
Structuring Reflective Middleware using Meta-Information Management:

The Meta-ORB Approach and Prototypes

Fábio M. Costa and Bruno da Silva Santos

Instituto de Informática

Universidade Federal de Goiás

Cx. Postal 132, CEP 74001-970 - Goiânia GO - BRAZIL

{fmc | brunosilva }@inf.ufg.br

Abstract

Reflection is now an established technique for achiev-

ing dynamic adaptability of middleware platforms. It pro-

vides a clean and comprehensive way to access the inter-

nals of a platform implementation, allowing its customi-

sation in order to achieve the best performance and ad-

equacy under given operation environments and user re-

quirements. In addition, the use of a runtime component

model for the design of the internal platform structure fa-

cilitates the identification of the elements to be adapted, as

all platform aspects are built in terms of components. The

major limitation of this approach, however, is related to the

multitude of aspects that make up a middleware platform,

together with the requirement of keeping platform consis-

tency after adaptations take place. This paper presents the

results of ongoing research contributing to reduce this lim-

itation. The approach is based on the use of a common

meta-model, together with meta-information techniques to

provide a uniform way to specify and manipulate platform

configurations. Both platform configuration and runtime

adaptation are always specified using a small number of

building blocks defined in the meta-model. The paper also

describes the overall architecture of the Meta-ORB plat-

form, which demonstrates this approach, and presents its

two implementations: a proof-of-concept prototype writ-

ten in Python, and a Java-based implementation aimed at

supporting mobile devices. The results are also evaluated

from a quantitative perspective, according to the require-

ments of multimedia applications, one of the major areas

of application of reflective middleware.

Keywords: Reflective middleware, Meta-information

management, Dynamic reconfiguration.

∗This work was partially supported by FUNAPE/UFG and CNPq.

1 Introduction

The Meta-ORB platform is one of the instantiations of

the Open-ORB reflective middleware architecture [1]. It

is based on an novel approach that seamlessly integrates,

through a common meta-modelling architecture, the reflec-

tive capabilities of the platform (used for dynamic adapta-

tion) and its flexible configuration features [4, 3]. Static

configuration is achieved through the use of a well defined

component model, which identifies the main constructs

available for building the platform. Using this model, cus-

tomised instances of the platform can be achieved as con-

figurations of interconnected components, each one fulfill-

ing a particular functionality of the middleware. Such con-

figurations are specified using the concepts and constructs

defined by the meta-model, such as components, interfaces

and bindings (explicit connections between components).

These same concepts are equally used to build the end-user

applications that run on top of the platform, thus achieving

a uniform programming model that spans both the infras-

tructure and the application levels.

Dynamic reconfiguration, on its turn, is achieved

through a reflective meta-level architecture, which provides

a meta-object protocol (MOP) for inspection and adapta-

tion of the structure and behaviour of the platform. In par-

ticular, the MOP allows the programmer to discover the

interfaces of the components and make dynamic calls to

the operations defined on those interfaces. Most impor-

tantly, however, is the MOP’s ability to provide a causally-

connected representation of the platform’s configuration.

This allows the meta-programmer to inspect the configura-

tion (in terms of a graph of components) and make changes

on it, such as by the addition, removal or replacement of

components.

The meta-model of the platform underlies all the above

functionality. It is present in the form of meta-information

which is distilled from the definitions (using a compo-

nent configuration language) of components, interfaces

1

and bindings. Such meta-information is made available

through a repository, which provides component and bind-

ing factories with the necessary information to create spe-

cific platform configurations. In addition, the reposi-

tory also feeds the reflective meta-objects with the meta-

information required to reify the internal configuration of

the platform, in the form of a graph of components inter-

connected through their interfaces and bindings. In this

way, both configuration and dynamic reconfiguration activ-

ities are based upon the same conceptual framework, free-

ing the developers from the burden of having to learn dif-

ferent terminology and concepts for each case.

This paper presents a detailed description of the Meta-

ORB approach, focusing on the foundational concepts and

their application in the context of a reflective middleware

architecture. The paper also describes the two existing im-

plementations of this architecture: a Python-based proof-

of-concept prototype, and a newer implementation based

on Java and aiming at mobile devices. The remaining of

the paper is structured as follows. Section 2 introduces the

basic concepts of reflection and meta-level architectures, as

well as the concept of meta-information management and

its application in middleware. Section 3 describes the base-

level architecture of Meta-ORB, together with the major

elements of its meta-model, while section 4 presents the

meta-level architecture and the reflective facilities of the

platform. Both sections present useful examples of plat-

form configuration and dynamic reconfiguration in order

to illustrate the use of such facilities. Section 5 then de-

scribes the architecture and implementation of the two ex-

isting prototypes, followed by section 6, which presents a

performance evaluation of the Python-based prototype. Fi-

nally, section 7 discusses relevant related work, and section

8 presents some conclusions of this research.

2 Foundation

2.1 Reflection and meta-level architectures

The fundamentals of reflective computing systems were

introduced by B. C. Smith and can be summarised by his

reflection hypothesis [31], which argues that a system can

be made to manipulate representations of itself in the same

way as it manipulates representations of its application do-

main. Such a system is said to have a self-representation,

which can encompass both its state and behaviour. In ad-

dition, if there is a relationship of causal connection [22]

between the self-representation and the actual state and be-

haviour of the system, meaning that changes in one have

corresponding effects in the other, the system is said to be

reflective. The self-representation can thus be used for in-

spection and adaptation of the system’s internals.

The architecture of a reflective system is usually struc-

tured in levels, thus the term meta-level architecture. The

bottom level, known as base-level, deals with computation

about the domain of application, whereas the levels above

it, known as meta-levels, perform computation about the

system itself. More precisely, each meta-level is concerned

with the representation and manipulation of the level be-

low it (which is its relative base-level), giving rise to the

notion of a reflective tower of meta-levels, as illustrated in

Figure 1. In principle, as with recursive procedures, this

tower can have an indefinite number of levels. In practice,

however, the use of techniques such as the lazy creation of

meta-levels (instantiating them on demand, upon a reifica-

tion operation) means that typically only a few levels are

actually present.

Absorption

AbsorptionReification

Reification

Base−Level

Meta−Level

Meta−Meta−Level

Figure 1: Overall architecture of a reflective meta-level

system.

As shown in Figure 1, the act of a meta-level exposing

the internals of its (relative) base-level is known as reifi-

cation. This corresponds to the establishment of an ex-

plicit representation of the base-level system and its inter-

nal implementation in terms of programming entities that

can then be manipulated at runtime. Modifications to this

self-representation result in corresponding changes to the

reified elements of the base-level, a process known as re-

flection or absorption. Given a particular base-level entity,

the set of meta-level entities reifying it is know as the en-

tity’s meta-space.

2.1.1 Behavioural and structural reflection

The design of reflective systems usually follows a distinc-

tion between structural reflection and behavioural reflec-

tion, initially conceived in the context of programming

languages [14, 24]. Structural reflection is defined as the

ability of a language to provide a complete reification of

the program currently executing, together with the abstract

data types that are part of the program. On the other hand,

behavioural reflection (also referred to as computational re-

flection [22]) is the ability of a language to provide a com-

plete representation of its own semantics, in terms of the

internal mechanisms of its runtime environment (such as

method scheduling and dispatching). Note that these two

styles of reflection are complementary to each other, with

many reflective architectures providing both.

2.1.2 Object-oriented reflection

A well-defined meta-level structure is an important ingre-

dient to facilitate the use of a reflective architecture, due to

the multitude of aspects that may need to be handled. What

is needed is a meta-level that allows each of the concepts of

the system to be easily identified, in terms of discrete ele-

ments that can be handled separately from each other. The

object-oriented paradigm provides a clean way to struc-

ture the meta-level. In general, object-orientation allows

the partitioning of the reflection mechanisms and interfaces

among multiple, distinct, meta-level entities [22]. Regard-

ing terminology, in object-oriented reflection, the entities

that populate the meta-level are called meta-objects, while

those entities at the base-level are known as base-level ob-

jects. Thus, while the interfaces of base-level objects pro-

vide an object protocol for access to the system’s externally

visible functionality, the interfaces of meta-objects provide

a meta-object protocol (MOP) [18], which allows reflec-

tive access to the internal implementation of the system.

