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Chapter 0

Preface
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vidual who can labor in freedom.”

[Albert Einstein]
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friendship throughout these four years.

Michel Reniers was my daily supervisor and a member of my Ph.D. project. Jan
Friso Groote (my thesis supervisor, to be acknowledged shortly) described him
once as a “locomotive” and he is truly so; he has enormous power and enthusiasm
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always been there when I needed his help. More importantly, he taught me to
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his help, I could not have been at this point and hence, I express my best thanks
to him for his help and supervision.

Twan Basten was the other member of my Ph.D. project. He is one of the most
careful and eager reviewers of scientific papers, I have seen in my life. His insightful
comments have been crucial in the publications I co-authored with him. Above
all, his enthusiasm and trust in my work has always given me more confidence in
what I have been doing. For all that and more, I wholeheartedly thank him.

Jan Friso Groote has been my thesis supervisor and our group leader. I highly
appreciate working with him and under his supervision and I gratefully thank him
for his supervision, friendship and “Sunday noon-time chats”. He has been too
friendly and kind to be just a boss and too influential and experienced to be just
a friend.

Jan Friso, Michel and Twan were so kind to create a joint position for me to stay
in Eindhoven. I highly appreciate their effort and I am looking forward to more
and more fruitful cooperations with them.

The members of my thesis committee are gratefully acknowledged for reading the
thesis, providing useful comments and being present in my defense session. It was
my privilege to have Luca Aceto, Jos Baeten, Wan Fokkink, Jan Friso Groote,
Gordon Plotkin and Michel Reniers in the kernel thesis committee and Mark de
Berg and Michel Chaudron and First Vaandrager in the defense opposition. In
particular, I would like to thank Gordon Plotkin who kindly accepted to be my
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thesis co-supervisor.

In the past four years, I had the opportunity to cooperate with many people and
several groups from different institutes. For these opportunities, I am obliged to
Sandeep Shukla from Virginia Tech., Blacksburg, USA, Jean-Pierre Talpin, Paul
Le Guernic and Jean-Pierre Banâtre from INRIA/IRISA, Rennes, France, Farhad
Arbab from CWI, Amsterdam, The Netherlands, Marjan Sirjani from Sharif Uni-
versity of Technology, Tehran, Iran and Jamie Gabbay from King’s College Lon-
don, London, UK. Chapter 9 is the result of cooperation with Jamie and initial
ideas for Chapter 7 emerged in the joint work with Farhad and Marjan. I also
acknowledge the funding provided by Espresso and Paris projects for my second
visit to INRIA/IRISA. David Berner and Abdoulaye Gamatié were great friends
and helped me out with various things during my visits to France. Gordon Plotkin,
John Power and Alex Simpson were extremely hospitable and kind during my short
visit to University of Edinburgh. Although I could not fit all the results of coop-
erations with these good colleagues in this thesis, they have certainly influenced
the state of my mind and hence they are indirectly present in this thesis.

I thank all the members of OAS group for being very good friends, for organiz-
ing enjoyable “groepsuitjes”, for listening to my boring stories in OAS colloquia
and giving good comments on them as well as on the drafts of my reports. My
thanks go to Peter van den Brand, Pieter Cuijpers, Mugur Ionita, Nicu Goga,
Rob Hoogerwoord, Adam Koprowski, Arjan Mooij, Jaco van de Pol, Judi Romijn,
Olga Tveretina, Muck van Weerdenburg, Wieger Wesselink and Hans Zantema. I
have also had a very nice time with my good friends and colleagues at EESI and
SAN, FM and VIS groups. Particularly, I thank Giovanni Russello, Kalok Man,
Jinfang Huang, Fei Zuo, Ana Sokolova, Tijn Borghuis, Dragan Bosnacki, Louis
van Gool, Gueorgui Jojgov, Uzma Khadim, Bas Luttik, Ronald Middeldorp, Erik
de Vink, Tim Willemse, Frank van Ham, Arjan Kok, Elisabeth Melby and Hannes
Pretorius for their friendship. Giovanni, Pieter, Kalok, Peter, Muck and Adam
deserve another special thank for tolerating me as an officemate.

Tineke van den Bosch has been so kind to arrange every single administrative issue
from the date I arrived in Eindhoven for my job interview to the date. Monique
Bechtold was also very kind and helpful during the dark ages when I did not
understand a word of Dutch and had a dozen official Dutch letters in my mailbox.
I thank them both for their help.

The valuable friendship I had with my neighbors in the student housing of TU/e
has continued, in most cases, to date. I enjoyed the company of Lidia Sandra,
Harry Tanjung and Ahmad Reslan (who are back to their homelands) and highly
appreciate the continuing company of Abdool Saib, Rabah Hanfough and Nathalia
Romero Herrera. Abdool kept on being a neighbor when I moved out of student
housing and hence I am tempted to conclude that he has been enjoying it; in my
case, it has been certainly so!
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Chapter 1

Introduction

“Allez en avant, ... et la foi vous viendra.”
(Just go on, ... and faith will catch up with you.)

[Jean d’Alembert]



2 Chapter 1 Introduction

1.1 The Subject Matter

In 1897, Michel Bréal coined the word “semantics” in a book that
revolutionized our approach to the study of language [34].

“Semantics” was originally meant to study the evolution of meaning in languages.
But the meaning of the word itself has evolved and is now used in linguistics
to denote “the science of meaning” in its broad sense. Semantics is often used in
contrast with syntax which refers to the structure, rather than the meaning, of the
language under study. In Computer Science, semantics has essentially the same
meaning. Only here, the languages under study are artificial computer-related
languages rather than natural ones used in human communication. As a result,
the semantics of such languages are synthetic; They have to be defined by the
developers of such languages rather than being inferred from their practical usage.

Computer languages have a simpler structure and are meant to be less ambiguous
than natural languages. Reducing ambiguity in the semantics of computer-related
languages is among the first steps towards developing rigorous methods of rea-
soning about computer systems. Mathematics is a useful means to this end; by
associating a formal (mathematical) semantics to computer languages we are able
to disambiguate them, thanks to the inherent precision and clarity in mathemat-
ics. New computer languages appear frequently in different fields of Computer
Science and existing languages are constantly extended with new features. Hence,
developing methods for defining formal semantics and providing meta-theories for
reasoning about the semantics are of an overwhelming importance and can be
beneficial for a large community of computer scientists.

Within the field of formal semantics, there are different flavors of associating mean-
ings to programs. Two mainstream examples of such flavors are denotational and
operational semantics (cf. [136] for a general overview of the field). The deno-
tational method is aimed at defining a function (denotation) which associates
semantic objects to pieces of syntax. The definition of this function is often given
recursively by a structural induction on syntactic constructs. The operational
method, on the other hand, defines a transition relation among syntactic objects
representing the execution of programs on an abstract machine. Although the de-
notational method has its own advantages (e.g., being inherently compositional),
the operational approach has been widely accepted among the language developers
and practitioners since it is easy to understand and close to implementation.

Structural Operational Semantics (SOS) [66, 105, 107, 108] was introduced by
Gordon Plotkin in [106] as a logical means to defining operational semantics. The
basic idea behind SOS is to define the behavior of a program in terms of the
behavior of its parts, thus providing a structural, i.e., syntax oriented, view on
operational semantics. Thanks to its intuitive look and easy to follow structure,
SOS has gained great popularity and has become a de facto standard in defining
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operational semantics. As a sign of success, the original report (so-called Aarhus
report) on SOS [106] has attracted some 900 citations according to the CiteSeer
search engine to date!

This enormous popularity and vast application of SOS has called (and still calls)
for more theoretical work. Many researchers have responded to this call and have
spent huge effort on laying firm mathematical foundations for different aspects of
SOS. We provide a non-conclusive overview of these works in Chapter 3 of this
thesis. This thesis also reports a number of attempts to improve on some of the ex-
isting mathematical frameworks and meta-results about SOS. These improvements
are achieved by adding more syntactic features and structures to the traditional
SOS formats and suggesting ways to prove useful semantic properties based on the
structure of SOS specifications.

1.2 Contributions

A Ph.D. thesis is traditionally meant to put a clear “thesis” forward and justify in
the course of the discussions. If I am to formulate such a thesis, I would phrase it
as the possibility of establishing a general yet structured framework for Structural
Operational Semantics. Being a pupil of the formal methods’ school, I am tempted
to blame the ambiguity of natural language for the vagueness of the above thesis
and start writing in Greek letters to explain it formally. But for once, I defer
writing in Greek till the coming chapters and try to explain the phrases in my
thesis in natural language in the remainder.

• possibility: possibility by itself should not be very interesting, but rather a
constructive proof of possibility is sought. In other words, I am aiming at
giving concrete instances of such frameworks throughout my Ph.D. thesis.

• general: By general, I mean that the theory should be able to deal with the
semantics of more languages, be it existing ones or those that are yet to be
devised in the future. It is hard, if not impossible, to foresee all such future
instance and in some cases, I was not even able to deal with all existing ones
but generality remains a goal in my endeavor;

• structured: Following [64], structured, in my terminology, means the possi-
bility of inferring some intuitive and precisely defined properties from the
semantic framework without delving into details of an instance each time;

• framework: a framework consists of a syntactic structure for SOS specifica-
tions and a method for inferring a behavioral model from the specification;
throughout this thesis, we only extend the syntactic part of the SOS frame-
work and reuse existing methods of inferring behavioral models;
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• Structural Operational Semantics: SOS is the subject matter of this thesis
which was briefly introduced in Section 1.1 and is explained in detail in
Chapter 2.

One may argue that my thesis has already been proven by the existing SOS frame-
works (e.g., by those reported in [5]). However, the existing frameworks were nei-
ther the most general nor the most structured of all. To show this, throughout this
thesis, I add more generality and structure and make the following contributions
to them.

• Proposing meta-theorems to prove commutativity of certain operators by
examining the structure of SOS specifications [Chapter 4];

• Interpreting structural congruences as equational addenda to SOS; extending
congruence and well-definedness results to SOS specifications with structural
congruences [Chapter 5];

• Suggesting a more liberal notion of conservative extension, called orthogo-
nality, which allows for equality-preserving addition of behavior to the old
language; presenting and proving meta-theorems about orthogonality [Chap-
ter 6];

• Implementing a prototyping environment for SOS specifications in the Maude
rewriting language [Chapter 7];

• Extending the existing SOS frameworks to accommodate data as part of the
state (thus, catering for entities such as storage and memory, timing, valua-
tion of continuous model variables, etc., in the operational state); studying
notions of equivalence with data and introducing rule formats to make these
equivalences a congruence, i.e., compositional [Chapter 8];

• Extending the SOS framework in order to make it appropriate for semantic
specification of higher order processes; formulating congruence meta-theorem
for strong as well as higher order bisimilarity [Chapter 9].

1.3 Suggested Method of Reading

Chapter 2 gives a basic introduction to SOS meta-theory and will define the generic
formalization of SOS in terms of Transition System Specifications (TSS). It will
also define how a TSS may induce a (labelled) transition relation among opera-
tional states. Hence, Chapter 2 will serve as a basis for the rest of the thesis. Note
that the foundation laid down in this chapter is quite general and thus, in the rest
of the thesis, we usually simplify it and deal with more restricted and workable
cases.
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Chapter 3 presents an overview of the existing results about SOS frameworks.
Some of these results form the basis for the improvements proposed in the rest of
the thesis. However, we explicitly mention the particular results to be recalled in
each chapter so that one may refer to Chapter 3 only when needed.

Chapters 4 to 9 are independent from each other and, besides basic definitions
that have to be recalled from Chapters 2 and 3, can be read on their own.
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Chapter 2

Structural Operational
Semantics

“Development of Western Science is based on two great achievements
- the invention of the formal logical system (in Euclidean geometry)
by the Greek philosophers, and the discovery of the possibility to find
out causal relationships by systematic experiment (during the Renais-
sance). In my opinion, one has not to be astonished that the Chinese
sages have not made these steps. The astonishing thing is that these
discoveries were made at all.”

[(Attributed to) Albert Einstein]

“You may always depend on it that algebra, which cannot be translated
into good English and sound common sense, is bad algebra.”

[William Kingdon Clifford]

“I saw the [SOS] rules as directly formalising the natural English de-
scription ...”

[Gordon D. Plotkin [107]]
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2.1 Introduction

Structural Operational Semantics is a logical way to define operational semantics.
Operational semantics defines the possible transitions that a piece of syntax can
make during its “execution” on an abstract machine. Each transition may be
labelled by a message to be communicated to the outside world. Transitions of a
composite piece of syntax can usually be defined, in a generic way, in terms of the
transitions of its constituting parts. This forms the central idea behind Structural
Operational Semantics.

To give an impression about SOS specifications, we specify the operational seman-
tics of a simple programming language in this style. Several examples, including
ones similar to this programming language, will be treated formally throughout
this thesis and their properties will be investigated.

Example 2.1 The first example is a simple programming language with the syn-
tax specified below.

Prg ::= skip | Assign | if (BExp) then Prg else Prg fi | Prg ; Prg
BExp ::= ⊤ | ⊥ | Chk | (BExp ∨ BExp) | (¬BExp)
Assign ::= Name := Val
Chk ::= Name == Val

The syntax consists of a constant for the terminated program skip, assignment
Name := Val of a value Val to a variable named Name, the conditional if then

else fi statement and the sequential composition of two programs ; .

The semantics for the evaluation of the boolean expressions is given next. The
state of this semantics is [BExp, Mem] where BExp is a boolean expression and
Mem is a representation of the memory with the following syntax.

Mem ::= nil | (Name 7→ Val) ++ Mem

A memory is a list of memory cells, each assigning a value to a variable name.
The list of memory cells ends with nil. Without making it explicit, we assume
that all variables mentioned in a program have exactly one corresponding cell in
the memory of the operational state.
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Holds([⊤, M ]) Holds([n == v, (n 7→ v) ++M ])

n 6= n′ Holds(〈n == v, M〉)
Holds([n == v, (n′ 7→ v′) ++M ])

¬Holds([b, M ])

Holds([¬b, M ])

Holds([b0, M ])

Holds([b0 ∨ b1, M ])

Holds([b1, M ])

Holds([b0 ∨ b1, M ])

The above semantics of boolean expressions, defines a predicate Holds on the
operational state of boolean expressions. The deduction rules should be read
as: the predicate in the conclusion (below the vertical line) holds if the premises
(statements above the line, if any) are valid. Based on the semantics of the boolean
expressions, given above, the operational semantics of a program is defined as
follows. The state of this semantics is of the form 〈Prg , Mem〉 where Prg is a
program and Mem is a memory.

〈n := v, (n 7→ v′) ++M〉→ 〈skip, (n 7→ v) ++M〉

n 6= n′ 〈n := v, M〉→ 〈P, M ′〉
〈n := v, (n′ 7→ v′) ++M〉→ 〈P, (n′ 7→ v′) ++M ′〉

Holds([b, M ]) 〈P0, M〉→ 〈P ′
0, M

′〉
〈if (b) then P0 else P1 fi, M〉→ 〈P ′

0, M
′〉

¬Holds([b, M ]) 〈P1, M〉→ 〈P ′
1, M

′〉
〈if (b) then P0 else P1 fi, M〉→ 〈P ′

1, M
′〉

Holds([b, M ]) 〈P0, M〉 ↓
〈if (b) then P0 else P1 fi, M〉 ↓

¬Holds([b, M ]) 〈P1, M〉 ↓
〈if (b) then P0 else P1 fi, M〉 ↓

〈P0, M〉→ 〈P ′
0, M

′〉
〈P0;P1, M〉→ 〈P ′

0;P1, M
′〉

〈P0, M〉 ↓ 〈P1, M〉→ 〈P ′
1, M

′〉
〈P0;P1, M〉→ 〈P ′

1, M
′〉

〈P0, M〉 ↓ 〈P1, M〉 ↓
〈P0;P1, M〉 ↓ 〈skip, M〉 ↓

The above semantics defines a transition relation → and a termination predicate
↓ on program states. Again the deduction rules should be read as: the transition
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in the conclusion can be made (or the predicate in the conclusion is valid) if the
statements about transitions and/or predicates in the premises are valid.

2.2 Transition System Specification (TSS)

Transition System Specifications (TSS’s), as presented by Groote and Vaandrager
in [64], are formalizations of SOS. In this chapter, we define the concept of TSS in
a more general setting including the concepts of multi-sorted signatures and terms
as labels, mainly inspired by [48]. This general definition of TSS is the unifying
framework for most of the material presented throughout this thesis. In each
chapter, we define a simplified instance of this general framework and formulate
our results around it.

Definition 2.2 (Signatures, Terms and Substitutions) Assume S to be a
set of sorts. Fix a set of sorted variables V = {x, y, . . .} with infinitely many
variables of each sort. The sets of variables of sort S ∈ S is denoted by VS .
A signature Σ consists of pairs (f, S0× . . .× Sn−1 → Sn) (with Si ∈ S, for all
0 ≤ i ≤ n) where the first component of the pair is called the function symbol and
the second is its arity, denoted by ar(f). We assume that for a function symbol f
there is at most one pair with the first component f in Σ. Function symbols with
an arity of the form .→ S are called constants.

Henceforth, we write
−→
Xn−1 for a list of size n of elements, i.e., X0, . . . , Xn−1. We

write
−→
Xn ∈ V and by that we mean X0 ∈ V ∧. . .∧Xn ∈ V . We also write

−→
XnR

−→
Y n

and by that we mean (Xi, Yi) ∈ R for all i, 0 ≤ i < n. When we (syntactically)
replace a list with another, we always assume that the substituted and substituting
elements are of the same sorts.

Terms t, t′, t0, . . . ∈ T (Σ, V ) based on a signature Σ and set of sorted variables V
is a set of sorted terms TS(Σ, V ) for all S ∈ S and is inductively defined as follows.

1. for all x ∈ VS , x ∈ TS(Σ, V );

2. for all (f, ar(f)) ∈ Σ, ar(f) = S0 × . . .× Sn−1 → S ⇒
∀t0∈TS0

(Σ,V ),...,tn−1∈TSn−1
(Σ,V ) f(

−→
t n−1) ∈ TS(Σ, V ).

A substitution σ : V → T (Σ, V ) is a function replacing variables of a sort with
terms of the same sorts. Substitutions are lifted to terms as expected.

The set of closed terms p, q, p′, p0, . . . ∈ C(Σ) is the set of all terms that do not
contain a variable. A substitution is closed if all terms in its range are closed
terms.
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We shall keep Σ and V fixed but arbitrary henceforth, so that we do not need
to mention them. Hence, we write T and C and we mean T (Σ, V ) and C(Σ),
respectively, for fixed Σ and V .

A transition system specification, defined below, is a logical way of defining a
transition relation on (closed) terms. We need some important basic definitions
first.

Definition 2.3 (Transition System Specification (TSS)) A Transition Sys-
tem Specification (TSS) is a tuple (Σ, V,Rel ,Pr , D) of Σ a signature, Rel and Pr
disjoint sets of relations and predicates on terms with fixed arities, and D a set of
deduction rules.

For r ∈ Rel of arity n, t, t′ ∈ T , and
−→
t n−1 ∈ T , call t

−→
t n−1→r t′ a positive and

t
−→
t n−1
9r a negative transition formula. We call t the source of both transition

formulae and t′ the target of the positive one.

For P ∈ Pr of arity n, t ∈ T , and
−→
t n−1 ∈ T , we call P (

−→
t n−1) t a positive

predicate formula and ¬P (
−→
t n−1) t a negative predicate formula. A (positive or

negative) formula is a (positive or negative) transition or predicate formula. We
say formulae are closed when all the terms they mention are.

A deduction rule dr ∈ D is a tuple (H, c) where H is a set of formulae and c is a
positive formula. We call c the conclusion and formulae in H premises. We write

(H, c) as Hc .

A TSS is called positive if it does not have a deduction rule with negative formulae
among its premises.

Note that any transition relation of arity n can be viewed as a predicate of arity
n+1. [135] also shows how to code predicates in transition relations using formulae
with dummy right-hand sides.

Example 2.4 Consider the SOS specification of the simple programming lan-
guage presented in Example 2.1. We can formalize this SOS specification by fixing
sorts Bool for boolean expressions, Prg for program, Mem for memories, BSt for
boolean expression states and St for program states. Then the signature of the
TSS is defined as the following pairs of function symbols and arities.

(skip, → Prg) (n := v, → Prg)n∈Name,v∈Val

( ; , Prg × Prg → Prg) (if ( ) then else fi, Bool × Prg × Prg → Prg)
(⊤, → Bool) (n == v, → Bool)n∈Name,v∈Val

(⊥ → Bool) ( ∨ , Bool ×Bool → Bool)
(¬ , Bool → Bool) ((n 7→ v) ++ , Mem → Mem)n∈Name,v∈Val

(nil, → Mem) ([ , ], Bool × Mem → BSt)
(〈 , 〉, Prg × Mem → St)
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In the above signature, BSt and St stand for operational states for boolean ex-
pressions and programs, respectively. The TSS has a transition relations → and
two predicates Holds and ↓ all of arity zero. Deduction rules of the TSS are those
given in Example 2.1.

2.3 The Semantics of a TSS

A TSS is supposed to induce a unique semantics, namely a unique set of positive
(transition and predicate) formulae on closed terms. For positive TSS’s, the set of
induced positive formulae are precisely defined by those that have a proof using
instances of deduction rules in the TSS. The following definition formalizes this
concept.

Definition 2.5 (Provable Positive Formulae) A proof of a closed positive for-
mula φ (in a positive TSS tss) is a well-founded upwardly branching tree of which
the nodes are labelled by closed formulae such that

• the root node is labelled by φ, and

• if ψ is the label of a node q and {ψi | i ∈ I} is the set of labels of the nodes

directly above q, then there exist a deduction rule
{χi | i ∈ I}

χ
in tss and a

substitution σ such that σ(χ) = ψ, and for all i ∈ I, σ(χi) = ψi.

A closed positive formula φ is provable in a tss, notation tss ⊢ φ, if there is a proof
for it. The semantics of tss is the minimal set containing all provable formulae.
If tss contains no predicates, its semantics is also referred to as the transition
relation(s) induced by tss.

The introduction of negative premises poses an interesting and rather difficult
question concerning the semantics of TSS’s. In other words, it is not immediately
clear what can be considered a “proof” for a negative formula.

The first generic answer to this question was formulated in [61, 25] which is the
following notion of supported model.

Definition 2.6 (Supported Model) Consider a transition system specification
tss = (Σ, V,Rel ,Pr , D) and a closed formula ψ ∈ C; the supported model of the
transition system specification is a set of closed positive formulae M satisfying the
following constraint.

ψ ∈ M ⇐⇒
(
∃d∈Dd =

H

c
∧ ∃σ∀h∈HM � σ(h) ∧ σ(c) = ψ

)

where M � φ depending on the form of φ has the following meanings:
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• for positive formulae: M � p
−→p n→r p

′ means that p
−→p n→r p

′ ∈ M and
M � P (−→p n)p means that P (−→p n)p ∈ M;

• for negative formulae: M � p
−→p n
9r means that there exists no p′ ∈ C such

that p
−→p n→r p

′ ∈ M and M � ¬P (−→p n)p means that P (−→p n)p /∈ M.

The notion of supported model does not always coincide with the intuition. Two
counter-intuitive supported models are illustrated in the following example.

Example 2.7 Consider a signature with a sort P for processes and constants
(a,→ P ) and (b,→ P ).

a
a→ a

a
a→ a

b
b

9

a
a→ a

,
a

a
9

b
b→ b

Consider the above two TSS’s with the signature given above and two sets of
deduction rules given above (with a single transition relation → and no predi-
cate). The TSS at the left-hand side induces two supported models namely, ∅ and

{a a→ a}. We believe that the empty set is the only justified model since there is
no way to prove a transition for a.

The TSS at the right-hand side has two supported models {a a→ a} and {b b→ b}.
There is no good reason to choose among these two supported models and even
both may be considered unjustified, since each of them reiles on a premise that
has no good reason to hold.

Several alternatives to the notion of supported model have been proposed for which
[59] provides an overview and a comparison. Here, we also quote the notion of
stable model [27, 59], defined below, that gives a reasonable semantics for transition
system specification with negative premises. As argued in [27], TSS’s that do not
have a unique stable model should be ruled out and considered pathological.

Definition 2.8 (Stable Model) A closed positive formula φ is provable from a
set of positive formula T and a transition system specification tss, denoted by
(T, tss) ⊢ φ, if and only if there is an upwardly branching tree of which the nodes
are labelled by closed formulae such that

• the root node is labelled by φ,

• if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}
is the set of labels of the nodes directly above q, then there exist a deduction

rule
{χi | i ∈ I}

χ
in tss (where χi can be a negative or a positive formula)

and a substitution σ such that σ(χ) = ψ, and for all i ∈ I, σ(χi) = ψi, and
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• if the label of a node q, denoted by χ, is a negative formula then T � χ (as
defined in Definition 2.6).

A stable model defined by a transition system specification tss is a set of formulae
T such that for all closed positive formulae φ, φ ∈ T if and only if (T, tss) ⊢ φ.

Example 2.9 Consider the TSS’s given in Example 2.7. The anomaly of TSS
at the left-hand side is now resolved as the only stable model for this TSS is the
empty set of formulae. The anomaly of the right-hand side TSS still remains for

it admits two stable models {a a→ a} and {b b→ b}. In the next section, we review a
method called stratification, proposed by [27], that can guarantee a TSS to induce
a unique stable model and thus, rule out pathological TSS’s of this sort.

Notions of supported- and stable-model are extended to three-valued supported-
and three-valued stable-model in the literature [27, 59] and SOS meta-theorems
have been re-formulated in this more general setting. In [27], the notion of pos-
itive after reduction (also called complete, for example, in [59]) is defined as a
criterium for well-defined-ness of the semantics and is shown to be more general
than stratification.

We formulate most of our results based on the two-valued stable model semantics of
TSS’s and some of them based on the notion of stratification. However, we expect
them to carry over to the more general settings of three-valued stable models and
TSS’s that are positive after reduction, respectively.



Chapter 3

Standard Formats for SOS

“The bottom line for mathematicians is that the architecture has to
be right. In all the mathematics that I did, the essential point was to
find the right architecture. It’s like building a bridge. Once the main
lines of the structure are right, then the details miraculously fit. The
problem is the overall design.”

[Freeman Dyson]

“The progress of Science consists in observing interconnections and in
showing with a patient ingenuity that the events of this ever-shifting
world are but examples of a few general relations, called laws. To see
what is general in what is particular, and what is permanent in what
is transitory, is the aim of scientific thought.”

[Alfred North Whitehead]

An extended version of this chapter is to appear as: J.F. Groote, M.R. Mousavi, M.A.
Reniers, A Hierarchy of SOS Rule Formats, In P. Mosses and I. Ulidowski eds., Proceedings of
the 2nd Workshop on Structural Operational Semantics (SOS’05), Lisbon, Portugal, Electronic
Notes in Theoretical Computer Science, Elsevier, July 2005.
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3.1 Introduction

By imposing syntactic restrictions on TSS’s one can deduce several interesting
properties about their induced operational semantics. These properties range from
issues such as well-definedness of the operational semantics [61, 27, 59] to security-
[120, 121] and probability-related issues [19, 73]. The syntactic restrictions im-
posed by these meta-theorems usually suggest particular forms of deduction rules
to be safe for a particular purpose and hence these meta-theorems usually define
what is called a SOS standard format. [5] provides an overview of existing SOS
standard formats at its date of publication (2001). Since then, a number of new
standard formats have been proposed and a fresh overview of the field can be
beneficial. In this chapter we give an informal and partial overview of the field to
date. When we feel the need, concerning what is to be presented in the rest of
the thesis, we delve into details of a particular standard format and give a precise
definition. Hence, our presentation of different standard formats may be a bit
unbalanced.

