
Structuring requirement speci®cations with goals

Jonathan Leea,*, Nien-Lin Xuea, Jong-Yih Kuob

aSoftware Engineering Laboratory, Department of Computer Science and Information Engineering, National Central University, Chungli, Taiwan, ROC
bDepartment of Computer Science and Information Engineering, Fu-Jen Catholic University, HsinChuang, Taipei Hsien, Taiwan, ROC

Received 24 April 2000; revised 22 June 2000; accepted 18 July 2000

Abstract

One of the foci of the recent development in requirements engineering has been the study of con¯icts and vagueness encountered in

requirements. However, there is no systematic way in the existing approaches for handling the interactions among nonfunctional require-

ments and their impacts on the structuring of requirement speci®cations. In this paper, a new approach is proposed to formulate the

requirement speci®cations based on the notion of goals along three aspects: (1) to extend use cases with goals to guide the derivation of

use cases; (2) to analyze the interactions among nonfunctional requirements; and (3) to structure fuzzy object-oriented models based on the

interactions found. The proposed approach is illustrated using the problem domain of a meeting scheduler system. q 2001 Elsevier Science

B.V. All rights reserved.

Keywords: Requirements engineering; Con¯icting requirements; Goals; Fuzzy object-oriented model

1. Introduction

In recent years, goal-based requirements analysis meth-

ods have attracted increasing attention in the area of require-

ments engineering, as goals information is valuable in

identifying, organizing and justifying software requirements

[2,3,9,12,26,27,37,38]. The tenet of goal-based approaches

is to focus on why systems are constructed, which provides

the motivation and rationale to justify software require-

ments. Other bene®ts include: (1) helping to acquire

requirements by elaborating what requirements are needed

to support the goals; (2) making easy the justi®cation and

explanation of the presence of requirements in a progressive

way by starting from system-level and organizational objec-

tives from which such lower level descriptions are progres-

sively derived [12]; and (3) providing the information for

detecting and resolving con¯icts that arise from multiple

viewpoints among agents [12,29,37].

Subsequently, a number of researchers have reported

progress toward the improvement of goal-based techniques

[3,12,26,37]. In particular, Dardenne et al. [12] have advo-

cated a goal-directed approach to models acquisition. Mylo-

poulos et al. [26] have proposed a framework for

representing nonfunctional requirements in terms of goals,

which can be evaluated in order to determine the degree to

which a nonfunctional requirement is supported by a parti-

cular design. Moreover, they advocated that object-oriented

modeling approach can then be used to model functional

requirements to compensate the goal-oriented approach

[27]. Meanwhile, Anton [3] has proposed a goal-based

requirement analysis method to identify, elaborate and

re®ne goals for requirements speci®cations.

However, there are three main problems with these

approaches: (1) though their approaches support a systematic

way to acquire and analyze requirements, no de facto stan-

dard modeling language has been adopted, which may

impose a negative impact while applying to large scale

systems; (2) though interactions among goals are a crucial

factor in the structuring of requirement speci®cations, no

attempt has been made to address such issues; and (3) though

informality is an inevitable (and ultimately desirable) feature

of the speci®cation process [4,5], little effort has been

devoted to the formulation of imprecise requirements.

To model imprecise requirements and con¯icting require-

ments, we propose, in this paper, an approach to structure

fuzzy object-oriented models [25] by extending our

previous work on the goal-driven use cases approach [24]

to formulate requirement speci®cations based on the notion

of goals along three aspects (see Fig. 1 for an overview):

² Extending use cases1 with goals to guide the derivation of

Information and Software Technology 43 (2001) 121±135

0950-5849/01/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0950-5849(00)00144-0

www.elsevier.nl/locate/infsof

* Corresponding author. Tel.: 1886-3-422-7151; fax: 1886-3-422-2681.

E-mail addresses: yjlee@se01.csie.ncu.edu.tw (J. Lee), nien@se01.c-

sie.ncu.edu.tw (N.-L. Xue).

1 Use cases diagrams are one of the modeling techniques in UML to

elicit, analyze and document requirements [11,21,32,33,34].

use cases: a faceted classi®cation scheme is proposed to

identify goals from domain descriptions and system

requirements; and a use case is viewed as a process

that can be associated with a goal to be achieved, opti-

mized, maintained, ceased, or impaired by the use case.

² Analyzing the interactions among nonfunctional require-

ments: four types of interactions among nonfunctional

requirements are identi®ed, which could be either

con¯icting, cooperative, irrelevant, or counterbalanced.

² Structuring fuzzy object-oriented models based on the

interactions analyzed: goals are organized into several

alternatives based on the interactions analyzed to form

a goals hierarchy; and a stable kernel is constructed to

serve as a basis for further re®nement in an incremental

fashion. Various techniques are also proposed for resol-

ving con¯icts between goals into several alternatives

based on the interactions analyzed to form a goals hier-

archy; a stable kernel is constructed to serve as a basis for

further re®nement in an incremental fashion. Various

techniques are also proposed for resolving con¯icts

between goals.

We chose the meeting scheduler problem as an example

throughout this paper to illustrate our approach for two main

reasons: First, as was pointed out by Potts et al. [28], the

research community has adopted the meeting scheduling

problem as a benchmark, and the requirements illustrate

problems typical of requirements for real systems (see

also Ref. [37] for more details). Second, the meeting sche-

duler problem can help us to address the main challenge for

requirements analysis, that is, to turn a vague and contra-

dictory mission statement into a detailed speci®cation

[8,28].

In this sequel, we ®rst outline the related work in Section

2. The way to use the goals information to structure use

cases is described in Section 3. The analysis of goals inter-

actions is presented in Section 4. In Section 5, the structur-

ing mechanism for modeling fuzzy object-oriented models

requirement speci®cations based on the goals information

and goals interactions is fully discussed. Finally, we

summarize the potential bene®ts of the proposed approach

and outline our future research plan in Section 6.

2. Related work

Work in a number of ®elds has made its mark on our

research. Our approach has drawn upon several ideas from

goal-based approaches [3,12,26], techniques in handling

con¯icts (Table 1) [7,15,36,39], and formulations of impre-

cise requirements [22,42].

2.1. Goal-based requirements engineering approaches

In Ref. [12], Dardenne et al. have proposed a goal-direc-

ted approach for model acquisition. Goals are seen as deter-

mining the respective roles of agents in the system and

providing a basis for de®ning which agents should best

perform which actions. In their approach, a goal is a nono-

perational objective while a constraint is an operational one.

That is, a goal cannot be achieved directly by the application

of actions available to some agents. Instead, it is achieved

by satisfying the constraints operationalizing it. To satisfy

these constraints, appropriate restrictions may be required in

turn on actions and objects.

Mylopoulos et al. have proposed a framework for repre-

senting and using nonfunctional requirements during the

development process [26]. Goals are used to represent

nonfunctional requirements, design decisions, and argu-

ments in support of or against other goals. Goals represent-

ing nonfunctional requirements can rarely said to be

ªaccomplishedº or ªsatis®edº in a clear-cut sense. Instead,

different design decisions contribute positively or nega-

tively towards a particular goal. A labeling procedure to

determining the degree to which a set of nonfunctional

requirements is supported by a particular design is also

proposed.

In Ref. [3], Anton proposes a goal-based requirement

J. Lee et al. / Information and Software Technology 43 (2001) 121±135122

Fig. 1. Overview of our approach.