Importantly, the same object model should be employed at

both base- and meta-level, meaning that reflection can be

re-applied at the meta-level itself.

2.2 Meta-information management

Reflective techniques inherently deal with meta-

information in order to build the self-representation of

base-level entities. Meta-information is kept about the rei-

fied aspects of a system, in either explicit or implicit form,

as part of the state of the meta-objects. Reflection, how-

ever, does not imply a consistent framework for modelling

and maintaining meta-information, especially considering

issues of sharing and distribution. The provision of such a

framework is precisely the goal of meta-information man-

agement, and its presence is an important, often overlooked

requirement for reflective middleware.

For the purposes of this paper meta-information can be

defined as information about the system itself, instead of

about the application domain of the system. The struc-

tured use of meta-information is typically based on the con-

cepts of model and meta-model. Models represent meta-

information about the runtime entities that compose a given

system, and may provide enough detail to enable instanti-

ation of the system, as well as introspection on its inter-

nals. On the other hand, meta-models comprise higher-

level meta-information, targeted at the representation of

models. A meta-model thus describes the constructs that

are available for modelling the entities of a system or ap-

plication [9]. This paper is mainly concerned with the man-

agement of meta-information at the level of models.

In addition, besides the use of models and meta-models,

an effective architecture for the management of meta-

information must also provide facilities to assist with [6]:

• meta-information definition, such as with a language

with well-defined syntax and semantics (conforming

to the meta-model), as well as tools, such as compil-

ers to validate and translate textual meta-information

into a machine-readable form; alternatively, interac-

tive tools (such as with a GUI) can be used for this

purpose;

• meta-information maintenance, with a distributed and

persistent repository with features for creating, delet-

ing, managing and manipulating meta-information;

• definition, storage and evaluation of relationships,

such as compatibility and substitutability, between

different entities of meta-information; and

• meta-information interchange, based on mappings

and tools to transfer meta-information between dif-

ferent repositories, possibly using different meta-

models.

A well-known example of a general-purpose meta-

information management architecture is the OMG Meta-

Object Facility (MOF) [27], which provides a framework

for defining and managing models and meta-models, along

with the meta-information they comprise. Another exam-

ple, although restricted to the CORBA meta-model, is the

Interface Repository defined as part of the CORBA speci-

fication [28].

2.2.1 Meta-information management for middleware

The demand for a principled approach to meta-information

in middleware comes from two basic needs, namely type

management and configuration management. The former

refers to the management of type-related meta-information

describing the externally visible features of runtime enti-

ties, as well as relationships between them. This is espe-

cially useful in the open services environment supported

by middleware, where new services can be dynamically in-

troduced or evolved, and where service users dynamically

bind to service providers. In this context, the availability of

runtime meta-information describing the types of servers

and clients is vital for the dynamic discovery of services,

as well as for type checking and bridging of service types

before binding [20].

Configuration management, in turn, refers to the activi-

ties of building a system from smaller parts in a structured

way. This involves the creation, allocation and binding of

primitive components in order to form more complex, com-

posite components [10]. Explicit meta-information can be

used to describe the internal configuration of the compo-

nents of a system, in terms of templates with enough de-

tail to allow their instantiation. Such templates also serve

as runtime documentation of the configuration of a system

and its components, thus providing a basis for reconfigu-

ration. Using meta-information management techniques,

templates can be defined and managed in terms of a meta-

model. This enables the association between templates and

typing meta-information, which in turn permits the use of

type relationships to search and compare configurations, as

well as to validate interconnections between the elements

of a configuration.

It is therefore important to recognise the role of meta-

information management as a principled basis for the defi-

nition, instantiation and management of customised mid-

dleware platforms. A promising scenario for the future

would be the widespread existence of libraries of template

and type meta-information describing alternative imple-

mentations for the several functional elements of middle-

ware, which can then be selected and combined (or even

extended) in order to produce platforms that are tailored

to particular requirements. It is important, however, that a

uniform meta-information management architecture (such

as the MOF) is used, so that types and templates can be

consistently defined and unambiguously interpreted in the

kind of heterogeneous environment typically supported by

middleware

3 Core meta-model

Configurations of the Meta-ORB platform are built in

terms of a set of building blocks defined according to a

well defined meta-model [3]. The major building blocks

are components and binding objects. While the former are

used for encapsulating local functionality of the platform

(or applications), the latter are aimed at realising remote

access between components in an explicit way. In addition,

all interactions among components and bindings are made

via well-defined interfaces. The meta-model definition was

inspired by the ISO RM-ODP (Reference Model for Open

Distributed Processing) standard [17], with the concept of

object replaced with that of a component [35].

Meta-ORB components can be of two kinds: primitive

or composite. Primitive components can be seen as en-

capsulation of implementation artefacts (such as language-

level classes), giving them a higher level status, as an entity

that can be manipulated and interacted with using the plat-

form programming model. Composite components, on the

other hand, are more elaborate entities, which are made up

with other components, interconnected by their interfaces

and forming a component graph, as shown in the examples

below.

Following the same idea, binding objects are also clas-

sified as primitive and composite. A primitive binding rep-

resents an encapsulation of a transport protocol, in order

to allow its use according to high-level interfaces that are

more tailored to the types of the components connected

through the binding. A composite binding, on its turn, is

an encapsulation of more elementary binding objects, pro-

viding a higher level of abstraction and services on top of

them. For instance, as shown in Figure 2, a composite bind-

ing for a video streaming application can be composed of

a pair of video codecs (one at each side of the binding),

which are connected through a primitive binding based on

UDP. As the figure shows, another kind of component in a

binding are stubs, which are responsible for the adaptation

of the services provided by the binding object with respect

to the external interfaces it must support. In addition, no-

tice that a binding object also has a third interface, which

is provided for the purpose of controlling its operation.

Object

Application Application

Video CodecVideo Codec

Stub

Primitive Binding

Object

Control Interface

Stub

Figure 2: Example composite binding object.

Specific types of component and binding objects, as

well as their interfaces, are defined using a special object

definition language, called Meta-ORB ODL (Object Defi-

nition Language) [3]. This is an extension of the standard

CORBA 2.2 IDL [26], with constructs for the definition of

components and bindings as first-class entities. Compo-

nent, interface and binding type definitions are then stored

in the type repository [4], which provides runtime access

to this meta-information for other parts of the platform.

Notably, the instantiation of such objects is performed by

component and binding factories, which obtain the appro-

priate definitions from the repository in order to create the

proper configurations.

Finally, the meta-model also includes elements to de-

fine auxiliary types, which do not correspond to first-class

entities in the platform, but are essential to their descrip-

tion. Examples include: media types, constructed types

and primitive types. In addition, the meta-model includes

non-type-related meta-model elements. These elements

correspond to the scope-defining constructs of the type sys-

tem (e.g., module) and to auxiliary constructs, used in the

definition of the first-class meta-types (e.g. operation, flow,

signal and QoS annotation). A complete description of the

Meta-ORB meta-model is out of scope in this paper and

can be found in [3].

3.1 Examples of platform configurations

This section presents a few representative examples that

should provide an idea of how the basic meta-model con-

structs can be used for building customised platform in-

stances. A textual notation is used, based on the Meta-

ORB ODL. Typically, the platform designer provides a set

of specifications in ODL that define a particular middle-

ware configuration. These definitions are stored as meta-

information objects in a repository, from where they can

later be retrieved and used to instantiate the whole or

parts of the middleware configuration. Additionally, meta-

information stored in the repository can be re-used as part

of newly defined configurations.