The rest of this chapter is structured as follows. In Section 3.2, we present dif-
ferent syntactic features that TSS’s in different frameworks may be allowed to
have. These aspects will provide us with a natural classification of different SOS
frameworks (classes of TSS’s) defined in the literature. Then, in Section 3.3,
we review several semantic meta-theorems formulated around these frameworks.
Section 3.4 summarizes this chapter by presenting a lattice of existing standard
formats, ordered by their syntactic features and annotated with their semantic
meta-theorems.

3.2 Syntactic Features of TSS’s

3.2.1 Labels

Labels are terms that may appear as parameters of transition relations and predi-
cates in the deduction rules. SOS frameworks can be classified with respect to the
kind of labels they afford as follows.

Open Terms as Labels Many SOS frameworks assume a special sort for labels
and only allow for constants (alternatively, closed terms) of this sort to appear
as labels. Such SOS frameworks thus forbid any correlation between valuation of
terms and labels through the use of common variables. Frameworks defined in
[48, 52, 21] and Definition 2.3 (used in Chapter 9 of this thesis) allow for arbitrary
terms as labels. All other SOS frameworks reviewed in this chapter only allow for
constant labels.
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Open terms are used as labels in a number of cases in transition system spec-
ifications. For example, in Chapter 9, we treat the Calculus of Higher Order
Communicating Systems (CHOCS) [119] which uses this feature.

Lists of Terms as Labels Most SOS frameworks only allow for a single term as
label. The only existing exceptions are those of [48] and Chapter 9 of this thesis.

As noted above, TSS’s with constant labels are by far the most common kind
of TSS’s in the literature and will often be used in the rest of this thesis. For
notational convenience, in TSS’s with constant labels, we separate the sort of
states (called processes) and sort of labels in the definition of the TSS.

Definition 3.1 (TSS’s with Constant Labels) A TSS with constant labels is
a tuple (Σ, V, L,Rel ,Pr , D) where Σ and V are, as before, signatures and variables,
L is a set of labels, Rel is a set of unary transition relations and Pr is a set of

unary predicates. For t, t′ ∈ T (Σ, V ), l ∈ L, r ∈ Rel and P ∈ Pr , t
l→r t

′ and t
l

9r

are positive and negative transition formulae with constant labels, respectively and
P (l)t and ¬P (l)t are positive and negative predicate formulae with constant labels.
Based on this restricted notion of formulae, deduction rules are defined in a similar
way as in Definition 2.3.

The notion positive carries over to TSS’s with constant labels naturally. If a TSS
with constant labels has an empty set of predicates, we omit the Pr part in the
definition. Also, if a TSS has only one transition relation, we omit the Rel part
in the definition of TSS and the r subscript in formulae, for brevity. Note that
transitions and predicates without a label (e.g., those used in Example 2.1) can
easily be coded in the above framework by taking a singleton set of labels with a
dummy label as its only member.

3.2.2 Signatures

Names and Binders In many contemporary process algebras and calculi, con-
cepts of names, (actual and formal) variables and name abstraction (binding) are
present and even serve as a basic ingredient. For example, in the π-calculus of Mil-
ner, Parrow and Walker [89, 90, 91], names are first-class citizens and the whole
calculus is built around the notion of passing names among concurrent agents.
Less central, yet important, instances of these concepts appear in different process
algebras in the form of the recursion operator, the infinite sum operator and the
time-integration operator (cf., for example, [89], [79, 109] and [9], respectively).
Hence, it is interesting to accommodate the concept of names in the TSS frame-
work.

There have been a few attempts in this direction. In [48], an extension of the
TSS framework of Definition 2.3 is given in which function symbols may name a
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list of binding variables in the definition of their arity. More precisely, arity of a

function symbol has the form
−→
S i0 .S0 × . . .× −→

S in−1
.Sn−1 → Sn, where the list of

sorts before each arguments are to be replaced by actual variables (names) that
bind other instances of the same variables in the argument. Furthermore, the term
structure is provided with an explicit substitution for replacing actual variables
with (possibly open) terms.

Another proposal for modeling names and binders is formulated in [83, 84] which
makes use of parameterized variables. Apart from the introduction of parameter-
ized variables, the TSS framework of [83, 84] is more restricted than that of [48]
and Definition 2.3 in that it does not allow for arbitrary terms as labels.

In the rest of this thesis, we do not treat the concept of names and binders. Also,
apart from [48, 83, 84], all other standard formats we mention in the remainder
of this chapter do not have this feature and hence, are restricted instances of
Definition 2.3.

Multi-Sorted States Based on the number of sorts allowed in the signature,
an SOS framework may be classified in the following three categories:

1. Multi-sorted TSS’s: In such frameworks, there is no restriction on the sorts
allowed for constructing terms.

2. N -sorted TSS’s: A framework may only allow for a fixed number of sorts
participating in the signature. An example of such frameworks appears in
Chapter 8 of this thesis where there are two distinguished sorts of processes
and data. Apart from these two sorts that are used to define the states of
the semantics, there is a sort for constant labels.

3. Single-sorted: This is the most common framework in the literature. It has a
single sort for operational states which is usually called the sort of processes
(and terms from this sort are process terms). In this framework, there is
usually a sort for constant labels, as well.

The TSS of [52] has a special status with respect to its allowed signatures. Namely,
it requires a special sort for processes and at least one sort for labels. Furthermore,
it requires that process sorts should not participate in function symbols with label
sorts as targets.

3.2.3 Positive Premises and the Conclusion

Look-Ahead A framework allows for look-ahead if a deduction rule in the frame-
work may have two premises with a variable in the target of one of the premises
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being present in the source of the other. An example of a deduction rule with
look-ahead is the following.

x
τ→ y y

l→ z

x
l→ z

The above rule from [54] is used to combine silent (τ) and ordinary transitions
in order to implement a weak semantics (by ignoring silent steps) inside a strong
semantic framework.

Well-foundedness Here, we formally define the concept of well-foundedness
which is a useful concept in the remainder of this thesis.

Definition 3.2 (Variable Dependency Graph and Well-foundedness) The
variable dependency graph of a deduction rule is a graph of which the nodes are
variables and there is an edge between two variables if one appears in the source
and the other in the target of the same positive premise in the deduction rule.
A deduction rule is well-founded when all the backward chains of variables in the
variable dependency graph are finite. A TSS is well-founded when all its deduction
rules are.

All practical instances of SOS specifications are well-founded. Well-foundedness
also comes very handy in the proof of semantic meta-results for SOS frameworks.
Hence, it is only of theoretical interest whether a framework allows for non-well-
founded deduction rules or not.

Copying A framework has the copying feature if it allows for repetition of vari-
ables in the target of the conclusion. A simple example of copying is the second
rule in the following TSS which defines the semantics of the while construct (in
the simple programming language framework developed in Example 2.4).

¬Holds[b, M ]

〈while (b) do P od, M〉 ↓

Holds[b, M ]

〈while (b) do P od, M〉→ 〈P ; while (b) do P od, M〉

Infinite Premises It is an interesting theoretical question whether a framework
allows for an infinite number of premises or not. Also practically, when dealing
with infinite domains (e.g., infinite basic actions, data or time domains), it is
sometimes useful to have deduction rules with infinitely many premises. The
following example from [100] illustrates a possible use of deduction rules with
infinitely many premises:
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x
a→ y a /∈ H

∂H(x)
a→ ∂H(x′)

∀a∈A\Hx
a
9

∂H(x)
χ→ δ

The above deduction rules define the semantics of the encapsulation operator ∂H( )
which forbids its parameter from performing actions in H. If the parameter cannot
perform any ordinary action allowed by ∂H then it makes a transition to the
deadlocking process δ. If the set of basic actions A is infinite, then for each
finite H, the deduction rule on the right-hand side has infinitely many (negative)
premises.

3.2.4 Negative Premises

As illustrated in Chapter 2, negative premises are a complicating factor in SOS
frameworks. We have already shown an example of the use of negative premises
above. To our knowledge, the first example of negative premises in SOS appeared
in [7] in the specification of the semantics of the following priority operator θ( ).

x
a→x′ ∀b>ax

b
9

θ(x)
a→ θ(x′)

The above deduction rule states that a parameter of θ( ) can perform a transition
with label a if no transition with a label b of higher priority can be performed
(according to a given ordering >). In addition to negative premises, the above
deduction rule may have infinitely many premises if there are infinitely many
basic actions that have priority over a given action a.

3.2.5 Predicates

Predicates are useful syntactic features which are used to specify phenomena such
as termination or divergence. We have already shown an example of a termination
predicate in Example 2.1.

3.2.6 Other Syntactic Features

Ordering the Deduction Rules One way to avoid the use of negative premises
(and sometimes predicates) is by defining an order among deduction rules. Then, a
deduction rule of a lower order may be applied to prove a formula only when there
is no deduction rule with a higher order applicable. For example, the semantics
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of the priority operator defined in Section 3.2.4 can be expressed in terms of a
number of rules of the following form

x
a→x′

θ(x)
a→ θ(x′)

with an ordering among such rules based on the ordering among labels. The
semantics of the sequential composition operator can also be defined as follows.

x
l→x′

x; y
l→x′; y

y
l→ y′

x; y
l→ y′

with the rule on the left-hand side being ordered above the right-hand side rule.
This way, the second argument of sequential composition can take over, only when
the first part cannot make a transition, i.e., has terminated (we do not consider
unsuccessful termination or deadlock in this simple setting). The implications
of introducing an order among deduction rules and its possible practical use are
investigated in [103, 126]

Equational Specifications Structural congruences are equational addenda to
SOS specifications which can define inherent properties of function symbols or
define some function symbols in terms of the others. For example, the following
equation specifies that the order of arguments in a parallel composition does not
matter or in other words, that parallel composition is commutative.

x || y ≡ y || x

In Chapter 5 of this thesis, we study the addition of equational specifications to
SOS specifications in detail.

3.3 Semantic Meta-Results

3.3.1 Congruence for Behavioral Equivalences

An SOS specification is supposed to define a transition system semantics for pro-
cesses and programs. However, in most practical cases the induced transition
systems contain details that are not observable by experiments and thus should
not be considered relevant. A notion of behavioral equivalence thus defines the
intended semantics of processes and programs by abstracting from these details
and concentrating on the observable part of the behavior. Similarly, behavioral
pre-orders define when particular system is a restricted implementation of the
other.
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There is a myriad of notions of behavioral equivalence and pre-order in the lit-
erature [57, 56]. It is very much desired for a notion of behavioral equivalence
(pre-order) to be compositional or in technical terms to be a congruence (pre-
congruence). Hence, a number of SOS rule formats have been developed that
guarantee these notions to be a (pre-)congruence [64, 24, 23, 58]. In the remain-
der, we confine ourselves to single-sorted frameworks with constant labels. In such
frameworks the arity of a function symbol can be conveniently expressed by a
natural number (representing the number of parameters on the left-hand side of
the arrow). The only congruence meta-theorems for multi-sorted frameworks are
those of [52, 83, 48] and with open terms as labels are [52, 48] and Chapter 9 of
this thesis.

We start by defining the notion of congruence.

Definition 3.3 ((Pre-)Congruence) An equivalence (pre-order) R ⊆ T ×T is a
(pre-)congruence with respect to a signature Σ if and only if for all (f, ar(f)) ∈ Σ
and all −→p ar(f)−1,

−→q ar(f)−1 ∈ T , if −→p ar(f)−1 R −→q ar(f)−1 then f(−→p ar(f)−1) R
f(−→q ar(f)−1).

The first congruence formats were defined for the notion of strong bisimilarity,
defined below.

Definition 3.4 (Bisimulation and Bisimilarity [102]) A relation R ⊆ C × C
is a bisimulation relation with respect to a set of transition relations Rel and a set
of predicates Pr if and only if ∀p,q∈C pRq ⇒ ∀r∈Rel,P∈Pr ,l∈L

1. ∀p′∈C (p
l→r p

′ ⇒ ∃q′∈C q
l→r q

′ ∧ (p′, q′) ∈ R);

2. ∀q′∈C (q
l→r q

′ ⇒ ∃p′∈C p
l→r p

′ ∧ (p′, q′) ∈ R);

3. P (p) ⇔ P (q).

Two closed terms p and q are bisimilar if and only if there exists a bisimulation
relation R with respect to Rel and Pr such that (p, q) ∈ R. Two closed terms p
and q are bisimilar with respect to a transition system specification tss, denoted
by tss ⊢ p ↔ q, if and only if they are bisimilar with respect to the semantics of
tss.

There are good reasons for considering strong bisimilarity as an important notion
of behavioral equivalence. Here, we mention a few.

1. Strong bisimilarity usually gives rise to elegant theories and it turns out
that congruence formats for it are also much more elegant and compact than
those for other (weaker) notions;
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2. For finite state processes, strong bisimilarity can be checked very efficiently
in practice [101] while some weaker notions are intractable [72];

3. Other notions can often be coded in terms of strong bisimilarity [54].

So, it is not surprising that the first standard congruence format was geared toward
strong bisimilarity. This format was proposed by De Simone in [42]. The De
Simone format uses the positive framework with constant labels and allows for
deduction rules of the following form:

{xi
li→ yi | i ∈ I}

f(−→x ar(f)−1)
l→ t

[Pred(
−→
li , l)].

where xi and yi are distinct variables ranging over process terms, f is a func-
tion symbol from the signature (e.g., sequential composition, parallel composition,
etc.), I is a subset of the set {0, . . . , ar(f) − 1} (indices of arguments of f), t is
a process term that does not have repeated occurrences of any variable (so called
architectural term, disallowing copying of variables), li’s and l are constant labels
and Pred is a predicate stating the relationship between the labels of the premises
and the label of the conclusion. (It turns out that side conditions of this kind do
not play any role in the congruence result and thus we do not mention them in
the rest of this chapter.)

Bloom, Istrail and Meyer, in their study of the relationship between bisimilarity
and completed-trace congruence [25], define an extension of the De Simone format,
called GSOS (for Structural Operational Semantics with Guarded recursion), to
capture reasonable language definitions. The GSOS format extends the De Simone
format by allowing for copying and negative premises. The GSOS format, which
will be used in Chapter 7, is formally defined as follows.

Definition 3.5 (GSOS Format) A deduction rule is in the GSOS format when
it is of the following form:

{xi
lij→ yij | i ∈ I, 0 ≤ j ≤ mi} ∪ {xj

ljk
9 | j ∈ J, 0 ≤ k ≤ nj}

f(−→x ar(f)−1)
l→ t

.

where f is a function symbol, xi (0 ≤ i < ar(f)) and yij ’s (i ∈ I and j ≤ mi)
are all distinct variables, I and J are subsets of {0, . . . , ar(f) − 1}, mi and nj are
natural numbers (to set an upper bound on the number of premises), vars(t) ⊆
{xi, yjk|i ∈ I ∪ J, j ∈ I, k ≤ mi} and lij ’s, ljk’s and l are constant labels. A TSS
is in the GSOS format when all its deduction rules are.

Another orthogonal extension of the De Simone format is called tyft/tyxt format
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and is first formulated in [64].1 This format allows for look-ahead, copying and an
infinite set of premises.

Definition 3.6 (Tyft/tyxt Format [64]) A rule is in the tyft format if and only
if it has the following form.

{ti li→ri
yi|i ∈ I}

f(−→x ar(f)−1)
l→r t

where xi and yi are all distinct variables (i.e., for all i, i′ ∈ I and 0 ≤ j, j′ < ar(f),
yi 6= xj and if i 6= i′ then yi 6= yi′ and if j 6= j′ then xj 6= xj′), f is a function
symbol from the signature, I is a (possibly infinite) set of indices, t and ti’s are
arbitrary terms and li’s and l are constant labels.

A rule is in tyxt format if it is of the above form but the source of conclusion is
a variable distinct from all targets of premises. A TSS is in the tyft format when
all its deduction rules are. A TSS is in the tyft/tyxt format when all its deduction
rules are either in the tyft or in the tyxt format.

Any TSS in the tyft/tyxt format can be reduced to an equivalent TSS (inducing
the same transition relations) in the tyft format. We use the tyft format as our
basis for Chapters 4-6. In [64], to prove congruence of strong bisimilarity for TSS’s
in the tyft/tyxt format, well-foundedness of the TSS is assumed. Later, in [45], it
is shown that the well-foundedness constraint can be relaxed and that for every
non-well-founded TSS in the tyft/tyxt format, a TSS exists that induces the same
transition relation and is indeed well-founded. In most of our proofs in this thesis,
we assume the well-foundedness of the transition system specifications. In most
cases, we expect that our results will carry over to the non-well-founded setting.

Theorem 3.7 (Congruence of Bisimilarity for Tyft/tyxt [64, 45]) For a TSS
in tyft/tyxt format, strong bisimilarity is a congruence.

The merits of the two extensions were merged in [61] where negative premises were
added to the tyft/tyxt format, resulting in the ntyft/ntyxt format.

Definition 3.8 (Ntyft/ntyxt Format [61]) A rule is in the ntyft format if and
only if it has the following form.

{ti li→ri
yi|i ∈ I} {tj

lj
9rj

|j ∈ J}

f(−→x ar(f)−1)
l→r t

1Tyft/tyxt is a code representing the structure of symbols in the deduction rules, namely, a
general term (t) in the source of the premises, a variable (y) in the target of the premises, a
function symbol (f) or a variable (x) in the source of the conclusion and a term (t) in the target
of the conclusion.
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The same conditions as of the tyft format hold for the positive premises and the
conclusion. There is no particular constraint on the terms appearing in the neg-
ative premises. Set J is the (possibly infinite) set of indices of negative premises.
An ntyft rule of the above form is called an f-defining rule. A rule is in the ntyxt
format if it is of the above form but the source of conclusion is a variable distinct
from all targets of premises. A TSS is in the ntyft format when all its deduction
rules are. A TSS is in the ntyft/ntyxt format when all its deduction rules are either
in the ntyft or in the ntyxt format.

As explained before, introduction of negative premises in the ntyft/ntyxt format
brings about doubts regarding the well-definedness of the semantics. In the com-
ing section, we give well-definedness criteria (from [61, 27]) for the semantics of
TSS’s in the ntyft/ntyxt format. Interestingly, these criteria turn out to be useful
for proving congruence of bisimilarity, as well (see the following section). Well-
foundedness assumption was also used in [61] and was shown to be redundant in
[46].

Finally, the PATH format [12] for Predicates And Tyft/tyxt Hybrid format) and
the PANTH format [135] (for Predicates And Negative Tyft/tyxt Hybrid format)
extend tyft/tyxt and ntyft/ntyxt with predicates, respectively. A deduction rule in
PANTH format may have predicates, negative predicates, transitions and negative
transitions in its premises and a predicate or a transition in its conclusion.

In [83], the PANTH format is extended for multi-sorted variable binding. This cov-
ers the problem of operators such as recursion or choice over a time domain. The
issue of binding operators for multi-sorted process terms is also briefly introduced
in [5].

A number of other standard formats have been proposed for the congruence of
weaker notions of bisimulation. A major example of such formats is the Cool lan-
guages format introduced in [23] which proves congruence of (rooted) weak and
branching bisimulations. This format has recently been reformulated in [58] and
extended to prove congruence of delay and η-bisimulations. In [55], the ready
simulation format is proposed that induces congruence for ready simulation. This
format is the ntyft/ntyxt format without the look-ahead feature. The ready sim-
ulation format is further restricted in [24] to obtain pre-congruence for readiness,
ready traces and failures pre-order. Note that pre-congruence for a pre-order im-
plies congruence for the corresponding equivalence (the kernel of the pre-order).

3.3.2 Well-definedness of the Semantics

In [61], Groote defines a criterion which guarantees a TSS in the ntyft/ntyxt format
to induce a well-defined semantics. This criterion, defined below, is called (strict)
stratification and is originally due to [53] in the setting of logic programming.
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Definition 3.9 (Stratification [61]) A stratification of a transition system spec-
ification tss is a function S from closed positive formulae to an ordinal such that
for all deduction rules in tss of the following form:

{ti li→ri
t′i|i ∈ I} {tj

lj
9rj

|j ∈ J}

f(−→x ar(f)−1)
l→r t

and for all closed substitutions σ, ∀i∈IS(σ(ti
li→ri

t′i)) ≤ S(σ(f(−→x ar(f)−1)
l→r t))

and ∀j∈J ∀t′∈T S(σ(tj
lj→rj

t′)) < S(σ(f(−→x ar(f)−1)
l→r t)). A transition system

specification is called stratified when there exists a stratification function for it. If
the measure decreases also from the conclusion to the positive premises, then the
stratification is called strict.

The following theorem shows useful properties of stratified TSS’s.

Theorem 3.10 (Stratification, Well-definedness and Congruence [61, 27])
The following statements hold.

1. A strictly stratified TSS in the ntyft/ntyxt format has a unique supported
model.

2. A stratified TSS in the ntyft/ntyxt format has a unique stable model.

3. For a stratified TSS in the ntyft/ntyxt format bisimilarity is a congruence.

TSS’s in the GSOS format are strictly stratified using a measure of size on terms
in the source of the transition formulae. As a corollary of the above theorem, one
may deduce that the semantics of a TSS in the GSOS format is well-defined and
bisimilarity is a congruence for such a TSS. Of course, congruence of bisimilarity
for the GSOS format had been directly proven in [25].

Definition 3.9 and Theorem 3.10 can easily be extended to the PANTH format
(by interpreting predicates as transitions with dummy targets). Theorem 3.10 has
been generalized (to the so-called, positive after reduction or complete TSS’s) in a
three-valued setting in [27].

3.3.3 Conservativity of Language Extensions

The operational semantics of languages may be extended by adding new pieces of
syntax to the signature and new rules to the set of deduction rules. A number
of meta-theorems have been proposed to check whether extensions do not change
the behavior of the old language and whether they preserve equalities among old
terms. Two general instances of such meta-theorems are formulated in [48, 84].
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We review the results of [48] in this section, which gives the most detailed account
of this issue. We simplify these results to single-sorted signatures without binding
which is the framework that we use throughout this thesis.

To extend a language defined by a TSS, one may have to combine an existing
signature with a new one. However, not all signatures can be combined into one
as the arities of the function symbols may clash. To prevent this, we define two
signatures to be consistent when they agree on the arity of the shared function
symbols. In the remainder, we always assume that extended and extending TSS’s
are consistent. The following definition formalizes the concept of operational ex-
tension.

Definition 3.11 (Extension of a TSS) Consider TSS’s tss0 = (Σ0, V, L0, D0)
and tss1 = (Σ1, V, L1, D1). The extension of tss0 with tss1, denoted by tss0∪tss1,
is defined as (Σ0 ∪ Σ1, V, L0 ∪ L1, D0 ∪D1).

Next, we define when an extension of a TSS is called operationally conservative.

Definition 3.12 (Operational Conservativity [134]) Consider TSS’s tss0 =
(Σ0, V, L0, D0) and tss1 = (Σ1, V, L1, D1). If ∀p∈C(Σ0,V ) ∀p′∈C(Σ0∪Σ1,V ) ∀l∈L0∪L1

tss0 ∪ tss1 � p l→ p′ ⇔ tss0 � p
l→ p′, then tss0 ∪ tss1 is an operationally conserva-

tive extension of tss0.

Next, we formulate sufficient conditions to prove operational conservativity. But
before that, we need a few auxiliary definitions.

Definition 3.13 (Source Dependency) All variables appearing in the source
of the conclusion of a deduction rule are called source dependent. A variable of a
deduction rule is source dependent if it appears in a target of a premise of which all
the variables of the source are source dependent. A premise is source dependent
when all the variables appearing in it are source dependent. A rule is source
dependent when all its variables are. A TSS is source dependent when all its rules
are.

Definition 3.14 (Reduced Rules) For a deduction rule d = (H, c), the reduced
rule with respect to a signature Σ is defined by ρ(d,Σ)

.
= (H ′, c) where H ′ is the

set of all premises from H which have a Σ-term as a source.

The following result, from [48], gives sufficient conditions for an extension of a
TSS to be operationally conservative.

Theorem 3.15 (Operational Conservativity Meta-Theorem [48]) Given
two TSS’s tss0 = (Σ0, V, L0, D0) and tss1 = (Σ1, V, L1, D1), tss0 ∪ tss1 is an
operationally conservative extension of tss0 if:
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1. tss0 is source dependent;

2. for all d ∈ D1 at least one of the following holds:

(a) the source of the conclusion has a function symbol in Σ1 \ Σ0, or

(b) ρ(d,Σ0) has a source-dependent positive premise t
l→ t′ such that l /∈ L0

or t′ /∈ T (Σ0, V ).

In Chapter 6 of this thesis, we study meta-theorems of this kind in details. There,
we formulate instances of conservativity meta-theorems which allow for extending
the language behavior while keeping the behavioral equivalences on the old subset
intact.

3.3.4 Generating Equational Theories

Equational theories are central notions to process algebras [13, 68, 87]. They
capture the basic intuition behind the algebra, and the models of the algebra
are expected to respect this intuition (e.g., the models induced by operational
semantics). One of the added values of having equational theories is that they
enable reasoning at the level of syntax without committing to particular models of
the algebra. For example, when the behavioral model (e.g., the transition system
semantics associated to a term) is infinite, these techniques may come very handy.

To establish a reasonable link between the operational model and the equational
theory of the algebra, a notion of behavioral equality should be fixed. Ideally,
the notion of behavioral equivalence should coincide with the closed derivations of
the equational theory. One side of this coincidence is captured by the soundness
theorem which states that all closed derivations of the equational theory are indeed
valid with respect to the particular notion of behavioral equality. The other side
of the coincidence, called ground-completeness, states that all induced behavioral
equalities are derivable from the equational theory. These concepts are formalized
below.

Definition 3.16 (Equational Theory) An equational theory or axiomatization
(Σ, V, E) is a set of equalities E on a signature Σ of the form t = t′, where
t, t′ ∈ T . A closed instance p = p′, for some p, p′ ∈ C, is derivable from E, denoted
by E ⊢ p = p′ if and only if it is in the smallest congruence relation on closed
terms induced by the equalities of E.

An equational theory (Σ, V, E) is sound with respect to a TSS tss (also on signature
Σ) and a particular notion of behavioral equality ∼ if and only if for all p, p′ ∈ C,
if E ⊢ p = p′, then it holds that tss ⊢ p ∼ p′. It is ground-complete if the converse
implication holds.
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In [3, 2], an automatic method for generating sound and ground-complete equa-
tional theories from GSOS specifications is presented. This technique was extended
in [16] to cater for explicit termination of processes. This approach, although more
complicated in nature, gives rise to more intuitive and more compact sets of equa-
tions compared to the original approach of [3].

3.3.5 Other Meta-Results

Non-Interference Confidentiality is an important aspect of security and non-
interference [60] is a well-studied means to guarantee end-to-end confidentiality.
Non-interference means that a user with a lower confidentiality level cannot infer
anything about the higher level information by interacting with the system (using
lower-level methods that has in hand). In [120, 121] a standard format for non-
interference is proposed which is based on the Cool languages format (in order to
guarantee compositionality of non-intereference) and imposes further restrictions
to assure that the lower-level behavior of the system does not change as a result
of performing higher-level transitions.

Decomposition of Logical Formulae In [67], a logical framework, called
Hennessy-Milner logic after the authors’ names, is proposed. Hennessy-Milner
logic can be used to reason about processes and characterize their equalities. In
[74, 75] a meta-theory is developed that allows for decomposing Hennessy-Milner
formulae using the structure of terms in a generic way by examining deduction
rules of the process language in the De Simone format. This result has been im-
proved in [47] and extended to the ready simulation format (ntyft/ntyxt format
without look-ahead).