Table 1

Variations of goal-based requirements engineering approaches

Dardenne [12] Mylouplos [26] Anton [3] Our approach

Types of goals System goal, Nonfunctional reqt. Achievement goal Rigid, soft, actor-speci®c

Privacy goal Goal, satisfying

goal, argument goal

Maintenance goal System-speci®c, functional,

nonfunctional

Roles of goals Reqt. Acquisition, Nonfunctional Reqt. analysis Use case structuring,

Reqt. Analysis Reqt. Analysis Reqt. evolution Reqt. evolution, models

structuring

Relationships between goals Con¯icting Support, against Dependent Con¯icting, cooperative,

irrelevant, counterbalanced

analysis method (called GBRAM) to identify, elaborate and

re®ne goals for requirement speci®cations. In GBRAM, an

agent is responsible for the achievement of goals, which can

be identi®ed from process descriptions, transcripts of inter-

views, or searching action works. Goals are classi®ed into

two types: achievement goals and maintenance goals.

Achievement goals usually map to actions that occur in a

system, while maintenance goals map to nonfunctional

requirements. Goals in GBRAM are elaborated and re®ned

through identifying goal obstacles, analyzing scenarios and

constraints. Scenarios are also used to help uncover hidden

goals.

Rather than using scenarios to concretize goals, Rolland

et al. [9] have proposed a new approach to discovering goals

from scenarios. The basic modeling component is a combi-

nation of goal and scenario where the scenario is authored

for the goal. Goals discovery and scenario authoring are

complementary activities. Once a goal is discovered,

scenario authoring can be done, followed by goal discovery.

These goal-discovery/scenario-authoring sequence is

repeated to incrementally populate a requirement chunks

hierarchy.

2.2. Techniques in handling con¯icts

A number of researchers have reported progress towards

the analysis of con¯icting requirements, which can be clas-

si®ed into three different types of con¯ict: con¯icts due to

the interactions among requirements advocated by different

stakeholders [1,2,15,29,30], con¯icts in between various

designs [7,39,40], and con¯icts resulted from the different

structures adopted [18,36].

2.2.1. Interaction con¯icts

In this case, requirements are said to be con¯icting if the

satisfaction of one requirement may impair or cease the

satisfaction of another requirement. In a library system, a

librarian wishes to minimize loan periods whereas a patron

wishes to maximize the loan periods. A con¯ict arises due to

the interactions among the requirements advocated by

librarians and patrons. Robinson and Fickas [29] proposed

an approach, called Oz, to requirements negotiation. There

are three steps involved in Oz: con¯ict detection, resolution

generation and resolution selection. The con¯ict detector of

Oz does a pairwise comparison across all speci®cations. It

does so by matching up design goals from perspectives and

by comparing their plans. The speci®cations and con¯icts

will be passed to the con¯ict resolver, which will provide

analytic compromise and heuristic compensation and disso-

lution for each con¯ict. Compensation is to add similar but

con¯ict free requirements to negotiations, while, dissolution

is to replace con¯icting items potentially less contentious

items. Finally, the resolver will provide guidance for search

control by choosing intermediate alternatives and auto-

mated negotiation methods. Each method can be applied

in any sequence to derive resolutions. The noncon¯icting

speci®cations are jointed into a single speci®cation by

merger of Oz.

Easterbrook [15] proposes a framework for representing

con¯icting viewpoints in a domain model. A viewpoint in

his framework is a self-consistent description of an area of

knowledge representing the context in which a role is

performed. In evolving viewpoints, a new viewpoint will

need to be split if it causes inconsistency. The new view-

point and its negation are placed in different descendants of

the original viewpoint, so that each remains self-consistent

individually. The detection of con¯ict might be based on

detection of logical inconsistencies. Thus, a hierarchy of

viewpoints is established as the elicitation proceeds. The

inheritance structure implies that the higher an item in the

hierarchy, the more widely agreed it is. One of the aims of

using viewpoints is to reduce the need for consistency

checks. This approach allows many viewpoints to be

combined into a single domain model without necessary

resolving con¯icts between them. Con¯icts are treated as

an important part of the domain and are to be represented

and understood.

In Ref. [2], Lamsweerde et al. introduce a weak form of

con¯ict called divergence. A divergence is de®ned as a

logical inconsistency between goals under a speci®c bound-

ary condition. Formal techniques and heuristics are

proposed for detecting divergences from the speci®cations

(based on real-time temporal logic) of goals. Various diver-

gence patterns are also identi®ed to help divergence detec-

tion by selecting a matching generic pattern and by

instantiating it accordingly. Divergences can be resolved

by creating/modifying/deleting goals assertions or trans-

forming the objects in the speci®cation into a con¯ict-free

version.

2.2.2. Design con¯icts

Con¯icts may arise if two requirements cannot be both

supported by a design architecture or model. For example,

portability can be improved via a layered architecture, but

usually at some cost in performance. In this case, the

requirements portability and performance are con¯icting

w.r.t. an architecture, rather than con¯icts on their

de®nitions.

To examine the requirements tradeoffs involved in soft-

ware architecture and process strategies, Boehm et al. [7]

proposed an exploratory knowledge-based tool, quality

attribute risk and con¯ict consultant (QARCC), for identi-

fying potential con¯icts among quality attributes, ¯agging

them for affected stakeholders, and suggesting options to

resolve the con¯icts early in the software life cycle. It oper-

ates in the context of the WinWin system, a groupware

support system for determining software and system

requirements as negotiated win conditions. The WinWin

system uses Theory W to generate the objectives,

constraints, and alternatives to provide win condition. To

meet its goal of ªmaking everyone a winner,º Theory W

involves stakeholders in a process of identifying their

J. Lee et al. / Information and Software Technology 43 (2001) 121±135 123

quality-attribute win condition and reconciling con¯icts

among quality-attribute win conditions.

A number of researchers have put effort into making

generic conceptual models available and reusable for bene-

®ting from reusing experience with previous design. One of

their challenges is to face the tradeoffs about selecting

conceptual model components, as a conceptual design

component property may contribute to a particular require-

ment, but adversely affect another requirement. To model

the history of discussion, negotiation and compromise that

led to a conceptual design, Vanwelkenhuysen [39,40]

proposes a Design Requirement Embedding (DRE)

approach. In DRE, by recognizing the interactions between

design properties and interactions between design properties

and requirements, competing requirements are explored and

a design guideline is proposed for the con¯ict. Design teams

can negotiate with users based on proposed design guide-

lines.

2.2.3. Structural con¯icts

A structural con¯ict arises whenever parts of the same

reality are represented in different views using different

structural constructs. For instance, an object may be repre-

sented as an entity type in one view and as an attribute of an

entity type in another view. The generalization concept has

been extensively used as a solution to such con¯icts (see

Ref. [18] for a survey). In particular, Spaccapietra [36]

proposes a view integration methodology, designed to be

able to automatically resolve structure con¯icts among differ-

ent views without modifying the initial models. To that

purpose, knowledge about correspondences that exist

among different views should be acquired initially and repre-

sented as a formal model. Finally, integration rules are used

to build a integrated schema according to the known corre-

spondences and based on the concept of generalization.

2.3. Formulations of imprecise requirements

Our previous work on Requirements Trade-off Analysis

technique (RTA) has been on the formulation of vague

requirements based on Zadeh's canonical form in test-

score semantics [44] and an extension of the notion of soft

conditions [22]. The trade-off among vague requirements is

analyzed by identifying the relationship between require-

ments, which could be either con¯icting, irrelevant, coop-

erative, counterbalance, or independent. Parameterized

aggregation operations, fuzzy and/or [45], are selected to

combine individual requirements. An extended hierarchical

aggregation structure is proposed to establish a four-level

requirements hierarchy to facilitate requirements and criti-

calities aggregation through the fuzzy and/or. A compromise

overall requirement can be obtained through the aggregation

of individual requirements based on the requirements

hierarchy. The proposed approach provides a framework

for formally analyzing and modeling con¯icts between

requirements, and for users to better understand relation-

ships among their requirements.

