112

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

Structuring and Composability Issues
in Petr1 Nets Modeling

Luis Gomes, Member, IEEE, and Jodao Paulo Barros

Abstract—Along Petri nets’ history, numerous approaches
have been proposed that try to manage model size through the
introduction of structuring mechanisms allowing hierarchical
representations and model composability. This paper proposes
a classification system for Petri nets’ structuring mechanisms
and discusses each one of them. These include node fusion, node
vectors, high-level nets, and object-oriented inspired Petri nets
extensions, among others. One running example is used empha-
sizing the application of the presented mechanisms to specific
areas, namely to automation systems modeling, and software
engineering, where object-oriented modeling plays a major role.

Index Terms—Hierarchies, model abstraction, model com-
position, model refinement, objects, Petri nets, structuring
mechanisms.

I. INTRODUCTION

T IS A FACT easily confirmed by experience that “regular”

Petri nets, also known as low-level Petri nets, are often diffi-
cult to use in practice due to the problem of rapid model growth.
In fact, although Petri nets have been extensively studied since
Carl Adam Petri work in 1962 [10], only the last 15 years have
seen significant work on ways to compose Petri net models. The
1989 paper by Huber et al., [32] stated that “In the literature
there is almost no work on hierarchies in Petri nets”. This sit-
uation has changed since then due to numerous additional pro-
posals for hierarchical structuring and abstraction mechanisms
in Petri nets (e.g., [3], [6], [8], [9], [12], [14], [23], [26], [31],
[32], [42], [46], []). Just like in programming languages, those
proposals are in fact abstraction constructs. However, anecdotal
evidence seems to indicate that those hierarchical structuring
mechanisms are not well-known outside the Petri nets commu-
nity. In the authors’ experience it is common to find people
who are perfectly aware of Petri nets but still see them as ex-
tended state machines with no composition capabilities. This is
even made more surprising because Petri nets have also entered
the object-oriented arena for some time now, which implicitly
brought additional and sophisticated abstraction constructs. The
book [1] offers an up-to-date detailed survey of some of these
approaches. This situation is probably due to the absence of an
overview of the available composition mechanisms for Petri nets
models. Although some Petri nets’ tutorials have been available
for some time (e.g., [16], [17], [25], [44], [47], [50], [52], [53],

Manuscript received October 4, 2004; revised January 21, 2005.

L. Gomes is with the Universidade Nova de Lisboa/UNINOVA-Portugal,
Lisboa, Portugal (e-mail: lugo@uninova.pt).

J. P. Barros is with the Universidade Nova de Lisboa/UNINOVA, Lisboa, Por-
tugal, and also with the Instituto Politécnico de Beja, ESTIG, Beja, Portugal
(e-mail: jpb@uninova.pt).

Digital Object Identifier 10.1109/TI1.2005.844433

[59]), they give little and sparse attention to structuring mecha-
nisms for Petri net models. Although not relevant from a theo-
retical point of view, in the sense that they do not increase the
modeling capacity, they are extremely relevant from a practical
or from an engineering point of view. Even the simplest hierar-
chical decomposition of a large Petri net model can mean the
difference between a manageable and an unmanageable model.

The addition of structuring mechanisms to Petri nets has orig-
inated or contributed to the large diversity of Petri nets classes
(or types). The unification of those numerous dialects is already
an important research topic [20] and some authors even wonder
what a Petri net is [36]. Here we do not intend to review or clas-
sify all the different Petri net classes: they are simply far too
many. Instead, we focus on the structuring mechanisms for Petri
net models; when they are part of well-known Petri nets’ classes,
we mention them too. To that end, we present a novel classifi-
cation for those structuring mechanisms.

At the first level, we classify Petri net structuring mechanisms
as usually found on the Petri nets’ theoretical literature: compo-
sition versus refinement/abstraction.

Composition means the interconnection of several Petri
net models. It is based upon the concepts of place and tran-
sition fusion. It corresponds to the programming languages
concepts of block, module, or class composition. We will
present the folding in high-level Petri nets as a particular case
of net composition. Interestingly, high-level nets usually also
include some kind of modular composition abstraction. Refine-
ment/abstraction mechanisms correspond to the programming
languages concepts of macros or procedures. We will see these
can be supported by node fusions, the typical net composition
construct.

The following section presents the classification for Petri
nets structuring mechanisms. Along the text, the referred struc-
turing techniques are presented in the framework provided by
the proposed classification. The review emphasizes the most
useful constructs, from an engineering point of view, for sev-
eral selected areas, namely automation systems, and software
engineering.

II. CLASSIFICATION FOR PETRI NETS
STRUCTURING MECHANISMS

Fig. 1 presents a novel view for the classification on Petri nets
structuring mechanisms. It starts by the usual dual classification:
composition versus refinement/abstraction.

Besides the well-known place and transition fusions, high-
level nets folding is seen as a especial kind of fusion, based on
tokens. A less well-known kind of folding, based on nodes and
node vectors, is also presented.

1551-3203/$20.00 © 2005 IEEE



GOMES AND BARROS: STRUCTURING AND COMPOSABILITY ISSUES IN PETRI NETS MODELING 113

Petri Nets Structuring

Composition Refinement/Abstraction

T

Fusion Folding Macros Invocations

N

Place Fusion Transition Fusion Token-based Node-based

Fig. 1. Classification for Petri nets structuring mechanisms.

The refinement/abstraction structuring mechanism includes
macro-based structuring and net modules dynamic creation.
This includes the object-oriented Petri net classes.

In the following sections, the structuring mechanisms are pre-
sented and a running example is used to support illustration of
different modeling situations. The example is centered on the
modeling of a car parking lot controller. We start considering a
car parking lot with one entrance and one exit. Internally, the
parking lot area is divided into three areas. For the introduc-
tory example, each area has a maximum capacity of one car;
latter, we will use a finite capacity associated with the parking
lot sections. Fig. 2(a) presents the layout of the parking lot and
Fig. 2(b) and (c) present the low-level net models associated
with each area of the parking lot when occupied with one car or
when a free place is available, respectively.

Afterwards, several variants will be considered, namely
adding more entrances, adding more exits, and several refine-
ments of some parts of the model using different techniques,
from top-down decomposition strategies to object-orientation.

Ishas to be stressed that this simple “neutral” running example
can be kept close to generic modeling situations typically
found in the related literature, like producer-consumer systems,
FIFO systems, serial, and parallel buffers, just to mention a
few. The referred modeling situations are common in several
application areas, where concurrency formalisms play a major
role, ranging from manufacturing systems, data communication
networks, digital hardware design and, more recently, software
engineering. We preferred to use a running example from
the automation area, where the modeling capabilities can be
presented, although keeping some generality.

A. Composition

Net composition is usually defined as the merging of nets
into a single one through node fusion. This can be seen as a
direct support for bottom-up approach to system design, or for
the reusability of models already available. Here we generalize
this idea: we see net folding as another form of net composition,
where multiple and structurally identical nets are composed to-
gether in a single high-level net.

1) Fusion: In some earlier works, node fusion was used as
a drawing convenience to fold a set of nodes into a single one,
avoiding the use of long arcs connecting distant nodes, which
could lead to legibility problems in the net model. Afterwards,
node fusion took its place also as a fundamental concept to sup-
port model composability.

From the compositional point of view, node fusion offers a
horizontal composition, as the nets are glued together at spe-
cific points (places or transitions) “side by side.” A node fusion
based model is like a puzzle where each piece can contain a full
drawing but also has parts that connect it to others.

enter E> E:> leave

[ B2

a)

B>

ParkingArea

ParkingArea

occupied occupied
@t <Z>-t
free free
b) c)

Fig. 2. (a) Queue in a car parking lot as a FIFO system, (b) net model for an
occupied place, and (c) for a free place.

Unsurprisingly, node fusion can take the form of transition fu-
sion and place fusion. The first has a clear connection to process
algebras synchronous communication and this fact is deeply ex-
plored in the “Petri Net Algebra” [7]. The second allows asyn-
chronous communication among processes. As pointed out in
[19] and [22], synchronous communication among processes
can not be naturally used to analyze state-based properties.