Stochasticity For probabilistic transition systems, it is essential to make sure
that the sum of all probabilities belonging to the same distribution amounts to 1
(or zero). This is called (semi-)stochasticity. In [73], a restricted form of the De
Simone format is proposed that guarantees semi-stochasticity. To avoid dealing
with negative premises the format of [73] supports ordering on rules.

Bounded Non-determinism In [127], a standard format, by imposing restric-
tions on the De Simone format, is proposed which guarantees that the induced
semantics affords only bounded non-determinism, i.e., each closed term has only
a finite number of outgoing transitions. Fokkink and Duong Vu in [49] generalize
the result of [127] to a far more general SOS framework.
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Figure 3.1 An Overview of Existing SOS Frameworks

3.4 Summary and Conclusions

In this chapter, we provided an overview of SOS frameworks and existing meta-
results about them. Figure 3.1 provides an overview of the frameworks and existing
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Syntactic Features
Shorthand Syntactic Feature
SS vs. MS Single- vs.

Multi-Sorted Terms
VB Variable Binding
TL vs. TL∗ A Term vs.

List of Terms as La-
bels

CPY Copying Variables
LA Look Ahead
Pred Predicates

Semantic Meta-Theorems
Shorthand Semantic Meta-

Theorems
C( ↔x ) Congruence for

x-Bisimulation
C( ≈x ) Congruence for

x-equality
PC( ≤x ) Pre-congruence for

x-pre-order
OC Operational Conserva-

tivity
Axiom. Deriving Sound and

Complete Axiomatiza-
tion

Ind. Eq. Comparison of
Induced Equality
Classes

NIntrf Non Intereference
(Security-related [112])

Bnd Bounded Non-
determinism

Stoch Stochasticity

Table 3.1 Short-hands Used in Figure 3.1

results. The lattice presented there has SOS frameworks as nodes, ordered by
syntactic inclusion (mainly based on the syntactic features). A node in this lattice
has the following structure.

[Format Name]
Syntactic Features

Semantic Meta-Theorems

The short-hands used in this lattice are described in Table 3.1.

In the particular case of the generalized PANTH format, its relationship with the
top element of the lattice is denoted by a dotted line; This is because a TSS in
the generalized PANTH format does not syntactically fit in the framework of [48].
However, the syntactic features of this format are indeed subsumed by those of
the framework of [48].
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As it can be observed from Figure 3.1, many of the existing meta-results are
formulated around restricted SOS frameworks and extending them to frameworks
with more syntactic features are plausible topics for feature research. We conclude
this chapter by mentioning a few interesting instances of such extensions:

• Extending the congruence rule formats for strong bisimilarity to a framework
with both terms as labels and variable binding;

• Extending the congruence rule formats for weak bisimilarities to a setting
with negative premises (e.g., ntyft format);

• Extending the axiomatization results to a setting with look-ahead.



Chapter 4

Commutativity

“Aus dem Leben
bin ich
in die Gedichte gegangen

Aus den Gedichten
bin ich
ins Leben gegangen

Welcher Weg
wird am Ende
besser gewesen sein?”

[Erich Fried]

An earlier version of this chapter has appeared as: M.R. Mousavi, M.A. Reniers, J.F. Groote,
A Syntactic Commutativity Format for SOS, Information Processing Letters (IPL), 93(5):217–
223, Elsevier Science B.V., March 2005.
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4.1 Introduction

Deriving algebraic axioms for SOS rules in [3, 2, 15, 125] are distinguished exam-
ples of SOS meta-theorems which generate a set of sound and (ground-)complete
axioms for a given operational semantics in a syntactic format. Although commu-
tativity axioms are derivable from the set of axioms generated by [3, 2, 15, 125],
none of the approaches generate commutativity axioms explicitly and furthermore,
they assume the existence of a number of standard constants and operators in the
signature.

In this chapter, we aim at developing a meta-theorem for deriving commutativity
axioms for certain operators in an SOS specification. Our format does not assume
the presence of any special operator and builds upon a general congruence for-
mat, namely tyft [64]. The ultimate goal of this line of research is to develop the
necessary theoretical background for a tool-set that can assist specifiers in devel-
oping Structural Operational Semantics for their languages, by proving different
properties for the developed languages automatically.

The rest of this chapter is organized as follows. In Section 4.2, we start by pre-
senting some preliminary notions about commutativity. Then, in Section 4.3, we
give our proposal for a syntactic format for commutativity called comm-tyft (for
commutative tyft). Section 4.4 addresses possible extensions of this format by
adding tyxt rules, predicates and negative premises to the format (thus, achiev-
ing the expressivity of PANTH format [135]). Finally, Section 4.5 summarizes the
results and presents concluding remarks. In this chapter, we use Definitions 2.2,
3.1, 3.3 and 3.4 without repeating them.

4.2 Basic Definitions

In this section, we define the notions of commutativity and the closure of com-
mutativity under context. Here, we assume commutativity for all arguments of
the operator. It is straightforward to restrict the results of this chapter to prove
commutativity for a subset of arguments.

Definition 4.1 (Commutativity) A function symbol f is called commutative
on open (closed) terms with respect to a relation R ⊆ T × T if and only if for all−→
t ar(f)−1 ∈ T (

−→
t ar(f)−1 ∈ C) and for all j and k such that 0 ≤ j < k < ar(f),

f(
−→
t ar(f)−1) R f(t0, . . . , tk, . . . , tj , . . . , tar(f)−1). Function f is called commutative

(in our setting) if and only if it is commutative on closed terms with respect to
bisimilarity.

To account for swapping of arguments of a commutative operator under arbitrary
context, we define the notion of commutative congruence as follows.
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Definition 4.2 (Commutative Congruence) Consider a set COMM ⊆ Σ. The
commutative congruence relation ∼cc (w.r.t. COMM and Σ) is the minimal rela-
tion satisfying the following requirements:

1. ∼cc is reflexive;

2. ∀(f,ar(f))∈Σ ∀−→p ar(f)−1,−→q ar(f)−1∈T−→p ar(f)−1 ∼cc
−→q ar(f)−1 ⇒ f(−→p ar(f)−1) ∼cc f(−→q ar(f)−1);

3. ∀(g,ar(g))∈COMM ∀−→p ar(g)−1,−→q ar(g)−1∈T−→p ar(g)−1 ∼cc
−→q ar(g)−1 ⇒ g(p0, . . . , pk, . . . , pj , . . . , par(g)−1) ∼cc g(−→q ar(g)−1)

(for all 0 ≤ k < k < ar(g)).

It can easily be seen that ∼cc is an equivalence relation and thus, it partitions

the terms into equivalence classes [t]cc. Two formulae ti
l→r t

′
i and tj

l→r t
′
j are

called CC-equal if and only if ti ∼cc tj and t′i = t′j (for technical reasons, the
definition is asymmetric with respect to the source and target of the transition).

By abusing the same notation, we denote the set of CC-equal formulae of ti
l→r t

′
i

by [ti
l→r t

′
i]cc and for a set H of formulae we write [H]cc for

⋃
h∈H [h]cc.

As it appears from its name, there is more to Definition 4.2 than only commuta-
tivity. It also exploits congruence to switch arguments of operators in COMM in
an arbitrary context. The reason for adding congruence to commutativity is to
make our commutativity format as general as possible. By taking the minimal re-
flexive and commutative relation (on open terms) instead of ∼cc, one can obtain a
simpler commutativity format compared to what we define in the remainder (and
a simpler proof for it). This simpler format works equally well for the examples
that we have checked so far. However, we prefer the existing formulation for its
generality in order to cope with more possible applications in the future. The
following example illustrates Definition 4.2.

Example 4.3 Suppose that Σ contains a binary operator || and || ∈ COMM ;
according to Definition 4.2, for variables x0, y0, x1, x2, we have [x0 || (x1 || x2)]cc =
{x0 || (x1 || x2), x0 || (x2 || x1), (x1 || x2) || x0, (x2 || x1) || x0}. Furthermore, we

have (x2 || x1) || x0
l→r y0 ∈ [x0 || (x1 || x2)

l→r y0]cc.

The following lemma shows that ∼cc is preserved under substitutions that respect
∼cc.

Lemma 4.4 For all t, t′ ∈ T and for all σ, σ′ : V → T , if t ∼cc t
′ (with respect to

COMM ), and for all x ∈ vars(t), σ(x) ∼cc σ
′(x), then σ(t) ∼cc σ

′(t′).

Proof. By an induction on the structure of ∼cc:
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• If the pair (t, t′) is in ∼cc due to reflexivity, then the lemma can be proven
by a straightforward induction on the size of t. If t and t′ are both a
constant or both a variable, then the lemma holds trivially; otherwise, if
t = t′ = f(

−→
t ar(f)−1), then it follows from the induction hypothesis that

σ(ti) ∼cc σ
′(ti) and since relation ∼cc is closed under congruence, we have:

f(σ(
−→
t ar(f)−1)) ∼cc f(σ′(

−→
t ar(f)−1)) and hence σ(t) ∼cc σ

′(t).

• If t = f(
−→
t ar(f)−1) and t′ = f(

−→
t′ ar(f)−1), where

−→
t ar(f)−1 ∼cc

−→
t′ ar(f)−1,

then according to the induction hypothesis, we have σ(ti) ∼cc σ
′(t′i) and it

follows from the same constraint that f(σ(
−→
t ar(f)−1)) ∼cc f(σ′(

−→
t′ ar(f)−1)).

Hence, σ(t) = f(σ(
−→
t ar(f)−1)) ∼cc f(σ′(

−→
t′ ar(f)−1)) = σ′(t′).

• If t = f(t0, . . . , tk, . . . , tj , . . . , tar(f)−1) and t′ = f(
−→
t ar(f)−1) (for arbitrary

0 ≤ j < k < ar(f)) , where and
−→
t ar(f)−1 ∼cc

−→
t′ ar(f)−1 then according

to the induction hypothesis, σ(
−→
t ar(f)−1) ∼cc σ

′(
−→
t′ ar(f)−1) and by the same

constraint f(σ(t0), . . . , σ(tk), . . . , σ(tj), . . . , σ(tar(f)−1)) ∼cc f(σ′(
−→
t ar(f)−1).

Hence, σ(t) ∼cc σ
′(t′).

⊠

4.3 Standard Format for Commutativity

We set our starting point from a standard congruence format (namely, tyft format)
because in parts of our proofs, congruence is an essential ingredient.

Definition 4.5 (Comm-tyft) A transition system specification is in the comm-
tyft format with respect to a set of function symbols COMM ⊆ Σ if all its deduction
rules are in tyft format and for every f -defining rule with (f, ar(f)) ∈ COMM of
the following form

(d)
{ti li→ri

yi|i ∈ I}

f(−→x ar(f)−1)
l→r t

for which we denote the set of premises of (d) by H and the conclusion by c, and
for all 0 ≤ j < k < ar(f), there exists a deduction rule (d’) of the following form
in the transition system specification

(d’)
H ′

f(
−→
x′ar(f)−1)

l→r t
′

and a bijective mapping (substitution) ~ on variables such that
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• ~(x′i) = xi for 0 ≤ i < ar(f), i 6= j and i 6= k,

• ~(x′j) = xk and ~(x′k) = xj ,

• ~(t′) ∼cc t,

• ∀h′∈H′ ~(h′) ∈ [H]cc ∪ {c}.

Deduction rule (d’) is called the commutative mirror of (d) (on arguments j and
k).

To put it informally, the role of substitution ~ in this definition is to account for the
single swapping in the source of the conclusion and a possible isomorphic renaming
of variables. Thus, the above format requires that for each f -defining rule, there
exists a commutative mirror which firstly, has the same source of the conclusion
as the original deduction rule with one swapping in the arguments, secondly, has
the same source of the premises and target of the conclusion as the original rule
up to arbitrary swapping of the arguments of commutative function symbols, and
finally, may have the conclusion of the original rule as one of its premises. Next,
we state that the comm-tyft format indeed induces commutativity for the set of
operators under consideration.

Theorem 4.6 (Commutativity for comm-tyft) If a transition system specifi-
cation is in the comm-tyft format with respect to a set of operators COMM , then
all operators in COMM are commutative.

Proof. Let R be the relation ∼cc restricted to closed terms. By definition,
this relation contains all the desired pairs of terms of the form (f(−→p ar(f)−1),
f(p0, . . . , pk, . . . , pj , . . . , par(f)−1)), where 0 ≤ j < k < ar(f). Then, it only
remains to prove that R is a bisimulation relation.

Consider an arbitrary pair (p, q) ∈ R. Suppose that p
l→r p

′ for some r, l, p′.

We have to prove the existence of a q′ such that q
l→r q

′ and (p′, q′) ∈ R (and
vice versa, the proof of which we omit due to symmetry). We start with a case
distinction using the structure of R in Definition 4.2.

1. For the reflexivity part of R, the theorem holds trivially.

2. For the congruence part, the theorem follows due to a similar construction
as that of [64] since comm-tyft is a restriction of the tyft format. We quote
the following Lemma from [64] which is a necessary ingredient of our proof.

Lemma 4.7 Consider a relation R ⊆ T × T which is closed under con-
gruence. If for substitutions σ and σ′ and a term t ∈ T , it holds that
∀x∈vars(t)σ(x) R σ′(x), then σ(t) R σ′(t).
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Since (p, q) is in R due to congruence, we have that p = f(−→p ar(f)−1), q =
f(−→q ar(f)−1), for some (f, ar(f)) ∈ Σ such that −→p ar(f)−1 R

−→q ar(f)−1. We

proceed with an induction on the depth of the proof for transition p
l→r p

′.

If the transition has a proof of depth one, then there is a rule (d) of the
following form:

(d)
f(−→x ar(f)−1)

l→r t

and a substitution σ such that σ(xi) = pi (0 ≤ i < ar(f)) and σ(t) = p′. By
defining a new substitution σ′ as:

σ′(x)
.
=

{
qi if x = xi(0 ≤ i < ar(f))
σ(x) otherwise

we have a proof for f(−→q ar(f)−1)
l→r σ

′(t) using (d) and σ′. It follows from
the definition of σ′ that ∀x∈V σ(x) R σ′(x) and thus according to Lemma
4.7, σ(t) R σ′(t) and this concludes the induction basis.

For the induction hypothesis, suppose that transition p
l→r p

′ has a proof of
depth n due to the following rule (as the root of its proof tree):

(d)
{ti li→ri

yi|i ∈ I}

f(−→x ar(f)−1)
l→r t

and a substitution σ such that σ(xi) = pi (0 ≤ i < ar(f)) and σ(t) = p′.
Let X

.
= {xi|0 ≤ i < ar(f)} and Y

.
= {yi|i ∈ I}. Our aim is to define a new

substitution σ′ in such a way that ∀x∈V σ(x) R σ′(x). We start with the
following partial definition:

σ′(x)
.
=

{
qi if x = xi (0 ≤ i < ar(f))
σ(x) if x ∈ V \ (X ∪ Y )

Hitherto, we already have that ∀x∈V \Y σ(x) R σ′(x). It remains to complete
the definition of σ′ for variables in Y in an appropriate way. Take a premise
of which σ′ is defined on all variables in the source (such a premise should
exist due to our well-foundedness assumption about premises, see Definition

3.6). Suppose that one such a premise is ti
li→ri

yi, for some i ∈ I. For all
x ∈ vars(ti), σ

′ is already defined in appropriate way, thus σ(x) R σ′(x). It

follows from Lemma 4.4 that σ(ti) R σ′(ti). Transition σ(ti)
li→ri

σ(yi) has
a proof of depth n − 1 or less and since σ(ti) R σ′(ti), it follows from the

induction hypothesis that there exists a p′i such that σ′(ti)
l→r p

′
i and σ(yi)

R p′i. We define σ′(yi)
.
= p′i and hence it holds that σ(yi) R σ′(yi). This way,

we complete the proof for σ′(ti
li→ri

yi). Defining σ′ for each yi inductively,
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in this manner, concludes the proof since rule (d) together with σ′ gives us a

proof for q
l→r σ

′(t) and according to the construction of σ′ (which respects
R on variables, i.e., preserves the property ∀x∈V σ(x) R σ′(x)), it follows
from Lemma 4.7 that σ(t) R σ′(t).

3. It remains to prove the theorem for the case where p = f(−→p ar(f)−1) and
q = f(q0, . . . , qk, . . . , qj , . . . , qar(f)−1) for (f, ar(f)) ∈ COMM and some
0 ≤ j < k < ar(f) such that −→p ar(f)−1 R

−→q ar(f)−1.

We prove this by an induction on the depth of the proof for p
l→r p

′. For the
induction basis, suppose that p can make a transition with a proof of depth
1. Then, this transition is due to an f -defining rule of the following form:

(d)
f(−→x ar(f)−1)

l→r t

and a substitution σ such that σ(xi) = pi and σ(t) = p′. According to
Definition 4.5, another rule exists in the transition system specification of
the following form:

(d’)
H

f(
−→
x′ar(f)−1)

l→r t
′

and a bijective mapping ~ such that

• ~(x′i) = xi for 0 ≤ i < ar(f), i 6= j and i 6= k

• ~(x′j) = xk and ~(x′k) = xj

• ~(t′) ∼cc t

• ∀h∈H ~(h) ∈ {f(−→x ar(f)−1)
l→r t}

We define a new substitution σ′ as follows:

σ′(x)
.
=






qi if x = x′i ∧ 0 ≤ i < ar(f) ∧ i 6= j ∧ i 6= k
qj if x = x′k
qk if x = x′j
(σ ◦ ~)(x) otherwise

It immediately follows from the above definition that for all x ∈ V , (σ ◦
~)(x) R σ′(x) (where ◦ denotes composition of mappings). It also fol-

lows from the definition of σ′ that σ′(f(
−→
x′ar(f)−1)) = q. The last con-

straint of the comm-tyft format implies that H is such that ∀h∈H~(h) ∈
{f(−→x ar(f)−1)

l→ t}. Otherwise said, H is either the empty set or H =

{~−1(f(−→x ar(f)−1)
l→r t)}. If H is empty, then we already have a proof

for q
l→r σ

′(t′) using deduction rule (d’) and substitution σ′. Also, if H =
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{~−1(f(−→x ar(f)−1)
l→r t)} the proof for q

l→r σ
′(t′) is complete since we al-

ready have a proof for σ′(~−1(f(−→x ar(f)−1)
l→r t)), using rule (d) and sub-

stitution σ′ ◦ ~
−1. Since ~(t′) ∼cc t (thus, ~

−1(t) ∼cc t′), and for all
x ∈ V , (σ ◦ ~)(x) ∼cc σ′(x), it follows from Lemma 4.4 that σ(t) ∼cc

((σ′ ◦ ~) ◦ ~
−1)(t′). Hence, we have σ(t) R σ′(t′) (both σ(t) and σ(t′) are

closed terms and R is ∼cc restricted to closed terms). This concludes the
induction basis.

For the induction step, suppose that the theorem holds for all transitions

with proofs of depth less than n. Then, consider a transition p
l→r p

′ with a
proof of depth n. This transition must be due to an f -defining rule (d) of
the following form:

(d)
{ti li→ri

yi|i ∈ I}

f(−→x ar(f)−1)
l→r t

and a substitution σ such that σ(xi) = pi and σ(t) = p′. We refer to the set
of premises of (d) as H and its conclusion as c. According to the Definition
4.5, there exists another rule (d’) in the transition system specification of
the following form:

(d’)
{t′j

l′j→r′
j
y′j |j ∈ J}

f(
−→
x′ar(f)−1)

l→r t
′

and a mapping ~ of variables such that

• ~(x′i) = xi for 0 ≤ i < ar(f), i 6= j and i 6= k

• ~(x′j) = xk and ~(x′k) = xj

• ~(t′) ∼cc t

• ∀j∈J ~(t′j
l′j→r′

j
y′j) ∈ [H]cc ∪ {c}

Let X ′ = {x′i|0 ≤ i < ar(f)} and Y ′ = {y′j |j ∈ J} be the set of variables
in the source of the conclusion and the targets of the premises of deduction
rule (d’), respectively. We aim at defining a new substitution σ′ such that
for all variables x ∈ V , (σ ◦~)(x) R σ′(x). Similar to the induction basis, we
start with the following (partial) definition for σ′:

σ′(x)
.
=






qi if x = x′i ∧ 0 ≤ i < ar(f) ∧ i 6= j ∧ i 6= k
qj if x = x′k
qk if x = x′j
(σ ◦ ~)(x) if x ∈ V \ (X ′ ∪ Y ′)

To this end, we have σ′(f(
−→
x′ar(f)−1)) = q and σ′ is defined on all vari-

ables, except for those in Y ′ and it satisfies ∀x∈V \Y ′ (σ ◦ ~)(x) R σ′(x).
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For the variables in Y ′, we complete the definition of σ′ by taking a premise
whose source variables are all defined under σ′ and defining its target (such a
premise should exist due to our well-foundedness assumption about premises,

see Definition 3.6). Suppose that one of such premises is t′j
l′j→r′

j
y′j , for some

j ∈ J . It follows from the last requirement on ~ in Definition 4.2 that ei-

ther ~(t′j
l′j→r′

j
y′j) = f(−→x ar(f)−1)

l→r t meaning that t′j = ~
−1(f(−→x ar(f)−1)),

y′j = ~
−1(t), or there exists an i ∈ I such that ~(t′j

l′j→r′
j
y′j) = ti

li→ri
yi, which

means that t′j ∼cc ~
−1(ti) and y′j = ~

−1(yi).

In the former case, we have σ′(t′j) = (σ′◦~−1)(f(−→x ar(f)−1)) = σ′(f(x′0, . . . , x
′
j ,

. . . , x′k, . . . , x
′
ar(f)−1)) = f(−→q ar(f)−1). Since we know that −→p ar(f)−1 R

−→q ar(f)−1, and f(−→p ar(f)−1)
l→r p

′ it follows from the congruence part of this

proof that there exists a q′ such that σ′(t′j)
l→r q

′ and p′ R q′. Then, we
define σ′(y′j)

.
= q′ and we fulfill the requirement that (σ ◦ ~)(y′j) R σ′(y′j)

(since σ(yi) = p′ and yi = ~(y′j)).

In the latter case, since ~
−1(ti) = t′j (thus ~

−1(ti) ∼cc t′j) and for all
x ∈ vars(t′j), (σ ◦ ~)(x) ∼cc σ′(x), it follows from Lemma 4.4 that (σ ◦
~)(~−1(ti)) ∼cc σ′(t′j) and thus σ(ti) R σ′(t′j). Transition σ(ti)

li→ri
σ(yi)

has a proof of depth n − 1 or less and since σ(ti) R σ′(t′j), it follows from

the induction hypothesis that there exists a p′j such that σ′(t′j)
l→r p

′
j and

σ(yi) R p′j . We define σ′(y′j)
.
= p′j and hence it holds that ((σ ◦ ~)(y′j) R

σ′(y′j). This way, we complete the proof for σ′(t′j
l→r y

′
j). Defining σ′ for each

y′j inductively, in this manner, concludes the proof since rule (d’) together

with σ′ gives us a proof for q
l→r σ

′(t′) and according to the construction
of σ′ (which preserves the property ∀x∈V (σ ◦ ~)(x) ∼cc σ

′ (x)) and since
~
−1(t) ∼cc t

′, it follows from Lemma 4.4 that (σ ◦ ~)(~−1(t)) ∼cc (σ ◦ ~)(t′)
and hence σ(t) R σ′(t′).

⊠

In the remainder, we illustrate the idea behind our format by a few examples from
the area of process algebra.

Example 4.8 (Parallel Composition: Standard Rules) Consider the follow-
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ing transition system specification for a parallel composition operator [13]:

(p0)
x0

l→r0
y0

x0 || x1
l→r0
y0 || x1

(p1)
x1

l→r0
y1

x0 || x1
l→r0
x0 || y1

(p2)
x0

l0→r0
y0 x1

l1→r0
y1

x0 || x1
l→r0
y0 || y1

comm(l0, l1) = l

If the synchronization function comm is commutative, then the above TSS is in
the comm-tyft format w.r.t. the singleton set COMM = {||}. This can be seen as
follows. All deduction rules are obviously in tyft format. Deduction rule (p1) is the
commutative mirror of (p0) (and vice versa) by using the mapping ~ defined by
~(x0) = x1, ~(x1) = x0, and ~(y1) = y0 and for the sake of symmetry ~(y0) = y1.

Observe that ~(x0 || y1) = x1 || y0 ∼cc y0 || x1 and ~(x1
l→r0
y1) = x0

l→r0
y0 ∼cc

x0
l→r0
y0. Similarly, deduction rule (p0) is the commutative mirror of (p1), using

the inverse of ~ (which is ~ itself) as a variable mapping. Finally, deduction
rule (p2) is the commutative mirror of itself by using the mapping ~ such that
~(x0) = x1, ~(x1) = x0, ~(y0) = y1 and ~(y1) = y0. It is not obvious that this
mapping satisfies the requirements due to the fact that the premises have different
labels. In this case this is not a problem as the function comm is commutative.
In fact, the instance of this deduction rule where l0 and l1 are instantiated by
labels a and b matches with an instance where these are instantiated by b and a
respectively.

Example 4.9 (Parallel Composition: Non-Standard Rules) For the reason
of finite axiomatization, parallel composition may be defined in terms of auxiliary
operators, namely the left merge ‖ and the communication merge |. Although
the left merge is not a commutative operator, comm-tyft is still applicable for
the following transition system specification of parallel composition, if one takes
COMM = {||, |}.

(p0)
x0‖ x1

l→r y0

x0 || x1
l→r y0

(p1)
x1‖ x0

l→r y0

x0 || x1
l→r y0

(p2)
x0 | x1

l→r y0

x0 || x1
l→r y0

(lp0)
x0

l→r y0

x0‖ x1
l→r y0 || x1

(cp0)
x0

l0→r y0 x1
l1→r y1

x0 | x1
l→r y0 || y1

comm(l0, l1) = l

Similar to the previous case, in the above specification (p0) and (p1) are commu-
tative mirrors of each other. But for (p2) to be the commutative mirror of itself,
we need commutativity of the communication merge |. Hence, we have to check
the rule (cp0), as well. Rule (cp0) is the commutative mirror of itself, if comm is a
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commutative function. For the other remaining rule, since‖ is not a commutative
operator, (lp0) only needs to be in tyft format which is indeed the case.

Example 4.10 (Nondeterministic Choice: Standard) Consider the follow-
ing transition system specification for a nondeterministic choice operator:

(c0)
x0

l→r y0

x0 + x1
l→r y0

(c1)
x1

l→r y1

x0 + x1
l→r y1

Then, following Theorem 4.6, we can derive that nondeterministic choice is a
commutative operator: Both (c0) and (c1) are in tyft format and each is the
commutative mirror of the other under the mapping ~(x0) = x1, ~(x1) = x0,
~(y1) = y0 and ~(y0) = y1.

The following example illustrates that allowing a premise to be mapped to the
conclusion of another rule can be useful.

Example 4.11 (Nondeterministic Choice: Non-Standard) As an alterna-
tive to the transition system specification from the previous example, nondeter-
ministic choice can also be defined by means of the following transition system
specification.

(c0)
x0

l→r y0

x0 + x1
l→r y0

(c1)
x1 + x0

l→r y0

x0 + x1
l→r y0

Deduction rule (c0) can not be matched by deduction rule (c0) itself. Deduction
rule (c0) is matched by deduction rule (c1) using the mapping ~(x0) = x1, ~(x1) =
x0, and ~(y0) = y0. Observe that if we would not have allowed the premise of (c1)

to match the conclusion of (c0), then it would have been impossible to match (c0).
Hence, Theorem 4.6 could not have been applied here, although nondeterministic
choice as specified by this transition system specification is commutative.