In the first example, shown in Figure 3, ODL defini-

tions for a composite component are presented. Note that

auxiliary definitions have been omitted for brevity (notably

those for interfaces, which are based on a multimedia ex-

tension to OMG IDL). The last definition specifies a com-

ponent for audio/video processing (AVDeviceComp), which

is composed of three primitive components, also defined in

the example. The configuration of the composite compo-

nent is specified in terms of its set of internal components,

the object graph representing the way such internal com-

ponents are connected (adjacent components are linked by

means of their interfaces), and the interfaces that the over-

all component presents to its users. This example illus-

trates how arbitrarily complex units of functionality can be

modelled and configured in terms of structured component

composition, using primitive components (which encapsu-

late binary implementations) and composite components.

The next example similarly shows how distributed con-

figurations can be specified using the binding construct.

Figure 4 shows the specification of a complex binding

object, aimed at connecting the interfaces of audio/video

components of the kind defined above (the structure of the

resulting binding is shown in Figure 5). The binding is built

out of components and other binding objects (their defini-

tions were omitted for brevity) that implement the different

elements of middleware functionality, such as stubs, proto-

col filters and transport protocols. The binding definition

is given in terms of the type of the binding control inter-

face (which exposes functionality to control the operation

module Example{
primitive component AudioDevComp{
implementation: AudioDevImpl;
interfaces: AudioDev audio_interf;

};
primitive component VideoDevComp{
implementation: VideoDevImpl;
interfaces: VideoDev video_interf;

};
interface <stream> AVDev: AudioDev, VideoDev{};
primitive component MixerComp{
implementation: MixerCompImpl;
interfaces: AudioDev audio_interf;

VideoDev video_interf;
AVDev av_interf;

};
component AVDevComp{
internal components: AudioDevComp audio_comp;

VideoDevComp video_comp;
MixerComp mixer_comp;

object graph: (audio_comp, audio_interf):
(mixer_comp, audio_interf);

(video_comp, video_interf):
(mixer_comp, video_interf);

interfaces: AVDevice av is
(mixer_comp, av_interf);

};
};

Figure 3: An example specification of a composite compo-

nent.

of the binding, such as to pause and resume its operation),

the type of the internal binding objects used in the config-

uration, and the roles implemented at each of the binding

endpoints. In this particular case, a single role is defined,

as the binding is symmetrical (i.e., both its endpoints are

meant to connect interfaces of the same type and with the

same semantics). The definition of the binding role is sim-

ilar to a composite component definition, except for the

cardinality part, which specifies the maximum number of

endpoints conforming to the role that can be created in a

given binding instance (this means that multi-point bind-

ings are supported). In addition, the definition of a binding

role configuration (i.e., its object graph) must also specify

the connection points between the binding’s components

and the appropriate roles of its internal bindings.

4 Reflective meta-level

As seen above, the entities that constitute platform con-

figurations have their structure fully described by meta-

module Example{
binding AVBinding{
control interfaces: CtrlInterf ctrl is

(CtrlComp, ctrl_interf);
internal bindings: AudioBinding audio_binding;

VideoBinding video_binding;
role AVBindingPartic{

components: AVStubComp stub;
AudioFilterComp audio_filter;
VideoFilterComp video_filter;

target interface: AVDevice is
(stub, av_interf);

cardinality: 2;
configuration:
(stub, audio_interf):

(audio_filter, audio_interf);
(stub, video_interf):

(video_filter, video_interf);
(audio_filter, forward_interf):

(audio_binding, audio_role);
(video_filter, forward_interf):

(video_binding, video_role);
};

};
};

Figure 4: An example specification of a composite binding.

information elements. Reflection thus requires some means

to manipulate such meta-information at runtime, in a way

that is causally connected with the respective instances of

platform configuration. This is the role of the reflective

meta-level, which completes the architecture.

Reflection in Meta-ORB can be used for dynamic in-

spection and adaptation in the context of both platform

and application elements. To this end, the design of the

meta-level follows the principles of the Open ORB reflec-

tive middleware architecture [1], as discussed below.

The meta-object protocol (MOP) is realised in terms of

the interfaces of components that play the role of meta-

ctrl

Comp
Ctrl

filter

filter

forward_interf

filter

AVDevice
(av_interf)

video
interf

interf
audio

interf

video_role video_role forward_interf

audio

video

audio
filter

video

stubstub

video_binding

audio_binding
AVDevice
(av_interf)

interf
video

audio

audio_role forward_interfaudio_roleforward_interf

Figure 5: Composite binding for audio-video interaction

(as described in Figure 4).

objects. In addition, the base-level is similarly structured

in terms of objects, meaning that meta-objects are used to

reify components, binding objects and interfaces. Impor-

tantly, in the Meta-ORB approach the state of meta-objects

must always have a direct correspondence with the meta-

information elements that describe their respective base-

level objects. In practice, such meta-information is used,

during the reification process, as the basis for initialising

the state of meta-objects.

In addition, considering the multitude of aspects that

must be reified in reflective middleware, the meta-space

is partitioned into a number of independent meta-space

models. The approach is similar to the multi-model re-

flection framework introduced by [25]. Each separate con-

cern of the meta-level is defined in terms of a meta-space

model, which represents the structure and functionality for

the reification of a base-level object according to that as-

pect. Figure 6 illustrates the concept of using distinct meta-

objects (each one corresponding to a different meta-space

model) to reify a given base-level object.

Interface
Interface

Discovery
Architecture Resources

Base−level

Interception

Object

Meta−Level

Base−Level

Figure 6: The meta-space reifying a base-level object.

Currently, five meta-space models are specified, with

well-defined abstract design and semantics. The meta-

space models are categorised according to the usual dis-

tinction between behavioural and structural reflection [38].

The behavioural part of the meta-space consists of two

meta-space models: Resources and Interception. These are

however out of scope in this paper, so we will not further

refer to them. Structural reflection, on its hand, is the fo-

cus of the prototype and is represented by three distinct

meta-space models: Interface Discovery (which reifies the

set of interfaces supported by a component or binding ob-

ject), Interface (which reifies the constitution of a particu-

lar interface, in terms of the operations, flows or signals it

provides)1, and Architecture (which reifies the internal con-

figuration of a component or binding object, in terms of an

object graph representing its internal components and the

1In other implementations of the general OpenORB framework, these

two meta-space models are merged into a single one, simply called In-

terface. The reason for partitioning them in Meta-ORB is to separate the

functionality related to finding the interfaces of a component, at one hand,

from that related to the dynamic discovery of the operations, flows or sig-

nals provided by a single interface.

way they are connected). These three meta-space models

are designed so as to be independent of each other with re-

gard to adaptation. This basically means that changes in the

configuration of an object effected through the Architecture

meta-space model need to respect the types of the inter-

faces involved. For instance, if a component is replaced

by another, the substitute must provide the same interfaces

of the replaced component (or interfaces derived from sub-

types of the original interface types).

4.1 Examples of adaptation

The current version of Meta-ORB is focused on struc-

tural reflection, based on the Interface Discovery, Interface,

and Architecture meta-space models. However, only the

latter is meant for adaptation, whereas the former two are

meant for inspection only (i.e., to discover the services pro-

vided by a component, in terms of interfaces and their op-

erations). The reason for this is to avoid possible incom-

patibilities (at the level of local bindings) that may arise

from the addition or removal of interactions and interfaces.

In future versions, this restriction may be removed with

the adoption of rules (such as subtype-based evolution) to

constrain the adaptations made via these two meta-space

models.

Adaptation according to the Architecture meta-space

model is achieved through the manipulation of the object

graph that represents the configuration of a given plat-

form element. The meta-object protocol associated with

this meta-space model offers operations for inspecting the

structure of a configuration, as well as for changing it, by

adding, removing or replacing components. For instance,

in a binding configuration, such as the one specified in Fig-

ure 4, if the available bandwidth of the underlying network

suffers a drop, it may become impossible to sustain the pre-

viously agreed quality of service. Under the circumstances

of rigid middleware infrastructures, such as with conven-

tional middleware, this would typically mean that the bind-

ing should be torn down. On the other hand, in the Meta-

ORB reflective middleware, the Architecture meta-object

may help overcome the problem in a more satisfactory way.