Yen et al. [42,43] take the notion of con¯icting and coop-

erative degrees as the view of distance-wise between any

two individual requirements. They present a formal

approach for reasoning about the relative priority by analyz-

ing the customer's trade-off preference among imprecise

con¯icting requirements. A requirement R1 is supposed to

be more important than another requirement R2 whenever

the domain expert is willing to sacri®ce a lot in the satisfac-

tion degree of a requirement R2 for a small increase in the

satisfaction degree of R2. Moreover, the ratio of R1's priority

to that of R2 is proportional to the ratio of their changes in

the satisfaction degrees.

3. Structuring use cases with goals information

Goal-driven use cases is an approach for requirements

engineers to elicit and structure users requirements, and to

analyze and evaluate relationships between requirements.2

There are three steps to construct use cases: (1) identify

actors by investigating all possible types of users that inter-

act with the system directly; (2) identify goals based on a

faceted classi®cation scheme; and (3) build use case models.

3.1. Identifying actors

An actor is an outside entity that interacts directly with a

system, which may be a person or a quasi-autonomous

object, such as machines, computer tasks, and other

systems. More precisely, an actor is a role played by such

an entity. For example, the meeting scheduler system is

mainly designed for an initiator to organize a meeting sche-

dule, and therefore, the initiator is marked as an actor.

3.2. Identifying goals

A faceted classi®cation scheme is proposed for identify-

ing goals from domain descriptions and system require-

ments. Each goal can be classi®ed under three facets we

have identi®ed: competence, view and content. The facet

of competence is related to whether a goal is completely

satis®ed or only to a degree. A rigid goal describes a mini-

mum requirement for a target system, which is required to

be satis®ed utterly. A soft goal describes a desirable property

for a target system, and can be satis®ed to a degree. For

example, if a meeting schedule is convenient for all atten-

dants, the goal MaxConvenienceSchedule is de®ned to be

satis®ed completely. However, if the schedule is convenient

only to some of the attendants, the goal is said to be satis®ed to

a degree. A soft goal is related to a rigid one in the sense that

the existence of the soft goal is dependent on the rigid one.

J. Lee et al. / Information and Software Technology 43 (2001) 121±135124

2 In order to map fuzzy object-oriented models to code level, we will

need to have a program language with fuzzy features, that is, to de®ne

membership function of a fuzzy set, to construct fuzzy rules and fuzzy

inference, etc.

The facet of view concerns whether a goal is actor-speci-

®c or system-speci®c. Actor-speci®c goals are objectives of

an actor in using a system; meanwhile, system-speci®c

goals are requirements on services that the system provides.

For example, through examining the system description, we

have found out that the initiator has three objectives in using

the meeting scheduler system: (1) to create a meeting; (2) to

make the meeting schedule as convenient as possible for the

participants; and (3) to maximize the number of participants

for the meeting. Therefore, three actor-speci®c goals can be

identi®ed: MeetingRequestSatis®ed, MaxNumberOfPartici-

pants and MaxConvenienceSchedule. On the other hand, a

system-speci®c goal takes into consideration ªwhat kinds of

properties the system should have in supporting services to

all users?º, or ªwhat are the requirements on the services for

the system to provide?º. In our example, to construct a

meeting is an objective of an initiator, but to accommodate

a more important meeting is a requirement of the system.

Therefore, a system-speci®c goal Ð SupportFlexibility, is

identi®ed.

Usually, requirements can be classi®ed into functional

and nonfunctional requirements based on their content

[22]. The construction of functional requirements involves

modeling the relevant internal states and behavior of both

the component and its environment. Nonfunctional require-

ments usually de®ne the constraints that the product needs

to satisfy. Therefore, a goal can be further distinguished

based on its content, that is, a goal can be either related to

the functional aspects of a system or associated with the

nonfunctional aspect of the system.3 A functional goal can

be achieved by performing a sequence of operations. A

nonfunctional goal is de®ned as constraints to qualify its

related functional goal. In our example, creating a meeting

is accomplished by a sequence of operations, therefore the

goal MeetingRequestSatis®ed is de®ned as a functional goal.

On the other hand, goals like MaxNumberOfParticipants

and MaxConvenienceSchedule can be viewed as constraints

for a schedule to satisfy, which are identi®ed as nonfunc-

tional goals.

3.3. Building use case models

To structure a use case and its extensions, we extend the

work by Cockburn [10] by considering several different

types of goal. Essentially, each use case is viewed as a

process that can be associated with a goal to be achieved,

optimized, or maintained by the use case (Fig. 2). To start

with, we ®rst consider original use cases to guarantee that

the target system will be at least adapted to the minimum

requirements. Each original use case in our approach is

associated with an actor to describe the process to achieve

an original goal which is rigid, actor-speci®c and functional

(Fig. 2). Building original use cases by investigating all

original goals will make the use case model satisfy at

least all actors' rigid and functional goals.

The basic course in an original use case is the simplest

course, the one in which the goal is delivered without any

dif®culty. The alternative course encompasses the recovery

course and/or the failure one. The recovery course describes

the process to recover the original goal, whereas the failure

one describes what to do if the original goal is not

recoverable.

In our example, the use case plan a meeting covers the

case for an initiator to achieve the goal MeetingRequestSa-

tis®ed (Fig. 3) which is rigid, actor-speci®c and functional.

The use case starts when an initiator issues a meeting

request to the system, and lasts until a meeting schedule is

generated or canceled. It is the basic course that forms the

foundation when specifying a use case and this should be

J. Lee et al. / Information and Software Technology 43 (2001) 121±135 125

3 Similar ideas are advocated in Ref. [3], where achievement and main-

tenance goals map to actions and nonfunctional requirements, respectively.

Fig. 2. Extends relationships between use cases.

described ®rst. The use case has several alternative courses

that may change its ¯ow. An example of this is different

ways of recovering the goal MeetingRequestSatis®ed when

there exists a strong con¯ict in a schedule.

Original use cases are designed to satisfy original goals

for modeling users minimum requirements. To extend the

model to take into account different types of goals, exten-

sion use cases are created. Situations about when to create

extension use cases are fully discussed below:

² To optimize or maintain a soft goal. By achieving a rigid

goal, all its related soft goals can also be satis®ed to some

extent. To optimize or maintain the soft goals, extension

use cases are created (see Fig. 2, the use case E1). There-

fore, the basic course in an extension is to optimize (or

maintain) its soft goal, whereas an alternative course

describes what to do if it fails to optimize (or maintain)

the goal. In our example, to satisfy the rigid goal Meet-

ingRequestSatis®ed does not guarantee that the meeting

is convenient for all participants. To make the schedule

as convenient as possible, the extension make a conve-

nient schedule is created. If the constraints in the basic

course are not satis®ed, the alternative course is to

recover the optimization of the soft goal, for example,

to extend the date range, or to ask participants to add

dates to their preference sets.

² To achieve a system-speci®c goal. An extension use case

may be created to achieve a system-speci®c goal (see Fig.

2, the use case E2). Referring to our example, the original

use case plan a meeting describes the process to create a

meeting from a personal view (the view of the actor initia-

tor). The extension use case accommodate important meet-

ings extends it to take all initiators into account, that is, to

achieve a system-speci®c goal SupportFlexibility.

² To achieve a nonfunctional goal. To extend a use case

model to capture nonfunctional requirements, extension

use cases are added to achieve a nonfunctional goal (see

Fig. 2, use case E3). In this case, an extension use case

serves as a constraint to qualify its original use case. In

our example, the original use case plan a meeting is a direct

course to create a meeting, several constraints (may be

rigid or soft) on a meeting are ignored: AppropriatePerfor-

mance, MaxNumerOfParticipants and MaxConvenien-

ceSchedule. The basic course of make a convenient

schedule indicates the soft constraints on a meeting sche-

dule. If the constraints are not satis®ed, the alternative

course is to recover the optimization of the soft goal.