Rule (c1) is the SOS characterization of commutativity and henceforth one may
expect that by adding this rule for a specific operator to any TSS, one should be
able to make it commutative. It can be easily shown, using the comm-tyft format
that this is indeed true. For any (binary) operator f , such a rule can play the role
of a commutative mirror of all f -defining rules in the TSS by taking a mapping
similar to the one above and hence making the TSS conform to the comm-tyft
format.

The following example illustrates that we cannot relax the last constraint of the
comm-tyft format to include CC-variants of the conclusion in the premises of the
mirror rule.

Example 4.12 Suppose that we slightly relax the last constraint of the comm-tyft
format to the following:

∀h∈H~(h) ∈ [H ∪ {c}]cc
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Then, the commutativity result is jeopardized. The following counter-example
shows this fact:

(a)
a

a→r b
(d)

x0
l→r y0

x0 + x1
l→r y0

(d’)
x0 + x1

l→r y0

x0 + x1
l→r y0

Suppose that the signature contains constants a and b and a binary function
symbol +. The above transition system specification is in the relaxed version of
the comm-tyft format with respect to the set COMM = {+}; all rules are in tyft
format and (d’) is the commutative mirror of (d) and itself under ~(x0) = x1,
~(x1) = x0 and ~(y0) = y0. However, it does not hold that a + b ↔ b + a since
a+ b can make a transition due to (d) while b+ a cannot.

4.4 Possible Extensions

4.4.1 Tyxt Rules

According to Definition 3.6, rules in tyxt format are of the following form:

{ti li→ri
yi|i ∈ I}

x
l→r t

Interesting enough, we can extend our comm-tyft format to allow for arbitrary
rules in tyxt format. In [64], it has been already shown that tyxt format reduces to
tyft format by copying the rule for all (f, ar(f)) ∈ Σ and substituting variable x
by f(−→x ar(f)−1). So, tyxt rules do not harm the congruence property. They do not
harm commutativity, either, since after such a copying procedure, each copied tyxt
rule (for operators in the set COMM ) is the commutative mirror of itself by taking
the mapping ~(xi) = xj and ~(xj) = xi for any two arbitrary 0 ≤ i < j < ar(f)
and ~(x) = x for all other variables.

4.4.2 Predicates and Negative Premises

Predicates are used to specify properties on process terms such as termination and
divergence. By adding predicates to our set of formulae, the syntax of a deduction
rule will be extended to the following forms:

{ti li→ri
yi|i ∈ I} {Pj(tj)|j ∈ J}
f(−→x ar(f)−1)

l→r t

{ti li→ri
yi|i ∈ I} {Pj(tj)|j ∈ J}
P (f(−→x ar(f)−1))

In [12], it is also shown that the above rules can be reduced to tyft format by
introducing dummy transition relations for each predicate symbol, fresh variables
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(w.r.t. other variables in the deduction rule) in the target of the predicate formulae
in the premises and dummy fresh constants (w.r.t. constants appearing in the
signature) in the target of the predicate conclusions. The same trick works here,
as well. Thus, to interpret our comm-tyft format in a setting with predicates,
it suffices to consider predicates as sources of transitions. We can safely assume
that the targets of such transitions satisfy our format (by taking the same dummy
variables and constants in mirror rules).

In [61], it is shown that allowing for negative premises (of the form ti 9 ) in a
transition system specification may endanger the well-definedness of the induced
transition relation. Several approaches have been proposed to deal with this prob-
lem, of which [59] provides an overview. Stratification (see Definition 3.9) is a
measure defined on formulae which does not increase from conclusion to positive
premises and decreases from conclusion to negative ones. If such a stratification
exists, it has been shown in [27] that the induced transition relation is well-defined.
Thus, by following the same approach we may accommodate negative premises in
the comm-tyft format, too. All in all, by allowing for tyxt rules, negative premises
and predicates, we get the expressive power of PANTH (Predicates And NTyft-
ntyxt Hybrid) format of [134].

4.5 Conclusion

In this chapter, we defined a standard SOS format that guarantees that a num-
ber of commutativity axioms are sound with respect to strong bisimilarity (and
all weaker notions of behavioral equivalence). Our standard format for commu-
tativity, called comm-tyft, calls for so-called commutative mirror rules for each
deduction rule defining a commutative operator. These mirror rules account for
arbitrary switching of arguments and thus their existence is a sufficient condition
for commutativity. The proposed standard format can help as a theoretical back-
ground for part of a toolkit assisting specifiers in defining operational semantics
and proving meta-properties about their defined languages. We have tried the
same method for more complicated frequently occurring axioms, such as associa-
tivity. It turns out that the result is an abstract representation of the proof for
those axioms. In such a proof structure, one usually has to decompose the reason
for a transition of f(f(p, q), r) to transitions of p, q and r (by analyzing the proof
structure to depth 2 and making several case distinctions based on the structure
of the deduction rules) and then using the deduction rules in the TSS, compose
these transitions again and prove the same transition (up to associativity of the
target) for f(p, f(q, r)). The resulting format for associativity should contain all
such analysis and case distinctions and thus is far from elegant.
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Chapter 5

Structural Congruences

“We must recover the element of quality in our traditional pursuit of
equality.”

[Adlai Stevenson]

A summarized version of this chapter has appeared as: M.R. Mousavi, M.A. Reniers, Con-
gruence for Structural Congruences, In V. Sassone ed., Proceedings of the Eighth International
Conference on Foundations of Software Science and Computation Structures (FOSSACS’05),
Edinburgh, Scotland, UK, volume 3441 of Lecture Notes in Computer Science, pp. 47–62,
Springer-Verlag, April 2005.
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5.1 Introduction

Structural congruences were introduced in [88, 89] in the operational semantics
specification of the π-calculus. There, structural congruences are a set of equations
defining an equality and congruence relation on process terms. These equations
are used as an addendum to transition system specifications (TSS’s). The two
specifications (structural congruences and TSS’s) are linked using a deduction rule
dedicated to the behavior of congruent terms, stating that if a process term can
perform a transition, all congruent process terms can mimic the same behavior.

The combination of structural congruences and SOS rules may simplify SOS spec-
ifications and make them look more compact. They can also capture inherent
(so-called spatial) properties of composition operators (e.g., commutativity, asso-
ciativity and zero element). Perhaps, the latter has been the main reason for using
them in combination with SOS. However, as we argue in this chapter, the interac-
tion between the two specification styles is not as trivial as it seems. Particularly,
well-definedness (i.e., existence and uniqueness of the induced transition relation)
and well-behavedness (e.g., congruence of bisimilarity) meta-theorems for SOS do
not carry over trivially to this mixed setting. As an interesting example, we show
that the addition of structural congruences to a set of safe SOS rules (e.g., tyft
rules) can put the congruence property of bisimilarity in jeopardy. This result
shows that a standard congruence format cannot be used, as is, for the combina-
tion of structural congruences and SOS rules. As another example, we show that
the well-definedness criteria defined in [27, 61] for SOS with negative premises do
not necessarily suffice in the setting with structural congruences.

Three solutions can be proposed to deal with the aforementioned problems. The
first is to avoid using structural congruences and use “pure” SOS specifications for
defining operational semantics. In this approach, there is a conceptual distinction
between the transition system semantics (as the model of the algebra) and the
equational theory (cf. [13], for example). This way, one may lose the compactness
and the intuitive presentation of the operational semantics, but in return, one
will be able to benefit from the existing theories of SOS. This solution can be
recommended as a homogenous way of specifying semantics. The second solution
is to use structural congruences in combination with SOS rules and prove the well-
behavedness theorems (e.g., well-definedness of the semantics and congruence of
the notion of equality) manually. By taking this solution, all the tedious proofs of
congruence, as a typical example, have to be done manually and re-done or adapted
in the case of each single change in the syntax and semantics. Thus, this solution
does not seem promising at all. The third solution is to extend meta-theorems of
SOS to this mixed setting. In this chapter, we pursue the third solution.

The rest of this chapter is structured as follows. In Section 5.2, we review the
related work. Subsequently, Section 5.3 is devoted to accommodating structural
congruences in the SOS framework. We propose a number of SOS interpretations
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for structural congruences and compare them formally. Congruence is by itself
an interesting and essential property for bisimilarity (as an equivalence). Fur-
thermore, it turns out that it plays a role in relating different interpretations of
structural congruences. Thus, in Section 5.4, we study structural congruences
from the congruence point of view. There, we propose a syntactic format for
structural congruences that induces congruence of strong bisimilarity. We show,
by several abstract counter-examples, that our syntactic format cannot be relaxed
in any obvious way and dropping any of the syntactic restrictions may destroy the
congruence property in general. In Section 5.5, we extend our format to cater for
SOS rules with negative premises. To illustrate our congruence format with a con-
crete example, in Section 5.6, we apply it to a CCS-like process algebra. Finally,
Section 5.7 concludes the chapter and points out possible extensions of our work.
For the rest of this chapter, we assume familiarity with TSS’s with constant labels
(Definition 3.1), congruence (Definition 3.3) and strong bisimilarity (Definition
3.4).

5.2 Related Work

This section is concerned with the origins of and recent developments concerning
structural congruences and their relationship with Structural Operational Seman-
tics.

Structural congruences find their origin in the chemical models of computation
[18]. The Chemical Abstract Machine (Cham) of [22] is among the early instances
of such models. In Cham, parallel agents are modelled by molecules floating
around in a chemical solution. The solution is constantly stirred using a magical
mechanism, in the spirit of the Brownian motion in chemistry, that allows for
possible contacts among reacting molecules.

Inspired by the magical mechanism of Cham, structural congruences were intro-
duced in [88, 89] in the semantic specification of the π-calculus. Before that,
an equivalent semantics of the π-calculus had been presented in [91], in terms of
“pure” SOS rules. As stated in [92], structural congruences were also inspired by
a curious difference between lambda-calculi and process calculi; in lambda-calculi,
interacting terms are always placed adjacently in the syntax, while in process cal-
culi, interacting agents may be dispersed around the process term due to syntactic
restrictions. Thus, part of the idea is to bring interacting terms together by con-
sidering terms modulo structural changes. However, the application of structural
congruences is not restricted to this concept. Structural congruences have also
been used to define the semantics of new operators in terms of previously defined
ones (e.g., defining the semantics of the parallel replication operator in terms of
parallel composition, i.e., !x

.
= x ||!x, in [88, 89] and Section 5.6 of this chapter).

This is similar in essence to the concept of definitional extensions in [9].
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Before that, in [85], structural congruences were presented for a subset of Calculus
of Communicating Systems (CCS) under the name flow-algebra (rules). However,
the use of structural congruences in [85] is essentially different from [88, 89]. In [85],
structural congruences are a set of equalities on an algebraic signature. Similar
to [85], in the ACP style of process algebra (e.g., in [13]), there is a conceptual
distinction between such structural rules, as the equational theory of the algebra
and the (transition system) semantics, as its model. From this point of view,
SOS is a means to define the transition systems semantics and thus is not directly
connected to the structural rules. Structural rules are to be proved sound (and
possibly complete) with respect to the defined semantics and the particular notion
of equivalence. In contrast, in [88, 89], they are used as a means to define or
augment the operational semantics of a language. The present chapter is concerned
with the structural congruences in the sense of [88, 89].

The practice of using structural congruences for the specification of operational
semantics, à la Milner [88], has continued since then. See [37], [39] and [44] for
recent examples in defining operational semantics for Mobile Ambients, GAMMA
and its coordination language, and the π-calculus, respectively.

There have been a number of recent works devoted to the fundamental study
of formal semantics with structural congruences. Among these, we can refer to
[?, 77, 78, 116, 117]. The lack of a congruent notion of bisimilarity for the seman-
tics of the π-calculus has been known since [88] (which is not only due to structural
congruences), but most attempts (e.g., [77, 78, 92, 116, 117]) were focused on de-
riving a suitable transition system (e.g., contexts as labels approach of [77, 78]) or
a notion of equivalence (e.g., barbed congruence of [92]) that induce a congruence.
The works of [77, 78, 116, 117] deviate from the traditional interpretation of SOS
deduction rules and establish a new semantic framework close to the reduction
(reaction) rules of lambda calculus [69]. Arguably, this semantic framework is
neither necessarily structural, i.e., following precisely the structure of syntax, nor
structured, i.e., guaranteeing well-behavedness criteria such as congruence. For
example, in [117], it is emphasized that the relation between this framework and
the known congruence results for SOS remains to be established and the present
chapter realizes this goal (at least partially). Thus, compared to the above ap-
proaches, we take a different angle to the problem, that is, to characterize the
set of specifications that induce a reasonable transition relation in its commonly
accepted meaning. In [36], a similar approach is used to derive congruence formats
for tile bisimilarity [51]. The syntactic congruence format of [36] is more restricted
than ours but our results are incomparable since our notions of bisimilarity differs.

To this end, we transfer the SOS meta-theorems concerning congruence of strong
bisimilarity and well-definedness of the semantics to the setting with structural
congruences. For simplicity, we consider TSS’s in tyft format with a single transi-
tion relation. Then, we extend our framework with negative premises and study
the consequences of this extension.
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5.3 Structural Congruences: Three Operational
Interpretations

Structural congruences consist of a set of equations on open terms, denoted by
t ≡ t′ on a given signature. As interpreted by [88], these equations induce a
congruence (and equivalence) relation on closed terms. Then, they are connected
to an SOS specification by means of a special deduction rule, stating that if a term
can perform a transition, its congruent terms can mimic the same transition.

We take this interpretation as the original and intuitive meaning of structural con-
gruences and give it a formal meaning in Section 5.3.1. Moreover, we present two
alternative interpretations in Sections 5.3.2 and 5.3.3. In Section 5.3.2, we intro-
duce the notation ≡ as a new transition relation in the TSS. This way, equations
of structural congruence, naturally turn into SOS axioms. Section 5.3.3 considers
structural congruences as specifications of bisimilar terms. Thus, it adds two de-
duction rules for each equation, stating that if one side of a structural congruence
equation can perform a transition, the other side can perform the same transition
and vice versa.

Informally speaking, the first interpretation is the closest to the intuition behind
structural congruences but as we move on to the second and the third, the resulting
interpretation fits more in the TSS framework. While for the first interpretation,
the notions of proof and provable transitions have to be adapted, for the second
we only have to add a new transition relation and a number of deduction rules
(thus, only a syntactic manipulation of TSS’s) and in the third, even structural
congruences do not show up in the TSS and just new deduction rules have to be
added.

We also present a formal comparison of the three interpretations of structural
congruences. In particular, we show that the first and the second interpretations,
despite their different presentations, coincide. However, the third interpretation
only coincides with the first two if the original TSS is in tyft format and furthermore
bisimilarity is a congruence. In fact, the congruence condition turns out to be
tricky, as structural congruences may jeopardize it even if they are added to a
set of tyft rules (which by themselves guarantee the congruence). This sets the
scene for Section 5.4, where we define syntactic criteria on structural congruences
to derive congruence for strong bisimilarity.

5.3.1 External Interpretation

Structural congruences sc on a set of variables V and a signature Σ consist of a
set of equations of the form t ≡ t′, where t, t′ ∈ T . They induce a structural
congruence relation on closed terms, as defined below.
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Definition 5.1 (Structural Congruence Relation) A structural congruence
relation induced by structural congruences sc on signature Σ, denoted by ≡sc, is
the minimal relation satisfying the following constraints:

1. ∀p∈C p ≡sc p (reflexivity);

2. ∀p,q,r∈C (p ≡sc q ∧ q ≡sc r) ⇒ p ≡sc r (transitivity);

3. ∀(f,ar(f))∈Σ∀0≤i<ar(f)∀−→p ar(f)−1,−→q ar(f)−1∈C
−→p ar(f)−1 ≡sc

−→q ar(f)−1 ⇒
f(−→p ar(f)−1) ≡sc f(−→q ar(f)−1) (congruence);

4. ∀σ:V →C∀t,t′∈T (t ≡ t′) ∈ sc ⇒ (σ(t) ≡sc σ(t′) ∧ σ(t′) ≡sc σ(t)) (structural
congruences).

It can easily be checked that ≡sc is symmetric and thus, alternatively, ≡sc is the
smallest congruence relation satisfying structural congruences on closed terms.

In the rest of this chapter, we assume that the structural congruences have the
same signature as the TSS they are added to.

To link structural congruences to a TSS, a special rule is used, which we call the
structural congruence rule.

Definition 5.2 (The Structural Congruence Rule [88]) The particular rule
schema of the following form (which is in fact a set of deduction rules for all l ∈ L)
is called the structural congruence rule.

(struct)
x ≡ y y

l→ y′ y′ ≡ x′

x
l→x′

(l ∈ L)

Consider a TSS tss = (Σ, V, L, {→}, D) and structural congruences sc on the
same signature. The extension of tss with sc, denoted by tss ∪ {(struct)}, is
defined by the tuple (Σ, V, L, {→}, D ∪ {(struct)}).

There remains a problem concerning Definition 5.2, namely, the structural congru-
ence rule does not fit within the notion of a deduction rule as defined in Definition
3.1 since structural congruences (appearing in the premises) do not fit the defini-
tion of formulae (e.g., in Definition 3.1) per se. In other words, x ≡ y is only a
syntactic notation and we have not assigned any meaning to it, as yet. In fact, this
subsection and the following two are concerned with different interpretations of
the symbol ≡. In this subsection, we do not interpret ≡ directly, but rather exploit
the structural congruence relation to extend the notion of proof. Syntactically, we
allow for deduction rules of the following form:

{χi|i ∈ I} {tj ≡ t′j |j ∈ J}

χ
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where χ and χi’s are positive transition formulae as defined before (in Definition
3.1) and tj and t′j are terms from the signature. This rule format, easily accom-
modates the structural congruence rule. Then, we extend the notion of provable
transitions to the following notion:

Definition 5.3 (Provable Transitions: Extended) A proof of a closed for-
mula φ (in an extended TSS tss∪{(struct)}) is a well-founded upwardly branching
tree of which the nodes are labelled by closed formulae such that

• the root node is labelled by φ, and

• if ψ is the label of a node q and {ψi | i ∈ I} is the set of labels of the nodes

directly above q, then there is a deduction rule
{χi | i ∈ I} {tj ≡ t′j |j ∈ J}

χ
(in tss ∪ {(struct)}) and a substitution σ such that σ(χ) = ψ, for all i ∈ I,
σ(χi) = ψi, and for all j ∈ J , σ(tj) ≡sc σ(t′j).

We re-use the same notations for provability of formulae in the extended setting.

The following lemma shows that in our new framework, congruent (closed) terms
are indeed bisimilar.

Lemma 5.4 Consider a TSS tss and structural congruences sc, and the bisimi-
larity relation ↔ with respect to tss ∪ {(struct)}. It holds that ≡sc⊆ ↔ .

Proof. Immediate, from the definition of bisimilarity and the structural congru-
ence rule by taking ≡sc as a bisimulation relation. ⊠

We may simplify Definition 5.1 by adding a simpler rule to the TSS. The following
(simpler) rule only allows for congruent terms to be replaced in the source of the
transition.

(struct’)
x ≡ y y

l→ y′

x
l→ y′

(l ∈ L)

Suppose that we replace rule (struct) in Definition 5.1 with (struct’) and de-
note the new TSS by tss ∪ {(struct’)}. It turns out that this slight simplification
amounts to a TSS that is equal to tss∪{(struct)} up to bisimilarity, if the original
tss is in tyft format and bisimilarity is a congruence. We first define what coinci-
dence up to bisimilarity means and then formulate and prove the result mentioned
above.

Bisimilarity is an equivalence relation and thus partitions the set of process terms
into equivalence classes. We use this concept to define equality of transition rela-
tions and TSS’s up to bisimilarity.
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Definition 5.5 (Inclusion and Equality up to Bisimilarity) A transition re-
lation →0 ⊆ C × L × C is included in →1 ⊆ C × L × C up to bisimilarity if and

only if for all transitions p
l→0 p

′, there exists a closed term p′′ such that p
l→1 p

′′

and p′ ↔1 p
′′ (where ↔1 is bisimilarity with respect to →1 ). Two transition

relations are equal up to bisimilarity if and only if the inclusions hold in both
directions.

Two TSS’s are called equal if they induce the same transition relations. They are
called equal up to bisimilarity if their induced transition relations are equal up to
bisimilarity.

Note that inclusion (equality) of transition relations implies inclusion (equality)
up to bisimilarity but not vice versa. Inclusion (up to bisimilarity) is reflexive and
transitive and equality (up to bisimilarity) is an equivalence relation.

Corollary 5.6 Suppose that →0 ⊆ C ×L× C is equal to →1 ⊆ C ×L× C up to
bisimilarity; then for all closed terms p, q ∈ C, p ↔ q with respect to →0 if and
only if p ↔ q with respect to →1 .

Proof. Immediate consequence of Definition 5.5. ⊠

A result that comes in handy is that congruence of bisimilarity with respect to
transition relations equal up to bisimilarity coincides.

Corollary 5.7 If transition relations →0 and →1 are equal up to bisimilarity
then bisimilarity with respect to →0 is a congruence if and only if bisimilarity
with respect to →1 is a congruence.

Proof. Immediate result of Corollary 5.6. ⊠

The following two Lemmas establish the equality of tss ∪ {(struct)} and tss ∪
{(struct’)} up to bisimilarity.

Lemma 5.8 For tss in well-founded tyft format and structural congruences sc, if
bisimilarity with respect to tss ∪ {(struct’)} is a congruence, then the transition
relation induced by tss ∪ {(struct)} is included in the transition relation induced
by tss ∪ {(struct’)} up to bisimilarity.

Proof. Let → 0 and → 1 be the two transition relations induced by tss∪{(struct)}
and tss ∪ {(struct’)}, respectively. We have to show that → 0 is included in → 1

up to bisimilarity. Instead, we show that if tss∪{(struct)} ⊢ p l→0 p
′, for arbitrary
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closed terms p and p′ and label l, then tss∪{(struct’)} ⊢ p l→1 p
′′ where p′′ ≡sc p

′.
Then, the thesis follows from Lemma 5.4.

We prove this by an induction on the depth of the proof tree resulting in this
transition (see Definition 5.3).

If transition tss∪{(struct)} ⊢ p l→0 p
′ has a proof of depth 1, then it should be due

to an axiom in tss and a substitution σ (transitions due to (struct) have a proof
depth of at least 2 since they always have a transition in their premises). Then,
it immediately follows from the same axiom (using substitution σ) that there is a

proof for p
l→1 p

′ in tss ∪ {(struct’)} (and p′ ≡sc p
′ holds trivially).

For the induction step, suppose that the transfer condition holds for all transitions

with a proof of depth n− 1 or less. Consider transition p
l→0 p

′ which has a proof
of depth n. If the transition is due to a rule in tss of the following form (for an
arbitrary n-ary function symbol f):

{ti li→ yi|i ∈ I}

f(−→x ar(f)−1)
l→ t

then there exists a substitution σ such that σ(xi) = pi (0 ≤ i < ar(f)), σ(t) = p′,

p = f(−→p ar(f)−1) and tss ∪ {(struct)} ⊢ σ(ti)
li→ σ(yi) for all i ∈ I.

Since we assumed acyclicity of the variable dependency graph, we can define a
rank, rank(x), for each variable x, as the maximum length of a backward chain
starting from x in the variable dependency graph. The rank of a premise is the

rank of its target variable. Then, for each x ∈ vars(ti) of each premise ti
li→ yi of

the deduction rule, it holds that rank(x) < rank(yi).

Take Y = {yi|i ∈ I}. We define a new substitution σ′ such that for all x ∈ V \ Y ,
σ′(x)

.
= σ(x). Note that thus far this substitution is not defined for variables in

Y . We extend the definition while proving, by induction on the rank of a premise
r, the preservation of three essential properties:

1. σ(ti) ≡sc σ
′(ti);

2. σ′(ti)
li→ 1σ

′(yi);

3. σ(yi) ≡sc σ
′(yi).

Take any premise, say some i ∈ I, that has a minimal rank of which the target
variable yi is not defined under σ′. The source term of this premise (ti) is fully
interpreted under σ′ (i.e., σ′(ti) is a closed term) and it follows from Lemma 4.7
(since ≡sc is a congruence) and the above constraints that σ(ti) ≡sc σ

′(ti). Since

σ(ti)
l→ 0σ(yi) has a proof of depth n − 1 or less, it follows from the induction
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hypothesis that σ′(ti)
l→1 p

′
i and σ(yi) ≡sc p

′
i for some p′i. Then take σ′(yi)

.
= p′i.

Using this inductive procedure, we complete the definition of σ′ for all yi’s and
thus for all variables x, maintaining the property σ(x) ≡sc σ

′(x). Then, using the

same rule, we have a proof for σ′(f(−→x ar(f)−1))
l→ 1σ

′(t), or p
l→ 1σ

′(t) and it holds
that p′ = σ(t) ≡sc σ

′(t).

If the transition is due to the congruence rule of the following form

(struct)
x ≡ y y

l→ y′ y′ ≡ x′

x
l→x′

then there is a substitution σ such that for some q and q′, σ(x) = p, σ(y) = q,

σ(y′) = q′ and σ(x′) = p′ and it holds that p ≡sc q, p
′ ≡sc q

′ and q
l→0 q

′. By

applying the induction hypothesis on q
l→0 q

′, we get q
l→ 1q

′′ for some q′′ such that
q′′ ≡sc q

′ and by symmetry and transitivity of ≡sc, we get p′ ≡ q′′. Thus, by using
deduction rule

(struct’)
x ≡ y y

l→ y′

x
l→ y′

and a substitution σ′ such that σ′(x) = p, σ′(y) = q, σ′(y′) = q′′, we have a proof

for p
l→ 1q

′′ and we have already shown that p′ ≡sc q
′′. This concludes the proof. ⊠

The above lemma cannot be generalized to arbitrary TSS’s (not in the tyft format).
The following example illustrates this fact.

Example 5.9 Consider the following structural congruence sc and TSS tss.

a ≡ f(b)

(a)
a

l0→ a
(xb)

x
l0→ f(b)

x
l0→ b

Suppose that the common signature contains a and b as constants and f as a
unary function symbol. Since a ≡ f(b), using (a) and (struct), we can prove that

a
l0→ f(b) and hence it follows from (xb) that a

l0→ b. However, using (struct’) we are

not able to prove a
l0→ b since a

l0→ f(b) is not provable anymore. Furthermore, we

cannot prove a
l0→ p for any p ↔ b. This shows that the two TSS’s tss∪{(struct)}

and tss ∪ {(struct’)} are not equal up to bisimilarity.

Inclusion of the transition relation induced by tss∪{(struct’)} in tss∪{(struct)},
however, does not require any assumption about the TSS.
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Lemma 5.10 For an arbitrary TSS tss and structural congruences sc, the tran-
sition relation induced by tss ∪ {(struct’)} is a subset of the transition relation
induced by tss ∪ {(struct)}.

Proof. Straightforward from an induction on the depth of the proof of transitions
in tss ∪ {(struct’)}. Note that ≡sc is reflexive and thus any transition provable
from rule (struct’) is also provable from (struct). ⊠

We are not able to reproduce the results of Theorem 3.7 (concerning congruence
for the tyft format) in the extended setting with structural congruences. In fact,
adding structural congruences to a set of tyft rules does not preserve the congruence
property of bisimilarity. The following counter-example shows this fact.

Example 5.11 Consider the following structural congruence and TSS. The com-
mon signature is assumed to have a and b as constants and f as a unary operator.

a ≡ f(b)

(a)
a

l0→ a
(b)

b
l0→ a

In the above specification, both a and b can perform an l0 transition to a due
to rules (a) and (b), respectively. On one hand, using Definition 5.1, a is only
congruent to itself and f(b). On the other hand, b is only congruent to itself.
Since f(b) cannot perform any new transition, neither a nor b can perform any
other transition due to (struct). Thus, to this end, we have a ↔ b. However, it
does not hold that f(a) ↔ f(b) since f(a) cannot perform any transition (it is
only congruent to f(f(b)) which cannot perform any transition either), but f(b)
can perform an l0 transition to a (using (struct) since it is congruent to a). This
shows that bisimilarity is not a congruence in the above TSS, despite the fact that
the original TSS is in tyft format.

