3)$
$O(3)$
$O(4)$
$O(18)$
$C(2)$
$C(3)$
$C(4)$
$C(5)$
$C(6)$
$C(7)$
$C(8)$
$C(9)$
$C(10)$
$C(1)$
$C(12)$
C
$C(13)$
C

x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
6697 (3)	8601 (2)	7143 (2)	3.88 (7)
7586 (3)	10437 (3)	7310 (2)	4.73 (7)
9980 (3)	6999 (3)	6230 (2)	$3 \cdot 62$ (6)
11498 (3)	7807 (3)	7194 (2)	4.12 (7)
8824 (3)	13924 (3)	4224 (3)	5.48 (8)
7732 (4)	9369 (4)	7041 (3)	3.31 (9)
8861 (4)	8860 (4)	6653 (3)	2.78 (8)
8935 (4)	7593 (4)	6501 (3)	2.89 (9)
7814 (5)	5505 (4)	6411 (3)	4.1 (1)
6693 (5)	4857 (4)	6476 (3)	4.7 (1)
5621 (5)	5434 (5)	6753 (4)	4.9 (1)
5621 (4)	6683 (4)	6977 (3)	$4 \cdot 2$ (1)
6729 (4)	7342 (4)	6898 (3)	$3 \cdot 32$ (9)
7842 (4)	6795 (4)	6613 (3)	3.02 (9)
9961 (4)	9731 (4)	6457 (3)	3.02 (9)
10966 (4)	9015 (4)	5926 (3)	3.8 (1)
11184 (4)	7702 (4)	6293 (3)	3.35 (9)
9595 (4)	10895 (4)	5914 (3)	3.01 (8)
8719 (5)	10850 (4)	5229 (4)	4.5 (1)
8478 (5)	11858 (5)	4680 (4)	5.0 (1)
9142 (4)	12960 (4)	4801 (3)	3.6 (1)
10029 (5)	13032 (4)	5463 (3)	$4 \cdot 3$ (1)
10256 (4)	12002 (4)	6015 (3)	3.9 (1)
9652 (6)	14953 (5)	4169 (4)	5.7 (1)
12097 (5)	6927 (4)	5745 (3)	4.5 (1)

Table 5. Positions ($\times 10^{4}$) and $B_{e q}$'s for (4)
E.s.d.'s in parentheses.

x	y	2	$B_{\text {eq }}\left(\AA^{2}\right)$
4915 (2)	-379 (1)	3331 (1)	3.63 (4)
4008 (2)	278 (1)	1975 (2)	4.93 (5)
8735 (2)	785 (1)	2817 (1)	3.31 (3)
9121 (2)	657 (1)	1107 (1)	3.95 (4)
5580 (2)	2492 (1)	3122 (1)	4.38 (4)
1694 (2)	58 (2)	756 (2)	7.81 (6)
5030 (3)	208 (2)	2514 (2)	$3 \cdot 21$ (5)
6325 (2)	679 (2)	2362 (2)	2.73 (5)
7445 (2)	442 (2)	2936 (2)	2.67 (4)
8427 (3)	453 (2)	4415 (2)	3.24 (5)
8197 (3)	-998 (2)	5251 (2)	3.82 (6)
6880 (3)	-1308 (2)	5460 (2)	3.77 (6)
5789 (3)	.. 1101 (2)	4R16 (2)	3.67 (5)
6019 (2)	-556 (2)	3969 (2)	2.9 .5 (5)
7328 (2)	-203 (2)	3771 (2)	2.61 (4)
6423 (2)	1392 (2)	1520 (2)	$3 \cdot 17$ (5)
7788 (3)	1930 (2)	1656 (2)	3.64 (6)
9005 (2)	1304 (2)	1883 (2)	3.02 (5)
10347 (3)	1809 (2)	2099 (2)	4.16 (6)
5223 (3)	2076 (2)	1419 (2)	$3 \cdot 21$ (5)
4522 (3)	2192 (2)	490 (2)	3.88 (6)
3536 (3)	2902 (2)	392 (2)	4.79 (7)
3214 (3)	3462 (2)	1197 (3)	4.96 (7)
3867 (3)	3342 (2)	2117 (2)	4.51 (h)
4873 (3)	2652 (2)	2223 (2)	3.60 (5)
5558 (4)	3206 (2)	3871 (3)	6.19 (9)
4812 (3)	1587 (3)	405 (2)	5.70 (8)