In spite of the complementary nature of transition fusion and
place fusion, some proposals only use one or the other. For in-
stance, hierarchical colored Petri nets [33] rely exclusively on
place fusion. This is used not only to connect distinct Petri
net models but also as a graphical convenience allowing the
multiple appearance of any specific place in different locations
across the graph model. This can bring a significant increase
in model readability. It has to be noted that transition fusion
was also referred in previous works on hierarchies for colored
Petri nets [32], but was not included in the formal definition
of hierarchical colored Petri nets [33] and associated tools (as
Design-CPN [18] and CPN Tools [15]).

Probably due to the strong relation to process algebra com-
positions, several proposals rely exclusively on transition fusion
(e.g., [5], [45]).

Some proposals use both fusions. Among them, it is impor-
tant to mention the modular colored Petri nets [12], [13], [] and
modular place/transition nets [14] that rely on place fusion and
also on transition fusion to allow a modular state space anal-
ysis. The used transition fusion does not force the transition fu-
sion sets to be disjoint. This differs from a previous proposal by
Huber et al. [32], which can be seen as a first attempt to unify
proposals for hierarchical structuring mechanisms for colored
Petri nets.

The composition by node fusion is common in the proposals
for state space analysis based on model decomposition. For ex-
ample, Notomi and Murata [45] use transition fusion, while Juan
etal. [19], [22], and Valmari [57] use place fusion. One proposal
[11], referred as an example of place fusion in [19], uses addi-
tional places to bridge together two nets.

Coming back to our running example, we start considering a
car parking lot as a FIFO system composed by three cascaded
sections, as presented in Fig. 2(a). The whole system model can
be obtained through replication of the models in Fig. 2(b) and
(c), as needed, followed by composition through node fusion, as



ParkingAreaA

occupiedA

inA

outA

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

ParkingAreaB

occupiedB

freeB

outB

ParkingAreaC

occupiedC

inC outC

\ freeA /

/ \_ freeC j

ParkingAreaABC

Yt

occupiedA

occupiedB

occupiedC

freeB

freeC

b)
Fig. 3.

a partially overlapping puzzle. In the current example, the com-
ponents’ composition is accomplished through transition fusion,
starting with three submodels seen as components to be inter-
connected [see Fig. 3(a)]. All labels associated with places and
transitions are renamed in order to be made unique. Then, transi-
tion fusion is used to compose the three models into the global
model. As shown in Fig. 3(b), the transitions outA and inB
are fused into transition moveAtoB, transitions out B and inC'
are fused into transition moveBtoC transition in A is renamed
enter, and transition outC' is renamed leave.

Net operations: From an engineering perspective, and be-
sides the well-known top-down and bottom-up approaches, we
can think of a third type of net composition where modifications
can be spread across any number of the currently existent model
parts. Yet, this is not necessarily seen as a bottom-up construc-
tion where one model module grows by connecting it to another,
but as the modification of one or more existent model modules
by a single new module. This new module imposes structural
and behavioral modifications to one or more modules of the
initial model. This corresponds to the realization of crosscut-
ting requirements [2], [37], [55], at the net level. It has to be
noted that, from the theoretical point of view, one main con-
cern with model composability has been propriety preserving, in
the sense that one can apply propriety analysis results obtained
from the separated components to the resulting model. With this
third attitude (crosscutting), the emphasis is shifted from “com-
posability with propriety preserving” to “composability for pro-
priety addition or propriety avoidance.”

One simple operation named net addition [2], [3], formally
defined as a net disjoint union followed by node fusions,
supports all three net composition approaches (top-down,
bottom-up, and crosscutting). The reverse operation is, appro-
priately, called net subtraction. These two simple operations

Composition, through transition fusion, of the net models in (a) into the net model in (b).

can compose and decompose, in an orthogonal way, the existing
nets or modules. They can operate on net instances [3], [26]
and offer support for bottom-up construction and crosscutting
modifications. As net composition also supports refinements (to
be presented later), the two operations also offer a generalized
support for top-down development [26].

A net addition operation is defined as a disjoint union fol-
lowed by a set of node fusion among the nodes of the resulting
net. The syntax is the following:

NewNet = (OperandNetInstance; & ...
® OperandN etInstancep)
(nodey, /nodey,/ ... [nodey, —newNodey,

...,nodeg, /nodey,/. . . nodey.,, —mnewNodey,) .

ey

Where the list of net instances to be added is presented first,
followed by the identification of different node fusion sets to
obtain the desired final composition.

The nodes to be fused belong to the operand net instances.
The node fusions are specified by the set of nodes to be fused
(separated by “/”); and the name of the resulting new nodes
(after “—").! For example, the net in Fig. 3(b) can be defined,
by net addition, based on the three nets in Fig. 3(a):

ParkingAreaABC
=(ParkingAreaA® ParkingAreaB® Parking AreaC')
(inAw— enter, outC — leave, out A /in B moveAtoB,
outB/inC — moveBtoC). 2)

1Tt is clear that notations like “@> and “— should be replaced by ASCII
representations, for adequate handling by computational tools.



GOMES AND BARROS: STRUCTURING AND COMPOSABILITY ISSUES IN PETRI NETS MODELING 115

occupied

free
a)

Fig. 4.

The syntax reflects the three fundamental operations involved:
1) the disjoint union of the operand nets; 2) the node fusions
among the resulting net nodes; and 3) the naming of resulting
net nodes at the resulting net.

Several tools specify the structure definition of the whole
model by annotations added to the net components. These an-
notations establish the connection among the several pages or
modules. For example: node fusion is specified by annotating
one node with the identifier of another node in the same or in a
different subnet. Differently, when specifying net compositions
with net addition and net subtraction we get a total separation
between the composition information and the net components
annotations. A new net can be defined by describing the way
other nets are related: the net definition is based on operations
that refer to the set of operand nets. This allows the quick specifi-
cation of a large net model without any kind of graphical editing:
we simply specify the textual expressions composing the nets;
the original nets definitions remain exactly the same. As both
operations are amenable to a simple textual representation to be
made available by tools, this allows the representation, in a com-
pact and readable format, of a large number of net compositions.
These can be seen as contributing either to system development,
or to future modification of a “completed” system.

2) Folding: Folding abstraction is another kind of compo-
sition. It is made possible by structural symmetries inside a
low-level net model.

We consider two folding composition types:

. the first one leading to high-level nets is here named
token-based folding: the folding is accomplished
through the use of tokens as data structures.

. in the second one, here named node-based folding,
the folding is accomplished by node fusion, but the
folded nodes maintain their identity through the use
of associated indexes. The nodes to be merged can
be places, transitions, or other types of nodes, namely
the macronodes, which will be presented in the fol-
lowing sections, within refinement/abstraction struc-
turing mechanisms.

Token-based folding: Token-based folding is, by defini-
tion, the essence of high-level Petri nets [24], [33], [35]. High-
level nets avoid repetitions in the net structure by increasing

occupied[1...3]

free[1...3]

b)

Folding of net models (a) using a high-level Petri net model and (b) using a node vector notation.

token complexity. As tokens can carry data, data transforma-
tion modeling is made possible, and usually necessary. As tran-
sitions and places are fused, the respective arcs can also be seen
as “fused.” These arc fusions are modeled by algebraic expres-
sions associated to arcs, named arc expressions, which are able
to model data transformations. In this sense, high-level Petri
nets are also much more dependent on textual annotations than
low-level nets. This is no surprise as it stems from the typical
use of text to reduce graphic notation.

High-level nets folding can be seen as an “internal composi-
tion” made possible by structural symmetries inside a low-level
net model. To illustrate this point we go back to our parking
lot example in Fig. 3. We can easily identify symmetries and
compose a folded colored net model, as presented in Fig. 4(a).
There, the occupied places, for example, are composed (fused)
into one. The same happens with the free places and the move
transitions.

Considering the associated impact factor (measured in terms
of the number of published works), we can identify three main
classes of high-level nets: colored Petri nets [33], [34], pred-
icate/transition nets [24], [30] and nets with individual tokens
[49], [51].