Several other counter-examples of violating the congruence property by structural
congruences are presented in the remainder of this paper.

5.3.2 Transition Relation Interpretation

The second interpretation of structural congruences, considers ≡ as a new transi-
tion relation in the TSS. Thus, structural congruence equation t ≡ t′ is interpreted
as the following SOS axiom:

(tt’)
t ≡ t′

To be more precise ≡ is defined as the pair ( ,�) where  is a fresh transition
relation and � is a fresh label. (In fact, freshness of either of the two suffices.)
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Since transition relations are directed, we have to add another deduction rule to
account for the natural symmetry in ≡:

(t’t)
t′ ≡ t

Also, to account for reflexivity, transitivity and congruence of ≡, we have to add
the following rules to the TSS:

(refl)
x ≡ x

(trans)
x ≡ y y ≡ z

x ≡ z

(congf)
{xi ≡ yi | 0 ≤ i < ar(f)}
f(−→x ar(f)−1) ≡ f(−→y ar(f)−1)

(for all (f, ar(f)) ∈ Σ)

Then, the structural congruence rule

(struct)
x ≡ y y

l→ y′ y′ ≡ x′

x
l→x′

fits very well in the definition of a TSS with constant labels (Definition 3.1) since
x ≡ y and x′ ≡ y′ are now valid formulae.

We summarize the new interpretation of structural congruences in the following
definition.

Definition 5.12 (Structural Congruences as a Transition Relation) The interpre-
tation of structural congruences sc on signature Σ with a TSS tss = (Σ, V, L, {→}, D)
is a new TSS tss ∪ 〈〈sc〉〉 .

= (Σ, V, L ∪ {ln}, {→ , →n }, D ∪ 〈〈sc〉〉), where 〈〈sc〉〉 is
defined as follows:

〈〈sc〉〉 .= {(refl), (trans), (struct)} ∪ {(congf) | (f, ar(f)) ∈ Σ} ∪





(tt’)
t ≡ t′

,

(t’t)
t′ ≡ t

∣∣∣∣∣∣∣
(t ≡ t′) ∈ sc






where (refl), (trans), (congf) and (struct) are the reflexivity, transitivity, con-
gruence and structural congruence rules, respectively, as defined before.

We are now in the position to rephrase Lemma 5.4 for the new interpretation.
Namely, we can now prove that for all provable (transitions) p ≡ q, p and q are
bisimilar.
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Lemma 5.13 Consider a TSS tss and structural congruences sc. Take Σ to be the
common signature of sc and tss. Then, for all p, q ∈ C such that tss∪〈〈sc〉〉 ⊢ p ≡ q,
we have tss ∪ 〈〈sc〉〉 ⊢ p ↔ q.

Proof. Take R to be the set of all pairs of closed terms (p, q) such that p ≡ q
is a provable transition. Consider an arbitrary pair (p, q) ∈ R; we have to prove

that for all p′ ∈ C and for all transitions of p (both transitions of the form p
l→ p′

and p ≡ p′) there exists a q′ such that q can make the same transitions to q′ and
(p′, q′) ∈ R (and vice versa which is symmetric to this case).

1. If tss ∪ 〈〈sc〉〉 ⊢ p l→ p′, since (p, q) ∈ R and R is symmetric by construction,
(q, p) ∈ R. Thus, tss ∪ 〈〈sc〉〉 ⊢ q ≡ p. Hence, it follows from (struct)

that tss ∪ 〈〈sc〉〉 ⊢ q
l→ p′ using premises q ≡ p, p

l→ p′ and p′ ≡ p′ (the last
statement follows from rule (refl)).

2. If tss ∪ 〈〈sc〉〉 ⊢ p ≡ p′, we already know that tss ∪ 〈〈sc〉〉 ⊢ q ≡ p (see the
previous item) and thus it follows from (trans) that tss∪ 〈〈sc〉〉 ⊢ q ≡ p′ and
again (p′, p′) ∈ R due to (refl).

⊠

To compare the two interpretations given up to now, we first observe that the
congruent classes of closed terms coincide for those.

Lemma 5.14 For two closed terms p and q, p ≡sc q if and only if p ≡ q is provable
from tss ∪ 〈〈sc〉〉.

Proof. By straightforward inductions on the structure of ≡sc and depth of the
proof for p ≡ q in tss ∪ 〈〈sc〉〉. ⊠

Using this lemma, we can easily show that the transition relations → induced by
the two interpretations coincide.

Theorem 5.15 For arbitrary closed terms p and p′ and arbitrary label l, p
l→ p′

is provable from tss ∪ {(struct)} if and only if it is provable from tss ∪ 〈〈sc〉〉.

Proof. By a straightforward induction on the depth of the proofs for the transition

p
l→ p′ and by using Lemma 5.14. ⊠
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Also, it can be easily proven that replacing (struct) with (struct’) in the definition
of 〈〈sc〉〉 results in an equal transition relation up to bisimilarity, provided that the
necessary conditions of Lemma 5.8 hold. We dispense with repeating the lemma
and the proof. We conclude this subsection by emphasizing that although the
first and the second interpretations have different presentations, they are formally
equal.

5.3.3 Bisimilarity Interpretation

An alternative way of interpreting structural congruences is to say that congru-
ent terms should be able to mimic each others’ transitions. In other words, the
equation t ≡ t′ is interpreted as σ(t) ↔ σ(t′) for all closed terms σ(t) and σ(t′).
To realize this interpretation in terms of SOS, we define a pair of rules for each
equation (and for each label and transition relation), to prove all transitions of one
side for the other side and vice versa. This concept is formally defined as follows.

Definition 5.16 (Structural Congruences as Bisimilarity) Consider struc-
tural congruences sc on signature Σ and a TSS tss = (Σ, V, L, {→}, D). We
define a new TSS tss ∪ [[sc]]

.
= (Σ, V, L, {→}, D ∪ [[sc]]), where [[sc]] is the SOS

interpretation of sc, defined as follows:

[[sc]]
.
=






(btt’)
t

l→ y

t′
l→ y

,

(bt’t)
t′

l→ y

t
l→ y

∣∣∣∣∣∣∣∣∣∣∣∣

(t ≡ t′) ∈ sc






In the above definition, y is a fresh variable (i.e., y /∈ vars(t) and y /∈ vars(t′)).

We cannot present a direct proof for Lemma 5.4 (or similarly, Lemma 5.14) in this
setting since p ≡sc q (or p ≡ q) does not have any clear semantic counterpart in
this interpretation. However, we can indirectly prove a similar result as of Lemmas
5.4 and 5.14. Namely, we can show that if p ≡sc q (thus, tss ∪ 〈〈sc〉〉 ⊢ p ≡ q) ,
then tss∪ [[sc]] ⊢ p ↔ q provided that bisimilarity is a congruence. Next, we prove
a lemma that establishes the aforementioned fact.

Lemma 5.17 Consider a TSS tss and structural congruences sc. If p ≡sc q and
bisimilarity w.r.t. tss∪ [[sc]] is a congruence, then it holds that tss∪ [[sc]] ⊢ p ↔ q.

Proof. We prove the lemma by an induction on the structure of ≡sc:

1. Reflexivity: If p ≡sc q is due to reflexivity, then the lemma follows trivially.
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2. Transitivity: If p ≡sc q is due to transitivity, then there exists a closed
term s such that p ≡sc s and s ≡sc q. Then, according to the induction
hypothesis tss ∪ [[sc]] ⊢ p ↔ s and tss ∪ [[sc]] ⊢ s ↔ q and since ↔ is
transitive tss ∪ [[sc]] ⊢ p ↔ q.

3. Structural congruences: Then there is an equation t ≡ t′ (or similarly t′ ≡ t,
which is symmetric to this case) and a substitution σ such that σ(t) = p
and σ(t′) = q. It follows from Definition 5.16 that there is a rule (btt’) in
tss ∪ [[sc]] of the following form:

(btt’)
t

l→ y

t′
l→ y

(l ∈ L)

Then, suppose that p
l→ p′ for an arbitrary l and p′, by taking σ′(x)

.
= σ(x)

for x 6= y and σ′(y)
.
= p′, we can derive tss ∪ [[sc]] ⊢ q l→ p′ using the above

rule and substitution σ′ (p′ ↔ p′ holds trivially).

4. Congruence: If p ≡sc q is due to congruence, then, p = f(−→p ar(f)−1), q =
f(−→q ar(f)−1) and −→p ar(f)−1 ≡sc

−→q ar(f)−1. It follows from the induction
hypothesis that tss ∪ [[sc]] ⊢ −→p ar(f)−1 ↔ −→q ar(f)−1 and since bisimilarity is
a congruence tss ∪ [[sc]] ⊢ p = f(−→p ar(f)−1) ↔ f(−→p ar(f)−1) = q.

⊠

To compare this interpretation with the previous two interpretations, it suffices
to compare it with one of them (as they are formally proved equal). Thus, we
compare this interpretation with the first one. Next, we show that the transitions
introduced by this interpretation are included in the transition relation induced
by the first one.

Theorem 5.18 For arbitrary closed terms p and p′ and arbitrary label l if tss ∪
[[sc]] ⊢ p l→ p′ then tss ∪ {(struct)} ⊢ p l→ p′.

Proof. By an induction on the proof for tss∪[[sc]] ⊢ p l→ p′. For the induction basis,
if the proof has depth one then it is due to an axiom in tss and a substitution
σ. Using the same axiom and the same substitution, we can derive that tss ∪
{(struct)} ⊢ p l→ p′.

For the induction step, suppose that the theorem holds for all formulae with a

proof of depth n− 1 or less and suppose that tss ∪ [[sc]] ⊢ p l→ p′ is due to a proof
of depth n.



62 Chapter 5 Structural Congruences

If the last deduction rule in the proof tree is in tss then since all the premises of
the rule have a proof of depth n−1 or less, they are all provable in tss∪{(struct)}.

Thus, using the same rule and same substitution, we have tss∪{(struct)} ⊢ p l→ p′.

If the last deduction rule has the following form:

(btt’)
t

l→ y

t′
l→ y

(l ∈ L)

then, there exists a substitution σ such that σ(t′) = p and σ(y) = p′. According
to Definition 5.16, there exists an equation t ≡ t′ (or symmetrically, t′ ≡ t) in sc.
On one hand, using σ, we can derive that σ(t) ≡sc p and since ≡sc is symmetric,
p ≡sc σ(t). Also, it follows from reflexivity of ≡sc that p′ ≡sc p

′. On the other

hand, since σ(t)
l→ p′ has a proof of depth n − 1, it follows from the induction

hypothesis that tss ∪ {(struct)} ⊢ σ(t)
l→ p′. Using premises p ≡sc σ(t), σ(t)

l→ p′

and p′ ≡sc p
′, we can prove from (struct) that tss ∪ {(struct)} ⊢ p l→ p′. ⊠

The above theorem establishes an inclusion result in one direction. To give a full
comparison, it remains to give a comparison in the other direction. Next, we give
an indirect result leading to such a full comparison.

Theorem 5.19 Consider a TSS tss in tyft format and structural congruences
sc. Suppose that bisimilarity with respect to tss ∪ [[sc]] is a congruence then the
transition relation induced by tss∪{(struct)} is included in the transition relation
induced by tss ∪ [[sc]] up to bisimilarity.

Proof. We have to prove for arbitrary closed terms p and p′ and arbitrary label

l that if tss ∪ {(struct)} ⊢ p
l→ p′ then tss ∪ [[sc]] ⊢ p

l→ p′′ and tss ∪ [[sc]] ⊢
p′′ ↔ p′. We show this by an induction on the depth of the proof for p

l→ p′ in
tss ∪ {(struct)}.

If transition p
l→ p′ is provable from tss ∪ {(struct)} with a proof of depth one,

then it is due to an axiom in tss and a substitution σ. By taking the same axiom

and substitution, we can prove tss ∪ [[sc]] ⊢ p l→ p′.

For the induction step, if the transition p
l→ p′ is provable from tss ∪ {(struct)}

with a proof of depth n, then we distinguish the following two cases.

If the transition is due to a rule in tss of the following form:

(d)
{ti li→ yi|i ∈ I}

f(−→x ar(f)−1)
l→ t
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and a substitution σ such that σ(xi) = pi (0 ≤ i < n), σ(t) = p′ and p =
f(−→p ar(f)−1) and take Y = {yi|i ∈ I}. We aim at defining a new substitution
σ′ in a similar way as we have defined it in the proof of Lemma 5.8. Namely,
we define that for all x ∈ V \ Y , σ′(x)

.
= σ(x). To complete the definition of

σ′ for the variables in Y , we start with the premise of which all variables in
the source are defined in σ′ and the variable in the target is undefined. Such a
premise should exist due to well-foundedness of premises with respect to variable-

dependency order. Suppose such a premise is ti
li→ yi. Then, since bisimilarity is

a congruence and according to the construction of σ′, it follows from Lemma 4.7

that σ(ti) ↔ σ′(t′i). Transition σ(ti)
li→σ(yi) has a proof of depth n − 1 or less

and according to the induction hypothesis, there exists a closed term p′i such that

σ′(ti)
li→ p′i and σ(yi) ↔ p′i. Then, take σ′(yi)

.
= p′i. Using this scheme, we are able

to define σ′ inductively for all variables yi in such a way that ∀x∈V σ(x) ↔ σ′(x).

This way, we complete a proof for p
l→σ′(t) using σ′ and (d) and it follows from

the construction of σ′ and Lemma 4.7 that σ(t) ↔ σ′(t′).

It remains to prove the case where the transition p
l→ p′ is due to (struct):

(struct)
x ≡ y y

l→ y′ y′ ≡ x′

x
l→x′

and substitution σ such that σ(x) = p, σ(x′) = p′ and there exists two closed

terms q and q′ such that σ(y) = q, σ(y′) = q′, p ≡sc q, q
′ ≡sc p

′ and q
l→ q′. Since

q
l→ q′ has a proof of depth n − 1, there should exist a closed term q′′ such that

tss ∪ [[sc]] ⊢ q l→ q′′ and tss ∪ [[sc]] ⊢ q′ ↔ q′′. From q′ ≡sc p
′ and Lemma 5.17, it

follows that tss ∪ [[sc]] ⊢ q′ ↔ p′ and since bisimilarity is transitive, it holds that
tss ∪ [[sc]] ⊢ q′′ ↔ p′ and this concludes the proof. ⊠

The above theorem implies that the three interpretation coincide up to bisimilarity,
provided that some necessary conditions (i.e., the tyft format for the TSS and
congruence of bisimilarity) hold. Thus, if the necessary conditions of Theorem
5.19 hold, one may choose among these interpretations at will and the result will
always be valid for the other interpretations (up to bisimilarity). However, the
coincidence result between these interpretations relies on congruence of bisimilarity
(w.r.t. the third interpretation) and conformance of the TSS to the tyft format. The
following two examples show that when these necessary conditions do not hold,
this interpretation may deviate from the first two (and the first interpretation
with deduction rule (struct’) instead of (struct)). An explanation of the reason
for such necessary conditions comes after each example.
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Example 5.20 Consider the following structural congruence sc and TSS tss.

a ≡ b (fb)
f(b)

l0→ b
(b)

b
l1→ b

If we interpret structural congruences according to our first interpretation, we
have that a ≡sc b and f(a) ≡sc f(b) and it follows from Lemma 5.4 that a ↔ b

and f(a) ↔ f(b). Thus, for example, in this interpretation, transition f(a)
l0→ b is

provable using the above structural congruences and (struct).

According to the third interpretation, tss∪ [[sc]] comprises the following deduction
rules:

(bab)
a

l→ y

b
l→ y

(l ∈ L) (bba)
b

l→ y

a
l→ y

(l ∈ L)

(fb)
f(b)

l0→ b
(b)

b
l1→ b

However, from the above TSS, there is no way to prove f(a)
l0→ b, anymore.

One may notice that the above problem has to do with the lack of the congruence
property in our TSS; we can derive from Lemma 5.13 that a ↔ b but apparently,
it does not hold that f(a) ↔ f(b). This is indeed the case. The deduction rules in
tss do not conform to tyft format and even worse, their induced bisimilarity is not
a congruence in the first place. Next, we give another counter-example, showing
that even if the original TSS is in tyft, adding structural congruences according to
the third interpretation may violate the intuition.

Example 5.21 Consider structural congruences sc and TSS tss as defined below.

a ≡ b f(b) ≡ f(c)

(fx)
x

l0→ y

f(x)
l0→ f(y)

(c)
c

l0→ c

Suppose that we have a common signature with constants a, b and c and a unary
function symbol f . Then, according to the first interpretation of structural congru-
ences, we have a ≡sc b and thus f(a) ≡sc f(b). Since we also have f(b) ≡sc f(c),
it follows from the transitivity condition that f(a) ≡sc f(c). According to (fx),

f(c)
l0→ f(c) and thus it follows from (struct) that f(a)

l0→ f(c).
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Figure 5.1 Interpretations of Structural Congruences

According to the third interpretation, tss ∪ [[sc]] is defined as:

(bab)
a

l→ y

b
l→ y

(bba)
b

l→ y

a
l→ y

(bfbfc)
f(b)

l→ y

f(c)
l→ y

(bfcfb)
f(c)

l→ y

f(b)
l→ y

(fx)
x

l0→ y

f(x)
l0→ f(y)

(c)
c

l0→ c

but in the above TSS, transition f(a)
l0→ f(c) is not provable anymore.

Again the above problem is due to the lack of the congruence property. In the
above TSS, it clearly holds that a ↔ b but it does not hold that f(a) ↔ f(b). In
the next section, we aim at giving a solution to guarantee this criterion.

Figure 5.1 summarizes the comparison of the three interpretations. In this fig-
ure, normal and dashed arrows mean inclusion and inclusion up to bisimilarity of
transition relations in the indicated direction, respectively. All the dashed arrows
require the tyft format for tss as a necessary condition. For the two cases involving
Theorem 5.19, the dashed arrows also require the congruence of bisimilarity for
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their target interpretation.

Regarding the congruence conditions, note that congruence for the third interpre-
tation implies congruence for the first and the second one, provided that the tyft
condition holds (following Corollary 5.7 as the transition relations coincide up to
bisimilarity). While congruence of bisimilarity for the first and the second inter-
pretations does not have any general implication for the congruence of bisimilarity
with respect to the third one. Recall the following TSS and structural congruences
from Example 5.21.

a ≡ b f(b) ≡ f(c)

(fx)
x

l0→ y

f(x)
l1→ f(y)

(c)
c

l0→ c

For the above specification, it can be checked that bisimilarity is a congruence
according to the first interpretation (derivable bisimilarities are a ↔ b and f(a)
↔ f(b) ↔ f(c) ↔ f(f(a)) ↔ . . .). However, we have already shown that

in the transition relation induced by the third interpretation, bisimilarity is not a
congruence as it holds that a ↔ b but not f(a) ↔ f(b). Thus, for our congruence
format to be useful for all the three notions, we have to prove it correct with
respect to the third interpretation. This way, the congruence format not only
induces congruence with respect to the other two notions, it also guarantees that
for specifications in the standard format, all the three interpretations coincide and
they can be freely chosen at one’s convenience.

5.4 Congruence for Structural Congruences

In this section, we propose a syntactic format for structural congruences and prove
that structural congruences conforming to this format are safe for the purpose of
congruence when added to a set of tyft rules. As justified in Section 5.3, we use the
third interpretation of structural congruences to prove our format correct. Then,
by several counter-examples, we show that none of the syntactic constraints on
this format can be dropped in general and thus our syntactic format cannot be
relaxed trivially.

5.4.1 Congruence Format for Structural Congruences (cfsc)

Our syntactic criteria on structural congruences are defined below.

Definition 5.22 (Cfsc format) Structural congruences sc (added to a TSS tss)
are in the cfsc format if and only if any equation in sc is of one of the following
two forms.
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1. An fx equation is of the form f(−→x ar(f)−1) ≡ g(−→y ar(g)−1) for function sym-
bols f and g (which need not be different) and for variables xi (0 ≤ i < ar(f))
and yj (0 ≤ j < ar(g)). Variables xi (for all 0 ≤ i < ar(f)) and yj (for all
0 ≤ j < ar(g)) are distinct among themselves (i.e., for all i 6= j, xi 6= xj and
yi 6= yj) but they need not form two disjoint sets (i.e., it may be that for
some i and j, xi = yj).

2. A defining equation is of the form f(x0, . . . , xar(f)−1) ≡ t (or similarly, t ≡
f(−→x ar(f)−1) which we do not mention in the remainder due to symmetry)
where f is a function symbol and t is an arbitrary term. Similar to fx
equations, variables xi (for all 0 ≤ i < ar(f)) have to be distinct. Two more
conditions have to be satisfied for his type of equations; first, all variables
in t should be bound by variables x0, . . . , xar(f)−1, i.e., vars(t) ⊆ {xi|0 ≤
i < ar(f)} and second, f may not appear in any other structural congruence
equation and source of the conclusion of any deduction rule in tss. Note
that we have no further assumption about t, thus, there may be a repetition
of variables in t, occurrences of f may appear in t and t may consist of any
number of constants and function symbols.

The above two categories are not disjoint; i.e., an equation may be both fx and
defining. For the remainder, it does not make any difference whether such equa-
tions are taken as fx, defining, or both.

In the following theorem, we state that structural congruences conforming to the
cfsc format induce a congruent bisimilarity relation (with respect to all the three
interpretations) when added to a set of tyft rules.

Theorem 5.23 (Congruence Theorem for cfsc) Consider a set of deduction rules
tss in tyft format. If structural congruences sc (added to tss) are in the cfsc
format, then bisimilarity is a congruence for all the transition relations induced
by the three interpretations of tss extended with sc.

Proof. We prove the theorem for the third interpretation and it follows from
Theorem 5.18 and 5.19 and Corollary 5.7 that bisimilarity is a congruence for
the first interpretation. Also, from Theorem 5.15, it follows that bisimilarity is
congruence for the second interpretation. Since tss is in tyft format, it also follows
from Lemmas 5.8 and 5.10 that bisimilarity is a congruence for tss ∪ {(struct’)},
as well.

We give an indirect proof for this theorem. First, we give a slightly simplified inter-
pretation of structural congruences in the cfsc format, denoted by tss∪ [[sc]]∗. The
simplification is only concerned with defining rules. Consider a defining equation
of the form f(x0, . . . , xar(f)−1) ≡ t; this equation is aimed at defining the opera-
tional behavior of f , thus the following rule introduced by the third interpretation
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seems redundant.

(bft)
f(−→x ar(f)−1)

l→ y

t
l→ y

The simplification only eliminates rules of the above shape. As a consequence
of this simplification the resulting TSS is naturally in tyft format. Thus, the
congruence of bisimilarity follows from Theorem 3.7. Then, we prove that for a
tss in tyft and sc in cfsc, tss∪ [[sc]] and tss∪ [[sc]]∗ are equal and we conclude that
bisimilarity is a congruence for tss ∪ [[sc]], as well.

Definition 5.24 (Structural Congruences as Bisimilarity: Simplified) Consider
structural congruences sc on signature Σ and a TSS tss = (Σ, V, L, {→}, D).
We define a new TSS tss ∪ [[sc]]∗

.
= (Σ, V, L, {→}, D), where [[sc]]∗ is the SOS

interpretation of sc, defined as follows:

Fx equations: [[f(−→x ar(f)−1) ≡ g(−→y ar(g)−1)]]∗
.
=






(bfg)
f(−→x ar(f)−1)

l→ y

g(−→y ar(g)−1)
l→ y

(l ∈ L),

(bgf)
g(−→y ar(g)−1)

l→ y

f(−→x ar(f)−1)
l→ y

(l ∈ L)






;

Defining equations: [[f(−→x ar(f)−1) ≡ t]]∗
.
=

{(fdef)
t

l→ y

f(−→x ar(f)−1)
l→ y

(l ∈ L)};

[[sc]]∗
.
=
⋃

(t≡t′)∈sc[[t ≡ t′]]∗; s

where in each of the introduced deduction rules, y is a fresh variable not appearing
in the source of any formula in the same deduction rule (i.e., y /∈ {xi, yj |0 ≤ i <
ar(f) ∧ 0 ≤ j < ar(g)}). As stated before, for equations matching both fx and
defining equations, one can choose any of the above definitions at will.

It can be easily observed from the above construction that if tss is in the tyft
format and sc is in cfsc, then tss ∪ [[sc]]∗ is in the tyft format. Thus, it follows
from Theorem 3.7 that bisimilarity is a congruence for tss ∪ [[sc]]∗.

Next, we show that for transition systems specification tss in the tyft format and
structural congruence sc in the cfsc format, tss ∪ [[sc]] and tss ∪ [[sc]]∗ are equal.

For arbitrary closed terms p and p′ and arbitrary label l, if tss∪ [[sc]] ⊢ p l→ p′, we

prove that tss∪ [[sc]]∗ ⊢ p l→ p′. We use an induction on the depth of the proof for
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p
l→ p′ in tss∪ [[sc]]. The implication in the other direction holds vacuously as the

set of deduction rules of tss ∪ [[sc]]∗ is a subset of that of tss ∪ [[sc]].

For the induction basis, the transition has to be due to an axiom in tss and a
substitution σ, thus, using the same axiom and substitution, we can prove the
same transition in tss ∪ [[sc]]∗.

For the induction step, if the transition p
l→ p′ in tss∪ [[sc]] is due to a rule that is

in tss ∪ [[sc]]∗, as well, then according to the induction hypothesis, we can prove
the premises of this rule from tss ∪ [[sc]]∗ and since the rule is tss ∪ [[sc]]∗, we can

use the same rule and the same substitution to prove p
l→ p′.

It only remains to prove the induction step for the cases where the last rule is not
in tss ∪ [[sc]]∗, thus of the shape:

f(−→x ar(f)−1)
l→ y

t
l→ y

corresponding to a defining equation f(−→x ar(f)−1) ≡ t and there exists a sub-
stitution σ such that σ(t) = p and σ(y) = p′ and there exist closed terms pi

(0 ≤ i < ar(f)) such that σ(xi) = pi. The transition f(−→p ar(f)−1)
l→ p′ has a

proof of depth n− 1 and, according to the induction hypothesis, is provable from
tss ∪ [[sc]]∗. Consider the proof of this transition in tss ∪ [[sc]]∗. Note that since
f(−→x ar(f)−1) ≡ t is a defining equation, f does not appear in the source of the
conclusion of any deduction rule in tss. Further, since f does not appear in any
other equation, there is no rule in [[sc]]∗ with f in its source of conclusion, but the
following rule.

t
l→ y

f(−→x ar(f)−1)
l→ y

Thus, the transition f(−→p ar(f)−1)
l→ p′ is due to the above rule and there exists

a substitution σ′ such that σ′(xi) = pi (0 ≤ i < ar(f)) and σ′(y) = p′. But
vars(t) ⊆ {xi|0 ≤ i < ar(f)}, and σ′(xi) = σ(xi) = pi (0 ≤ i < ar(f)) thus,

σ′(t) = σ(t). Hence, σ(t)
l→ p′ has a proof in tss ∪ [[sc]]∗.

This concludes the proof, as we have shown that tss ∪ [[sc]] is equal to tss ∪ [[sc]]∗

and tss ∪ [[sc]]∗ is in the tyft format. ⊠

5.4.2 Impossible Relaxations of Cfsc

Next, we show that the cfsc format cannot be relaxed in any obvious way. We take
each and every syntactic constraint on cfsc and by an abstract counter-example,
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show that removing it will result in violating congruence of bisimilarity. The
counter-examples will be in such a way that the congruence is ruined according to
all three interpretations. We start with a counter-example showing that variables
in each side of the fx equation need to be distinct.