Table 6. Positions ($\times 10^{4}$) and $B_{\text {eq }}$'s for (5)
E.s.d.'s in parentheses.

	x	y	z	$B_{r q}\left(\AA^{2}\right)$
O(1)	7744 (1)	1980 (1)	6217 (1)	$3 \cdot 52$ (3)
O(2)	9068 (2)	4574 (2)	6290 (1)	$4 \cdot 20$ (4)
O<3)	3526 (1)	2164 (1)	7153 (1)	3.35 (3)
$\mathrm{O}(4)$	3456 (2)	3960 (1)	6125 (1)	3.70 (3)
$\mathrm{O}(\mathrm{W})$	625 (2)	2817 (2)	4805 (1)	5.55 (4)
N (1)	12479 (2)	9545 (2)	10041 (2)	4.67 (5)
C(2)	7804 (2)	3465 (2)	6475 (2)	$3 \cdot 12$ (4)
C(3)	6413 (2)	3573 (2)	6918 (1)	2.77 (4)
C(4)	4975 (2)	2203 (2)	6905 (1)	2.77 (4)
C(5)	3474 (2)	-807 (2)	6600 (2)	3.70 (5)
C(6)	3519 (3)	-2241 (2)	6277 (2)	4.40 (5)
C(7)	4952 (3)	-2248 (2)	5932 (2)	4.32 (5)
C(8)	6364 (2)	-8.38 (2)	5919 (2)	3.82 (5)
C(9)	6318 (2)	589 (2)	6256 (2)	3.14 (4)
C(10)	4896 (2)	641 (2)	6589 (1)	2.86 (4)
C(11)	6548 (2)	5219 (2)	7280 (2)	3.01 (4)
C.(12)	4979 (2)	5019 (2)	7810 (2)	3.52 (4)
C(13)	3430 (2)	3678 (2)	7165 (2)	3.23 (4)
C(14)	8102 (2)	6350 (2)	8024 (2)	3.00 (4)
C(15)	8627 (3)	5896 (2)	8883 (2)	3.96 (5)
C(16)	10043 (3)	6939 (2)	9559 (2)	4.09 (5)
C(17)	11006 (2)	8512 (2)	9400 (2)	3.44 (4)
C(18)	10437 (3)	8982 (2)	8557 (2)	$3 \cdot 58$ (5)
C(19)	9025 (2)	7916 (2)	7883 (2)	3.34 (4)
C(20)	13351 (3)	11186 (3)	9892 (2)	$5 \cdot 18$ (6)
C(21)	12793 (3)	9204 (3)	11057 (2)	5.99 (7)
C(22)	1830 (2)	3388 (3)	7638 (2)	4.52 (5)

International Tables for X-ray Crystallography (1974) except for H (Stewart, Davidson \& Simpson, 1965). In all cases final $\Delta / \sigma_{\text {ave.max }}$ were less than $0.05,0.20$ respectively and positive excursions were less than $0.3 \mathrm{e} \AA^{-3}$, no troughs were less than $-0.207 \mathrm{e}^{-3}$.