To summarize, an original goal is a goal that is krigid, actor-

speci®c, functionall, whereas a goal that is achieved, opti-

mized or maintained by an extension use case is called an

extension goal. An extensional goal is weakly dependent on

its associated original goal, that is, the existence of an exten-

sion goal is dependent on an original one. It should be noted

that satisfying an original goal does not always make its asso-

ciated extension goals satis®ed (or satis®ed to degree), except-

ing that the extension goal is a soft one.

4. Evaluating goals interactions

Interactions between goals can be evaluated through the

following steps: (1) analyze the interactions between use

cases and goals by investigating the effects on the goals

after the use cases are performed; (2) explore the interac-

tions between goals in the use case level; and (3) derive the

interactions between goals in the system level.

4.1. Relationships between use cases and goals

To better characterize the interactions between use cases

and goals, we have adopted predicates proposed by Mylo-

poulos et al.[26]: satis®ed, denied, satis®able, and deniable.

A goal can be either satis®ed or denied, if the goal is

achieved or ceased utterly, respectively. On the other

hand, the predicates satis®able and deniable are used to

describe a goal that can be satis®ed or denied to a degree.

J. Lee et al. / Information and Software Technology 43 (2001) 121±135126

Fig. 3. A goal-driven use case model for meeting scheduler system.

In addition, a predicate independent is introduced to

describe the situation that a goal will not be affected by

performing a designated use case.

A use case is designed to achieve, optimize or maintain its

directly associated goals. However, it may occur that goals

not directly associated with the use case can also be affected,

called side effects. Interactions between use cases and goals

can be analyzed by investigating the effects on the asso-

ciated goals and side effects on other goals after the use

cases are performed:

² Effects on the associated goals. An original goal can be

achieved by performing its original use case, that is, the

goal can be satis®ed either by performing the basic

course successfully or by recovering the goal from an

alternative course (see Fig. 4, arrow (a)). The goal can

also be denied under the condition that it is ceased by

performing an alternative course. Similarly, an extension

goal can be satis®ed or satis®ed by performing its asso-

ciated extension use case (see Fig. 4 arrow (b)).

² Side effects. There are three cases that side effects may

occur (see Fig. 4, arrows (c), (d) and (e)). (1) By perform-

ing an original use case successfully, the extension goals

which are directly associated with its extension use cases

are also achieved to some extent, that is, the extension

goals are satis®able (see Fig. 4, arrow (c)). For example,

if the use case plan a meeting is successfully performed,

the extension goal MaxConvenienceSchedule is satis®ed

to a degree. (2) An extension use case may impair the

original goal which is directly associated with its original

use case (see Fig. 4, arrow (d)). In this case, the original

goal is denied. Referring to our example, the extension

use case accommodate important meetings may cease the

original goal MeetingRequestSatis®ed under the condi-

tion that there is a more important meeting that is in

con¯ict with it. (3) An extension use case may achieve

or impair an irrelevant goal which is associated with

other extension use cases (see Fig. 4, arrow (e)). A typical

example of impairing an irrelevant goal in the meeting

scheduler system is that performing the extension use

case keep a appropriate performance may cease the

activity to negotiate a convenient schedule, therefore,

the soft goal MaxConvenienceSchedule is deniable.

4.2. Interactions between goals in the use case level

Interactions between goals can be considered in two

different levels: use case level and system level. The former

concerns the interactions between goals with respect to (wrt)

a speci®c use cases, and the latter focuses on the overall

system. In the use case level, two goals are said to be

con¯icting wrt a use case, if the satisfaction of one goal is

increased, while other is decreased after the use case is

performed. On the other hand, two goals are said to coop-

erate with each other, if both the satisfaction degrees of the

goals are either increased (positively cooperative) or

decreased (negatively cooperative). The third possibility is

that the satisfaction degrees of goals remain unchanged. In

this case, the goals are said to be irrelevant.4

Interactions between two goals wrt a use case can be

derived by interactions between the use case and goals.

For example, if the interactions between a use case Uk and

goals Gi and Gj are satis®able and deniable, respectively, it

means that the satisfaction degree of Gi is increased and that

of Gj is decreased after Uk is performed. The interactions

between Gi and Gj wrt Uk is said to be con¯icting.

The predicates cpUk
(Gi,Gj) and cfUk

(Gi,Gj) are intro-

duced to describe the relationship between goals Gi and Gj

wrt the use case Uk, where cpUk
(Gi,Gj) is true if Gi and Gj are

cooperative wrt the use case Uk, and cfUk
(Gi,Gj) is true if Gi

and Gj are con¯icting wrt Uk. If the goals Gi and Gj are

irrelevant wrt Uk, the predicates cpUk
(Gi,Gj) and cfUk

(Gi,Gj) are both false. Referring to our example, the

relationships between the use case make a convenient

schedule and the goals MaxConvenienceSchedule and

AppropriatePerformance are satis®able and deniable,

respectively. Therefore, we can conclude that the two

goals are con¯icting wrt the use case make a convenient

J. Lee et al. / Information and Software Technology 43 (2001) 121±135 127

Fig. 4. Interactions between use cases and goals.

4 Similar ideas are also advocated in our previous work [22].

schedule (that is, cfmake a convenient schedule (MaxConve-

nientSchedule, AppropriatePerformance)� True).

4.3. Interactions between goals in the system level

In the use case level, relationships between any two goals

are analyzed wrt a speci®c use case, whereas relationships

between goals in the system level are mainly on the use case

models where related use cases are amalgamated together.

In addition, as Ebert pointed out in Ref. [16], there is more

relevance in the case of nonfunctional requirements

compared to functional requirements as there are in most

systems severe trade-offs among nonfunctional require-

ments. Our approach focuses on the relationships between

nonfunctional goals in the system level.

The interaction between the goals Gi and Gj in the system

level is denoted as Rs(Gi,Gj), and is de®ned as a pair of

predicates kcp(Gi,Gj),cf(Gi,Gj)l, where cp(Gi,Gj) is true if G

i is cooperative with Gj, and cf(Gi,Gj) is true if Gi is con¯ict-

ing with Gj in the system level. There are four possible

interactions between goals in the system level:

² Rs�Gi;Gj� � kFalse;Falsel : Gi and Gj are irrelevant in

the system level;

² Rs�Gi;Gj� � kTrue;Falsel : Gi and Gj are cooperative in

the system level;

² Rs�Gi;Gj� � kFalse;Truel : Gi and Gj are con¯icting in

the system level;

² Rs�Gi;Gj� � kTrue; Truel : Gi and Gj are counter-

balanced in the system level.

In our approach, interactions between nonfunctional

goals in the system level can be derived based on use case

models and relationships between use cases in the use case

level. In the following paragraphs, we will describe how to

derive interactions between goals in the system level by

means of the example in Fig. 5, where Gi1 and Gj1 are two

nonfunctional goals and Ui1, Uj1 are their associated use

cases, respectively. Ui is an original use case of Ui1, and

Gi is its associated original goal.