The solution could involve selecting an alternative video

encoding method with lower bandwidth requirements, as

well as a component type (defined in the meta-information

repository) that implements it. The Architecture meta-

object can then be used to replace the current video codec

components (at each of the binding endpoints) with com-

ponents of the selected type, without disrupting the overall

service (although the user might experience some down-

grading of the video output quality, due to the change of

encoding). The code for implementing such reconfigura-

tion, in Python, is shown in Figure 7.

The bottom line for using reflection in such a way is

import MetaORB

Obtain a reference to the Architecture
meta-object.
arch_mobj = MetaORB.get_arch_mobj(

bind_ctrl.get_binding_name())

Obtain the type of the new component from
the Type Repository
type_of_new_comp = MetaORB.TypeRep.lookup_name(

‘LowBandwidthVideoFilter’, dk_Binding)

Pause the binding, so that reconfiguration can
take place without affecting its consistency
bind_ctrl.pause()

Invoke the appropriate operation of the
Architecture MOP to replace all occurrences of
the old video filter component (in all binding
endpoints conforming to the AVBindingPartic
role) with components instantiated from the
new component type.
arch_mobj.role_replace_component(AVBindingPartic,

video_filter,
type_of_new_comp)

Resume normal binding operation
bind_ctrl.resume()

Figure 7: Example script for dynamic binding reconfigura-

tion.

therefore the convenience of making runtime structural

changes to an application or to the underlying platform.

In addition to smoothing the change process (by preserv-

ing continuous availability of the adapted service), this ap-

proach also enables a simplification of the process of sys-

tem evolution, as changes can be made in a localised way,

without affecting the whole system.

4.2 Combining reflection and meta-information
management

In Meta-ORB the meta-information management fa-

cilities are organised around the concept of a repository.

This repository provides for the storage, retrieval and con-

sistency management of meta-information describing the

building blocks of the platform. Such facility is described

in terms of a set of meta-types, which make up the meta-

model of the platform. Among the major meta-types are

binding, component and interface, along with other more

primitive elements (such as operations, flows and primitive

data types). In addition, the meta-model is a direct exten-

sion of the CORBA 2.2 object model, meaning that all the

constructs prescribed in that version of CORBA are also

supported.

According to the usual functionality of a meta-

information facility ([6]), the repository provides functions

for registering new types, for checking type compatibility,

and for the lookup and browsing of existing types. All these

functions are meant (though not necessarily) to be auto-

matically generated, based on the description of the meta-

model, using MOF-related tools.

All configuration and reconfiguration facilities depend

upon these meta-information management features. For in-

stance, in order to create a platform configuration (e.g., a

set of components and binding objects), the object factories

need to obtain the right type definitions from the reposi-

tory. In addition, the structural reflection features need to

obtain meta-information describing the (type of the) base-

level object, so that it can be properly reified.

However, a more subtle relationship between the meta-

information management and reflection facilities may arise

due to the fact that reification is strongly based on meta-

information from the repository. An important requirement

of every reflective system is that the self-representation

maintained by a meta-object is always consistent with the

type of its base-level object. However, as a result of succes-

sive adaptations, the configuration of the base-level object

(and thus its self-representation) becomes different from

that specified in the type. To solve this apparent contradic-

tion, Meta-ORB adopts an approach based on type evolu-

tion [4], which means that the type of an object is changed

(into a new version of the original type) once the object is

subject to adaptation. However, the new type is only pub-

lished in the repository when the base-level object becomes

stable (i.e., no further adaptations are envisaged) and the

meta-object is explicitly asked to do so (until then, a pri-

vate copy of the type is kept in the meta-object). As an

interesting consequence, the approach enables new com-

ponent and binding types to be derived as a result of reflec-

tive adaptations. Such new types (once published) can be

used to create objects that contain, from scratch, the results

of previous adaptation efforts. Another consequence of us-

ing type evolution is the possibility to constrain adaptations

based on type relationship rules, so that a dynamically cre-

ated new type does not contradict the properties of the type

used to derive it. This is important to keep compatibility

with existing clients of an adapted object. Currently, we

support subtyping as a type evolution rule, so that the new

type must be a subtype (i.e., present all the interfaces) of

the original type. The investigation of this approach as a

way to check more global properties of the system remains

an issue for future work.

5 Implementation

5.1 Python-based prototype

A prototype implementation of the Meta-ORB architec-

ture has been developed with the goal of demonstrating its

feasibility and applicability. The focus of this work was on

the functionality and the qualities of the architecture, rather

than performance. This is reflected on the chosen imple-

mentation environment, based on the Python programming

language [36], which favours rapid prototyping instead.

Despite this, experiments have shown that the performance

of the prototype is appropriate for simple multimedia ap-

plications [3]. In addition, by implementing the prototype

purely in Python, portability to a variety of operating sys-

tems is guaranteed, which was also a factor when choosing

the language. The implementation is structured in three

main modules, according to the abstract design discussed

in section 5. These modules are briefly described below.

5.1.1 Platform Core

This module implements the core features that are nec-

essary to support the Meta-ORB programming model.

Specifically, it contains the basic distribution infrastruc-

ture, with naming and capsule management services, as

well as the primitive constructs to support the meta-model,

such as interface references and local bindings (which are

links between the interfaces of locally connected compo-

nents). In addition, this module defines the runtime repre-

sentation for the first-class constructs of the programming

model: interfaces, components and binding objects. In par-

ticular, regarding the latter, the implementation encourages

the use of the General Inter-ORB Protocol (GIOP) as the

basis for communication between the components of bind-

ing objects. This is on the way of providing interoperability

with CORBA, though further work is still needed (e.g., to

use interface references that are compatible with the IOR

standard). Finally, higher-level services are also defined

in this module, notably component and binding factories,

which are the entities responsible for the instantiation of

components and binding objects based on specified type

meta-information.

5.1.2 Type Repository

This module implements the meta-information manage-

ment framework of Meta-ORB, providing support for both

the platform core and its meta-level. Its logical structure

is an extension of the CORBA Interface Repository, in

order to comprise the new meta-types introduced by the

Meta-ORB meta-model, in addition to those that are na-

tive of CORBA. The implementation is based on replica-

tion of the repository, in order to increase performance

when accessing type definitions. Persistence of type def-

initions is achieved through their simple serialisation and

storage in the local file system of each repository replica

(use of a database system is considered for future devel-

opment). Creation of new type definitions, in turn, is per-

formed through a master-slave collaboration between the

repository replicas, where the master is the replica that re-

ceives and processes a given type creation request, propa-

gating the new type definition to the slave replicas. Type

versions are created in a similar way, though there is a cen-

tralised manager responsible for generating unique version

numbers. Note that because type definitions (once stored

in the repository) are immutable, the problem of keeping

consistency among the replicas can be solved quite sim-

ply. The solution is based on the reliable distribution of

newly created types to all replicas and on the uniqueness of

type names and version numbers (which is guaranteed by

the central manager). Finally, the Type Repository module

also introduces tools to facilitate the definition and manip-

ulation of meta-information, such as a GUI-based browser,

used to specify, edit, publish and search for type defini-

tions.

5.1.3 Meta-level

This module corresponds to the mechanisms and facilities

for structural reflection provided by the platform. It fol-

lows the framework described in section 4, with the de-

sign defined in terms of the constructs of the programming

model. Thus, meta-objects are themselves components,

and are created and managed using the services provided

by the Platform Core and Type Repository modules. The

overall approach is to provide a default design and imple-

mentation, with meta-object types that offer a representa-

tive meta-object protocol. This design can then be extended

with new meta-object types, either through static type defi-

nition, or through reflection (i.e., using meta-meta-objects)

and type evolution. The precise meta-object protocols cur-

rently implemented are described in [3].

The implementation of the Interface and Interface Dis-

covery meta-objects is straightforward, as they simply pro-

vide a convenient way to access type meta-information

about the base-level objects. Their use is preferred instead

of direct access to the respective types in the repository,

as they should provide up-to-date type meta-information

(considering any previous adaptations and evolution of the

type).