Discussion. Final atom positions and vibrational parameters are given in Tables 2-6.*
No close intermolecular contacts are seen in (1) and (2). Structure (1) is the racemic compound ($2 R$,$4 R ; 2 S, 4 S)$, (2) is chiral $(2 R, 4 R)$. The racemate has a lower cell volume, higher density but a lower melting point compared with the resolved compound, pointing to differences in the crystal packing between them. Intermolecular hydrogen bonding is found in (3)-(5). Hemiketal hydroxyls and coumarin carbonyls are H -bonded in (3), $\mathrm{O} \cdots \mathrm{O} 2.795$ (5) \AA. The water of crystallization in each of (4) and (5) donates two H bonds and accepts one H bond. In (4), the hemiketal hydroxyl is H -bonded to water, $\mathrm{O} \cdots \mathrm{O} 2.673$ (3) \AA, which H -bonds to a carbonyl oxygen and to a hemiketal hydroxyl oxygen in neighboring molecules, O..O 2.745 (3), 2.769 (3) \AA, respectively. In (5), the hemiketal hydroxyl is also H -bonded to water, $\mathrm{O} \cdots \mathrm{O}$ 2.705 (2) A, which H-bonds to a carbonyl oxygen and more weakly to a coumarin ring oxygen in neighboring molecules, $\mathrm{O} \cdots \mathrm{O} 2.927$ (2), 3.067 (2) \AA, respectively.

[^0]All five structures have the 2-oxygen trans to the 4 -aryl substituent, and the hydroxyl or methoxyl is axial (anomeric effect). Hemiketal hydroxyl H's and ketal methyls are gauche synclinal to the dihydropyran oxygen and directed exo to the ring (exoanomeric effect). Ring (hemi)ketal $\mathrm{C}-\mathrm{O}$ bonds are longer $(1.45-1.47 \AA)$ than found in sugars ($1.42-1.43 \AA$); the ring unsaturation widens two intraring angles and modifies closure geometry relative to a saturated heterocycle. Phenyl ring substituents are pseudo equatorially disposed on the dihydropyran ring and phenyl rings are inclined relative to coumarin ring planes to avoid close contacts. Extent of the inclination ranges from 71° (dihedral angle) in (3) to 98° in (4). See Figs. 1 to 5 for ellipsoid plots of the moleculai structures.

Fig. I. An ellipsoid plot of (1), showing the numbering scheme.

Fig. 2. An ellipsoid plot of (2).

Fig. 3. An ellipsoid plot of (3).

Fig. 4. An ellipsoid plot of (4).

Fig. 5. An ellipsoid plot of (5).

A 3,4-dihydro- 2 H -pyran ring is embedded in each structure. The unsaturation is part of the coumarin ring and other ring substituents are 2-methyl, 2-hydroxyl or methoxyl, and 4 -aryl. Rings in both (1) and (2) are half chairs strongly distorted toward the d, e-diplanar forms, (3)-(5) are essentially half-chairs. Intraring torsion angles are given in Table 7.

Thanks go to B. D. Santarsiero and A. Aruffo for experimental assistance early in this project. We

Table 7. Torsion angles $\left(^{\circ}\right)$ in the dihydropyran rings
E.s.d.'s are at most about 0.5°; common configuration.

	a	b	c	d	e	f
(1)	-50.2	59.5	-36.6	5.7	3.5	20.0
(2)	-51.9	60.4	-35.3	2.0	6.3	20.1
(3)	-45.2	60.3	-42.9	10.7	4.6	13.9
(4)	-42.1	59.3	-45.4	15.2	1.4	12.8
(5)	-44.3	63.6	-48.3	16.0	3.6	11.3

also gratefully thank the Southern Regional Education Board, the Departments of Chemistry at the University of North Carolina and University of Washington and especially Dr D. J. Hodgson and Dr E. C. Lingafelter. A portion of this work was supported by a grant from the American Heart Association (Mississippi Affiliate) \#MS-84-G-3.

References

Bush, E. \& Trager, W. F. (1983). J. Pharm. Sci. 72, 830-831.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Germain, G., Main, P. \& Woolfson, M. M. (1971), Acta Cryst. A27, 368-376.
Ikawa, M., Stahmann, M. \& Link, K. P. (1944). J. Am. Chem. Soc. 66, 902-906.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Valente, E. J., Lingafelter, E. C., Porter, W. R. \& Trager, W. F. (1977). J. Med. Chem. 20, 1489-1493.

West, B. D., Preis, S., Schroeder, C. \& Link, K. P. (1961). J. Am. Chem. Soc. 83, 2676-2679.

[^0]: * Lists of structure factors, anisotropic vibrational amplitudes and H -atom positions have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43210 (109 pp). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