To explore the interaction between the nonfunctional

goals Gi1 and Gj1, the original goals that the nonfunctional

goals are weakly dependent on should also be considered. In

Fig. 5, the extension goal Gj1 is achieved (optimized or

maintained) under the situation that Gi is satis®ed, thus

the interaction between Gi1 and Gj1 wrt the use case Ui

should be also taken into account. More precisely, the

interaction between Gi1 and Gj1 (i.e. Rs(Gi1,Gj1)) hinges

on: (1) the interaction between Gi1 and Gj1 wrt the use

case Ui; (2) the interaction between Gi1 and Gj1 wrt the

use case Uj; (3) the interaction between Gi1 and Gj1 wrt

the use case Ui1; and (4) the interaction between Gi1 and

Gj1 wrt the use case Uj1. That is, Rs�Gi1;Gj1� �
kcp�Gi1;Gj1�; cf �Gi1;Gj1�l; where

cp�Gi1;Gj1� � cpUi
�Gi1;Gj1� _ cpUj

�Gi1;Gj1�

_ cpUi1
�Gi1;Gj1� _ cpUj1

�Gi1;Gj1�;

cf �Gi1;Gj1� � cfUi
�Gi1;Gj1� _ cfUj

�Gi1;Gj1� _ cfUi1
�Gi1;Gj1�

_ cfUj1
�Gi1;Gj1�

In our example, let Rs�GMCS;GAP� � kcp�GMCS;GAP�;
cf �GMCS;GAP�l be the relationship between the nonfunc-

tional goals MaxConvenienceSchedule (GMCS) and Appro-

priatePerformance (GAP) (UPM and UKAP are abbreviation

for the use cases plan a meeting and keep appropriate

performance, respectively):

cp�GMCS;GAP� � cpUPM
�GMCS;GAP� _ cpUMCS

�GMCS;GAP�
_ cpUKAP

�GMCS;GAP�
� False

cf �GMCS;GAP� � cfUPM
�GMCS;GAP� _ cfUMCS

�GMCS;GAP�
_ cfUKAP

�GMCS;GAP�
� True

Therefore, the goals MaxConvenienceSchedule and Appro-

priatePerformance are in con¯ict with each other.

5. Structuring fuzzy object-oriented models
speci®cations through goals interactions

Having developed use cases and analyzed their interac-

tions, we can now focus on the structuring of fuzzy object-

oriented models. The tenet of our structuring mechanism is

on the utilization of the interactions found among goals.

There are two steps involved: (1) to establish a goals hier-

archy for obtaining alternative models speci®ed using fuzzy

object-oriented models notations; and (2) to construct a

stable kernel in an incremental fashion to serve as a basis

for integrating alternative models.

5.1. Establishing a goals hierarchy

Instead of putting heavy efforts on resolving con¯icts at

the beginning of system design which may overload

J. Lee et al. / Information and Software Technology 43 (2001) 121±135128

Fig. 5. All illustration of a use case model.

analysts, we start with constructing a model to meet a set of

con¯ict-free requirements. To this end, we organize the

goals into several alternatives based on the interactions

analyzed such that each alternative contains a set of goals

that are not con¯icting with each other. In another word, no

con¯ict is allowed in an alternative. More speci®cally,

goals organized into alternatives must satisfy the constraints

below:

² For any two goals Gi and Gj in an alternative, the

interaction between Gi and Gj is either cooperative or irre-

levant.

² For any two alternatives Ai and Aj, there exist goals Gi [Ai

and Gj [Aj such that the interaction between Gi and Gj is

either con¯icting or counterbalanced.

² For any alternative Ak and goal Gi where Gi Ó Ak, there

exists a goal Gk [Ak such that the interaction between Gi

and Gk is either con¯icting or counterbalanced.

In order to explore all the possible alternatives, we utilize

the notion of a goals hierarchy in which alternatives are

obtained by tracing each path from a leaf node up to the

root. The following algorithm outlines the process involved

in establishing a goals hierarchy. As functional goals are

usually the basic requirements that must be satis®ed, they

are placed on the root of the hierarchy and therefore included

in every alternative.

Algorithm (Establish a Goals Hierarchy)

1. Place the functional goals on the top of the hierarchy

(i.e. the root of the hierarchy).

2. Create an alternative:

(a) Select a nonfunctional goal, say Gi; place Gi as a

child node of the root and set it as the current node;

(b) If there exist nonfunctional goals that are not

con¯icting or counterbalanced with any goal that

precedes the current node;

i. Select a goal from those nonfunctional ones, say

Gj.

ii. Place Gj as the child node of the current one.

iii. Set Gj as the current node.

iv. Repeat step 2.b.

(c) Else go to step 3.

3. Backtrack to create another alternative:

(a) If there exist nonfunctional goals that are con¯ict-

ing or counterbalanced with the current node, but not

con¯icting or counterbalanced with any goal that

precedes the current node;

i. Select a goal from those nonfunctional ones, say

Gj.

ii. Place Gj on the right of the current node.

iii. Set Gj as the current node.

iv. Go to step 2.b.

(b) Else if the current node is the root node, then exit;

else reset the current node as the parent of the current

node and go to step 3.

Fig. 6b illustrates how a goals hierarchy is established.

The goals G2, G3 and G5 are added incrementally to the root

(i.e. the functional goals) to form an alternative. Since

adding the goal G6 or G4 to the alternative will result in a

con¯ict, we backtrack to create another alternative. By

J. Lee et al. / Information and Software Technology 43 (2001) 121±135 129

Fig. 6. An illustration on how to establish a goals hierarchy.

Fig. 7. A goals hierarchy for meeting scheduler system.

doing so, we have come up with three different alternatives:

{GFG,G2,G3,G5}, {GFG,G2,G6}, and {GFG;G4;G3;G5}

(Fig. 6c).

By applying the above algorithm to our meeting

scheduler example, two alternatives can thus be built (Fig.

7): {GMRS,GPD,GMCS,GMNOP,GSF}, and {GMRS;GPD;GAP;GMI}:

5.2. Constructing a stable kernel

Essentially, a kernel contains all the functional require-

ments and a set of nonfunctional requirements that are either

cooperative or irrelevant to each other (i.e. no con¯ict is

allowed). A kernel is stable in the sense that no engagement

in the annoying con¯icts resolution is required, and that it

can be used to serve as a basis for further re®nement in an

incremental fashion.

To choose a stable kernel from the alternatives found in

the previous step, the cooperative degree and importance

degree of an alternative are introduced. A cooperative

degree of an alternative is de®ned as the total numbers

of cooperative interactions within the alternative. In

Fig. 6c, the cooperative degree of the alternative A1 is

equal to 1 since there is a cooperative interaction between

G3 and G5.

The importance degree of an alternative is the sum of the

weights of goals in the alternative. We adopt Saaty's pair-

wise comparison approach to the assignment of weights to

goals [35]. That is, the relative weights of each goal pair are

used to form a reciprocal matrix, and the absolute weight of

each goal is obtained from the normalized eigenvector using

eigenvalue method. In the meeting scheduler system (Fig.

7), as the alternatives A1 and A2 have the same cooperative

degrees, we evaluate the alternatives based on their impor-

tance degrees. The alternative A1 is chosen as the stable

kernel since it carries a higher importance degree than

that of the alternative A2.

To construct the kernel model, fuzzy object-oriented

models [25] are used to model imprecise requirements. In

fuzzy object-oriented models, we have identi®ed several

kinds of fuzziness that are required to model imprecise

information involved in user requirements.

² classes with imprecise boundary to describe a group of

objects with similar attributes, similar operations and

similar relationships;

² rules with linguistic terms that are encapsulated in a class

to describe the relationships between attributes;

² ranges of an attribute with linguistic values or typical

values in a class to de®ne the set of allowed values that

instances of that class may take for the attribute;

² the membership degree (i.e. ISA degree) between an

object and a class, and between a subclass and its super-

class (i.e. AKO degree) can be mapped to the interval

[0,1]; and

² associations between classes that an object instance may

participate to some extent.

5.2.1. Inside a fuzzy class

Traditionally, a class is used to describe a crisp set of

objects with common attributes, common operations and

common relationships. In order to model the impreciseness

rooted in user requirements, fuzzy object-oriented models

extends a class to describe a fuzzy set of objects (called a

fuzzy class), in which objects may have similar attributes,

similar operations and similar relationships, for example, a

set of interesting books or a class of clever students. In the

meeting scheduler system, the class ImportantParticipant is

modeled as a fuzzy class, that is, a participant may be an

important one to a degree.