Architecture meta-objects, on the other hand, have a

more complex implementation, as they also provide for

adaptation. This means that causal connection must be ex-

plicitly maintained, which is achieved by allowing meta-

objects to directly manipulate the runtime representation

of their respective base-level objects, such as by creating

and deleting componets, and disconnecting and reconnect-

ing local bindings between their interfaces. In this way,

meta-objects can perform the absorption of reflective com-

putation (see Figure 1).

5.2 Java-based prototype

The first prototype, described above, was mainly aimed

at demonstrating the concepts introduced in the Meta-ORB

architecture. Current activity in the project is now target-

ing the development of a fully functional Java version of

the platform, aimed at portability across a range of dif-

ferent platforms, as well as better performance. The fo-

cus is on exploring the dynamic adaptation facilities of

Meta-ORB in mobile computing environments, especially

involving handheld devices such as palmtops and mobile

phones. This has led to the adoption of J2ME [34], accord-

ing to the CLDC configuration [32] and the MIDP profile

[33], as the main runtime environment. As a result, seam-

less portability and a smaller footprint of the runtime were

naturally achieved, enabling the new version to run on a

variety of devices.

An effort was made to retain total compatibility with

the previous version, including the programming model

and runtime data representation, thus enabling interoper-

ability. However, due to the limitations of J2ME, a num-

ber of adaptations were needed in the core architecture. In

particular, the use of version 1.0 of MIDP restricted us to

HTTP as the sole communication protocol. This means

that all primitive and implicit bindings are based on this

protocol, having to provide all their features through con-

ventional HTTP request/reply text-based messages, which

may affect interaction performance. We expect to remove

this constraint as implementations of the latest version of

MIDP (2.0) become available, enabling the use of more

capable datagram and socket-based connections. Another

limitation of J2ME that has influenced the implementation

was the lack of native reflection support (as available in

the conventional Java Class Library). In particular, it is not

possible to make dynamic method calls, which has com-

promised the flexibility of local bindings (connections be-

tween local interfaces) in the platform. As a result, the run-

time representation of a component’s interface (in terms of

a Java class) has to be generated specifically for the partic-

ular interface type, as opposed to the generic, interface-

independent, counterpart in the Python prototype. Note

however, that this limitation is not related to the implemen-

tation of the reflection mechanisms of the platform, which

are completely independent of the reflective features of a

particular programming language.

Finally, limitations of the targeted execution environ-

ment, especially in terms of memory, processing power and

battery, have led to the need to save as much resources as

possible in this implementation. As a result, only the plat-

form core was ported, consisting of the runtime infrastruc-

ture (capsule, local name server, component and binding

factories, and implicit binding support). Some features,

notably the Type Repository, were kept from the previous

version (with some adaptations, discussed below, to enable

the Python-Java interoperability), whereas others, such as

the naming service, where implemented in the more capa-

ble J2SE platform. In what follows, a high level description

of the architecture of the prototype is presented.

5.2.1 Architecture

As stated above, under CLDC/MIDP1.0, all networking

has to be done through HTTP. Furthermore, only the client

part of this protocol is implemented, meaning that a J2ME

device cannot be the target of interactions (e.g., to receive

requests). These two limitations have posed the need for a

proxy-based architecture, where each J2ME device partic-

ipating in the distributed environment of Meta-ORB must

have a representative object residing in a more capable de-

vice located elsewhere (e.g., in the fixed network), which is

able to receive interactions from clients (or media produc-

ers) and redirect them to the target object in the device. The

overall architecture is illustrated in Figure 8, which shows

the major elements involved in a platform infrastructure,

along with the several possibilities of runtime environment

(mainly J2ME and J2SE in this case).

As the figure shows, access to the Type Repository

(in Python) is achieved through a servlet that redirects

HTTP requests as appropriately formatted sockets-based

messages to the closest Type Repository server. The re-

quested type definitions are formatted as text-based mes-

sages before returning them to the caller. A similar ap-

proach is used for access to the global name server.

Figure 8 also illustrates access to component interfaces

through implicit binding. This is achieved using a proxy-

based approach, in a way similar to the Middleman archi-

tecture proposed in [23]. For each J2ME-based capsule,

there is a proxy in charge of receiving and processing re-

quests directed to interfaces located in that specific capsule,

as well as handling the replies back. This proxy is created

by the capsule manager at the same time as the capsule

itself, by using a well-known configuration service (Con-

figServer).2 Communication between clients and the proxy

can be either through HTTP (in the case of J2ME clients)

or object requests (in the case of J2SE clients). Commu-

nication between the proxy and the target interface in the

J2ME capsule is always based on HTTP, by superimposing

2Although not shown in the figure, the ConfigServer need not be in the

same capsule as the proxy.

an object request protocol on top of it. As J2ME-based ob-

jects (midlets) can only act as clients, requests directed to

them have to be conveyed within normal HTTP reply mes-

sages. Such communication is based on a polling scheme,

where the communications server object (CommsServer)

residing in the J2ME capsule sends HTTP requests to the

port associated with the proxy and waits for replies con-

taining proper object requests. In other words, there is an

inversion of the client and server roles.

As an example of this kind of interaction, consider the

access to the (server) interfaces of component and bind-

ing factories in order to request the creation of components

or the establishment of (explicit) bindings. In this exam-

ple, the CommsServer object would poll (using an HTTP

request message) the Proxy for newly arrived object re-

quests. Such requests would be sent to the CommsServer

in an HTTP reply message, which would then be parsed by

the CommsServer in order to generate the appropriate local

calls to the interfaces of the target components (in the ex-

ample, the component factory or the binding factory com-

ponents). The reply for an object request would be sent by

the CommsServer to the Proxy via an HTTP request mes-

sage. The Proxy would then handle the reply to the actual

client in an appropriate way.

Finally, the figure also shows an explicit binding object

connecting the interfaces of two remote components. Al-

though not shown, the internal implementation of the bind-

ing (more precisely, the primitive binding inside of it), is

based on a similar proxy mechanism as described above. In

particular, the stub component at the J2ME side of the bind-

ing is a dedicated version of the communications server,

while the stub at the other side takes the role of the (ded-

icated) proxy. In case both endpoints are based on J2ME

capsules, we need an intermediate proxy (located in a J2SE

capsule) to handle the HTTP request/reply messages prop-

erly.

5.2.2 Ongoing work

The above description corresponds to a lightweight ver-

sion of the Meta-ORB base-level architecture. It fulfils

the major elements of the core meta-model and enables

the development of applications targeting mobile devices.

In particular, all the facilities for flexible platform config-

uration are present under the headings of the component

and binding factories, which take object definitions from

the Type Repository and perform the instantiation of cus-

tomised platform configurations.

The reflective meta-level, on the other hand, is the sub-

ject of ongoing work. The focus will again be on the struc-

tural part of the meta-space, notably on the architecture

meta-space model. This will enable us to evaluate the ap-

proach for dynamic reconfiguration in a mobile, resource-

T
R

S
er

v
le

t

Global
nameserver

Type

Repository

Local
nameserver

App

Object

Factory
Component

Binding

Factory

CommsServer

obj.
App

Client
App

ConfigServer

(servlet)
Proxy

object
request

Capsule
manager

J2SE Python J2SE/J2EE

J2ME/J2SE

J2EE

J2ME

HTTP

H
T

T
P Distributed Explicit Binding

(on top of HTTP)

socket socket
Comms
Server

Object

App

J2ME

J2SE

HTTP

Figure 8: Overall architecture of the Java-based Meta-ORB prototype.

constrained environment, which provides the most interest-

ing requirements for this kind of capability.

6 Performance evaluation

In this section we present a detailed performance evalu-

ation of the Meta-ORB Python-based prototype according

to three aspects: static configuration, interaction, and re-

flective reconfiguration. This is provided with a note of

caution, due to the interpreted nature of Python.3 How-

ever, the aim is to highlight the relative overhead compared

with non-reflective platforms and with the demands of dis-

tributed multimedia. Indeed, the results are quite encourag-

ing, giving a rough indication of the level of performance

that can be achieved in more efficient language environ-

ments.