Example 5.25
f(x, x) ≡ a (a)

a
l0→ a

(b)
b

l0→ a

Similar to Example 5.11, it clearly holds in the above specification that a ↔ b.
However, it does not hold that f(a, a) ↔ f(a, b) since the former can perform an
l0 transition, while the latter cannot.

The other condition on fx equations is that they may only have one function
symbol in each side of the equation. We have already shown that this constraint
cannot be relaxed in Example 5.11 in the previous section. There, the equation
a ≡ f(b) had two function symbols, namely the constant b and unary function
symbol f and the congruence property is shown to be violated. A similar condition
forces defining equations to have only one function symbol on the side to be defined
(i.e., only f in the left-hand-side of the equation f(−→x ar(f)−1) ≡ t). In the following
example, we show that allowing more function symbols also endangers congruence.

Example 5.26
f(b) ≡ a (a)

a
l0→ a

Suppose that our signature consists of three constants a, b and c and a unary
function symbol f . Then, it immediately follows that b ↔ c since none of the two
constants can perform any transition. However, it does not hold that f(b) ↔ f(c)
since the first term can perform a transition while the latter cannot.

The remaining constraints are on defining equations. First of all, for a defining
equation f(x0, . . . , xar(f)−1) ≡ t, variables xi should all be distinct. We have
already shown in Example 5.25 that relaxing this constraint may be harmful, for
the only structural congruence equation satisfies both the definition of fx and
defining equations. The other constraint on a defining equation f(−→x ar(f)−1) ≡ t
is that vars(t) ⊆ {xi|0 ≤ i < ar(f)}. The following counter-example shows that
we cannot drop this constraint.

Example 5.27

d ≡ f(a, x) (c)
c

l0→ c
(f)

x1
l0→ y1

f(x0, x1)
l0→ y1

Suppose that our common signature consists of a, b, c and d as constants and
f as a unary function symbol. Equation d ≡ f(a, x) fits all syntactic criteria of
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a defining equation (for d), but the one stated above. It follows from (f) that

f(a, c)
l0→ c. Since d ≡ f(a, x), then d

l0→ c and from the same equation (in the

other direction), we can deduce that f(a, b)
l0→ c. However, it cannot be derived

that f(b, b)
l0→ c. This witnesses that bisimilarity is not a congruence, as a ↔ b but

it does not hold that f(a, b) ↔ f(b, b).

The last constraint on defining equations is concerned with freshness of the func-
tion symbol being defined. In the following two counter-examples, we show that
the defined function symbol cannot appear in any other structural congruence
equation, nor in the source of the conclusion of a deduction rule.

Example 5.28

c ≡ a c ≡ g(b) (a)
a

l0→ a
(b)

b
l0→ a

Again, in the above specification, we have a ↔ b but it is not true that g(a) ↔ g(b)
since from the structural congruences, we can derive that a ≡sc g(b) and hence
g(b) can perform an l0 transition to a while g(a) cannot perform any transition.

Example 5.29

f(x) ≡ g(a) (a)
a

l0→ a
(b)

b
l0→ a

(f)
f(x)

l0→ f(x)

It follows from the above specification that a ↔ b but it does not hold that
g(a) ↔ g(b) since the former can perform a transition due to structural congru-
ences and (f) while the latter cannot perform any transition.

5.5 Negative Premises

As motivated in Section 3.2.4, sometimes it comes handy to define a transition
based on the impossibility of a transition for a particular subterm. Several exam-
ples (e.g., deadlock detection, sequencing and urgency, cf. [27]) show that negative
premises are useful additions to TSS’s. Thus, it seems natural to extend TSS’s
in tyft format to account for negative premises. The ntyft format (Definition 3.8)
realizes this goal.

As stated before, in the presence of negative premises, the concepts of proof and
provable transitions become more complicated. A proof, as defined before, can
provide a reason for presence of a transition but not for its absence. Thus, we
have to resort to other notions of proof that can account for absence of transitions,
as well. We first consider the notion of supported model (Definition 2.6). Using
the interpretations presented in Section 5.3, one can use the notion of supported
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model for TSS’s augmented with structural congruences. However, this may lead
to strange phenomena as witnessed by the following example.

Example 5.30 Consider the following structural congruence equation, added to
a TSS with the empty set of rules. Suppose that the common signature comprises
of constants a and b and unary function symbols f and g.

g(x) ≡ f(a)

The above equation clearly satisfies the cfsc format as a defining equation and thus
bisimilarity is congruence. According to the notion of provable transitions (Defi-
nitions 2.5 and 5.3) the above combination of the TSS and structural congruences
induces an empty transition relation. However, in addition to this intuitive transi-
tion relation, the same combination has another supported model, as well, namely

{f(a)
l→ a, g(a)

l→ a, g(b)
l→ a, g(f(a))

l→ a, . . .} (for which bisimilarity is not a con-
gruence).

The problem in the above example lies in the inherent cyclicity in the structural
congruence rule or the corresponding interpretations. For example, in the third
interpretation the following two rules are added to the TSS.

f(a)
l→ y

g(x)
l→ y

g(x)
l→ y

f(a)
l→ y

This problem has been observed in the context of pure SOS specifications and led
to a number of alternative interpretations or restrictions on TSS’s with negative
premises. In particular, it is shown that if the TSS is (strictly) stratified (Def-
inition 3.9), it induces a (unique) transition relation (for which bisimilarity is a
congruence).

The following theorem from [61] formalizes the advantages of stratified TSS’s.

Theorem 5.31 Consider a TSS tss in the ntyft format. If tss is stratified, then
it has a supported model. If tss is strictly stratified, then the supported model is
unique. Bisimilarity is a congruence for all supported models of a stratified TSS.

However, as later noted in [27], strict stratification is too much to ask for a unique
transition relation. There are several examples of TSS’s that intuitively induce a
unique transition relation but cannot be strictly stratified. Example 5.30 and any
other example in which instances of deduction rules may have a cyclic reference
to each other share such a phenomena and were noted in the literature [27, 59].
Hence, we choose the notion of stable model (Definition 2.8) that in our mind
gives a reasonable and intuitive semantics for TSS with negative premises. The
definition is slightly adapted to fit our notation and past definitions.
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Definition 5.32 (Stable Model: Extended) A positive closed formula φ is prov-
able from a set of positive formula T and a TSS tss, denoted by (T, tss) ⊢ φ, if
and only if there is an upwardly branching tree of which the nodes are labelled by
closed formulae such that

• the root node is labelled by φ, and

• if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}
is the set of labels of the nodes directly above q, then there exist a deduction

rule
{χi | i ∈ I}

χ
in tss (where χi can be a negative or a positive formula)

and a substitution σ such that σ(χ) = ψ, and for all i ∈ I, σ(χi) = ψi;

• if the label of a node q, denoted by p ≡ p′ is a structural congruence, then
p ≡sc p

′;

• if the label of a node q, denoted by p
l

9 , is a negative formula then there

exists no p′ such that p
l→ p′ ∈ T .

A stable model, also called a transition relation, defined by a TSS tss is a set
of formulae T such that for all closed positive formulae φ, φ ∈ T if and only if
(T, tss) ⊢ φ.

Note that anomalies, such as those observed in Example 5.30, are resolved in the
stable model interpretation. Particularly, the stable model of the TSS in Example
5.30 is now the intuitive empty set. The main reason for this is that the stable
model requires a complete proof for positive formulae (as in Definition 2.5) rather
than looking for a single matching deduction rule (as in Definition 2.6).

From Theorem 3.10, it follows that bisimilarity with respect to the stable model
of a stratified transition systems specification is a congruence.

Now, we have enough ingredients to study the implications of negative premises on
the structural congruences. But before doing so, we show that a naive treatment
of structural congruences, i.e., neglecting them, may ruin the well-definedness of
the induced transition relation.

Example 5.33

(b)
a

l0
9

b
l0→ b

The above TSS (with a and b as constants), is strictly stratified by the function

S, if we define for all closed terms p, S(a
l0→ p)

.
= 1 and S(b

l0→ p)
.
= 2. Following

Theorem 3.10, it defines the unique transition relation (its stable model), namely

{b l0→ b}.
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Suppose that we add the following structural congruence (which is indeed in the
cfsc format) to the above TSS:

a ≡ b

Suddenly, the associated TSS looses its well-definedness. The combination of (b)

and a ≡ b leads to a contradiction since b
l0→ b if and only if a

l0
9 and if b

l0→ b then

a
l0
9 b.

To solve the above problem, we extend the notion of stratification to structural
congruences as follows.

Definition 5.34 (Stratification: Extended ) Consider a TSS tss in ntyft for-
mat and structural congruence in the cfsc format. We call the combination of tss
and sc stratified, if there exists a function S from closed formulae to an ordinal
such that for all closed substitutions σ:

1. for all rules in tss of the following form:

{ti li→ri
yi|i ∈ I} {tj

lj
9rj

|j ∈ J}

f(−→x ar(f)−1)
l→r t

it holds that ∀i∈IS(σ(ti
li→ri

yi)) ≤ S(σ(f(−→x ar(f)−1)
l→r t)) and ∀j∈J,t′∈T

S(σ(tj
lj→rj

t′)) < S(σ(f(−→x ar(f)−1)
l→r t)),

2. for all fx equations of the form f(−→x ar(f)−1) ≡ g(−→x ar(g)−1) in sc, it holds

that ∀l∈L,t∈T S(σ(f(−→x ar(f)−1)
l→r t)) = S(σ(g(−→x ar(g)−1)

l→r t)),

3. for all defining equations of the form f(−→x ar(f)−1) ≡ t in sc, it holds that

∀l∈L,t′∈T S(σ(t
l→r t

′)) ≤ S(σ(f(−→x ar(f)−1)
l→r t

′)).

The above definition is inspired by the structure of the TSS tss∪ [[sc]]∗ (Definition
5.24). In fact, a stratification function for tss ∪ [[sc]]∗ precisely requires the above
conditions to hold.

Next, we extend the well-definedness theorem for the transition relation to the
setting with structural congruences. The following theorem states that if a com-
bination of a TSS and structural congruences is stratified, then it defines a unique
transition relation.

Theorem 5.35 If the combination of transition system tss in the ntyft format
and structural congruences sc in cfsc is stratified, then tss ∪ [[sc]] has a unique
stable model.
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Proof. Consider the TSS tss∪ [[sc]]∗, it trivially follows from the hypotheses that
it is in ntyft format and stratified. Thus, according to Theorem 3.10, tss ∪ [[sc]]∗

has a unique stable model. If we also show that the stable models of tss ∪ [[sc]]∗

and tss ∪ [[sc]] coincide, then the thesis follows. This follows from the following
claim.

Claim. Consider a set of positive closed formulae T (on the common signature
Σ). For all closed terms p, p′ ∈ C and label l ∈ L then the following statement
holds:

(T, tss ∪ [[sc]]∗) ⊢ p l→ p′ ⇔ (T, tss ∪ [[sc]]) ⊢ p l→ p′

Proof. We divide this into the following two implications:

1. (T, tss ∪ [[sc]]∗) ⊢ p l→ p′ ⇒ (T, tss ∪ [[sc]]) ⊢ p l→ p′

This holds trivially since the deduction rules of tss∪[[sc]]∗ are all in tss∪[[sc]]

and thus the proof for p
l→ p′ in tss ∪ [[sc]]∗ is still valid in tss ∪ [[sc]].

2. (T, tss ∪ [[sc]]) ⊢ p l→ p′ ⇒ (T, tss ∪ [[sc]]∗) ⊢ p l→ p′

We prove this by an induction on the depth of the proof tree for (T, tss ∪
[[sc]]) ⊢ p l→ p′.

For the induction basis, if the proof is of depth 1, then it is due to a rule
that is also in tss ∪ [[sc]]∗ and a substitution σ (rules in [[sc]] \ [[sc]]∗ cannot
be used in proof of depth 1 as they have a positive formula in the premise
which needs a proof). Using the same rule and the same substitution we can
prove this transition from (T, tss ∪ [[sc]]).

For the induction step, suppose that the statement holds for closed positive
formulae with a proof of depth n−1 or less and suppose that (T, tss∪ [[sc]]) ⊢
p

l→ p′ has a proof of depth n. Then, either the last rule is in tss ∪ [[sc]]∗,
as well, from which, using the induction hypothesis on the premises, we can

prove that (T, tss ∪ [[sc]]) ⊢ p l→ p′, or the last rule in the proof structure is
in [[sc]] \ [[sc]]∗. Then, the deduction rule should be of the following form:

f(−→x ar(f)−1)
l→ y

t
l→ y

for a function symbol f and there exists a substitution σ such that σ(t) =
p, σ(y) = p′ and there exists a defining equation f(−→x ar(f)−1) ≡ t in the

structural congruences. Since (T, tss ∪ [[sc]]) ⊢ p
l→ p′, there should exist a

deduction rule such that σ(f(−→x ar(f)−1))
l→ p′ is provable from (T, tss∪[[sc]]).

Since equation f(−→x ar(f)−1) ≡ t is defining, there is no rule in tss with f
appearing in the source of its conclusion (and there is no other equation
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in sc in which f appears). Thus, the only option for providing a proof for

σ(f(−→x ar(f)−1))
l→ p′ is a deduction rule of the following shape

t
l→ y

f(−→x ar(f)−1)
l→ y

and a substitution σ′ such that σ′(xi) = σ(xi) (for all 0 ≤ i < ar(f)) and

σ(y) = p′. On one hand, σ′(t)
l→ p′ is a positive formula, it should have a

proof depth less than n−1 and thus it follows from the induction hypothesis

that (T, tss ∪ [[sc]]∗) ⊢ σ′(t)
l→ p′. On the other hand, vars(t) ⊆ {xi|0 ≤ i <

ar(f)} and thus, σ′(t) = σ(t), thus, (T, tss ∪ [[sc]]∗) ⊢ σ(t)
l→ p′ and hence

(T, tss ∪ [[sc]]∗) ⊢ p′ l→ p′.

⊠

Suppose that T is a stable model of tss ∪ [[sc]]∗. Then it follows from Definition
5.32 that for all closed formula φ, φ ∈ T if and only if (T, tss ∪ [[sc]]∗) ⊢ φ and
then from the above claim that φ ∈ T if and only if (T, tss∪ [[sc]]) ⊢ φ. Thus, T is
a stable model of tss∪ [[sc]]. The reasoning holds in the reverse direction, as well,
and thus, the stable models of tss ∪ [[sc]] and tss ∪ [[sc]]∗ coincide.

⊠

We do not intend to extend all the results of Section 5.3 to specifications with
negative premises. However, it can be checked that, similar to the above case (for
the coincidence of tss ∪ [[sc]] and tss ∪ [[sc]]∗), all the results of Section 5.3 hold
for TSS’s with negative premises with the additional necessary condition of being
stratified. The proofs of the above mentioned results then only need a mere change
of notation from tss ⊢ φ to (T, tss) ⊢ φ.

Possible extensions to ntyft format are the addition of ntyxt rules and predicates.
The ntyft/ntyxt format is a relaxation of ntyft format that allows for variables in
the source of the conclusion. In [61], it is shown how to reduce ntyft/ntyxt format
to ntyft format. Adding structural congruences to TSS’s in the ntyft/ntyxt format,
however, is not straightforward. The reduction of ntyft/ntyxt to ntyft requires to
copy each ntyxt rule for every function symbol in the signature. This reduction thus
disallows the presence of any defining equation, as the new deduction rules contain
defined function symbols in the source of their conclusion. Thus, up to now, we
can only guarantee congruence for a combination of structural congruences and a
TSS with ntyxt rules if the structural congruences comprise of fx equations only.
In [97], we suggest to add defining structural congruences to ntyft/ntyxt TSS’s as
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operationally conservative extensions in the sense of Definition 3.12. This way, one
can first reduce ntyft/ntyxt TSS’s to ntyft ones and then add defining equations to
the resulting TSS.

Predicates are other ingredients of TSS’s that are used to specify concepts such as
termination and divergence on process terms [135]. Unlike negative premises and
ntyxt rules, the addition of predicates to a TSS has no implication on structural
congruences and the cfsc format. Predicates can be modelled as transitions with a
dummy right-hand side (a dummy variable in the premises and a dummy constant
in the conclusion). Thus, the results that we have proved so far extend to the
PANTH format of [135] which allows for both ntyft-ntyxt rules and predicates.
There remains one problem that needs more attention and that is the problem of
adding defining equations to TSS’s with tyxt rules. This problem is addressed in
the next section.

5.6 Case Study

In this section, we quote an SOS semantics of CCS from [87] (with restriction to
finite sum and introduction of replication operator) and then introduce structural
congruences, à la [88], conforming to our format. By doing this, we show how
our format is able to capture a number of non-trivial structural congruences and
make the presentation look more intuitive and compact. Moreover, from this
specification one can still derive congruence for strong bisimilarity automatically.

The syntax of our CCS-like process algebra is given below.

P ::= 0 | α.P | P + Q | P || Q | P \ L | !P | A

In this syntax, constant 0 stands for the terminating process. The action prefix
operator α.P (which is actually a class of unary operators parameterized by labels
α ∈ L) shows α as its first step and proceeds with P . The set of labels L is
partitioned into the set of names, typically denoted by l, and co-names, denoted

by l. By extending the same notation, let l be defined as l. Restriction operator
P \ L, parameterized by L ⊆ L defines the scope of local names (and co-names).
Nondeterministic choice is denoted by +. Parallel composition is denoted by P ||
Q. Parallel replication of process P is denoted by !P which usually serves as a
restricted substitute for recursion. Recursive symbols A serve as abbreviations
for their defining processes, denoted by A

.
= P and are used to define processes

hierarchically. We treat recursive symbols as constants in our signature.

The TSS defining the semantics of our language is given in Figure 5.2. In this
specification, rule (Act) defines that an action prefix operator can execute its
first action and continue with the rest. Each rule in this specification should be
considered as a rule schema, representing a possibly infinite number of rules for
each l ∈ L. Side conditions, in this particular case study, only govern presence
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(Act)
α.x

α→x
(Res)

x
α→ y

x \ L α→ y \ L
(α, α /∈ L)

(Sum0)
x0

α→ y

x0 + x1
α→ y

(Sum1)
x1

α→ y

x0 + x1
α→ y

(Com0)
x0

α→ y0

x0 || x1
α→ y0 || x1

(Com1)
x1

α→ y1

x0 || x1
α→x0 || y1

(Com2)
x0

l→ y0 x1
l→ y1

x0 || x1
τ→ y0 || y1

(Con)
t

α→ y

A
α→ y

(A
.
= t) (Rep)

x ||!x α→ y

!x
α→ y

l, l ∈ L, α ∈ L ∪ {τ}

Figure 5.2 Semantics of CCS: SOS rules

and absence of such copies. Rule (Res) allows for performing actions beyond the
restricted set L (i.e., blocks the rest). Rules (Sum0) and (Sum1) define the non-
deterministic choice operator. Rules (Com0) and (Com1) define the interleaving
behavior of parallel composition and rule (Com2) defines its communication (syn-
chronization) behavior. A particular label τ is added for inactions resulting from
communication and τ is defined as τ . Rule (Con) shows how recursive constants
represent the behavior of their defining terms and finally, (Rep) defines the concept
of replication.

By using our format, we can copy a number of structural congruences, defined in
[88] for the π-calculus and thus, eliminate some of the deduction rules. The result
is shown in Figure 5.3.

Note that all of the SOS rules are in tyft format and the top two structural con-
gruence equations are fx equations while the bottom ones are defining equations.
Thus, one may easily deduce from Theorem 5.23 that strong bisimilarity is a
congruence with respect to the induced transition relation. This can already be
considered an achievement. However, one may argue that we could not specify
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(Act)
α.x

α→x
(Res)

x
α→ y

x \ L α→ y \ L
(α, α /∈ L)

(NSum0)
x0

α→ y

x0 + x1
α→ y

(NCom0)
x0

α→ y0

x0 || x1
α→ y0 || x1

(NCom1)
x0

l→ y0 x1
l→ y1

x0 || x1
τ→ y0 || y1

(struct)
x ≡ y y

l→ y′ y′ ≡ x′

x
l→x′

(l ∈ L)
x0 + x1 ≡ x1 + x0 x0 || x1 ≡ x1 || x0

A ≡ t (A
.
= t) !x ≡ x ||!x

l, l ∈ L, α ∈ L ∪ {τ}

Figure 5.3 Semantics of CCS: SOS rules with Structural Congruences

some, may be more interesting, structural congruences of [88] such as those for
associativity (for parallel composition and nondeterministic choice), idempotency
(for nondeterministic choice) and zero element (again for both parallel composi-
tion and choice). Our answer to this criticism is that first, in this particular case,
all of these properties can be proven from the above specification as theorems and
second, there are cases where the very same structural congruences (i.e, associa-
tivity, idempotency and zero element) can be harmful for congruence. Next, we
give an intuitive example of an associativity equation that harms the congruence
property.

Example 5.36 Take the semantics of our CCS-like language defined before. Sup-
pose that we extend our syntax and semantics with a binary operator •. The de-
duction rule for this operator is given below (note that the deduction rule conforms
to the tyft format):

(LMer)
x0

α→ y0

x0 • x1
α→ y0 || x1

According to the above rule, this operator forces the first action to be taken by
the left-hand-side argument and then turns into a normal parallel composition
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operator. (Up to here, this operator is similar to the left-merge operator ‖ of
[13] which is usually used for finite axiomatization of parallel composition.) This
operator, as defined by rule (LMer) is not associative. But, suppose that we
also add the following equation to our set of structural congruences, to make it
associative.

x0 • (x1 • x2) ≡ (x0 • x1) • x2

Then, we can easily observe that the congruence property is ruined. For example,
it holds that 0 ↔ 0 •α (where α is a shorthand for α.0), since none of the two can
perform any action. However, it does not hold that α • 0 ↔ α • (0 •α). The left-
hand term can only perform an α action and terminate (the structural congruence
rule cannot help this term perform more actions since it should contain at least two
left-merge operators to fit the structure of the rule). While the right-hand-term is
congruent to (α • 0) • α and this new term can perform two consecutive α actions
after the first of which it turns into (0 || 0) || α.

5.7 Conclusions

In this chapter, we presented a number of ways to interpret structural congruences
inside the transition system specification (TSS) framework and compared the out-
comes formally. We also defined a syntactic format for structural congruences that
makes them safe with respect to the congruence of strong bisimilarity, once they
are used in combination with a set of standard (e.g., tyft) SOS rules. To allow for
negative premises in the TSS’s, the relationship between negative premises in the
deduction rules, structural congruences and well-definedness of the transition rela-
tion was investigated and sufficient well-definedness criteria were established. To
show the application of our format to a concrete example, we applied our syntactic
format to a CCS-like process algebra.

Extending the syntactic format to other notions of equivalence and refinement is a
possible extension of our work (following the approach of other standard formats
for weaker notions of bisimulation, e.g., RBB format of [23]). Studying structural
congruences in the bi-algebraic framework of [123] may lead to a foundational
framework for this mixed setting, as well. Incorporating the concepts of names
and binders in our framework allows us to deal with more interesting instances of
process calculi in which structural congruences play an essential role (e.g., [88, 89]).
We consider this as an important future extension to our framework.
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Conservativity

“Conservative, n. A statesman who is enamored of existing evils,
as distinguished from the Liberal, who wishes to replace them with
others.”

[“Devil’s Dictionary”, Ambrose Bierce]

A summarized version of this chapter has appeared as: M.R. Mousavi, M.A. Reniers, Orthog-
onal Extensions in Structural Operational Semantics, In L. Caires, G.P. Italiano, L. Monteiro, C.
Palamidessi and M. Yung eds., Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP’05), Lisbon, Portugal, volume 3580 of Lecture Notes in
Computer Science, pp. 1214-1225, Springer-Verlag, July 2005.
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6.1 Introduction

Programming languages and process calculi have been subject to constant ex-
tensions. It is often crucial to make sure that such extensions do not change
the intuition behind the old subset, or said otherwise, the extensions are con-
servative. In the context of languages with Structural Operational Semantics
(SOS) [108], this topic has been touched upon in [61, 64] and studied in depth
in [5, 11, 48, 84, 134, 4]. This research has resulted in meta-theorems proving
sufficient conditions for an extension to be operationally and/or equationally con-
servative. In the remainder, we mostly refer to [48] which gives the most detailed
account of the problem and subsumes almost all previous results. We do not treat
multi-sorted and variable binding signatures, addressed in [48, 84], in this chapter.

So far, operational conservativity has only allowed for extensions that consistently
deny the addition of any new behavior to the old syntax. One can imagine that an
extension which grants a new behavior consistently to the old syntax can also be
considered safe or “conservative”. This phenomenon occurs quite often in practice.
For example, designers of many timed extensions of existing formalisms (e.g., the
timed process algebras of [14, 8, 76, 133]) have decided to add timed behavior
homogenously to the terms from the old syntax. Unfortunately, it turns out that
the existing definitions and their corresponding meta-theorems come short of any
formal result about such extensions.

In this chapter, we present a more liberal notion of operational conservativity,
called orthogonality, which caters for both possibilities (i.e., denying some types
of behavior from the old syntax while granting some other types). We show that
our notion is useful in the aforementioned cases where the old notions cannot be
used. We formulate orthogonality meta-theorems for languages with Structural
Operational Semantics and prove them correct.

In [134], equational extensions are considered in the setting where a new set of
axioms is added to an existing set. Then, the extension is called equationally con-
servative if it induces exactly the same derivable ground (i.e., closed) equalities on
the old syntax as the original equational theory. In this chapter, we remove the
requirement for including the old set of axioms in the extended equational the-
ory. We refer to such extensions as equationally conservative ground-extensions.
This relaxation is motivated by the fact that in many extensions, such as those
of [14, 109, 133], for some axioms, only all closed derivable equalities on the old
syntax are kept and the axioms themselves are removed. This may be due to two
reasons: the old axioms do not hold with respect to the newly introduced operators
or they (or all their closed instantiations) are derivable from the new axioms. For
example, some of the old axioms of [14, 109, 133] (and also Section 6.2 of this chap-
ter) are not sound in the extended language when they are instantiated by terms
from the extended syntax. For the relaxed notion of equational conservativity, we
present similar meta-theorems as for the old notions in [5, 134, 4]. Operational
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conservativity is usually considered as a means for equational conservativity and
we show that our notion of orthogonality leads to equational conservativity in the
same way as operational conservativity does (no matter which notion of equational
conservativity is chosen, the traditional notion or the relaxed one).

The rest of this chapter is structured as follows. Section 6.2 presents our relaxed
notion of equational conservativity. Orthogonality and related notions are defined
in Section 6.3. Subsequently, Section 6.4 defines sufficient conditions for orthogo-
nality. In the same section, we also present theorems establishing the link between
orthogonality and equational conservativity. Finally, Section 6.5 summarizes the
results and presents future directions. In each section, we provide abstract and
concrete examples from the area of process algebra to motivate the definitions
and illustrate the results. In this chapter, we recall the definitions of TSS’s with
constant labels (Definition 3.1 with a single transition relation), stratification (Def-
inition 3.9), operational conservativity and its meta-theorem (Definition 3.12 and
Theorem 3.15) and equational theories (Definition 3.16) without re-stating them.

6.2 Equational Conservativity

In Definitions 3.12 and 3.16, we defined the notions of operational conservativity
and equational theory. In process algebraic formalisms, the notion of equational
theory is central and operational conservativity is a means to ensure equational
conservativity, as defined below.

Definition 6.1 (Equational Conservativity) An equational theory (Σ1, V, E1)
is an equationally conservative ground-extension of (Σ0, V, E0) when Σ0 ⊆ Σ1 and
for all p, p′ ∈ C(Σ0), E0 ⊢ p = p′ ⇔ E1 ⊢ p = p′.