A fuzzy class in fuzzy object-oriented models is an

encapsulation of a number of properties that can be classi-

®ed as static properties or dynamic ones. Static properties

are viewed as integral features of an object that exist for its

lifetime including identi®er, attributes and operations. On

the other hand, dynamic properties are optional for an object

and can be short-lived such as fuzzy rules.

Since a fuzzy class is a group of objects with similar static

properties (i.e. attributes, operations) and similar dynamic

properties (i.e. relationships and rules), the membership

degree of an instance to a fuzzy class is dependent on the

properties, especially the values of attributes and the values

of link attributes. In our example, the degree that a person

belongs to the class ImportantParticipant depends on his

status and his role in the meeting he attends.

5.2.1.1. Attributes with fuzzy ranges. In fuzzy object-

oriented models, the fuzziness in the range of an attribute

in a class may be due to either a linguistic term or a typical

value.

² A class may be fuzzy for the linguistic values its

attributes can take. For example, the class YoungMan

has a fuzzy range for the attribute age, since a person

may take young or very young as values for his age.

² The range of an attribute is fuzzy [19] because some of its

values are deemed as atypical (i.e. less possible than

other values), therefore, each value the attribute may

take is associated with a typical degree.5 In our

example, the class ImportantParticipant has a fuzzy

range {student/0.4, staff/0.7, faculty/1} for the attribute

status, which means that a faculty is typically an

important participant, and a student is an important

participant with a typical degree of 0.4.

It is of interest to note that a crisp class may have attributes

with fuzzy ranges. For instance, the class

MeetingRegistration is a crisp class, with an attribute

participant importance, which is associated with a fuzzy

range.

5.2.1.2. Fuzzy rules. Incorporating fuzzy rules in

J. Lee et al. / Information and Software Technology 43 (2001) 121±135130

5 The notion of typical values is adopted from Ref. [14].

object-oriented analysis can help enrich the semantics of

analysis models [17]. Using fuzzy rules is one way to deal

with imprecision where a rule's conditional part and/or the

conclusions part contains linguistic variables. More

speci®cally, fuzzy rules in a fuzzy class play two

important roles: to specify internal relationships between

attributes, and to describe triggers more explicitly. Fuzzy

rules are used to describe the internal relationship or

external relationship. In the former, fuzzy rules describe

the relationship between attributes inside a class. For

example, a rule ªif the role is a staff, the participant

importance is less importantº describes the relationship

between the attributes role and participant importance. In

the latter, fuzzy rules are used to describe the relationship

between two different classes.

5.2.2. Fuzzy classi®cation

Perceptual fuzziness refers to the compatibility between a

class and an object (i.e. ISA), and the class membership

between a class and its subclass (i.e. AKO) [41]. In fuzzy

object-oriented models, we extend crisp class memberships

to fuzzy class memberships by allowing the existence of

perceptual fuzziness. In the meeting scheduler system, a

person may belong to the class ImportantParticipant to

some extent.

The membership degree of an object to a class is estab-

lished either explicitly or implicitly [6]. In [20], the ISA

degree is explicitly given, and used to derive the values of

attributes of the object. In fuzzy object-oriented models, the

ISA degree is implicitly determined by the structure of

classes. The perceptual fuzziness of an object to a class or

a subclass to its superclass is calculated by evaluating both

the static properties and dynamic properties. Referring to

our example, the membership degree of a person to the

class ImportantParticipant can be obtained by checking

his status (static property) and his role in the meeting he

attends (dynamic property).

5.2.3. Uncertain fuzzy associations

Links and associations are means for establishing rela-

tionship among objects and classes. A link is a physical or

conceptual connection between object instances. For exam-

ple, John work-for Simplex company. An association

describes a group of links with common structure and

common semantics. For example, a person work-for a

company. In traditional object-oriented approaches, only

crisp associations are introduced, namely, an object either

participates in an association or not.

Usually, certain and precise knowledge about an associa-

tion is not always available in the user requirements;

furthermore, users' observations are sometimes uncertain

and imprecise. Therefore, an adequate management of

uncertainty and imprecision in the phase of requirements

analysis is an important issue. The distinction between

imprecise and uncertain information can be best explained

by Dubois and Prade [13]: imprecision implies the absence

of a sharp boundary of the value of an attribute; whereas,

J. Lee et al. / Information and Software Technology 43 (2001) 121±135 131

Fig. 8. A kernel model for the meeting scheduler system.

uncertainty is an indication of our reliance about the fuzzy

information.

A uncertain fuzzy association is allowed in fuzzy object-

oriented models. The imprecision of an association implies

that an object can participate in the association to some

extent, whereas uncertainty is referred to the con®dence

degree about the association. To represent the imprecision

of an association, a special link attribute is introduced in

fuzzy object-oriented models to indicate the intensity that

objects participate in an association. Fuzzy truth value, such

as true, fairly true and very true, is used to serve as the

representation of uncertainty for its capability to express

the possibility of the degree of truth [23].

A link between x and y which is an instance of the asso-

ciation R is represented as a canonical form in fuzzy object-

oriented models:

�link attribute; kx; yl; degree of participation; t�
where the ®rst component of the quadruple is a link attribute

of an association. The value that a link kx,yl takes for the

link attribute is described in the degree of participation,

which represents the degree that objects x and y participate

in the association R. The value is a linguistic term such as

very high, high or low. The fuzzy valuation t is a con®dence

level of the fuzzy association, whose value is a fuzzy truth

value.

For example, an important participant can identify his

preference for locations and the intensity of his preference.

Sometimes it is not certain whether a participant prefers a

speci®c location or not. To model the relationship between

important participants and locations to be an uncertain fuzzy

association prefer will help the meeting scheduler system to

resolve con¯icts and make a most convenient schedule. A

link attribute preference is associated with the association

prefer to indicate the degree of preference. By stating that a

link between John and L102 is (preference,kJohn, L102l,
strong,very true), we mean that it is very true that John

strongly prefers the location L102.

Constraints with imprecise information are also allowed

in fuzzy object-oriented models, called soft constraints. For

example, the requirement ªa meeting location should be as

convenient as possible for all important participantsº is

modeled as a soft constraint on the associations prefer and

take place.

Fig. 8 is a kernel model for the meeting scheduler system

in fuzzy object-oriented models notations. Goals Meetin-

gRequestSatis®ed, ParticipantDelegated and MaxConve-

nienceSchedule are included in the kernel model.

5.3. Integrating alternatives

Since the rest of the requirements are con¯icting with the

requirements in the kernel, con¯icts resolution is required in

this stage. In order to handle con¯icts, we explore the root of

con¯icts to lead us to the resolution of con¯icts or even

better the prevention of con¯icts.

J. Lee et al. / Information and Software Technology 43 (2001) 121±135132

Fig. 9. An alternative use case to achieve support¯exibility.

Fig. 10. Resolving con¯icts from competing resources by specialization.

Table 2

Con¯icts resolution for the con¯ict between the goals GMCS and GAP

Degree of impairment Degree of importance Solution

IGAP
(GMRS) . IGMRS

(GAP) P(GMRS) . P(GAP) Competition: selecting GMRS

IGAP
(GMRS) . IGMRS

(GAP) P(GMRS) . P(GAP) Compromise

IGAP
(GMRS) , IGMRS

(GAP) P(GMRS) , P(GAP) Compromise

IGAP
(GMRS) , IGMRS

(GAP) P(GMRS) , P(GAP) Competition: selecting GAP

5.3.1. Root of con¯icts

5.3.1.1. Competing resources. A con¯ict occurs when

goals are competing with a mutually exclusive resource

(i.e. the resource can not be shared by at the same time).