Among these three, colored Petri nets (CPNs) are clearly the
more popular class of high-level nets. This is testified by the
worldwide use of two CPN-based tools: the CPN Tools [15]
and the RENEW tool [58]. The CPN Tools extend the structuring
capabilities of CPNs with macro transitions and place fusion.
The RENEW tool extends CPNs in several ways, namely as a
base for object nets (where tokens can be nets), several arc types,
and a high-level version of transition fusion named synchronous
channels.

Predicate/transition (PrT-nets) nets were the first class of
high-level Petri nets which were defined with no especial
application in mind. As mentioned in [33], compared to CPNs,
PrT-nets can be seen as a slightly different dialect of the same
language. Yet, probably due to the much stronger tool support
for CPNs, PrT-nets have become much lesser known than
CPNs. Notwithstanding, significant theoretical work has been
conducted with PrT-nets (e.g., [24]), and also with hierarchical
PrT-nets (e.g., [30]).

Nets with individual tokens can be seen as simplified CPNs
as they do not allow functions in guards or in arc expressions.



116

They offer a nice theoretical model also useful for pedagogical
purposes [51].

Node-based folding: Node-based folding is a complemen-
tary structuring mechanism that can also lead to a more compact
model. It is based on the node vector concept introduced in [26],
[27]. It can be used together with the net instance and net in-
stance vector concepts. For this reason we refer to both node
vectors and net instance vectors as component vectors [3].

Node-based folding relies on the association of a multiplicity
factor (cardinality) to every node of the Petri net model. In this
sense, every node can be seen as a vector of identical nodes. As
an example to help clarifying the notation we consider Fig. 4(b).
We use occupied[ 1. . .3] to represent the folding of three places
represented in Fig. 3 as occupiedA, occupiedB, and occupiedC,
which will be referred by occupied(1], occupied[2], and occu-
pied[3], respectively. A similar vector notation applies to other
nodes in the example. In this sense, Fig. 4(a) net model using
a colored Petri net model and Fig. 4(b) net model using node
vectors are behaviorally equivalent.

Both foldings can be seen as graphical conveniences to allow
model compactness and complexity management. In fact, it is
always possible to obtain a low-level net model that is behav-
iorally equivalent to the folded net model. The set of procedures
to allow unfolding of a net model using node-based folding was
presented in [26], [27], and considers the following aspects.

¢ How to deal with the unfolding of arcs that are intercon-

necting nodes having a vector notation.

¢ How to deal with inscriptions associated with arcs con-

necting nodes with a vectorial attribute.

¢ How to deal with initial marking of place vectors.

¢ How to deal with guards associated with transition vec-

tors.

As already referred, the vector notation can be used together
with the net instance concept, leading to the net instance vector
concept.

When we use more than one instance of a given net, we avoid
the need to rename all the net components through the use of
net instances [3], [26]. These are distinguished by appending an
index between square brackets to the net identifier. In the present
example, we use three instances of the same net, considering
three empty parking lot sections. Accordingly, we also define
a net instances vector. In our example, for three instances of
ParkingArea net, we get the composition in Fig. 5.

The composition in Fig. 5 can be expressed for any number
(nAreas) of Parking Area nets using a net addition of the sev-
eral instances. This is expressed as a net instance vector. As-
suming nAreas = 3, we write

ParkingArea3
= (®ParkingArea[l ...nAreas])
(ParkingArea[l].in — enter,
ParkingArea[nAreas].out — leave,
(ParkingAreali].out/ Parking Areali + 1].in
[1:1...nAreas —1]). 3)

— tmoveli])

Note the use of the constant n Areas denoting the number of
added instances, and the fully qualified names used to denote

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

ParkingArea([3]

ParkingArea3

ParkingArea[1].occupied ParkingArea[2].occupied ParkingArea[3].occupied

enter o o o leave

ParkingArea[1].free ParkingArea[1].free ParkingArea[1].free

b)

Fig. 5. Composition using net instances, through transition fusion, of the net
models in (a) into the net model of (b).

the nodes: the name of the originating net followed by an in-
stance number between square brackets, a dot, and the initial
node identifier.

Node-based folding together with hierarchical structuring
mechanisms (to be discussed in the next section), can be a
valuable support for the use of subnets as modules and their
reuse in different designs [26]. Although, we only present
single-dimensional vectors, the extension to support multidi-
mensional vectors is straightforward.

Expressiveness equivalence: It has to be noted that both
folding techniques (token-based and node-based) have the same
modeling capability, in the sense that both can be translated to
the same class of low-level Petri nets. The folding supported
by the node-based vectorial notation can also be modeled
through the addition of a new color attribute (as accomplished
in Fig. 4). However, we believe that the vectorial notation in
node-based folding, improves readability while allowing simpler
and re-usable models. This is made more evident when we have
submodels associated with nodes and hierarchical structuring
techniques are used (to be presented in the next section).
Using vectorial notation, relying on the usage of a multiplicity
factor, there is no need to change the model associated with the
component to be replicated and folded afterwards. This was
exemplified in Fig. 5, where the initial low-level net model
was used directly to compose the final model.

B. Refinement/Abstraction

In the Petri net literature, top-down decomposition and
bottom-up construction are usually referred as refinement and
abstraction, respectively.2

2Although in the context of a specific Petri nets class, the article by Xudong
He and John Lee [31] offers a comprehensive presentation of both concepts.



GOMES AND BARROS: STRUCTURING AND COMPOSABILITY ISSUES IN PETRI NETS MODELING 117

I B [T R
' arrive+  waitingTicket exit+

H 1

! 1
E 1 EwaitingToPay '

H 1
1 H 1 !
1 " '
lentranceFree ' oa i
| gotTicket ! pay exitFree |
| H 1 !
i " i
' o '
: " i

gateOpen  exit-

arrive- gateOpen '
r-| ParkingArea |------------ q e Move |-------mmmmmm oo
! 11 carsin carsin |
: occupied || Zonel first+ second+ first-  second-  Zone2 '
i "
: O ¥ !
i i |
i i |
. I p1
i in “ out 1 P2 p3 |
' &) H '
i N I
i i |
i i I
i i I
i i |

freeZone2

Fig. 6. Submodel (components) of a parking lot model.

A refinement adds an encapsulated net to an existing net.
The former is named a subnet, whereas the latter is named a
supernet. One of its nodes becomes a representation for the
subnet. An abstraction is the reverse process: a subnet is re-
placed by a single node.

These hierarchical structuring mechanisms have been in-
troduced to handle system model complexity, and associated
difficulties of having too many details at one time, and losing
a global overview of the system behavior. Model structuring
through hierarchical refinement/abstraction mechanisms sup-
ports the definition of components and their reusability, taking
advantage of graphical expressiveness capabilities in order to
hide/show details of the model in a consistent manner.

The refinement/abstraction mechanism can be defined in
static or dynamic form. Compared to the programming lan-
guages area, the static form corresponds to the concept of
macro, whereas the dynamic form corresponds to a procedure
invocation. The following subsections present these two forms.

1) Macros: Petri nets have two node types. As such, one in-
tuitive way to hierarchically compose models is by node sub-
stitution: either place substitution, transitions substitution, or
both. In all three, a node can be seen as containing another
Petri net model. This use of places and transitions as encap-
sulated Petri nets goes back to the works of Carl Adam Petri
[10] and was extensively presented in [54]. These nodes are
named macro nodes and the associated Petri net is named a
Petri net macro or simply a macro. These macros can also in-
clude macro-nodes, supporting a multilevel hierarchical com-
position mechanism. Hence, macros offer a vertical structuring
mechanism, which originates a tree-like composition structure
similar to object composition in object-oriented languages. We
get nets inside nets through the use of nodes (places or tran-
sitions). This corresponds to a static composition of nets. Any
page can be used repeatedly in the same design, although re-
cursive (circular) references are not allowed, in order to avoid
infinite substitution.