It is worth mentioning that the above definition is more liberal than the notion of
equational conservativity in [134] in that there, it is required that the same axioms
are included in the extended equational theory (i.e., E0 ⊆ E1). In practice, some
process algebras do not keep the same axioms when extending the formalism while
they make sure that the ground instantiations of the old axioms with old terms
indeed remain derivable (see for example, [14, 109, 133] and Example 6.6 in the
remainder). Hence, we believe that the restriction imposed by [134] unnecessarily
limits the applicability of the theory. If, for any reason, one chooses the more
restricted notion of [134], the theorems concerning equational conservativity in
this chapter remain valid.

To have a better idea of the concepts introduced so far, we define a Minimal
Process Algebra (with its equational and operational theories) and extend it to
the timed settings. We study the relationship between the MPA and its timed
extension throughout this chapter.
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Example 6.2 (MPA: Operational Semantics) Consider the following deduction
rules defined on a signature with a constant δ, a family of unary operators a. (for
all a ∈ A, where A is a given set of atomic actions) and a binary operator + .
The labels of transitions are a ∈ A.

(a)
a.x

a→x
(a ∈ A) (c0)

x
a→x′

x+ y
a→x′

(c1)
y

a→ y′

x+ y
a→ y′

This TSS (called tssm in the remainder) is supposed to define a transition relation
for the Minimal Process Algebra (MPA) of [14], simplified here by removing the
concept of termination, which we use as our running example in the remainder.
Deduction rules of MPA are (strictly) stratified using a measure of size on the
terms in the source of formulae and it defines a unique transition relation by all
possible interpretations. The following transitions are among those included in
this relation: tssm � (a.δ) + δ

a→ δ and tssm � a.(δ + a.δ)
a→ δ + a.δ which are all

provable in tssm using an empty set of negative premises.

Example 6.3 (MPA: Equational Theory) Consider the Minimal Process Algebra
of Example 6.2. The following is an axiomatization of MPA [14].

x+ y = y + x x+ (y + z) = (x+ y) + z x+ x = x x+ δ = x

It is well-known that this axiomatization is sound and ground-complete with re-
spect to tssm given in Example 6.2 and strong bisimilarity as the notion of behav-
ioral equivalence (see, for example, [87]). The following are examples of derivable
equalities from the above axiomatization: (a.δ) + δ = a.δ and (a.δ) + a.δ = a.δ.

Next, we extend the MPA with an aspect of timing.

Example 6.4 (Timed-MPA: Operational Semantics) Consider the following de-
duction rules (divided into three parts) which are defined on a signature with two
constants δ and δ, a unary function symbol σ. , two families of unary function
symbols a. and a. (for all a ∈ A) and a binary function symbol + . The set of
labels of the TSS is A ∪ {1} (with 1 /∈ A).

(1) (ua)
a.x

a→x
(td)

σ.x
1→x

(2) (tc0)
x

1→x′ y
1→ y′

x+ y
1→x′ + y′

(tc1)
x

1→x′ y
1

9

x+ y
1→x′

(tc2)
y

1→ y′ x
1

9

x+ y
1→ y′

(3) (ta)
a.x

1→ a.x
(d)

δ
1→ δ

The above TSS, which we call tsst defines the aspect of timing in terms of new

time-transitions
1→ and it is added in [14] to tssm in Example 6.2 to define a
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relative-discrete-time extension of MPA. The intuition behind the new underlined
function symbols (a. and σ. ) is that they are not delayable in time and should
take their (respectively action and time) transitions immediately. Addition of the
first and/or the second parts of the above TSS (each or both) to tssm results in an
operationally conservative extension of the latter as the newly added transitions
will be restricted to the new syntax. (Note that in the first and second parts,
there is no rule about timed transition of constants in old syntax.) We prove
this claim formally as an instance of a meta-theorem in the rest of this chapter.
However, the addition of part (3) violates the operational conservativity of the

extension as it adds time-transitions (
1→ ) to the behavior of terms from the old

syntax. For example, in combination with part (2), it allows for transitions such

as tssm ∪ tsst � a.δ
1→ a.δ and tssm ∪ tsst � (a.δ) + δ

1→ (a.δ) + δ, all of which
are prohibited by the original TSS and thus are considered harmful from the
operational conservativity point of view.

As it turns out, the notion of operational conservativity (Definition 3.12) is too re-
strictive to capture extensions of the above sort. This is illustrated in the following
example.

Example 6.5 (Timed-MPA: Operational Conservativity, Revisited) The addi-
tion of parts (1) and (2) of tsst in Example 6.4 to the tssm of Example 6.2 results
in an operationally conservative extension following Theorem 3.15: All three de-
duction rules of tssm are source dependent; Rules (ua) and (td) both have a
new function symbol in the source of their conclusion (i.e., a. and σ. , respec-
tively) and hence, satisfy condition 2(a); Rules (tc0), (tc1) and (tc2) all have a
source-dependent positive premise with a timed-MPA label (1) and hence, satisfy
condition 2(b). Note that the reduced version of each of the deduction rules (tc0),
(tc1) and (tc2) is that deduction rule itself.

Also, the traditional notion of equational conservativity cannot capture the exten-
sion of the following equational theory of timed-MPA.

Example 6.6 (Timed-MPA: Equational Theory) Consider the TSS resulting from
extending tssm of Example 6.2 with tsst of Example 6.4. The following are a set
of sound and ground-complete axioms (w.r.t. strong bisimilarity) for this TSS:

(1) x+ y = y + x (2) x+ (y + z) = (x+ y) + z (3) x+ x = x

(4) δ = σ.δ (5) x+ δ = x

(6) (σ.x) + σ.y = σ.(x+ y) (7) a.x = (a.x) + σ.a.x (8) (a.x) + δ = a.x

The above axiomatization underscores the fact we mentioned before. Namely, the
axioms of the old system do not hold in the new system (e.g., (a.x) + δ 6= a.x as
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an instance of x+ δ = x) but all closed instantiations of the old axioms by terms
of the old syntax are derivable from the new set of axioms.

It can be checked that the above axiomatization of timed-MPA is indeed an equa-
tionally conservative ground-extension of the axiomatization of MPA in the sense
of Definition 6.1. Thus, if one considers operational conservativity as a means to
equational conservativity, this example already suggests the need for an extension
of Definition 3.12. In other words, we believe that the transitions added by the
extension are quite innocent and harmless to the intuition behind the original se-
mantics, for they are added uniformly to the old syntax without changing the old
behavior or violating previously valid equalities. In the next section, we formalize
our idea of orthogonal extensions which caters for extensions of the above type.

6.3 Orthogonality

6.3.1 Orthogonal Extension

In this section, we define the notion of orthogonality and an instance of this notion,
called granting extensions, which can be checked syntactically.

Definition 6.7 (Orthogonal Extension) Consider TSS’s tss0 = (Σ0, V, L0, D0)
and tss1 = (Σ1, V, L1, D1) and a behavioral notion of equality ∼. The TSS
tss0 ∪ tss1 is a ∼-orthogonal extension of tss0 when

1. ∀p,p′∈C(Σ0) ∀l∈L0
tss0 � p

l→ p′ ⇔ tss0 ∪ tss1 � p l→ p′, and

2. ∀p,p′∈C(Σ0) tss0 � p ∼ p′ ⇔ tss0 ∪ tss1 � p ∼ p′.

Our results in this chapter are valid for most notions of behavioral equivalence
in the literature (to be named explicitly in the remainder). The notion of oper-
ational conservativity up to φ-equivalence of [134, 11] can be seen as a variant of
orthogonality which only has the second condition. To our knowledge, beyond op-
erational conservativity results (e.g., [134]), no systematic study of these notions
(i.e., orthogonality and operational conservativity up-to, including meta-theorems
guaranteeing them) has been carried out.

The following corollary is a direct result of Definition 6.7.

Corollary 6.8 An operationally conservative extension is an orthogonal exten-
sion.
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6.3.2 Granting Extension

Corollary 6.8 addresses operational conservativity as an extreme case of orthogo-
nality which denies all new transitions from the old syntax; the other extreme is an
extension which grants all new behavior to the old syntax. However, for such an
extension to be orthogonal, these transitions should be made to equivalent terms
from the old syntax. In particular, if we allow for self-transitions, we are able to
prove orthogonality with respect to many notions of behavioral equivalence. The
following definitions and the subsequent theorem substantiate these concepts.

Definition 6.9 (Granting Extension) Consider TSS’s tss0 = (Σ0, V, L0, D0)
and tss1 = (Σ1, V, L1, D1) with disjoint labels. We call tss0 ∪ tss1 a granting
extension of tss0 when

1. ∀p,p′∈C(Σ0) ∀l∈L0
tss0 � p

l→ p′ ⇔ tss0 ∪ tss1 � p l→ p′, and

2. ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L1
tss0 ∪ tss1 � p l→ p′ ⇔ p = p′.

The above definition states that granting extensions keep the old transitions on
the old terms intact and only add self-transitions with all of the new labels to old
terms. The above definition does not make any statement about the transitions
on the new terms, i.e., terms from C(Σ0 ∪Σ1) \ C(Σ0). We are doubtful whether a
meaningful relaxation of Definition 6.9 is possible that allows for anything coarser
than syntactic equality on the old terms involved in (the left- or the right-hand
side of) the new transitions and still can be captured by simple syntactic checks
(which is our aim in this chapter, even if one confines oneself to ∼-orthogonality
for a particular ∼). This suggests that to formulate syntactic criteria for proving
orthogonality, we have to resort to one of the two extremes (operational conser-
vativity or granting extensions). Admitting that these two extremes need to be
combined in some way to reach a reasonable balance, we define sufficient criteria
for this mixture to be orthogonal in the next section. Next, we show that grant-
ing extensions are indeed ∼-orthogonal extensions for most notions of behavioral
equivalence ∼.

Theorem 6.10 Consider TSS’s tss0 and tss1 where tss1 is a granting extension
of tss0. Let ∼ be any of the following notions of behavioral equivalence (cf. [56, 57]
and the proof presented next, for details about these notions):

1. trace equivalence =T,

2. failures equivalence =F,

3. ready equivalence =R,

4. failure trace equivalence =FT,
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5. ready trace equivalence =RT,

6. simulation equivalence ⇄,

7. ready simulation equivalence =RS,

8. weak bisimilarity ↔ w,

9. branching bisimilarity ↔ b,

10. rooted branching bisimilarity ↔ rb,

11. rooted weak bisimilarity ↔ rw,

12. bisimulation equivalence ↔ ,

then tss1 is a ∼-orthogonal extension of tss0.

Proof. Let tss0
.
= (Σ0, V, L0, D0) and tss1

.
= (Σ1, V, L1, D1) and let L′ .= L1 \L0.

Copying Definition 6.9, we have:

1. ∀p,p′∈C(Σ0) ∀l∈L0
tss0 � p

l→ p′ ⇔ tss1 � p
l→ p′, and

2. ∀p∈C(Σ0) ∀p′∈C(Σ1) ∀l′∈L′ tss1 � p
l′→ p′ ⇔ p = p′.

The first item above is the same as the first item in Definition 6.7 of orthogonality.
Hence, we have to prove the statement

∀p,p′∈C(Σ0)tss0 � p ∼ p′ ⇔ tss1 � p ∼ p′

for all of the following notions of behavioral equivalence ∼ mentioned in the the-
orem.

1. trace equivalence =T: We start with the following auxiliary definitions

Definition 6.11 Let L∗ be the set of all traces that can be generated from
labels L (including the empty trace ǫ). Given a trace σ ∈ L∗ and a set
of labels L′ the granting extension of σ with L′, denoted by σ ↑ L′, is the
smallest set of traces that satisfies ∀σ0,σ1∈(L∪L′)∗ and ∀l∈L′ :

(a) σ ∈ σ ↑ L′;

(b) σ0σ1 ∈ σ ↑ L′ ⇒ σ0(l)σ1 ∈ σ ↑ L′.
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where juxtaposition denotes concatenation. For a set of traces TR, TR ↑
L′ .=

⋃
σ∈TR σ ↑ L′. Similarly, for a trace σ on labels L, the trace σ ↓ L′ is

defined inductively by:

ǫ ↓ L′ .= ǫ, (l)σ ↓ L′ .=

{
σ ↓ L′ l ∈ L′,
(l)(σ ↓ L′) l /∈ L′.

For a set of traces TR, TR ↓ L′ .= {σ ↓ L′ | σ ∈ TR}.

Corollary 6.12 Consider sets of traces TR and TR′ both defined on a set
of labels L.

(a) If TR = TR′ then for an arbitrary L′, TR ↓ L′ = TR′ ↓ L′ and
TR ↑ L′ = TR′ ↑ L′;

(b) For a set L′ disjoint from L, (TR ↑ L′) ↓ L′ = TR.

Lemma 6.13 Consider sets of traces TR and TR′ both defined on a set of
labels L and a set L′ disjoint from L. TR = TR′ if and only if TR ↑ L′ =
TR′ ↑ L′.

Proof. The implication from left to right follows trivially from the definition
of TR ↑ L′ (see the first item of Corollary 6.12). Then, it remains to prove
TR = TR′ assuming the left-to-right implication and TR ↑ L′ = TR′ ↑ L′.
It follows from the first item of Corollary 6.12 that (TR ↑ L′) ↓ L′ = (TR′ ↑
L′) ↓ L′ and from the second item of the same corollary, TR = TR′. ⊠

Definition 6.14 Given a transition relation → ⊆ C × L × C, the reflexive
and transitive closure of → , denoted by → ∗ ⊆ C ×L∗ × C is defined as the
smallest relation satisfying the following constraints: ∀p,p′,p′′∈C

(a) p
ǫ→ ∗p;

(b) p
l→ p′ ⇒ p

(l)→ ∗p′;

(c) p
l→ p′ ∧ p′

σ→ ∗p′′ ⇒ p
(l)σ→ ∗p′′.

Let tss = (Σ, V, L,D) be a TSS. The set of traces in tss originating from
p ∈ C, denoted by TR(tss, p) is the smallest set satisfying for all p′ ∈ C and

σ ∈ L∗: if tss � p
σ→ ∗p′ then σ ∈ TR(tss, p). The processes p and q are trace

equivalent w.r.t. TSS tss, notation tss � p =T q, iff TR(tss, p) = TR(tss, q).

Corollary 6.15 Let tss0 and tss1 be the TSS’s defined above. For all p ∈
C(Σ0), TR(tss1, p) = TR(tss0, p) ↑ L′.
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We now have tss0 � p =T q iff, by definition, TR(tss0, p) = TR(tss0, q) iff,
by Lemma 6.13, TR(tss0, p) ↑ L′ = TR(tss0, p) ↑ L′ iff, by Corollary 6.15,
TR(tss1, p) = TR(tss1, q) iff, by definition, tss1 � p =T q.

2. Failures equivalence =F:

Definition 6.16 Let tss = (Σ, V, L,D) be a TSS. A pair (σ,X) ∈ L∗ ×
IP (L) is a failure pair of p ∈ C originating from tss if tss � p

σ→ ∗p′ for

some p′ such that for all l ∈ X, tss0 � p
′ l
9 . The set of failure pairs in tss

originating from p ∈ C, denoted by FP (tss, p) is the set containing all failure
pairs of p originating from tss. The processes p and q are failures equivalent
w.r.t. TSS tss, notation tss � p =F q, iff FP (tss, p) = FP (tss, q).

For a set of failure pairs FP and a set of labels L, we define FP ↓ L .
= {(σ ↓

L,X) | (σ,X) ∈ FP} and FP ↑ L .
= {(σ′, X) | σ′ ∈ σ ↑ L ∧ (σ,X) ∈ FP}.

Corollary 6.17 Consider sets of failure pairs FP and FP ′ both defined on
a set of labels L.

(a) If FP = FP ′ then for an arbitrary L′, FP ↓ L′ = FP ′ ↓ L′ and
FP ↑ L′ = FP ′ ↑ L′;

(b) For a set L′ disjoint from L, (FP ↑ L′) ↓ L′ = FP .

Lemma 6.18 Consider sets of failure pairs FP and FP ′ both defined on
a set of labels L and a set L′ disjoint from L. FP = FP ′ if and only if
FP ↑ L′ = FP ′ ↑ L′.

Proof. The implication from left to right follows trivially from the definition
of FP ↑ L′ (see the first item of Corollary 6.17). Then, it remains to prove
FP = FP ′ assuming the left-to-right implication and FP ↑ L′ = FP ′ ↑ L′.
It follows from the first item of Corollary 6.17 that (FP ↑ L′) ↓ L′ = (FP ′ ↑
L′) ↓ L′ and from the second item of the same corollary, FP = FP ′. ⊠

Consider a failure pair (σ,X) ∈ FP (tss0, p). This means that σ ∈ TR(tss0, p)

and for some p′ such that tss0 � p
σ→ ∗p′ and for all l ∈ X, tss0 � p

l
9 . Then,

for all σ′ ∈ σ ↑ L′, (σ′, X) is a failure pair originating from p in tss1 since
σ′ ∈ TR(tss1, p) and the blocked transitions from X remain blocked since
L ∩ L′ = ∅ and X ⊆ L and hence X ∩ L′ = ∅, i.e., the added L′-transitions
do not change the status of X. Conversely, if a pair (σ,X) ∈ FP (tss1, p)
then (σ ↓ L′, X) is a failure pair of p in tss0 since first, σ ↓ L′ ∈ TR(tss0, p)
(see the previous item) and second, X may not contain any label from L′

since all transitions with a label from L′ are enabled in tss1.
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Corollary 6.19 Let tss0 and tss1 be the TSS’s defined above. For all p ∈
C(Σ0), FP(tss1, p) = FP(tss0, p) ↑ L′.

We now have tss0 � p =F q iff, by definition, FP(tss0, p) = FP(tss0, q) iff,
by Lemma 6.18, FP(tss0, p) ↑ L′ = FP(tss0, p) ↑ L′ iff, by Corollary 6.19,
FP(tss1, p) = FP(tss1, q) iff, by definition, tss1 � p =F q.

3. Ready equivalence: Similar to the previous two items; the only difference is
that L′ is always a member of ready sets in tss1 and should be removed from
the ready sets when projecting from the ready traces in tss1 to the ready
traces in tss0.

Definition 6.20 Let tss = (Σ, V, L,D) be a TSS. A pair (σ,X) ∈ L∗ ×
IP (L) is a ready pair of p ∈ C originating from tss if tss � p

σ→ ∗p′ for some

p′ such that X = {l ∈ L | p′ l′→}. The set of ready pairs in tss originating
from p ∈ C, denoted by R(tss, p) is the set containing all ready pairs of p
originating from tss. The processes p and q are ready equivalent w.r.t. TSS
tss, notation tss � p =R q, iff R(tss, p) = R(tss, q).

For a set of ready pairs R and a set of labels L, we define R ↓ L .
= {(σ ↓

L,X \L) | (σ,X) ∈ R} and R ↑ L .
= {(σ′, X ∪L) | σ′ ∈ σ ↑ L∧ (σ,X) ∈ R}.

Corollary 6.21 Consider sets of ready pairs R and R′ both defined on a
set of labels L.

(a) If R = R′ then for an arbitrary L′, R ↓ L′ = R′ ↓ L′ and R ↑ L′ = R′ ↑
L′;

(b) For a set L′ disjoint from L, (R ↑ L′) ↓ L′ = R.

Lemma 6.22 Consider sets of ready pairs R and R′ both defined on a set of
labels L and a set L′ disjoint from L. R = R′ if and only if R ↑ L′ = R′ ↑ L′.

Proof. The implication from left to right follows trivially from the definition
of R ↑ L′ (see the first item of Corollary 6.21). Then, it remains to prove
R = R′ assuming the left-to-right implication and R ↑ L′ = R′ ↑ L′. It fol-
lows from the first item of Corollary 6.21 that (R ↑ L′) ↓ L′ = (R′ ↑ L′) ↓ L′

and from the second item of the same corollary, R = R′. ⊠

Consider a ready pair (σ,X) ∈ R(tss0, p). This means that σ ∈ TR(tss0, p)

and for some p′ such that tss0 � p
σ→ ∗p′ and X = {l ∈ L | p′ l→}. Then,

for all σ′ ∈ σ ↑ L′, (σ′, X ∪ L′) ∈ R(tss1, p) since σ′ ∈ TR(tss1, p) and
the transitions from X remain enabled and the transitions from L′ are also
enabled since tss1 is a granting extension of tss0. Conversely, if a pair
(σ,X) ∈ R(tss1, p) then (σ ↓ L′, X \ L′) ∈ R(tss0, p).
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Corollary 6.23 Let tss0 and tss1 be the TSS’s defined above. For all p ∈
C(Σ0), R(tss1, p) = R(tss0, p) ↑ L′.

We now have tss0 � p =R q iff, by definition, R(tss0, p) = R(tss0, q) iff,
by Lemma 6.22, R(tss0, p) ↑ L′ = R(tss0, p) ↑ L′ iff, by Corollary 6.23,
R(tss1, p) = R(tss1, q) iff, by definition, tss1 � p =R q.

4. Failure trace equivalence =FT: Similar to the above item; elements of L′

cannot be present in the refusal sets in the failure traces of tss0 and hence
one can repeat the above reasoning to prove the coincidence of failure traces.

Definition 6.24 Let tss = (Σ, V, L,D) be a TSS. The refusal relation 99K⊆
C × IP (L) × C is defined as p

X
99K q iff p = q and p

l
9 for all l ∈ X. The

failure trace relation ⊆ C × (L ∪ IP (L))∗ × C is defined as the reflexive
transitive closure of the transition relation → and the refusal relation 99K.
σ ∈ (L ∪ IP (L))∗ is a failure trace of a process p w.r.t. tss if p

σ
. Let

FT (tss, p) denote the failure traces of p w.r.t. tss. The processes p and q are
failure trace equivalent w.r.t. tss, notation tss � p =FT q, iff FT (tss, p) =
FT (tss, q).

For a failure trace σ on labels L, the failure trace σ ↓ L′ is defined inductively
by:

ǫ ↓ L′ .
= ǫ,

(l)σ ↓ L′ .
=

{
σ ↓ L′ l ∈ L′,
(l)(σ ↓ L′) l /∈ L′,

(X)σ ↓ L′ .
= (X \ L′)(σ ↓ L′).

For a set of failure traces FT , FT ↓ L′ .= {σ ↓ L′ | σ ∈ FT}. Given a failure
trace σ and a set of labels L′ the granting extension of σ with L′, denoted
by σ ↑ L′, is the smallest set of traces that satisfies for all σ0, σ1 and for all
l ∈ L′:

(a) σ ∈ σ ↑ L′;

(b) (σ0)(σ1) ∈ σ ↑ L′ ⇒ (σ0)(l)(σ1) ∈ σ ↑ L′.

For a set of failure traces FT , FT ↑ L′ .=
⋃

σ∈FT σ ↑ L′.

Corollary 6.25 Consider sets of failure traces FT and FT ′ both defined
on a set of labels L.

(a) If FT = FT ′ then for an arbitrary L′, FT ↓ L′ = FT ′ ↓ L′ and
FT ↑ L′ = FT ′ ↑ L′;

(b) For a set L′ disjoint from L, (FT ↑ L′) ↓ L′ = FT .

Lemma 6.26 Consider sets of failure traces FT and FT ′ both defined on
a set of labels L and a set L′ disjoint from L. FT = FT ′ if and only if
FT ↑ L′ = FT ′ ↑ L′.
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Proof. The implication from left to right follows trivially from the definition
of FT ↑ L′ (see the first item of Corollary 6.25). Then, it remains to prove
FT = FT ′ assuming the left-to-right implication and FT ↑ L′ = FT ′ ↑ L′.
It follows from the first item of Corollary 6.25 that (FT ↑ L′) ↓ L′ = (FT ′ ↑
L′) ↓ L′ and from the second item of the same corollary, FT = FT ′. ⊠

Corollary 6.27 Let tss0 and tss1 be the TSS’s defined above. For all p ∈
C(Σ0), FT (tss1, p) = FT (tss0, p) ↑ L′.

We now have tss0 � p =FT q iff, by definition, FT (tss0, p) = FT (tss0, q) iff,
by Lemma 6.26, FT (tss0, p) ↑ L′ = FT (tss0, p) ↑ L′ iff, by Corollary 6.27,
FT (tss1, p) = FT (tss1, q) iff, by definition, tss1 � p =FT q.

5. Ready trace equivalence: Again similar to item 1 but the same observation
as in item 3 should be noted along the ready traces.

Definition 6.28 Let tss = (Σ, V, L,D) be a TSS. The ready trace relation
 ⊆ C × (L ∪ IP (L))∗ × C is defined recursively as follows: for p, q, r ∈ C,
l ∈ L and X ⊆ L

• p
ǫ
 p;

• p
l→ q implies p

(l)
 q;

• p
X
 p in case X = {l ∈ L | p l→};

• if p
σ
 q and q

σ′

 r, then p
σσ′

 r.

The sequence σ ∈ (L ∪ IP (L))∗ is a ready trace of a process p w.r.t. tss if

p
σ
 . Let RT (tss, p) denote the ready traces of p w.r.t. tss. The processes

p and q are ready trace equivalent w.r.t. tss, notation tss � p =RT q, iff
RT (tss, p) = RT (tss, q).

For a ready trace σ on labels L, the ready trace σ ↓ L′ is defined inductively
by:

ǫ ↓ L′ .
= ǫ,

(l)σ ↓ L′ .
=

{
σ ↓ L′ l ∈ L′,
(l)(σ ↓ L′) l /∈ L′,

(X)σ ↓ L′ .
= (X \ L′)(σ ↓ L′).

For a set of ready traces RT , RT ↓ L′ .= {σ ↓ L′ | σ ∈ RT}. Given a ready
trace σ and a set of labels L′ the granting extension of σ with L′, denoted
by σ ↑ L′, is the smallest set of traces that satisfies ∀σ0,σ1

and ∀l∈L′ :

(a) σ ∈ (σ ⊔ L′) ↑ L′;

(b) (σ0)(σ1) ∈ σ ↑ L′ ⇒ (σ0)(l)(σ1) ∈ σ ↑ L′;
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where ⊔ is defined inductively by:

ǫ ⊔ L .
= ǫ, ((l)σ) ⊔ L .

= (l)(σ ⊔ L), ((X)σ) ⊔ L .
= (X ∪ L)(σ ⊔ L).

For a set of ready traces RT , RT ↑ L′ .=
⋃

σ∈RT σ ↑ L′.

Corollary 6.29 Consider sets of ready traces RT and RT ′ both defined on
a set of labels L.

(a) If RT = RT ′ then for an arbitrary L′, RT ↓ L′ = RT ′ ↓ L′ and
RT ↑ L′ = RT ′ ↑ L′;

(b) For a set L′ disjoint from L, (RT ↑ L′) ↓ L′ = RT .

Lemma 6.30 Consider sets of ready traces RT and RT ′ both defined on
a set of labels L and a set L′ disjoint from L. RT = RT ′ if and only if
RT ↑ L′ = RT ′ ↑ L′.

Proof. The implication from left to right follows trivially from the definition
of RT ↑ L′ (see the first item of Corollary 6.29). Then, it remains to prove
RT = RT ′ assuming the left-to-right implication and RT ↑ L′ = RT ′ ↑ L′.
It follows from the first item of Corollary 6.29 that (RT ↑ L′) ↓ L′ = (RT ′ ↑
L′) ↓ L′ and from the second item of the same corollary, RT = RT ′. ⊠

Corollary 6.31 Let tss0 and tss1 be the TSS’s defined above. For all p ∈
C(Σ0), RT (tss1, p) = RT (tss0, p) ↑ L′.