All experiments were conducted on a 10Mbps Ether-

net LAN, using identical Pentium III 800MHz PCs with

256MB RAM, running Windows 2000 and Python 2.1. All

measurements were taken using the clock function of the

standard Python library, with several runs and averaging to

smooth the effects of non-determinism introduced by the

OS scheduler and network.

6.1 Static configuration performance

As particular instances of the platform are made up with

component and binding objects, an evaluation of their in-

stantiation performance is crucial to understand the cost of

establishing complete platform infrastructures.

The cost of component instantiation is shown in Fig-

ure 9 for three representative cases: primitive components

3A corresponding evaluation of the Java-based implementation is the

subject of ongoing work.

with a varying number of interfaces, composite compo-

nents made up with flat compositions of primitive compo-

nents, and composite components with a recursive compo-

sition pattern (i.e., hierarchically nested components). As

can be seen, the cost scales up linearly with the compo-

nent’s complexity. The graph also gives a rough idea about

the cost incurred by other component configurations (e.g.,

the instantiation of a flat composite component with five in-

ternal primitive components and three interfaces will cost

approximately 48ms – 38ms for the composition plus 10ms

for its three interfaces).

The next experiment shows the performance and scal-

ability of binding instantiation. It considers multi-point

bindings with up to six endpoints, each one located in a

different machine and consisting of a stub and the endpoint

of a primitive binding. The use of such minimal bindings

is so that the inherent cost of instantiating distributed bind-

ings is made more evident (the cost of more complex bind-

ings would be the sum of the cost of a simple binding plus

that of their internal components).

Given the distributed nature of the binding protocol,

where binding endpoints are created in parallel by different

local binding factories (see [3]), the impact of the number

of endpoints is made less significant. The increases shown

in Figure 10 are mainly due to the additional processing

performed by the primary binding factory (which coordi-

nates the whole process) to stich the several endpoints to-

gether. Nevertheless, the results seem to suggest that such

increases tend to attenuate as the number of binding end-

points grow.

6.2 Interaction performance

This section discusses the performance of interaction

between remote components. Whenever applicable, re-

sults are contrasted with two other Python-based platforms:

Figure 9: Cost of component instantiation.

Figure 10: Cost of binding instantiation.

Fnorb [13], a CORBA-compliant middleware platform;

and minimal implementations based on TCP/UDP sockets

(in order to highlight the overhead introduced by the Meta-

ORB programming model). All experiments use the same

binding configuration as above, though with only two end-

points.

6.2.1 End-to-end delay

The first experiment, shown in Figure 11, illustrates, in log-

arithmic scale, the round trip delay for request-reply inter-

action. The comparison with TCP-based sockets shows an

overhead of about 30% for small interactions (up to 128

bytes), although the overhead decreases for larger inter-

actions (above 4KB, it does not exceed 10%). This extra

cost can be explained by the higher level of abstraction of

the Meta-ORB programming model. The complementary

analysis shows that the Meta-ORB framework can be used

to achieve superior performance in comparison with Fnorb

(which is at least about 5ms slower in all cases). In part,

this is due to the extra processing performed on an invo-

cation by Fnorb, such as marshaling/unmarshaling, which

is significantly more generic than in our prototype. This

demonstrates that reflective middleware can achieve better

performance by removing unnecessary overhead.

Figure 11: Round trip delay for request-reply interaction in

a distributed binding.

An analysis of the end-to-end delay of stream interac-

tions, comparing a Meta-ORB binding with UDP sockets,

is shown in Figure 12 (a comparison with Fnorb does not

apply, as it does not have support for streams). The delay

is estimated by halving the round-trip time.

Compared with the typical delay requirements of mul-

timedia applications (maximum of 250ms for both audio

and video, according to [16]), these figures seem appropri-

ate, especially considering frames of moderate sizes (up to

8KB). However, the extra cost of processing complex me-

dia in the binding should also be taken into account, sug-

gesting that such functionality should be implemented in

C/C++ and integrated into the platform using Python’s ex-

tension facilities [37].

Figure 12: End-to-end delay of stream interaction.

6.2.2 Throughput

Figure 13 shows the result of an experiment measuring

the user-level throughput of a stream binding on a lightly

loaded network, along with a comparison with UDP sock-

ets. As the graph shows, for frame sizes over 32 bytes, the

absolute difference in achievable throughput is nearly con-

stant (300-700 Kbits/s). In relative terms, the throughput

of a Meta-ORB binding is only 10 percent lower for frame

sizes over 512 bytes. This lower throughput is a result of

the high-level programming model of Meta-ORB, showing

a tradeoff between programmability and raw performance.

Finally, to put the figures in perspective, they can also

be compared with the typical requirements of continuous

media. In particular, for audio streams, the throughput is

clearly suitable. For video streams, however, it can be less

than adequate. Nevertheless, considering the requirements

of compressed TV-quality video (2-10Mbit/s), as well as

the use of larger (over 512 bytes) frame sizes, reasonable

results may be achieved.

6.3 Reflection performance

6.3.1 Meta-object instantiation

The performance of reification is examined here using sev-

eral experiments that illustrate the creation of meta-objects

according to the three structural meta-space models de-

scribed earlier.

Figure 13: Composite binding throughput.

The time required to create Interface Discovery meta-

objects is independent of the particular base-level object to

be reified, being around 8.8ms for components and 9.8ms

for bindings. Similarly, for Interface meta-objects, reifica-

tion time is independent of the particular interface, and was

about 9.5ms.

On the other hand, for Architecturemeta-objects, perfor-

mance depends on the complexity of the particular base-

level object. Two experiments were chosen to show the

scalability of architecture reification: firstly, for compos-

ite components, using linear composition and a varying

number of nested components; and secondly, for binding

objects with an increasing number of endpoints (with the

simple binding configuration described in 6.1).

The results have shown that reification time is linearly

proportional to the number of features present in the base-

level object. For components with one internal component,

reification takes 10.6ms, with each extra internal compo-

nent adding up about 0.4ms (e.g., reifying a component

with 5 internal components would take 12.6ms). For bind-

ing objects, both the number of internal components and

binding endpoints influence reification time. We observed

that for simple bindings with two endpoints, architectural

reification takes about 19.9ms, with each extra endpoint

adding up about 0.2ms.

These figures indicate that meta-objects should ideally

be created in advance of the need for reflection, especially

in the case of Architecturemeta-objects and in time-critical

applications. Once meta-objects are created, though, their

access time is less significant.

6.3.2 Adaptation performance

This is a critical issue, as adaptation mechanisms are meant

for dynamic use, while the platform is running. In or-

der to demonstrate the level of performance in the cur-

rent implementation, three experiments were run, using the

most common adaptation operations. In order to isolate

the inherent cost of reflective adaptation, all components

involved in the adaptations are primitive. (Adaptations in-

volving complex, composite, components would have the

added costs incurred in the instantiation of the component’s

internal configuration.) The results, for binding adaptation,

are as follows: inserting a new component takes 37.5ms,

while component removal takes 44ms and component re-

placement takes about 90ms. Adaptation of components, in

turn, require slightly lower times, as both base- and meta-

objects would always be local to each other.

Considering the typical requirements of continuous me-

dia, in particular the short inter-frame intervals for audio

and video streams, the above results seem to suggest a need

for more efficient meta-object implementations, e.g., in C

or C++, in order to reduce the possibility of frame loss or

even to schedule a given adaptation in between frame ar-

rivals.

7 Related work

In the context of the Open ORB architecture, several

prototypes have been implemented, each exploring a dif-

ferent aspect of the architecture. In particular, the Open-

COM runtime component model, together with the ReM-

MoC middleware built on top of it [15, 2], strive for ef-

ficiency of implementation and memory footprint. This

platform was written in C++, which, besides being an ef-

ficient compiled language, allows access to low-level fea-

tures (such as virtual pointer tables), which greatly opti-

mise performance. The performance of this platform has

been shown to be on a par with non-reflective middleware,

with the added benefit of further optimisations that can be

achieved with the very use of reflective adaptation [5]. Our

approach has several similarities with this work, especially

the use of reflection for platform optimisation. However,

the aim here was to highlight the benefits of the combined

use of meta-information management, also showing that it

does not impose considerable overhead.