We consider that macro-nodes can assume three forms:
macro-places, macro-transitions, and macro-blocks. Macro-
transitions and macro-places are extensively used by different
tools and analysis methods (namely reduction methods that
can preserve proprieties). They were also initially considered
for colored Petri nets [32], yet only the substitution transition
(similar to the macro-transition concept) is currently supported

by the associated tools Design-CPN [18] and CPN Tools
[15]. The macro-place concept has been extensively used
for reduction methods support, and within some application
areas, like hardware design and manufacturing systems [54].
Macro-blocks were presented in [26]-[28], and correspond
to the representation of a general module through a Petri net
model.

At the super-page level, macro-places nodes have arcs con-
nected to transitions (or to nodes with “transition semantics”),
macro-transitions have arcs connected to places (or to nodes
with “place semantics”), and macro-blocks have arcs connected
to both places and transitions. Yet, for the later, as only the flat
model is executed (the model that results after removing the hi-
erarchical structuring mechanisms), the bipartite characteristic
of Petri nets is not violated. In some works the interconnection
between macro-nodes is not allowed (two macro-nodes cannot
be adjacent, namely in [32]), whereas in others this feature is
considered to be important from the engineering point of view
(namely in [26]-[28]), as they allow to compose the model in a
similar way as physical components.

By definition, a macro-transition corresponds to a
macro-node where all the arcs are connected to places (or
to nodes with “place semantics”). This implies that transitions
constitute the boundary of the subnet. However, to allow syntax
and semantic verifications at the subpage level, necessary for
high-level nets, the actual connections to input places, and the
respective arc inscriptions, are needed for those transitions.
This is especially true for hierarchical colored Petri nets and
for the inscriptions related to the colored binding evaluation.
In this sense, tools that need to handle macro-modeling within
high-level nets need to consider at the subpage level (where the
model associated with the macro-node is stored) representa-
tions of the incoming/outgoing arcs and associated inscriptions
and connecting places (to allow colored binding evaluation). It
has to be stressed that for low-level nets those connecting arcs
are not strictly necessary to be considered at the subpage level.

Therefore, in high-level nets, references to places in the
super-page (the one containing the macro-transition) have to
be included in the subpage. From the model execution point
of view, the places connected to a macro-transition exist only
at the super-page level; the places presented at the subpage
are void (sometimes called reference or “ghost” places) and
will be merged with the associated places at the super-page.
This approach is followed for macro-transitions support by
hierarchical colored Petri nets tools and others.

On the other hand, a macro-place corresponds to a macro-
node where all the arcs are connected to transitions (or to nodes
with “transition semantics”). The boundary of the subnet is com-
posed by (real) places. From model execution point of view, the
places that compose the boundary of the subpage exist only at
the subpage level. To allow proper merging of the subnet into
the super-page, a set of “interface ports” are used to assure cor-
rect connectivity for incoming/outgoing arcs at the super-page
level into the model of the subpage level. This allows the direct
interconnection of macro-nodes.

Finally, for macro-blocks, the merging process is also iden-
tical; for arcs with a macro-transition semantics, the procedures
associated with macro-transition have to be followed; for arcs



118

ParkingArea[1].occupied

1
1
|
' 1 1
H arrive+  waitingTicket | 1
i | 1
i i !
i ' 1
| entranceFree . ] |
H gotTicket | I |
1 1
i il !
1 1 l I
1 . '
! arrive- gateOpen T i
""'""""""""""'"""’_’::J 1
- 1
- 1
1
fmm———- Move[1] e b e L L L Lt LA EE L b bl
| carsin carsin !
| Zonel first+ second+ first-  second-  Zone2 '
: 1
H '
i I
! i
H p1 p2 p3 !
: 1
! i
! 1
'

ParkingArea[2].occupied

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

ParkingArea[3].occupied

exitFree

gateOpen  exit-

carsin

Zonel first+  second+ first-

Fig. 8.

with a macro-place semantics, macro-place semantics has to be
chosen.

For Petri net model execution, it is necessary to obtain the as-
sociated flat model resulting from the iterative merging of the
lower level pages into the upper level pages. The referred hier-
archical relations between super-nets and subnets are specified
by macro-nodes at the upper page level. The following steps
roughly describe the merging process of the subpage into the
super-page.

* One copy of the subpage is inserted at the super-page (as-
suring that a unique reference is kept for all nodes); the
macro-node reference is removed.

e The arcs connected with a macro-place semantics are con-
nected to the referred boundary place; for arcs connected
with a macro-transition semantics, void boundary places
of the subpage are merged with the associated places at
the super-page (arcs and associated arc inscriptions in the
subpage are kept).

Now, coming back to our running example, and taking ad-
vantage of graphical simplicity associated with low-level nets,
consider the net components in Fig. 6. The top of Fig. 7 shows
the composition of three ParkingZones [as in Fig. 3(b)]. Con-
sider that the four transitions on the model Parking3 in Fig. 7

Higher level model using macro places for the parking lot model of Fig. 7.

are seen as abstractions for the net components Enter, Move,
and Leave. Conversely, regarding the four transitions, two are
refined by instances of the M ove component, one by the Enter,
and one by the Leawve.

In Fig. 7 (and in Fig. 8, as well), a distinctive notation is used
to represent macro-nodes (containing an envelope), keeping
original shape as reference. It is not mandatory to use such
differentiation; as a matter of fact, many tools, e.g., CPN Tools,
do not make any distinction at the graphical representation
between transition and macro-transition.

A higher level view for the park model is possible if we also
use macro places. This is illustrated in Fig. 8, where all nodes
are macro-nodes. Notice the Petri net like appearance of this top-
level model, allowing a higher abstraction model representation.
There, every node can be associated with a high-level compo-
nent of the system, either with a static one or with a dynamic
one. Their interrelations are also explicitly represented. This
constitutes a significant advantage when using macro-nodes.

Fig. 9 shows the equivalent “flat” net model, the model that
can be used for execution and for analysis purposes, as well.

Interestingly, the abstraction/refinement structuring mech-
anism is supported by node fusion. This is discussed in the
following section.



GOMES AND BARROS: STRUCTURING AND COMPOSABILITY ISSUES IN PETRI NETS MODELING 119

ocoupied[i] ;o ef1]. Move[].

Enter{1].arrive+ Enter[1].waitingTicket
first+ second+ first-

second-

Enter[1].
entranceFree
Move[1].p1 Move[1].p2 Move[1].p3

Enter[1].arrive- Enter[1].gateOpen

free[1]

Fig. 9. Flat net model associated with the parking lot model of Fig. 7.

Parking2E2E

Move[1]. Move[1]. °°CuPiedl2] Move[2].Move[2]. Move(2]. Move[2].

free[2]

occupied[3] Leave[1].

waitingToPay Leave[1].exit+

first+  second+ first- second-

Leave[1].
exitFree

Leave[1].

Leave[1].exit-
gateOpen

free[3]

ParkingArea[1].occupied

enter{1...2]

ParkingArea[1].free

ParkingArea[2].occupied

ParkingArea[1].free

ParkingArea[3].occupied

leave[1..2]

ParkingArea[1].free

Fig. 10. Introduction of two entrances and two exits using node vectors.

Refinement as composition: In [32] macro transitions and
macro places are presented in the context of high-level nets.
Macro transitions are called substitution transitions and are con-
nected to the super-net by means of place fusion. Substitution
transitions are also part of hierarchical colored Petri nets [33].
They are implemented in the Design CPN [48] and CPN Tools
[15] applications. In this way, hierarchical colored Petri nets
support folding and composition.

In fact, a refinement is a conceptual construct. In concrete
terms, it reduces to net composition by node fusion, as presented
in Section II-A. For example, the model in Fig. 7, resulting in
the Fig. 9 model, can be defined by the following net addition,
i.e., the refinements are defined as compositions (where Enter
and Leave are aliases for Enter[1] and Leave[l], as only one
instance of Enter and Leave exist):

Parking3
= (ParkingArea3 ® Enter & Move[l ...2] ® Leave)
(Enter.gotTicket/ParkingArea3.enter — gotTicket,
(ParkingAreali].ocuppied/Move[i].carsInZonel
— occupied]i],
ParkingAreali]. free/Move[i]. freeZonel — freei]
Parking Areali+1].ocuppied/M oveli].carsInZone2

?