In the library system, patrons wish to keep books as long as

they need, whereas the librarians wish to keep books avail-

able in the library. A con¯ict arises because patrons and

librarians are competing with the resource ªbooksº.

5.3.1.2. Divergent expectations. A con¯ict occurs whenever

goals have divergent expectations on their common interest.

For example, the goal MaxPro®ts from producers and the

goal MinCosts from customers are both interested in the cost

of a product. A con¯ict arises in that they have divergent

expectations on the production's price. The common

interest of goals may be an object's properties (e.g. the

price of a product), an object's behavior, or a relationship

between objects. In the meeting scheduler system, the goals

ParticipantPreferenceKnown and ParticipantPrivacy are

both interested in the relationship between participants

and their preferences: whether a participant can know

other participants' preferences. A con¯ict arises in that

one goal expects that a participant can know other

participants' preferences, whereas another goal does not.

5.3.1.3. Side effects. A con¯ict between goals arise

whenever a use case to achieve a goal has a side effect on

other goals. Con¯icting goals in this case do not necessarily

have a common interest. Referring to the meeting scheduler

system, the goal MaxConvenienceSchedule is interested in

the convenience of a meeting and AppropriatePerformance

is interested in the elapsed time to make a schedule.

Applying the use case make a convenient schedule to

optimize the goal MaxConvenienceSchedule leads to the

behavior of resolving weak con¯icts (i.e. a meeting

schedule is not preferred by all participants). On the

other hand, applying the use case keep appropriate

performance leads to the prohibition of resolving weak

con¯icts. It should be noted that the con¯ict is caused

by the side effects of use cases, rather than divergent

expectations on a common interest or competing with a

common resource.

Another example is the con¯ict between MeetingRequest-

Satis®ed and SupportFlexibility. The use case accommodate

important meetings illustrates the process to optimize the

goal SupportFlexibility: if a meeting's schedule is deter-

mined but con¯icting with another meeting with a higher

priority, it may be canceled in order to accommodate a more

important goal. Note that this kind of con¯ict is tightly

related to the use cases we constructed, and can be

prevented by constructing alternative use cases (Section

5.3.2).

5.3.2. Con¯icts resolution

A con¯ict can be resolved based on the causes of the

con¯ict, the possibility of occurrence of the con¯ict, and

the severity of the con¯ict consequences. Three resolution

techniques are proposed to handle con¯icts: to avoid the

occurrence of con¯icts by prevention, to reach a consensus

between con¯icting goals by compromise, and to achieve a

goal without regard to another by competition.

5.3.2.1. Prevention. The best strategy of handling con¯icts

is to prevent con¯icts from happening. Con¯icts can be

prevented by adding arbitrators or seeking alternative use

cases, based on the causes of con¯icts.

² To prevent a con¯ict from competing resources, a

resource arbitrator may be introduced to distribute the

resource. Using this heuristic rule, the con¯icts between

patrons and librarians can be prevented by introducing a

book arbitrator.

² To prevent a con¯ict from side effects, an alternative use

case is proposed to substitute for the original one. As

mentioned in Section 5.3.1, the con¯ict between

SupportFlexibility and MeetingRequestSatis®ed

occurs is due to the use case accommodate

important meetings which may cancel a meeting.

The use case described in Fig. 9 is an alternative

use case to optimize the goal SupportFlexibility

without having to cancel a meeting: a meeting

J. Lee et al. / Information and Software Technology 43 (2001) 121±135 133

Fig. 11. Resolving con¯icts from divergent expectations by specialization.

Fig. 12. Integrating alternative for the meeting scheduler system.

excludes all meetings' schedules out of its date range

to avoid possible con¯icts with other meetings.

5.3.2.2. Compromise. To reach a compromise, each goal

involved in the con¯ict should make some concessions.

Compromise can be reached by specializing an object

class into disjoint subclasses with different associations

linked to the corresponding subclasses.6

² Con¯icts from competing resources can be resolved by

specializing the resource or the objects competing with

the resource. Consider the con¯ict between the goal

BookKeptAsLongAsNeeded and BookAvailableInLib,

we can resolve it by specializing the Patron (the object

competing with the resource) into two subclasses:

Student who must return books in two weeks and

Faculty who can keep books as long as he/she needs,

or specializing the Books (the resource) into

ReservedBook and UnreservedBook (Fig. 10).

² Con¯icts originated from divergent expectations on a

relationship can be resolved by specializing the objects

involved in the relationship. The con¯ict between

ParticipantPreferenceKnown and ParticipantPrivacy

can be resolved by specializing Participant into

PrivilegedParticipant and NonPrivilegedParticipant,

and restricting the privileged participants to have the

right to access other participants' preferences.

² Con¯icts due to divergent expectations on an object's

behavior can also be resolved by specialization. For

example, the con¯ict between MaxConvenience

Schedule and AppropriatePerformance can resolved by

specializing Meeting into two subclasses: Professional

Meeting that must be scheduled as convenient as

possible, and PrivateMeeting that must be scheduled as

soon as possible (Table 2, Fig. 11).

5.3.2.3. Competition. Resolving con¯icts by competition

refers to satisfying one of the con¯icting goals without

regard to the others. The competition between goals

depends on: (1) the importance degree of each goal

involved in the con¯ict; and (2) the degree of impairment7

to each goal when it cannot be satis®ed. Supposing that G1

con¯icts with G2, IG2
�G1� is the degree of impairment to G1

when G2 is satis®ed. IG2
�G1� . IG1

�G2� denotes that

achieving G1 is more bene®cial than achieving G2 (since

the overall impairment of achieving G1 is less than that of

achieving G2).

In our example, if we use competition as a way of resol-

ving the con¯ict between MaxConvenientSchedule and

AppropriatePerformance, both the degrees of importance

and impairment should be considered. The goal MaxConve-

nientSchedule is more important than AppropriatePerfor-

mance (Fig. 7). If IGMCS
�GAP� . IGAP

�GMCS�; we prefer to

achieve the goal MaxConvenientSchedule without regard

to the goal AppropriatePerformance. If IGMCS
�GAP� ,

IGAP
�GMCS�; a compromise strategy is recommended to

resolve the con¯ict because none of the goals can be

neglected.

Fig. 12 illustrates the steps involved in resolving con¯icts

when integrating the goals MaxNumberOfParticicpants,

SupportFlexibility and AppropriatePerformance.

6. Conclusion

As was pointed by Lamsweerde [37], goal information

should be captured in the requirements acquisition phase,

which is useful for analyzing con¯icting requirements and

nonfunctional requirements. The proposed approach is

spawned based on this belief to fuse the goal-oriented and

object-oriented modeling techniques in requirements

engineering.

Our approach offers several bene®ts in: (1) serving as a

structuring mechanism to facilitate the derivation of use

case speci®cations and objects model; (2) bridging the gap

between the domain description and the system require-

ments, that is, the interactions between functional and

nonfunctional requirements; (3) making easy the handling

of soft requirements, and the analysis of con¯icting require-

ments; and (4) extending traditional object-oriented techni-

ques to fuzzy logic to manage different kinds of fuzziness

that are rooted in user requirements.

Our future research plan will consider the following

tasks: to investigate the worth-oriented domain advocated

by Rosenschein et al. [31] to evaluate dynamic behaviors

without actually executing the statechart diagrams; and to

conduct a case study on using the proposed approach for

modeling university timetabling of our university (National

Central University).

Acknowledgements

This research was supported by the National Science

Council (Taiwan) under grants NSC88-2213-E-008-006.

References

[1] B. Nuseibeh, A. Russo, J. Kramer, Restructuring requirements speci-

®cations for managing inconsistency and change: a case study,

Proceedings of the 20th International Conference on Software Engi-

neering, 1998.

[2] R. Darimont, A. van Lamsweerde, E. Leitier, Managing con¯icts in

goal-driven requirements engineering, IEEE Transactions on Soft-

ware Engineering 24 (11) (1998) 908±926.