Another relevant outcome of the Open ORB project was

the FORMAware framework, aimed at the management of

adaptation in component architectures [7]. The approach

is based on software architectures as a way to fully de-

scribe configurations of components, together with con-

straints that specify the criteria for validating reconfigura-

tions. For dynamic reconfiguration, a comprehensive meta-

object protocol is provided, which enables the handling of

all aspects of an architecture. We note that such an ap-

proach can conceptually complement our architecture, fit-

ting into the scope of the Architecture meta-space model.

In addition, our approach towards the integration of reflec-

tion and meta-information management can further lever-

age the idea of architecture adaptation, especially regarding

the seamless integration of configuration and reconfigura-

tion, as well as the notion of type evolution discussed in

4.2, which could use architectural constraints as a basis to

validate adaptations.

Outside the scope of Open ORB, other projects have

also adopted reflection as a principled way to build flexi-

ble middleware platforms, though following different ap-

proaches. OpenCORBA [21], for instance, is a reflective

implementation of CORBA based on the meta-class ap-

proach and on the idea of modifying the behaviour of a

middleware service by replacing the meta-class of the class

defining that service. This is mainly used to dynamically

adapt the behaviour of remote invocations, by applying the

above idea to the classes of stubs and skeletons. The use

of meta-classes, however, has the consequence of making

such adaptations reflect on all instances of a class. In con-

trast, in Meta-ORB reflection is based on per-object meta-

objects, enabling to isolate the effects of reflection (so that

other objects are not affected when reflection is used to al-

ter a particular object). In reflective middleware, this is

a desirable property as the components of a middleware

system tend to be fairly independent of each other (even

though they might have the same class).

DynamicTAO [8] is another representative reflective

middleware architecture. It is based on an extension of

the TAO ORB [30] with the concept of architectural aware-

ness, making explicit the architectural structure of a system

in a causally connected way. Middleware configurations

are defined in terms of prerequisite specifications, which

represent the components of the platform and the depen-

dencies among them. These specifications are used by an

automatic configuration service to instantiate the platform

components and the components on which they depend.

At runtime, such prerequisites are managed by component

configurators, which are in charge of keeping the consis-

tency of dependencies as new components are added or re-

moved from the system. This approach is similar to the

use of architectural reflection in Meta-ORB, with the added

value of dependency management. However, dynamicTAO

restricts the use of reflection to coarse-grained components,

limiting its applicability to control more detailed structures

of the platform.

In parallel with our effort to build a flexible Java-

based middleware platform for mobile computing, it is

worth mentioning the work carried out in the Arcademis

project, which is building a framework for the implemen-

tation of customised middleware [29]. Similar to our work,

Arcademis also targets the problem of middleware cus-

tomisability, especially in the context of mobile comput-

ing. Their approach is based on a set of abstract classes

and interfaces describing general middleware functional-

ity, which can be specialised to produce particular kinds of

middleware. One such example is the use of the framework

to build an object-oriented middleware for J2ME-enabled

devices. Their approach thus differs from ours in the way

middleware configurations are specified, which in our case

is based on an object definition language. However, in the

same way as FORMAware, we can conceive an integration

of the two approaches, using frameworks as a way to con-

strain configuration definitions. Another important differ-

ence, however, is the absence of support for runtime reflec-

tion and dynamic reconfiguration in Arcademis, although

such support could possibly be developed following our

overall approach and having a runtime representation of the

underlying component framework.

Regarding the management of meta-information, al-

though all reflective middleware architectures (such as the

ones discussed above) deal with meta-information in one

way or another, the treatment is typically ad hoc. On the

other hand, the isolated use of meta-information manage-

ment in middleware, notably for type management pur-

poses has been proposed in the literature (such as in [11]).

To our knowledge, however, Meta-ORB is the first mid-

dleware architecture to integrate a comprehensive and per-

vasive framework for meta-information management with

a principled reflective meta-level. This has the benefit of

unifying the use of meta-information in the system (e.g.,

preventing that different meta-object implementations use

different meta-level representations), as well as providing

a basis to closely integrate the configuration and adaptation

features of the platform.

Finally, we also mention the efforts in the area of aspect-

oriented programming (AOP) [19], which is similar to re-

flection in the sense that it is also a technique to enable

separation of concerns in systems such as middleware. The

original proposals of AOP were targeted at static aspects,

which are combined by the weaving process andthus made

unavailable at runtime. There is however a number of

research efforts in the direction of dynamic aspects [12],

which preserve the distinction among the aspects of a sys-

tem at runtime, enabling new aspects to be added and old

ones to be removed or replaced. We consider reflection and

AOP complementary techniques, as reflection (and meta-

object protocols) can be used as the mechanism enabling

the dynamic manipulation of aspects. In this sense, aspects

can be seen as another approach to structure the middle-

ware system, in a way that is orthogonal to the way compo-

nent composition is used in our approach. Further investi-

gation about this combined use of aspects, components and

reflection in Meta-ORB remains an issue for future work.

8 Concluding remarks

This paper has presented Meta-ORB, a reflective mid-

dleware platform based on a combination of a meta-level

architecture with meta-information management concepts.

The overall aim of the research is to develop an approach

that permits the integration of configuration and reconfig-

uration facilities in a highly flexible middleware architec-

ture. The foundation concepts used in the research have

been surveyed, together with their application in the con-

text of middleware. The paper discussed the architecture

of the platform, together with its two implementations,

a Python-based proof-of-concept prototype, and a Java-

based implementation, which is currently under develop-

ment and targets wireless mobile devices. The paper also

presents an evaluation of the approach based on the first

prototype.

The work has enabled us to draw some important con-

clusions about the design and implementation of adap-

tive middleware platforms. The most important of such

conclusions is related to the benefits of an integrated ap-

proach combining runtime reflection an explicit runtime

meta-model representation of the platform. This enables

the use of the same set of abstractions for configuring a

platform from scratch and for adapting it at runtime, re-

lieving the user from the need to learn a different set of

concepts and tools. In addition, the concept of type evo-

lution has shown to be an important step towards enhanc-

ing the process of developing customised middleware, as

new versions of a platform configuration can be produced

at runtime, by successive adaptations in order to match real

operation scenarios. The most promising versions can then

be turned into proper configuration definitions and stored in

the Type Repository for later use in order to reproduce the

successful evolved configurations in other contexts. We be-

lieve this is a promising approach to software development

in general, and to adaptive middleware in particular.

Another important conclusion is related to the impact

of both techniques, reflection and meta-information man-

agement, on the overall performance of the platform. The

experiments presented in the paper demonstrate that such

impact, though not negligible, is within acceptable limits

for some important categories of application and is com-

parable with the performance of non-reflective platforms.

Furthermore, we have identified several points for improve-

ment, mainly related to the implementation environment.

For example, implementing the more computing intensive

components of the platform in an efficient language, such

as C++ (while still taking advantage of productivity bene-

fits of Python for placing the components together), would

improve several of the performance figures presented in

the paper. Thus, we can argue that the main performance

bottleneck of the prototype is not the reflective program-

ming model itself. Future work will investigate the above

argument with the development of primitive components

and component factories implemented in C++, in order

to verify if the related performance impact is significant.

Ongoing work is also investigating the performance of

the platform in environments with more limited resources

available, notably comprising the J2ME-based prototype in

handheld computers connected by wireless LANs.

References

[1] Gordon S. Blair, Fábio M. Costa, Katia Saikoski, and

Nikos Parlavantzas Hector Duran Mike Clarke. The

design and implementation of Open ORB version 2.

IEEEDistributed Systems Online Journal, 2(6), 2001.