— occupied[i + 1],
ParkingAreali + 1]. free/Moveli]. freeZ one2

— freefi+1]) [i:1...2],
Leave.pay/ParkingArea3.leave — pay) . @)

In this sense, the concept of composability of models can be
seen as the foundation for hierarchical representation through
refinement/abstraction mechanisms to be used within tool
implementation [26].

As an example of system evolution, illustrating the concept
of incremental modeling, very important in complex systems
design process and using several composition and structuring
mechanisms at the same time, we now consider the need for two
entrances and two exits for the previously presented parking lot
model. This means that we need two instances of net Enter and
two instances of net Leave, that can be easily integrated using
the vector notation, previously introduced. This is illustrated in
Fig. 10.

This can be specified by another net addition:
Parking2E2E

= (ParkingArea3 @ Enter[l...2] ® Move][l...2]
@ Leave[l .. .2])
(Enter[i].gotTicket/ Parking Area3.enter
— gotTicket][i],
ParkingAreali].ocuppied M oveli].carsInZonel
— ocuppied]i],
ParkingAreali]. free/Moveli]. freeZonel
s freeli,
ParkingAreali+1].ocuppied/Moveli].carsInZone2
— ocuppied[i + 1],
ParkingAreali + 1]. free/Moveli]. freeZ one2
— free[i + 1],
Leave[i].pay/ Parking Area3.leave — payl[i])
[i:1...2]. 5)

The equivalent flat model is shown in Fig. 11.

From the previous paragraphs, it is clear that even using
structuring mechanisms, Petri nets still hold long term character-

istics: graphical expressiveness allied to formal representation
(allowing support for analysis and propriety verification).



120

Enter{1].arrive+  Enter[1].waitingTicket

Move[1]. Move[1].

Enter(1]. second+

second-
entranceFree

first-
Enter{1].arrive- Enter[1].gateOpen

Enter{2].arrive2+ Enter[2].waitingTicke

Enter[2].
entranceFree

Enter{2]. arrive-

Enter{2].gateOpen

Fig. 11.

2) Invocations: Invocation is the dynamic counterpart for
the static composition based on macros. Here, a node can
be an invocation node, which creates new nets. When a
transition fires, a new net is dynamically created. We can
call this net a procedure and these dynamic net creations
procedure-invocations. This construction is rarely proposed for
Petri nets. Basically, because it radically changes the common
Petri net semantics where the net structure is not modifiable.
It also complicates the available analysis techniques. Even so,
a few Petri nets extensions offer this type of vertical dynamic
structuring.

Invocations are typically associated with the dynamic part of
the Petri net: although we can think of a new net being invoked
(created) by a place marking change, clearly this is not a “nat-
ural” solution. In fact, that token arrival was generated by a tran-
sition. So, the transition is the “natural” invoker (creator) of a
new net.

If the tokens are seen as references to newly created nets, we
are referring to object nets (see [56] for an up-to-date tutorial
style presentation). Intuitively, object nets offer an “internal”
(and also dynamic) composition just like the traditional Russian
dolls (Matryoshkas): we get nets inside nets through the use of
tokens instead of nodes. As tokens can be created and destroyed,
we get a seamless way to create and destroy nets; this offers a
much more dynamic structuring mechanism.

Among the numerous proposals for object based Petri nets
[1], Lakos’ proposal [41] also complies with the described struc-
turing of dynamic objects as tokens inside places. Yet, we will
focus on the object Petri nets by Valk, in particular the reference
nets [38] variant due to its support by the RENEW tool [39], [58].
Differently from object nets, the reference nets are also colored
nets: each token can be not only a low-level token but hold also
a more complex data structure.

The main feature of reference nets is the ability to specify
references to nets as another type of token. The transitions are
able to create new net instances while returning the respective
reference, which is then deposited in one or more places. This
newly created net is then executed in parallel with all other
net instances, including the net that created it. All the net

Move[1]. Move[1]. ®CURIedI2l \1oveiol Move[2]. Movef2]. Move(2].

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

Leave[1].waitingtoPay Leave[1].exit+

occupied[3]

irst+ second+ first- second-

Leave[2]

free[2]

Leave[2].gateOpen L-eavel2].exit-

Flat net model associated with the parking lot model of Fig. 10, with two entrances and two exits.

instances can communicate among them through a high-level
type of transition fusion called synchronous channels. These
assume a direction of invocation between the transitions: the
receiving transition only fires when the sending transition
fires. This is different from the initial synchronous channel
definition [12]. The synchronous channel acts very much as
a method (or procedure) calling: we have parameters and
a direction of invocation. Also, the direction of information
transfer (through the parameters) can be different from the
direction of invocation: the parameters can act as input, output,
or input/output parameters.’ Basically, a synchronous channel
allows a unidirectional “fusion” of the involved transition,
including the respective variables.

The model execution starts by a chosen net for which an initial
instance is automatically created. The other net instances are
then created, directly or indirectly by this net instance. Next,
we apply a reference net to model some additional behaviors in
the parking lot example.

A reference net model: As tokens can be nets, a common
interpretation for object net models is in terms of objects, or
agents, going from one location to another. Naturally, these ob-
jects should have an interesting behavior, which is then mod-
eled by another net. This is the case in our running example (the
parking lot controller with parking zones 1 to 3), if we want to
model the possibility to react to cars moving backward between
two parking zones. In that case, from the model point of view,
the cars’ behavior becomes significant: they can be moving for-
ward, from zone 7 to zone 7 + 1, or backward, from zone 7 to
zone ¢ — 1; they can also start forward or backward, and go re-
verse during the passage. We consider that it is not allowed to go
from zone % to zone 7 — 1, or coming back to zone ¢ after started
the passage to zone ¢ + 1; in those situations an alarm should
be issued, and a photo should be taken for those that returned to
previous zone. Fig. 12 shows the corresponding model, named
Passage. It is an expanded model relatively to the M ove net (see
Fig. 7), but modeled as a reference net, like the one supported by
the RENEW tool. As before, the tokens represent cars, but now

3A recent proposal for synchronous channels by the authors of this article
makes this distinction explicit [4].



GOMES AND BARROS: STRUCTURING AND COMPOSABILITY ISSUES IN PETRI NETS MODELING 121

Passage

~

carsinZone2

c: new Car
c.createGoingForward() c.goForward() c.goForward()
first+ second+ first-

c.goForward()
secon

carsinZone1

freeZone1 first- second- first+ second+ freeZone2
c:takePhoto() c. ) c. ) c: new Car
c.createGoingBackward()
Fig. 12. Introducing reverse direction detection capability.

these tokens are also nets.* These nets are instances of a Car net
(see Fig. 13), in other words they are net Car instances, each one
with its own behavior. The Car instances communicate with the
Passage net instance through synchronous channels. We will
have one Car instance for each car that is currently crossing the
passage.

This Passage net foresees the possibility of a car going back
(from parking zone ¢ + 1 to parking zone 7) in the middle
of its move from parking zone ¢ to parking zone 7 + 1. It
also foresees the possibility of a car entering the passage in
reverse direction, from parking zone ¢ + 1 to parking zone
1, through transition second+ at the bottom-right of Fig. 12.
In both cases an alarm is fired until the car returns to the
allowed movement direction (from area i to area i+ 1). The
names first+/second+, first-/second-, model input event signals
corresponding to passage detection sensors with positive or
negative edge triggers, respectively. If a car returns to a previous
zone in the reverse direction, a photo is taken (transition first-
at the bottom-left of Fig. 12).

Transition first+ at the top-left of Fig. 12 creates a new net
of class Car (see Fig. 13) and assigns the respective reference
to variable c¢: “c: new Car”. It also fuses through a synchronous
channel named createGoingForward, with the transition create-
Forward in net Car which has the same associated synchronous
channel. The Car net models two possible states for the Car
objects that flow along the passage: movingForward or mov-
ingBackward. From the passage net point of view, these either
means going from parking area 1 to parking area 2, or going
from parking area 2 to parking area 1, respectively.