[3] A.I. Anton, Goal-based requirements analysis, Proceedings of the

International Conference on Requirements Engineering, 1996, pp.

136±144.

[4] R. Balzer, N. Goldman, Principles of good software speci®cation and

J. Lee et al. / Information and Software Technology 43 (2001) 121±135134

6 A similar idea is also proposed in Ref. [2].
7 A use case is said to impair a goal if the performance of the use case

may result in the dissatisfaction of the goal.

their implications for speci®cation languages, Proceedings of the

IEEE Conference on Speci®cations of Reliable Software, 1979, pp.

58±67.

[5] R. Balzer, N. Goldman, D. Wile, Informality in program

speci®cations, IEEE Transactions on Software Engineering 4 (2)

(1978) 94±103.

[6] B.S. Blair, Object-Oriented Languages, Systems, and Applications,

Pitman, London, 1991.

[7] B. Boehm, H. In, Identifying quality-requirement con¯icts, IEEE

Software 13 (2) (1996) 25±35.

[8] A. Borgida, S. Greenspan, J. Mylopoulos, Knowledge representation

as the basis for requirements speci®cation, Computer April (1985)

82±91.

[9] C. Souveyet, C. Rolland, C.B. Achour, Guiding goal modeling using

scenarios, IEEE Transactions on Software Engineering 24 (12)

(1998).

[10] A. Cockburn, Goals and use cases, Journal of Object-Oriented

Programming 10 (7) (1997) 35±40.

[11] B. Dano, H. Briand, F. Barbier, Progressing towards object-oriented

requirements speci®cations by using the use case concept, Proceed-

ings of the International Conference on Requirements Engineering,

1996, pp. 450±456.

[12] A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed require-

ments acquisition, Science of Computer Programming 20 (1993) 3±

50.

[13] D. Dubois, H. Prade, Possibility Theory: an Approach to Computer-

ized Processing of Uncertainty, Plenum, New York, 1988.

[14] D. Dubois, H. Prade, J.P. Rossazza, Vagueness, typicality and uncer-

tainty in class hierarchies, International Journal of Intelligent Systems

6 (1991) 161±183.

[15] S. Easterbrook, Domain modelling with hierarchies of alternative

viewpoints, Proceedings of the IEEE International Symposium on

Requirements Engineering, 1993, pp. 65±72.

[16] C. Ebert, Putting requirement management into praxis: dealing with

nonfunctional requirements, Information and Software Technology

40 (1998) 175±185.

[17] G. Eckert, P. Golder, Improving object-oriented analysis, Information

and Software Technology 36 (2) (1994) 67±86.

[18] C. Francalanci, A. Fuggetta, Integrating con¯icting requirements in

process modeling: a survey and research directions, Information and

Software Technology 39 (1997) 205±216.

[19] R. George, R. Srikanth, F.E. Petry, B.P. Buckles, Uncertainty

management issue in the object-oriented data model, IEEE Transi-

tions on Fuzzy Systems 4 (2) (1996) 179±192.

[20] I. Graham, Fuzzy objects: inheritance under uncertainty, Object

Oriented Methods, Addison-Wesley, Reading, MA, 1994, pp. 403±

433.

[21] I. Jacobson, Object-Oriented Software Engineering: a Use Case

Driven Approach, Addison-Wesley, Reading, MA, 1992.

[22] J. Lee, J.Y. Kuo, New approach to requirements trade-off analysis for

complex systems, IEEE Transactions on Knowledge and Data Engi-

neering 10 (4) (1998) 00.

[23] J. Lee, K.F.R. Liu, W.L. Chiang, A fuzzy petri net based expert

system for damage assessment of bridges, IEEE Transactions on

System, Man, and Cybernetics, Part B: Cybernetics 29 (3) (1999)

350±370.

[24] J. Lee, N.L. Xue, Analyzing user requirements by use cases: a goal-

driven approach, IEEE Software 16 (4) (1999) 92±101.

[25] J. Lee, N.L. Xue, J. Chen, Modeling imprecise requirements with

fuzzy objects, Information Sciences: an International Journal (1999).

[26] J. Mylopoulos, L. Chung, B. Nixon, Representing and using

nonfunctional requirements: a process-oriented approach, IEEE

Transactions on Software Engineering 18 (6) (1992) 483±497.

[27] J. Mylopoulos, L. Chung, E. Yu, From object-oriented to goal-

oriented requirements analysis, Communication of ACM 42 (1)

(1999) 31±37.

[28] C. Potts, K. Takahashi, A.I. Anton, Inquiry-based requirements analy-

sis, IEEE Software 11 (2) (1994) 21±32.

[29] W.N. Robinson, S. Fickas, Supporting multi-perspective require-

ments engineering, Proceedings of the First International Conference

on Requirement Engineering, IEEE Computer Society Press, Silver

Spring, MD, 1994, pp. 206±215.

[30] W.N. Robinson, V. Volkov, Supporting the negotiation, Communica-

tions of the ACM 41 (5) (1998) 95±102.

[31] J.S. Rosenschein, G. Zlotkin, Rules of Encounter, MIT Press,

Cambridge, MA, 1994.

[32] T. Rowlett, Building an object process around use cases, Journal of

Object-Oriented Programming 11 (1) (1998) 53±58.

[33] K.S. Rubin, A. Goldberg, Object behavior analysis, Communications

of the ACM 35 (9) (1992) 48±62.

[34] J. Rumbaugh, Getting started: using use cases to capture require-

ments, Journal of Object-Oriented Programming 7 (5) (1994) 8±12.

[35] T.L. Saaty, Decision Making for Leaders: the Analytic Hierarchy

Process for Decisions in a Complex World. Lifetime Learning,

Atlanta, Georgia, 1982.

[36] S. Spaccapietra, View integration: a step forward in solving structural

con¯icts, IEEE Transactions on Knowledge and Data Engineering 6

(2) (1994) 258±274.

[37] A. van Lamsweerde, R. Darimont, P. Massonet, Goal-directed

elaboration of requirements for a meeting scheduler problems and

lessons learnt, Technical Report RR-94-10, Universite Catholique

de Louvain, Departement d'Informatique, B-1348 Louvain-la-

Neuve, Belgium, 1994.

[38] A. van Lamsweerde, E. Letier, Integrating obstacles in goal-driven

requirements engineering, Proceedings of the 20th International

Conference on Software Engineering, 1998.

[39] J. Vanweljenhuysen, Using dre to augment generic conceptual design,

IEEE Expert 10 (1) (1995) 50±56.

[40] J. Vanwelkenhuysen, Quality requirements analysis in customer-

centered software development, Proceedings of International Confer-

ence on Requirements Engineering, 1996, pp. 117±124.

[41] V. Wuwongse, M. Manzano, Fuzzy conceptual graphs, in: G.W.

Minean, B. Moulin, J.F. Sowa (Eds.), Conceptual Graphs for Knowl-

edge Representation, 1993, pp. 430±449.

[42] J. Yen, X. Liu, Approximate reasoning about properties of imprecise

con¯icting requirements, International Journal of Uncertainty, Fuzzi-

ness and Knowledge Based Systems 3 (2) (1995) 143±162.

[43] J. Yen, W.A. Tiao, A systematic tradeoff analysis for con¯icting

imprecise requirements, Proceedings of the Third IEEE International

Symposium on Requirements Engineering, 1997, pp. 87±96.

[44] L.A. Zadeh, Test-score semantics as a basis for a computational

approach to the representation of meaning, Literacy Linguistic

Computing 1 (1986) 24±35.

[45] H.-J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer

Academic, Boston, MA, 1991.

J. Lee et al. / Information and Software Technology 43 (2001) 121±135 135