[2] Mike Clarke, Gordon S. Blair, and Geoff Coul-

son. An efficient component model for the con-

struction of adaptive middleware. In Proceedings

of the IFIP/ACM International Middleware Con-

ference (Middleware’2001), Heidelberg, Germany,

2001. Springer-Verlag.

[3] Fábio M. Costa. Combining Meta-Information

Management and Reflection in an Architec-

ture for Configurable and Reconfigurable

Middleware. Ph.D. thesis, University of

Lancaster, Lancaster, UK, September 2001.

http://www.comp.lancs.ac.uk/computing/users/

fmc/pubs/thesis.pdf.

[4] Fábio M. Costa and Gordon S. Blair. Integrat-

ing reflection and meta-information management in

middleware. In Proceedings of the International

Symposium on Distributed Objects and Applications

(DOA’00), Antwerp, Belgium, 2000. IEEE, IEEE.

[5] Geoff Coulson, Gordon S. Blair, and Paul Grace.

On the performance of reflective systems software.

In Proceedings of the International Workshop on

Middleware Performance (IWMP’04), Phoenix, AZ,

April 2004. IEEE Computer Society.

[6] Steve Crawley, S. Davies, Jaga Indulska, Simon

McBride, and Kery Raymond. Meta-information

management. In Proceedings of the 2nd IFIP In-

ternational Conference on Formal Methods for Open

Object-based Distributed Systems (FMOODS’97),

Canterbury, UK, 1997. IFIP.

[7] Rui Jorge da Silva Moreira. FORMAware: Frame-

work Of Reflective components for Managing archi-

tecture Adaptation. Ph.d. thesis, Computing Depart-

ment, Lancaster University, Lancaster, UK, March

2004.

[8] Fabio Kon et al. Monitoring, security and dynamic

configuration with the DynamicTAO reflective ORB.

In Proceedings of the IFIP International Conference

on Distributed Systems Platforms and Open Dis-

tributed Processing (Middleware’2000), New York,

2000.

[9] H. Mili et al. Metamodelling in OO - workshop

summary. In Addendun to the Proceedings of OOP-

SLA’95, Austin, TX, 1995.

[10] Stephen Crane et al. Configuration management for

distributed software services. In Proceedings of the

IFIP/IEEE International Symposium on Integrated

Network Management (ISINM’95), Santa Barbara,

CA, 1995. IFIP/IEEE.

[11] Waine Brookes et al. Types and their management in

open distributed systems. Distributed Systems Engi-

neering, 4(1):177–190, 1997.

[12] Robert Filman, Michael Haupt, Katharina Mehner,

and Mira Mezini, editors. Proceedings of the 2004

Dynamic Aspects Workshop (DAW04), volume 1,

Lancaster, UK, March 2004. Research Institute for

Advanced Computer Science. RIACS Technical Re-

port 04.01.

[13] Fnorb. Fnorb - release 1.1. CRC for Distributed Sys-

tems Technology, University of Queensland, Queens-

land, Australia, 2000. http://www.fnorb.org.

[14] Brian Foote. Object-oriented reflective metalevel ar-

chitectures: Pyrite or panacea? In Proceedings

of ECOOP/OOPSLA’90 Workshop on Reflection and

Metalevel Architectures, Ottawa, 1990. ACM.

[15] Paul Grace, Gordon S. Blai, and Sam Samuel. ReM-

MoC: A reflective middleware to support mobile

client interoperability. In Proceedings of the Inter-

national Symposium on Distributed Objects and Ap-

plications (DOA’03), Sicily, Italy, 2003. IEEE, IEEE

Computer Society.

[16] D. B. Hehnmann, M. G. Salmony, and H. J. Stuttgen.

Transport services for multimedia applications on

broadband networks. Computer Communications,

13(4):197–203, 1990.

[17] ITU-T/ISO. ITU-T X.901 | ISO/IEC 10746-1 Open

Distributed Processing Reference Model - Part 1:

Overview, 1995.

[18] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bo-

brow. The Art of the Meta-Object Protocol. MIT

Press, 1991.

[19] Gregor Kiczales, J. Lamping, C. Maeda A. Mend-

hekar, C.V. Lopes, J-M. Loingtier, and J. Irwin.

Aspect-oriented programming. In Proceedings of

the 11th European Conference on Object-Oriented

Programming (ECOOP’97), number 1241 in Lecture

Notes in Computer Science, pages 220–241, Jyvask-

ila, Finland, June 1997. Springer-Verlag.

[20] Lea Kutvonen. Management of application federa-

tions. In Proceedings of the International IFIP Work-

shop on Distributed Applications and Interoperable

Systems (DAIS’97), Cottbus, Germany, 1997. IFIP.

[21] Thomas Ledoux. OpenCORBA: A reflective open

broker. In Proceedings of the 2nd International Con-

ference on Reflection and Meta-level Architectures

(Reflection’99), St. Malo, France, 1999. Springer-

Verlag.

[22] Patie Maes. Concepts and experiments in compu-

tational reflection. In ACM Conference on Object-

Oriented Programming, Systems, Languages and Ap-

plications (OOPSLA’87), Orlando, FL USA, 1987.

American Computer Machinery, ACM Press.

[23] Qusay Mahmoud. Advanced MIDP net-

working, acessing using sockets and RMI

for MIDP-enabled devices. Technical re-

port, Sun Microsystems, Inc., January 2002.

http://developers.sun.com/techtopics/mobility/

midp/articles/socketRMI/.

[24] Jacques Malenfant, M. Jacques, and F. Demers. A

tutorial on behavioural reflection and its implementa-

tion. In Proceedings of Reflection’96, San Francisco,

1996.

[25] Hideaki Okamura, Yasuhiru Ishikawa, and Mario

Tokoro. AL-1/D: A distributed programming system

with multi-model reflection framework. In Proceed-

ings of the International Workshop on New Models

for Software Architecture (IMSA’92), 1992.

[26] OMG. The Common Object Request Broker: Ar-

chitecture and Specification. Object Management

Group, Needham, MA, rev. 2.2 edition, 1998.

[27] OMG. Meta Object Facility (MOF). Object Manage-

ment Group, Needham, MA, 2000. OMG Document

formal/2000-04-03.

[28] OMG. The Common Object Request Broker: Ar-

chitecture and Specification. Object Management

Group, Needham, MA USA, rev. 3.0 edition, 2003.

[29] Fernando Magno Pereira, Danielle Gordiano Valente,

Geraldo Robson Mateus, and Antonio Alfredo Fer-

reira Loureiro. Arcademis: A java-based framework

for middleware development. In Proceedings of the

22nd Brazilian Symposium on Computer Networks

(SBRC’2004), Gramado, RS, 2004. SBC.

[30] Douglas Schmidt, D. L. Levine, and S. Mungee. The

design of the TAO real-time object request broker.

Computer Communications, 21(4):294–324, 2000.

[31] Brian C. Smith. Reflection and Semantics in a Pro-

cedural Language. Ph.D. thesis, MIT Laboratory of

Computer Science, 1982. MIT Technical Report 272.

[32] Sun. Connected Limited Device Configura-

tion (CLDC). Sun Microsystems, Inc., 2004.

http://java.sun.com/products/cldc/index.jsp.

[33] Sun. J2ME Mobile Information Device Pro-

file (MIDP). Sun Microsystems, Inc., 2004.

http://java.sun.com/products/midp/index.jsp.

[34] Sun. Java 2 Platform Micro Edition. Sun Microsys-

tems, Inc., 2004. http://java.sun.com/j2me/.

[35] Clemens Szyperski. Component Software: Beyond

object-orientation. Addison-Wesley, 1997.

[36] Guido van Rossun. Python Documentation, version

2.3. Python Labs., 2002. http://www.python.org/doc/.

[37] Guido van Rossun and F. L. Drake. Ex-

tending and embedding the Python inter-

preter. Technical report, Python Labs., 2001.

http://www.python.org/doc/current/ext/

ext.html.

[38] Takuo Watanabe and Akinori Yonezawa. Reflec-

tion in an object-oriented concurrent language. In

Proceedings of ACM Conference on Object-Oriented

Programming, Systems, Languages and Applications

(OOPSLA’88), San Diego, CA, 1988. ACM, ACM

Press.