When a car, thatis moving forward, decides to move backward
(transition goBack in Fig. 13), a new alarm net (see Fig. 14)
is created and the transition create, with the start synchronous
channel, is fired. Note that the start synchronous channel has one
parameter, the Car instance, which in the Car net is specified
by the reserve word this. The alarm stops when the transitions
goForth or takePhotoB of Fig. 13 are fired. These transitions
also consume the reference a to the Alarm net. As no other
reference exists and the Alarm net is dead (no further firings
are possible), the alarm net instance can be garbage collected.
Something totally similar happens with the references to Car
nets, through transitions first- at the bottom-left of Fig. 12
and second- at the top-right of Fig. 12 in the Passage net.

4As already mentioned, they are references to net instances.

Car

L=
:goForward()
continueForward

' movingForward

:goBackward()

a: new Alarm

a:start(this)

goBack

:createGoingBackward()
a: new Alarm
a:start(this)
createBackward

:goBackward()
continueBackward

:createGoingForward()
createForward

|
a 1

:takePhoto()
a:stop()
takePhotoB

:takePhoto()

takePhotoF :goForward()
astop()

goForth

cameraReady

=

Fig. 13.

/

The car net.

:start(car)
create

I car

Fig. 14. The alarm net.

:stop(car)
destroy

N car 1

A car that is moving forward and continues its movement
without modification is modeled by the goForward synchronous
channel in Passage net transitions second+, first-, and second-.
Similarly, a car that is moving backward and continues its move-
ment without modification is modeled by the goBackward syn-
chronous channel in Passage net transitions second- and first+.

The control system takes a photo to each car that crosses the
sensor first-. This is modeled as a synchronous channel, named
takePhoto(), between transition first- in net Passage, and transi-
tions fakePhotoF and takePhotoB in net Car: one for each of the
two possible car states, movingForward and movingBackward,
respectively.

III. CONCLUSION

This paper presented a condensed view of the main struc-
turing mechanisms for general system modeling with Petri nets.
Starting from a clearly pragmatic point of view, it proposes a
general classification as a starting point for a broad, although
brief, presentation of the most significant structuring constructs.

In spite of the numerous Petri nets based tools available [48],
we briefly referred to the CPN Tools and the RENEW tool as
these are the two most significant Petri net tools for general
system modeling. Other tools (e.g., Maria [43]) are especially
interesting for verification purposes.

We conclude by identifying three main research areas capable
of providing significant advances for Petri nets structuring and
composability mechanisms: abstraction, synchronous commu-
nication, and net transformations.

Abstraction: Unfortunately, neither macros nor invoca-
tions are clear examples of abstractions in the sense defined
in [29]: “By abstraction we mean the act of singling out a few
properties of an object for further use or study, omitting from



122

consideration other properties that don’t concern us for the
moment.”

This definition clearly views abstractions as a property filter;
also, it clearly supports a view of abstraction as a simplified
representation for a given object. At the super-net, macros and
invocations are usually represented as a special kind of place or
transition associated to another net. So as to preserve a minimal
semantic similarity with places and transitions, macro-places
must interface with the super-net elements exclusively by
places, macro-transitions must interface with the super-net
elements exclusively by transitions. Yet macro-places do not
have markings and macro-transition firing is not instantaneous
as it is made dependent on subpage transitions. Clearly, this
semantic similarity falls short on what should be expected from
a node abstraction.

To the authors best knowledge, only a few works in literature
have tried to address this problem, namely [9], [40], and [42].
Yet, to our best knowledge no tool implements the discussed
proposals.

Synchronous communication: Synchronous channels also
allow several possible, and potentially useful, semantics. In par-
ticular, one can think of, at least, two aspects, each one allowing
different possible semantics.

1) Channel symmetry: Channels can be defined as either
symmetrical or directional. The former is the most sim-
ilar to plain transition fusion, where no direction of com-
munication is intended. This is the case with the original
proposal of Christensen and Hansen [12]. The latter cor-
responds to unidirectional invocation: send and receive
sides for each synchronous channel. This approach is used
in the RENEW tool and also in the authors’ proposal [4],

2) Multiplicity: Each transition can have one or more asso-
ciated channels. Then, each one can correspond to a send
or areceive side. This originates several distinct possibili-
ties, namely, multicast, broadcast, and point-to-point syn-
chronous communication.

These are particular relevant because asynchronous message
passing can easily be modeled by synchronous communication.
Net transformations: Finally, another interesting research
direction is provided by the strong connections between graph
grammars and Petri net transformations, which provide a solid
theoretical ground for net transformation specifications. See
[21] for an up-to-date tutorial presentation.

We believe that a simple and intuitive algebraic notation for
net modifications, as the one provided by net addition [3], [26]
and referred before in this paper, is an interesting basis for fu-
ture developments that would allow the effective use, re-use and
modification of Petri net models.

REFERENCES

[1] G. Agha, F. de Cindio, and G. Rozenberg, Eds., Concurrent Object-Ori-
ented Programming and Petri Nets, Advances in Petri Nets. New York:
Springer, 2001, vol. 2001, Lecture Notes in Computer Science.

[2] J. P. Barros and L. Gomes, “Modifying Petri net models by means of
crosscutting operations,” in Proc. 3rd Int. Conf. Application of Concur-
rency to System Design, Jun. 2003, pp. 177-186.

, “Net model composition and modication by net operations: a prag-

matic approach,” in Proc. 2nd IEEE Int. Conf. Industrial Informatics

(INDIN’04), Berlin, Germany, Jun. 2004.

[3]

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 2, MAY 2005

[4] —, “On the use of colored Petri nets for object-oriented design,” in Ap-

plications and Theory of Petri Nets 2004 25th Int. Conf., ICATPN 2004,

vol. 3099, Proceedings Series: Lecture Notes in Computer Science, J.

Cortadella and W. Reisig, Eds., Bologna, Italy, Jun. 2004, pp. 117-136.

E. Battiston, F. de Cindio, and G. Mauri, “OBJSA nets: a class of high-

level nets having objects as domains,” in Advances in Petri Nets 1988,

1988, Lecture Notes in Computer Science, vol. 340, pp. 20—43.

L. Bernardinello and F. De Cindio, A survey of basic net models and

modular net classes, in Lecture Notes in Computer Science; Advances

in Petri Nets 1992, vol. 609, pp. 304-351, 1992.

[7]1 E. Best, R. Devillers, and M. Koutny, Petri Net Algebra. New York:
Springer, Monographs in Theoretical Computer Science. An EATCS Se-
ries, 2001.

[8] W.Brauer, R. Gold, and W. Vogler, A survey of behavior and equivalence
preserving refinements of Petri nets, in Advances in Petri Nets 1990, vol.
483, pp. 1-46, 1991, Lecture Notes in Computer Science.

[9] P. Buchholz, Hierarchical high level Petri nets for complex system anal-

ysis, in Application and Theory of Petri Nets 1994, Proc. 15th Int. Conf.,

R. Valette, Ed., Zaragoza, Spain, vol. 815, pp. 119-138, 1994, Lecture

Notes in Computer Science.

C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation, Univ.

Bonn, Bonn, Germany, 1962.

Y. Chen, W. T. Tsai, and D. Chao, “Dependency analysis-a Petri-net-

based technique for synthesizing large concurrent systems,” IEEE Trans.

Parallel Distrib. Syst., vol. 4, no. 4, pp. 414-426, Apr. 1993.

S. Christensen and N. D. Hansen, “Coloured Petri Nets extended with

channels for synchronous communication,” in Lecture Notes in Com-

puter Science; Application and Theory of Petri Nets, Proceedings of
the 15th International Conference, R. Valette, Ed. Zaragoza, Spain:

Springer-Verlag, 1994, vol. 815, pp. 159-178.

S. Christensen and L. Petrucci, “Modular state space analysis of

colored Petri nets,” in Proc. 16th Int. Conf. Application and Theory

of Petri Nets, Turin, Italy, Jun. 1995, [Online] Available at: http:

/Iwww.daimi.aau.dk/CPnets/publ/full-papers/ChrPet1995.pdf, pp.

201-217.

——, “Modular analysis of Petri nets,” Comput. J., vol. 43, no. 3, pp.

224-242, 2000.

(2004) CPN Tools. [Online] Available at: http://wiki.daimi.au.dk/cpn-
tools

R. David and H. Alla, Petri Nets & Grafcet; Tools for Modeling Discrete

Event Systems. Hempstead, U.K.: Prentice-Hall International, 1992.

R. David, “Modeling of dynamic systems by Petri nets,” in Proc. Eur.

Control Conf., Grenoble, France, Jul. 1991, pp. 136-147.

(2004) Design/CPN. [Online] Available at: http://www.daimi.au.dk/de-
signCPN/

E. Y. T. Juan, J. J. P. Tsai, and T. Murata, “A new compositional method

for condensed state-space verification,” in Proc. Ist IEEE High-Assur-

ance Systems Engineering Workshop, Ontario, Canada, Oct. 22, 1996,

pp. 104-111.

H. Ehrig, G. Juhds, J. Padberg, and G. Rozenberg, Eds., Unifying Petri

Nets, Advances in Petri Nets. Berlin, Germany: Springer, 2001, vol.

2128, Lecture Notes in Computer Science.

H. Ehrig and J. Padberg, “Graph grammars and Petri net transfor-

mations.,” in Lectures on Concurrency and Petri Nets, J. Desel,

W. Reisig, and G. Rozenberg, Eds. Berlin/Heidelberg, Germany:

Springer-Verlag, 2004, vol. 3098, Lecture Notes in Computer Science:

Advances in Petri Nets, pp. 496-536.

E. Y. T. Juan, J. J. P. Tsai, and T. Murata, “Compositional verification

of concurrent systems using Petri net based condensation rules,” ACM

Trans. Program. Lang. Syst., vol. 20, no. 5, pp. 917-979, 1998.

R. Fehling, “A concept of hierarchical Petri nets with building blocks,” in

Proc. 12th Int. Conf. Application and Theory of Petri Nets, 1991, Gjern,

Denmark, Jun. 1991, pp. 370-389.

H. J. Genrich, “Predicate/transition nets,” in Lecture Notes in Computer

Science: Petri Nets: Central Models and Their Properties, Advances in

Petri Nets 1986, Part I, Proceedings of an Advanced Course, W. Brauer,

W. Reisig, and G. Rozenberg, Eds., 1987, vol. 254, pp. 207-247.

C. Girault and R. Valk, Petri Nets for Systems Engineering: A Guide to

Modeling, Verification, and Applications, 2003.

L. Gomes and J. P. Barros, “On structuring mechanisms for Petri nets

based system design,” in Proc. 2003 IEEE Conf. Emerging Technologies

and Factory Automation (ETFA 2003), Sep. 2003, pp. 431-438.

L. Gomes, J. P. Barros, and A. Costa, “Petri net model node structuring

techniques for embedded system design,” in Proc. 5th Portuguese Conf.

Automatic Control (CONTROLO 2002), Aveiro, Portugal, Sep. 2002.

, “Structuring mechanisms in Petri net models: from specification

to FPGA based implementations,” in Design of Embedded Control Sys-

tems, M. Adamski, A. Karatkevich, and M. Wegrzyn, Eds.  Berlin, Ger-

many: Springer, 2004.

[5

—

[6

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]



GOMES AND BARROS: STRUCTURING AND COMPOSABILITY ISSUES IN PETRI NETS MODELING

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
(371

[38]
[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]
[471
(48]

[49]

[50]
[51]

D. Gries, The Science of Programming. Berlin, Germany: Springer-
Verlag, 1981.

X. He, “A formal definition of hierarchical predicate transition nets,” in
Lecture Notes in Computer Science; Proc. 17th Int. Conf. Application
and Theory of Petri Nets (ICATPN’96), vol. 1091, Osaka, Japan, Jun.
1996, pp. 212-229.

X.HeandJ. A. N. Lee, “A methodology for constructing predicate tran-
sition net specifications,” Software-Practice Exper., vol. 21, no. 8, pp.
845-875, Aug 1991.

P. Huber, K. Jensen, and R. M. Shapiro, “Hierarchies in colored Petri
nets,” in Proc. 10th Int. Conf. Application and Theory of Petri Nets, 1989,
Bonn, Germany, 1989, pp. 192-209.

K. Jensen, Colored Petri Nets. Basic Concepts, Analysis Methods and
Practical Use—Volumes 1-3. Berlin, Germany: Springer-Verlag,
1992-1997.

——, “Condensed state spaces for symmetrical colored Petri nets,”
Formal Meth. Syst. Design, vol. 9, pp. 7-40, 1996.

K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Appli-
cation. Berlin, Germany: Springer-Verlag, 1991.

G. Juhs and J. Desel, What is a Petri Net, pp. 1-25.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proc. 11th
European Conf. Object-Oriented Programming, vol. 1241, LNCS, M.
Aksit and S. Matsuoka, Eds., Berlin/Heidelberg/New York, 1997, pp.
220-242.

O. Kummer, Referenznetze. Berlin, Germany: Logos Verlag, 2002.

O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Kohler,
D. Moldt, H. Rolke, and R. Valk, “An extensible editor and simulation
engine for Petri nets: RENEW,” in Applications and Theory of Petri Nets
2004 25th Int. Conf., vol. 3099, Proceedings Series: Lecture Notes in
Computer Science, J. Cortadella and W. Reisig, Eds., Bologna, Italy,
Jun. 2004, pp. 484-493.

C. Lakos, “Composing abstractions of colored Petri nets,” in Lecture
Notes in Computer Science: 21st Int. Conf. Application and Theory of
Petri Nets (ICATPN 2000), vol. 1825, M. Nielsen and D. Simpson, Eds.,
Aarhus, Denmark, Jun. 2000, pp. 323-345.

——, “Object oriented modeling with object Petri nets,” in Concur-
rent Object-Oriented Programming and Petri Nets, G. A. Agha, F.
De Cindio, and G. Rozenberg, Eds. Berlin/ Heidelberg, Germany:
Springer-Verlag, 2001, vol. 2001, Lecture Notes in Computer Science:
Advances in Petri Nets, pp. 1-37.

——, “On the abstraction of colored Petri nets,” in Lecture Notes in
Computer Science: 18th Int. Conf. Application and Theory of Petri Nets,
vol. 1248, P. Azéma and G. Balbo, Eds., Toulouse, France, Jun 1997, pp.
42-61.

M. Mikeld. (2004) Maria the Modular Reachability Analyzer. [Online]
Available: http://www.tcs.hut.fi/Software/maria/

T. Murata, “Petri nets: properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541-580, Apr. 1989.

M. Notomi and T. Murata, “Hierarchical reachability graph of bounded
Petri nets for concurrent-software analysis,” IEEE Trans. Softw. Eng.,
vol. 20, no. 4, pp. 325-336, 1994.

J. Padberg, “Petri net modules,” Trans. SDPS, vol. 6, no. 3, pp. 121-196,
Sep. 2002.

J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, no. 3, pp.
223-252, 1977.

Petri  Nets. (2004) Tool Database.
http://www.daimi.au.dk/PetriNets/tools/db.html
W. Reisig, “Petri nets with individual tokens,” in Informatik-Fach-
berichte 66: Application and Theory of Petri Nets—Selected Papers
from the 3rd European Workshop on Application and Theory of Petri
Nets, A. Pagnoni and G. Rozenberg, Eds., Varanna, Italy, Sep. 1982,
pp. 229-249.

——, Petri Nets: An Introduction.
——, A Primer in Petri Net Design.

[Online]  Available:

New York: Springer-Verlag, 1985.
New York: Springer-Verlag, 1992.

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

123

W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets I: Basic
Models.. Berlin, Germany: Springer-Verlag, 1998, vol. 1491, Lecture
Notes in Computer Science; Advances in Petri Nets.
W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets 1I: Appli-
cations., Germany: Springer-Verlag, 1998, vol. 1492, Lecture Notes in
Computer Science; Advances in Petri Nets.
M. Silva, Las Redes de Petri: en la Automdtica y la Infor-
mdtica. Madrid, Spain: Editorial AC, 1985.
P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr., “N degrees of
separation: multi-dimensional separation of concerns,” in Proc. 21st Int.
Conf. Software Engineering, 1999, pp. 107-119.
R. Valk, “Object Petri nets,” in Lectures on Concurrency and Petri
Nets, J. Desel, W. Reisig, and G. Rozenberg, Eds. Berlin/Heidelberg:
Springer-Verlag, 2004, vol. 3098, Lecture Notes in Computer Science:
Advances in Petri Nets, pp. 819-848.
A. Valmari, “Compositional analysis with place-bordered subnets,” in
Proc. 15th Int. Conf., vol. 815, Lecture Notes in Computer Science; Ap-
plication and Theory of Petri Nets, R. Valette, Ed., Zaragoza, Spain,
1994, pp. 531-547.

(2004) RENEW The Reference Net Workshop. [Online] Available:
http://www.renew.de/
R. Zurawski and M. Zhou, “Petri nets and industrial applications—a
tutorial,” IEEE Trans. Ind. Electron., vol. 41, no. 6, pp. 567-583, Dec.
1994.

Luis Gomes (M’96) received the Electrotech. Eng.
degree from Universidade Técnica de Lisboa, Lisboa,
Portugal, in 1981, and the Ph.D. degree in digital sys-
tems from the Universidade Nova de Lisboa in 1997.

He is a Professor at the Electrical Engineering De-
partment, Faculty of Sciences and Technology, Uni-
versidade Nova de Lisboa, and a Researcher at UNI-
NOVA Institute, Portugal. From 1984 to 1987, he was
with EID, a Portuguese medium enterprise in the area
of electronic system design, in the R&D Engineering
Department. His main interests include the usage of

formal methods, like Petri nets and other concurrency models, applied to recon-
figurable and embedded systems co-design.

Dr. Gomes served as the General Co-Chair for the IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA-2003) and
was responsible for the organization of the Petri Nets’98 International Confer-
ence on Applications and Theory of Petri nets, both held in Lisbon.

Joao Paulo Barros received the Lic. and M.Sc. de-
grees in informatics engineering in 1993 and 1997,
respectively, from the Universidade Nova de Lisboa,
Lisboa, Portugal, where he is currently pursuing the
Ph.D. degree.

He is currently an Adjunct Professor at the
Instituto Politécnico de Beja, Beja, Portugal, and
a Researcher at the UNINOVA Institute, Lisboa.
His research interests include Petri nets, visual
specification languages, and languages and tools
for object-oriented software development. He is

also particularly interested in themes related to computer science education.
Mr. Barros is a member of the ACM and the ACM Special Interest Group on
Computer Science Education.



	toc
	Structuring and Composability Issues in Petri Nets Modeling
	Luís Gomes, Member, IEEE, and João Paulo Barros
	I. I NTRODUCTION
	II. C LASSIFICATION FOR P ETRI N ETS S TRUCTURING M ECHANISMS

	Fig.€1. Classification for Petri nets structuring mechanisms.
	A. Composition
	1) Fusion: In some earlier works, node fusion was used as a draw


	Fig.€2. (a) Queue in a car parking lot as a FIFO system, (b) net
	Fig.€3. Composition, through transition fusion, of the net model
	Net operations: From an engineering perspective, and besides the

	Fig.€4. Folding of net models (a) using a high-level Petri net m
	2) Folding: Folding abstraction is another kind of composition. 
	Token-based folding: Token-based folding is, by definition, the 
	Node-based folding: Node-based folding is a complementary struct


	Fig.€5. Composition using net instances, through transition fusi
	Expressiveness equivalence: It has to be noted that both folding
	B. Refinement/Abstraction

	Fig.€6. Submodel (components) of a parking lot model.
	1) Macros: Petri nets have two node types. As such, one intuitiv

	Fig.€7. Hierarchical decomposition of a parking lot model.
	Fig.€8. Higher level model using macro places for the parking lo
	Fig.€9. Flat net model associated with the parking lot model of 
	Fig.€10. Introduction of two entrances and two exits using node 
	Refinement as composition: In [ 32 ] macro transitions and macro

	Fig.€11. Flat net model associated with the parking lot model of
	2) Invocations: Invocation is the dynamic counterpart for the st
	A reference net model: As tokens can be nets, a common interpret


	Fig.€12. Introducing reverse direction detection capability.
	Fig.€13. The car net.
	Fig.€14. The alarm net.
	III. C ONCLUSION
	Abstraction: Unfortunately, neither macros nor invocations are c
	Synchronous communication: Synchronous channels also allow sever
	Net transformations: Finally, another interesting research direc


	G. Agha, F. de Cindio, and G. Rozenberg, Eds., Concurrent Object
	J. P. Barros and L. Gomes, Modifying Petri net models by means o
	E. Battiston, F. de Cindio, and G. Mauri, OBJSA nets: a class of
	L. Bernardinello and F. De Cindio, A survey of basic net models 
	E. Best, R. Devillers, and M. Koutny, Petri Net Algebra . New Yo
	W. Brauer, R. Gold, and W. Vogler, A survey of behavior and equi
	P. Buchholz, Hierarchical high level Petri nets for complex syst
	C. A. Petri, Kommunikation mit Automaten, Ph.D. dissertation, Un
	Y. Chen, W. T. Tsai, and D. Chao, Dependency analysis-a Petri-ne
	S. Christensen and N. D. Hansen, Coloured Petri Nets extended wi
	S. Christensen and L. Petrucci, Modular state space analysis of 

	(2004) CPN Tools . [Online] Available at: http://wiki.daimi.au.d
	R. David and H. Alla, Petri Nets & Grafcet; Tools for Modeling D
	R. David, Modeling of dynamic systems by Petri nets, in Proc. Eu

	(2004) Design/CPN . [Online] Available at: http://www.daimi.au.d
	E. Y. T. Juan, J. J. P. Tsai, and T. Murata, A new compositional

	H. Ehrig, G. Juhás, J. Padberg, and G. Rozenberg, Eds., Unifying
	H. Ehrig and J. Padberg, Graph grammars and Petri net transforma
	E. Y. T. Juan, J. J. P. Tsai, and T. Murata, Compositional verif
	R. Fehling, A concept of hierarchical Petri nets with building b
	H. J. Genrich, Predicate/transition nets, in Lecture Notes in Co
	C. Girault and R. Valk, Petri Nets for Systems Engineering: A Gu
	L. Gomes and J. P. Barros, On structuring mechanisms for Petri n
	L. Gomes, J. P. Barros, and A. Costa, Petri net model node struc
	D. Gries, The Science of Programming . Berlin, Germany: Springer
	X. He, A formal definition of hierarchical predicate transition 
	X. He and J. A. N. Lee, A methodology for constructing predicate
	P. Huber, K. Jensen, and R. M. Shapiro, Hierarchies in colored P
	K. Jensen, Colored Petri Nets. Basic Concepts, Analysis Methods 
	K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Ap
	G. Juhs and J. Desel, What is a Petri Net, pp. 1 25.
	G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
	O. Kummer, Referenznetze . Berlin, Germany: Logos Verlag, 2002.
	O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Köhler, 
	C. Lakos, Composing abstractions of colored Petri nets, in Lectu
	M. Mäkelä . (2004) Maria the Modular Reachability Analyzer . [On
	T. Murata, Petri nets: properties, analysis and applications, Pr
	M. Notomi and T. Murata, Hierarchical reachability graph of boun
	J. Padberg, Petri net modules, Trans. SDPS, vol. 6, no. 3, pp. 
	J. L. Peterson, Petri nets, ACM Comput. Surv., vol. 9, no. 3, p
	Petri Nets . (2004) Tool Database . [Online] Available: http://w
	W. Reisig, Petri nets with individual tokens, in Informatik-Fach

	W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets I: Basi
	W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets II: App
	M. Silva, Las Redes de Petri: en la Automática y la Informática 
	P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr., N degrees
	R. Valk, Object Petri nets, in Lectures on Concurrency and Petri
	A. Valmari, Compositional analysis with place-bordered subnets, 

	(2004) RENEW The Reference Net Workshop . [Online] Available: ht
	R. Zurawski and M. Zhou, Petri nets and industrial applications 