We now have tss0 � p =RT q iff, by definition, RT (tss0, p) = RT (tss0, q) iff,
by Lemma 6.30, RT (tss0, p) ↑ L′ = RT (tss0, p) ↑ L′ iff, by Corollary 6.31,
RT (tss1, p) = RT (tss1, q) iff, by definition, tss1 � p =RT q.

6. Simulation equivalence ⇄:

Definition 6.32 Let tss = (Σ, V, L,D) be a TSS. A simulation w.r.t. tss is a

binary relation R on processes, satisfying, for l ∈ L: if pRq and tss � p
l→ p′,

then q
l→ q′ and p′Rq′ for some q′. The processes p and q are simulation

equivalent or similar w.r.t. TSS tss, notation tss � p ⇄ q, iff there exists a
simulation R such that pRq and a simulation R′ such that qR′p.

Suppose that tss0 � p ⇄ q. Then there exist simulations R and R′ such
that pRq and qR′p. It is very easy to check that R ∪ Id and R′ ∪ Id with
Id = {(p, p) | p ∈ C(Σ0)} are simulations with respect to tss1 and hence,
tss1 � p⇄ q.
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For the inclusion in the other direction, suppose that tss1 � p ⇄ q. Then,
there exist simulations R and R′ w.r.t. tss1 such that pRq and qR′p. One
can easily verify that R∩ (C(Σ0)×T (Σ0)) and R′∩ (C(Σ0)×C(Σ0)) are both
simulations w.r.t. tss0 and hence tss0 � p⇄ q.

7. Ready simulation equivalence =RS:

Definition 6.33 Let tss = (Σ, V, L,D) be a TSS. A ready simulation w.r.t.
tss is a binary relation R on processes, satisfying, for l ∈ L: (1) if pRq and

tss � p
l→ p′, then q

l→ q′ and p′Rq′ for some q′, and (2) if pRq, then p
l′→ iff

q
l′→ . The processes p and q are ready simulation equivalent or ready similar

w.r.t. TSS tss, notation tss � p =RS q, iff there exist a ready simulation R
such that pRq and a ready simulation R′ such that qR′p.

Suppose that tss0 � p =RS q. Then there exist ready simulations R and R′

such that pRq and qR′p. It is very easy to check that R ∪ Id and R′ ∪ Id
with Id = {(p, p) | p ∈ C(Σ0)} are ready simulations with respect to tss1
and hence, tss1 � p =RS q.

For the inclusion in the other direction, suppose that, tss1 � p =RS q. Then,
there exist ready simulations R and R′ w.r.t. tss1 such that pRq and qR′p.
One can easily verify that R∩ (C(Σ0)×C(Σ0)) and R′ ∩ (C(Σ0)×C(Σ0)) are
both ready simulations w.r.t. tss0 and hence tss0 � p =RS q.

8. Weak bisimulation equivalence ↔ w:

Definition 6.34 Let tss = (Σ, V, L,D) be a TSS. A weak bisimulation w.r.t.
tss is a symmetric binary relation R on processes, satisfying, for l ∈ L: if

pRq and tss � p
l→ p′, then either l = τ and p′Rq, or q =⇒ q1

l→ q2 =⇒
q′ and p′Rq′ for some q1, q2, q

′. Here =⇒ denotes the reflexive transitive
closure of

τ→ . The processes p and q are weakly bisimulation equivalent or
weakly bisimilar w.r.t. TSS tss, notation tss � p ↔ wq, iff there exist a weak
bisimulation R such that pRq.

Suppose that for p, q ∈ C(Σ0), tss0 � p ↔ wq. Then there exists a weak
bisimulation R such that pRq. We claim that R ∪ Id (for Id defined in the
previous item) is a weak bisimulation w.r.t. tss1. It is trivial to see that
the pairs from Id respect the requirements for a weak bisimulation. So it
remains to verify this for pairs pRq. In tss1, all transitions with a label from
L0 are accounted for by R since tss1 is a granting extension of tss0 which

means that tss0 � p
l→ p′ iff tss1 � p

l→ p′. For the new transitions, p
l→ p′

for some l ∈ L′, we have that p = p′. Again, since the extension is granting

we also have q
l→ q. Thus we have q =⇒ q

l→ q =⇒ q and pRq.
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Suppose that tss1 � p ↔ wq. Then there exists a weak bisimulation R such
that pRq. We claim that R′ = R ∩ (C(Σ0) × C(Σ0)) is a weak bisimulation
w.r.t. tss0. The crucial observation is that since the extension is granting, no
transitions from a C(Σ0) term to C(Σ1) term are possible. Then, obviously
every pair from R′ satisfies the requirements of a weak bisimulation.

9. Rooted weak bisimulation equivalence ↔ rw:

Definition 6.35 Let tss = (Σ, V, L,D) be a TSS. The processes p and q are
rooted weak bisimulation equivalent or rooted weak bisimilar w.r.t. TSS tss,
notation tss � p ↔ rwq, iff there exist a weak bisimulation R such that pRq

and whenever p
l→ p′ there exists q1, q2, q

′ such that q =⇒ q1
l→ q2 =⇒ q′ and

p′Rq′ and whenever q
l→ q′ there exists p1, p2, p

′ such that p =⇒ p1
l→ p2 =⇒

p′ and p′Rq′.

Apart from the proof given in item 8, it remains to show that for two terms
p, q ∈ C(Σ0), the root condition holds w.r.t. tss0 if and only if it holds for
tss1. For all labels l from L0 this follows immediately from the fact that tss1
is a granting extension of tss0. For labels l′ from L′, the only relevant (new)

transitions in tss1 are p
l′→ p and q

l′→ q. Obviously, they pose no problem.

10. Branching bisimulation equivalence ↔ b:

Definition 6.36 Let tss = (Σ, V, L,D) be a TSS. A branching bisimulation
w.r.t. tss is a symmetric binary relation R on processes, satisfying, for l ∈ L:

if pRq and tss � p
l→ p′, then either l = τ and p′Rq, or q =⇒ q1

l→ q′ and
pRq1 and p′Rq′ for some q1, q2, q

′. The processes p and q are branching
bisimulation equivalent or branching bisimilar w.r.t. TSS tss, notation tss �
p ↔ bq, iff there exist a branching bisimulation R such that pRq.

The proof is similar to the proof of item 8.

11. Rooted branching bisimulation equivalence ↔ rb:

Definition 6.37 Let tss = (Σ, V, L,D) be a TSS. The processes p and q are
rooted branching bisimulation equivalent or rooted branching bisimilar w.r.t.
TSS tss, notation tss � p ↔ rbq, iff there exist a branching bisimulation R

such that pRq and whenever p
l→ p′ there exists q′ such that q

l→ q′ and p′Rq′

and whenever q
l→ q′ there exists p′ such that p

l→ p′ and p′Rq′.

The proof is similar to the proof of the previous item.

12. Bisimulation equivalence ↔ :
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Definition 6.38 Let tss = (Σ, V, L,D) be a TSS. A bisimulation w.r.t. tss
is a binary relation R on processes, satisfying, for l ∈ L: (1) if pRq and

tss � p
l→ p′, then q

l→ q′ and p′Rq′ for some q′, if pRq and tss � q
l→ q′,

then p
l→ p′ and p′Rq′ for some p′. The processes p and q are bisimulation

equivalent w.r.t. TSS tss, notation tss � p ↔ q, iff there exist a bisimulation
R such that pRq.

Suppose that tss0 � p ↔ q. Then there exist a bisimulation R such that
pRq. It is very easy to check that R ∪ Id is a bisimulation with respect to
tss1 and hence, tss1 � p ↔ q.

For the inclusion in the other direction, suppose that, tss1 � p ↔ q. Then,
there exists a bisimulation R w.r.t. tss1 such that pRq. One can easily verify
that R∩(C(Σ0)×C(Σ0)) is a bisimulation w.r.t. tss0 and hence tss0 � p ↔ q.

⊠

Using the result of Theorem 6.10, henceforth, we refer to the concept of orthogo-
nality and by that we mean ∼-orthogonality with respect to any of the notions of
behavioral equivalence named above.

Unfortunately, not all notions of behavioral equivalence are preserved under grant-
ing extensions, i.e., granting extensions are not ∼-orthogonal for all notions of
behavioral equivalence ∼. The only two counterexamples that we encountered
so far in the literature are the notions of completed-trace equivalence and com-
plete simulation equivalence. Next, we give a counterexample for completed-trace
equivalence. The same example is also a counterexample for complete simulation
equivalence.

Example 6.39 Consider the following deduction rule added to the semantics of
MPA (tssm of Example 6.2) which we refer to as MPAω.

aω a→ aω

Let =CT denote completed trace equivalence. It does not hold that aω+a.0 =CT aω

since aω + a.0 has a completed trace a while aω has no completed trace. (Note
that the set of traces of these two process are equal, i.e., aω +a.0 and aω are trace
equivalent.)

Consider the granting extension of MPAω with the following deduction rule.

x
1→x

For MPAω extended with the above rule, the two processes become completed-
trace equivalent, since both do not have any completed trace anymore.
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6.4 Orthogonality Meta-Theorems

6.4.1 Preliminaries

In this section, we seek sufficient conditions for establishing orthogonality and
equational conservativity.

As stated in Chapter 2, different interpretations of the transition relation, i.e., the
set of closed (positive) formulae, induced by a TSS are given in the literature. In
this section, we formulate and prove our main results in such a general way that
they remain independent from the chosen interpretation and can be adopted for
several existing ones. In cases where we need an explicit transition relation, we
assume that this transition relation is uniquely defined by the corresponding TSS
using one of the interpretations given in [59]. In such cases, we use the notation
tss � φ to denote that a closed positive formula φ is in the transition relation
induced by tss. If we need to go further and examine the proof of a formula in a
TSS, we use the following notion of provable transition rules.

Definition 6.40 (Provable Transition Rules) A deduction rule
N

c
is called a

transition rule if c is a closed positive formula and N is a set of closed negative
formulae.

A transition rule
N

c
is provable with respect to tss, denoted by tss ⊢ N

c
if and only

if there exists a well-founded upwardly branching proof tree with nodes labelled
by formulae such that:

• the root of the proof tree is labelled by c;

• if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}
is the set of labels of the nodes directly above q, then there is a deduction

rule
{χi | i ∈ I}

χ
in tss (N.B. χi can be a positive or a negative formula) and

a substitution σ such that σ(χ) = ψ and for all i ∈ I, σ(χi) = ψi;

• χ ∈ N for all negative formulae χ, if and only if χ is a leaf of the proof tree.

This technique will enable us to apply our results to various existing interpretations
(following [48]). Particularly, if tss ⊢

φ
and tss induces a unique transition relation

using one of the existing interpretations, it always follows that tss � φ.

6.4.2 Granting Meta-Theorems

We start with defining sufficient conditions to prove an extension to be granting.
Hence, we need to define when a deduction rule proves (only) self-transitions. We
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use unification as a means to this end.

Definition 6.41 (Unification) A term t is unifiable with t′ using σ, denoted by
t ≈σ t′ if and only if σ(t) = σ(t′). The set of unifiers of t and t′ is defined by
U(t, t′) = {σ | t ≈σ t′}. The set of unifiers of a set of pairs is defined as the
intersection of the sets of unifiers of each pair. The set of unifiers of an empty
set is defined to include all substitutions. The set of unifiers of a positive formula

t
l→ t′ is defined as the set of unifiers of t and t′. Unification also naturally extends

to a set of positive formulae, again, using intersection.

Next, we characterize the set of rules that induce self-transitions. This is done by
only allowing for unifiable (positive) formulae in the premises and the conclusion
of a rule and further, by forcing the unification of the conclusion to follow from
that of the premises.

Definition 6.42 (Source-Preserving Rules) A deduction rule
H

c
without negative

premises is source preserving if U(H) 6= ∅ and U(H) ⊆ U(c). A TSS is source
preserving if all its deduction rules are. For a source-preserving TSS, the set of
unified-conclusions contains conclusions of the deduction rules with their unifiers
applied to them.

The following lemma captures the intuition behind source-preserving rules.

Lemma 6.43 If tss is source preserving, then ∀l∈L∀p,p′∈C tss � p
l→ p′ ⇒ p = p′.

Proof. Source-preserving rules do not contain negative premises and hence the

two notations tss � p
l→ p′ and tss ⊢

p
l→ p′

coincide. Hence, we proceed with an

induction on the depth of the proof for tss ⊢
p

l→ p′
.

If the proof tree has depth one, then the transition is due to a rule of the following
form

t
l→ t′

and a substitution σ such that σ(t) = p and σ(t′) = p′. But since tss is source

preserving, it holds that U(∅) ⊆ U(t
l→ t′) and since σ ∈ U(∅), it follows that

σ ∈ U(t
l→ t′) and hence, p = σ(t) = σ(t′) = p′.

For the induction step, suppose that the last deduction rule in the proof tree of
depth n has the following form

H

t
l→ t′
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and there exists a substitution σ such that σ(t) = p and σ(t′) = p′ and for all
h ∈ H, σ(h) is provable, trivially with a proof of depth less than n. Follow-
ing the induction hypothesis, for all h ∈ H, σ ∈ U(h) and thus, σ ∈ U(H). It

then follows from U(H) ⊆ U(t
l→ t′) that σ ∈ U(t

l→ t′) and we conclude that
p = σ(t) = σ(t′) = p′. ⊠

As illustrated above, source-preserving rules are safe for the purpose of proving
self-transitions. However, there might be other rules in the extending TSS that can
be harmful in that they may prove other types of transition for old terms. This may
be prevented by forcing the other (non source-preserving) rules to have negative or
non-unifiable positive premises addressing the old syntax. The following definitions
give sufficient conditions for an extension to be granting.

Definition 6.44 (Generated Terms) The set of terms generated by a set of
terms S, denoted by G(S), is the set of all terms t′ = σ(t), for some t ∈ S and
some σ such that ∀x∈V σ(x) ∈ S. A set of terms S covers Σ-terms, if C ⊆ G(S).

Definition 6.45 (Granting Criteria) Consider a TSS tss = (Σ, V, L,D) strat-
ified by S. It grants L0 transitions on Σ0-terms, if tss = tss0 ∪ tss1 (with
tssx = (Σx, V, Lx, Dx) for x ∈ {0, 1}) such that:

1. tss0 is strictly stratified by S, it is source dependent and for all l ∈ L0, the
set containing sources of unified-conclusions of l-rules covers Σ0-terms, and

2. for all deduction rules d ∈ D1 at least one of the following holds:

(a) d has a function symbol from Σ1 \Σ0 in the source of its conclusion, or

(b) ρ(d,Σ0) has a source-dependent negative premise with a label in L1, or

(c) ρ(d,Σ0) has a source-dependent positive premise t
l→ t′ with l ∈ L1 and

U(t, t′) = ∅.

The first condition in the above definition is dedicated to proving self-transitions
from the syntax of Σ0, and the second one takes care of preventing Σ0-terms from
performing other types of transitions while allowing other terms to do so.

Theorem 6.46 (Granting Meta-theorem) Consider TSS’s tss0 = (Σ0, V, L0, D0)
and tss1 = (Σ1, V, L1, D1). If tss0 is source dependent, tss1 grants L1 transitions
on Σ0-terms and L0 ∩ L1 = ∅ then tss0 ∪ tss1 is a granting extension of tss0.

Proof. Since tss1 grants L1 transitions over Σ0-terms, there exists a decom-
position of tss1 into tssA ∪ tssB such that tssA = (Σ0, V, L1, DA) and tssB =
(ΣB , V, LB , DB) and
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1. tssA is strictly stratified by S, it is source preserving and for all l ∈ L1, the
set containing sources of unified-conclusions of l-rules covers Σ0-terms, and

2. for all deduction rules in d ∈ DB at least one of the following holds:

(a) d has a function symbol from ΣB \Σ0 in the source of its conclusion, or

(b) ρ(d,Σ0) has a source-dependent negative premise with a label in L1, or

(c) ρ(d,Σ0) has a source-dependent positive premise t
l→ t′ with l ∈ L1 and

U(t, t′) = ∅.

To show that tss0 ∪ tss1 is a granting extension of tss0, we have to prove the
following two items:

1. ∀p,p′∈C(Σ0)∀l∈L0
tss0 � p

l→ p′ ⇔ tss0 ∪ tss1 � p l→ p′. To show this, we prove

that the sets of provable transition rules with conclusion p
l→ p′ w.r.t. tss0

and w.r.t. tss0 ∪ tss1 coincide.1

First, if a transition rule
N

p
l→ p′

is provable w.r.t. tss0, then the same proof

tree can be used w.r.t. tss0 ∪ tss1 to provide us with tss0 ∪ tss1 ⊢ N

p
l→ p′

.

Second, to prove that tss0 ∪ tss1 ⊢ N

p
l→ p′

⇒ tss0 ⊢ N

p
l→ p′

, we prove the

following stronger claim.

Claim. If for some p ∈ C(Σ0), p′ ∈ C(Σ0 ∪ Σ1), l ∈ L0, tss0 ∪ tss1 ⊢ N

p
l→ p′

then p′ ∈ C(Σ0) and tss0 ⊢ N

p
l→ p′

(thus, N is built upon Σ0-terms and L0

labels).

Proof. Take an arbitrary term p ∈ C(Σ0), we prove by an induction on the

depth of the proof tree for tss0 ∪ tss1 ⊢ N

p
l→ p′

that p′ ∈ C(Σ0) and tss0 ⊢

N

p
l→ p′

. If the proof tree has depth one, then it is due to a deduction rule

d = (H, c) in tss0 with no positive premises (rules in tss1 have a disjoint set of
labels and thus cannot provide a proof for a transition with label l ∈ L0) and
a substitution σ. Since d is source dependent and has no positive premise,
variables in H are all among the variables in the source of c. Thus, applying
σ to H and c yields terms from Σ0. Hence, using deduction rule d and

1This is similar to the technique used in [48] for proving equality of the induced transition
relations of two TSS’s. Here, however, this technique is used to show the equality of partitions
of the induced transition relation.
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substitution σ, we have a proof for tss0 ⊢ N

p
l→ p′

and this concludes the

induction basis.

For the induction step, suppose that tss0∪tss1 ⊢ N

p
l→ p′

has a proof of depth

n. Then, the last deduction rule applied in the proof tree is in tss0 (again,
due to the disjointness of labels). Hence, the induction hypothesis applies to
the positive premises (if any). Since tss0 is source dependent, we can define
a measure of source distance on premises as follows.

The source-dependency graph of a deduction rule is constructed by taking
the variables that appear in the deduction rule as nodes and by putting an
edge between two variables if one appears in the source and the other in
the target of a premise. The distance of a variable in the source-dependency
graph is the length of the shortest backward chain in this graph starting from
the variable and ending in a variable in the source of the conclusion. The
distance of a premise is the maximal distance of the variables of its source.

We proceed by an induction on the distance of premises in the source-
dependency graph. For the induction basis, all the variables in the source of
the premise should be among the variables in the source of the conclusion,
hence the induction hypothesis on the depth of the proof applies and thus,
the target of the premise (after substitution) should also be in C(Σ0). Sim-
ilarly, for the induction step, all the variables in the source of the premise
under consideration should already be valuated by terms in C(Σ0) and again
by applying the induction hypothesis on the depth of the proof, we get that
the variables in target are also valuated by terms in C(Σ0). Hence, the
premises are all provable from the same set of negative premises in tss0 and
this concludes the proof of the lemma. ⊠

2. ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L1
tss0 ∪ tss1 ⊢ p

l→ p′ ⇔ p = p′. We first prove
the implication from right to left, which will be used in the proof of the
implication in the other direction.

Consider a formula p
l→ p′. tssA is source preserving and for all l ∈ L1, the

set of sources of unified-conclusions of l-rules cover Σ0-terms. Hence, there
should exist an l-rule in DA of the following form:

H

t
l→ t′

,

and a unifier σ of t and t′ and a substitution σ′ such that σ′(σ(t)) = p =
σ′(σ(t′)).
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We proceed by an induction on the strict stratification S(p
l→ p). For the in-

duction basis, consider p
l→ p that has a minimal stratification measure. This

means that deduction rule d has no premises, since otherwise, the premises
would also be unifiable using σ ◦ σ′ and have a strictly smaller measure. For
a rule with an empty set of premises, any substitution is a unifier for the
conclusion and hence using d and substitution σ ◦ σ′, we have a proof for

p
l→ p. For the induction step, since the unifier of the conclusion is a unifier

for all the premises, by applying σ ◦ σ′ on the premises and applying the

induction hypothesis we construct a proof for p
l→ p (see the proof of Lemma

6.43 for details).

For the implication in the other direction, namely tss0∪ tss1 ⊢ p l→ p′ ⇒ p =
p′, we prove the following claim.

Claim. For all set of negative premises N such that ∀l∈L1
p

l
9 /∈ N , ∀l′∈L1

tss0 ∪ tss1 ⊢
N

p
l′→ p′

⇒ p = p′ ∧N = ∅.

In the above claim, we require that ∀l∈L1
p

l
9 /∈ N since in the proof of the

implication from right to left, we have shown that these negative formulae

can always be contradicted by constructing a proof for p
l→ p.

Proof. To prove the claim, we use an induction on the proof depth for

tss0 ∪ tss1 ⊢ N

p
l→ p′

.

For the induction basis, since l′ ∈ L1, there exist a deduction rule d ∈ D1

with no positive premises, of the following form

H

t
l′→ t′

and a substitution σ such that σ(t) = p and σ(t′) = p′. Suppose that d is
in DB . Then it either has a function symbol not in ΣB \ Σ0 in the source

of its conclusion or ρ(d,Σ0) has a negative premise tj
lj
9 with lj ∈ L1. In

the former case, the source of rule d cannot match p. In the latter case,
vars(tj) ⊆ vars(t) (since d is source dependent and has no positive premises)

and hence σ(tj) ∈ C(Σ0). Thus, there is a negative formula σ(tj)
lj
9 ∈ N ,

with σ(tj) ∈ C(Σ0) and lj ∈ L1, contradicting our hypothesis. From these
two contradictions, we conclude that d ∈ DA. Following the same reasoning
as in the other implication, from a rule in DA with empty premises (since d is
source preserving and has no positive premises), we can only prove transition
rules of the form

p
l′→ p

.
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For the induction step, there should again be a deduction rule d in D1 of the
following form

H

t
l′→ t′

and a substitution σ such that σ(t) = p. If d ∈ DB one of the following three
should hold:

(a) t /∈ T (Σ0, V ), then σ(t) /∈ C(Σ0) and this contradicts σ(t) = p;

(b) ρ(d,Σ0) has a negative premise tj
lj
9 with lj ∈ L1. Then, using an

induction on the chain of source dependencies leading to the premise

tj
lj
9 , it follows that σ(tj) ∈ C(Σ0) and since σ(tj)

lj
9 ∈ N , it contra-

dicts our hypothesis.

(c) ρ(d,Σ0) has a positive premise ti
li→ t′i and U(ti

li→ t′i) = ∅. Again by an
induction on the chain of source dependencies, it follows that σ(ti) ∈
C(Σ0) and hence, following the induction hypothesis (concerning the

proof depth), σ(ti) = σ(t′i), and this contradicts U(ti
li→ t′i) = ∅.

Hence, we conclude that d ∈ DA and hence, it only has positive premises.
We apply the induction hypothesis on all the premises in H and conclude
that σ is a unifier for all h ∈ H and hence it is a unifier for t and t′. Fur-
thermore, it follows from the induction hypothesis that the set of leaves for
the proof tree above each and every premise is empty and hence the whole
proof tree has no negative premise as a leaf. Hence for this proof, it holds
that N = ∅ and σ(t) = σ(t′) = p. ⊠

This completes the proof. ⊠

6.4.3 Decomposing Orthogonality

An operationally conservative extension denies all types of new behavior from
the old syntax. In total contrast, a granting extension forces to add all types of
behavior to the old syntax. It would be most interesting, if we could reach a com-
promise between these two types of extensions while preserving the orthogonality.
Hence, in this section, we propose a few ways of decomposing orthogonality into
operationally conservative and granting extensions.

The first way to decompose orthogonality is by taking two subsets of the extending
TSS with disjoint sets of labels and proving that one subset is a conservative
extension and the other set is a granting extension of the extended TSS.
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Theorem 6.47 Consider a TSS tss0 = (Σ0, V, L0, D0) and tss1 = (Σ1, V, L1, D1).
If tss1 = tss10 ∪ tss11 (with tssx = (Σx, V, Lx, Dx) for x ∈ {10, 11}) such that:

1. tss10 satisfies the operational conservativity criteria of Theorem 3.15 w.r.t.
tss0,

2. tss11 satisfies the granting extension criteria of Theorem 6.46 w.r.t. tss0, and

3. L10 ∩ L11 = ∅,

then tss0 ∪ tss1 is an orthogonal extension of tss0.

Proof. Note that we cannot use Theorems 3.15 and 6.46 here directly by prov-
ing, for example, that tss0 ∪ tss1 is a conservative extension of tss0 ∪ tss11 since
the hypotheses of Theorem 3.15 may be violated due to the addition of the new
signature Σ11.

Instead, we prove that tss0 ∪ tss1 is a granting extension of tssA = (Σ0, V, L0 ∪
L10, D0). Then tss0∪ tss1 will be an orthogonal extension of tss0 as well since the
transition relations induced by tss0 and tssA coincide.

To prove that tss0 ∪ tss1 is a granting extension of tssA, copying Definition 6.9,
we have to prove:

1. ∀p,p′∈C(Σ0)∀l∈L0∪L10
tssA ⊢ p l→ p′ ⇔ tss0 ∪ tss1 ⊢ p l→ p′, and

2. ∀p∈C(Σ0)∀p′∈C(Σ0∪Σ1)∀l∈L11
tss0 ∪ tss1 ⊢ p l→ p′ ⇔ p = p′.

To prove the first item, we prove the following stronger claim.

Claim. ∀p∈C(Σ0)∀p′∈C(Σ0∪Σ1)∀l∈L0∪L10
tssA ⊢ N

p
l→ p′

⇔ tss0 ∪ tss1 �
N

p
l→ p′

Proof. The implication from left to right holds trivially since any proof structure
in tssA remains valid in tss0 ∪ tss1. For the implication in the other direction, all

deduction rules used to deduce tss0 ∪ tss1 �
N

p
l→ p′

should be in D0 ∪D10 since

rules from D11 have disjoint labels from both L0 and L10. We prove the claim by

an induction on the depth of the proof for tss0 ∪ tss1 �
N

p
l→ p′

.

If the last deduction rule d applied in the proof tree is in tss0 and if we denote
the substitution applied to d by σ, then it follows from source dependency and by
an induction on the source distance of the premises that the source of all premises
with σ applied to them are in C(Σ0) and since the labels are in L0, the induction
hypothesis applies and all the positive premises have a proof in tssA and all the
variables in their target are evaluated by σ to terms in C(Σ0). The variables in
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the target of the conclusion are source dependent and hence, the target of the
conclusion with σ applied to it is also in C(Σ0).

If the last deduction rule d applied in the proof tree is in D10 and if we denote
the substitution applied to d by σ then it follows from the hypotheses of Theorem
3.15 that one of the following two conditions should hold:

1. source of the conclusion of d mentions a function symbol not in Σ0, but then
it cannot match p, or

2. ρ(d,Σ0) has a premise ti
li→ t′i such that li /∈ L0 or t′i /∈ T (Σ0, V ). In this

case, by an induction on the source distance of ti
li→ t′i, it follows that σ(ti) ∈

C(Σ0) and since d ∈ D10, l ∈ L10, thus, the induction hypothesis applies

and tssA ⊢ N

σ(ti)
li→σ(t′i)

, but since σ(t′i) /∈ T (Σ0, V ) this transition is not

provable in tssA.

Hence, both cases lead to a contradiction and a rule in D10 cannot be used in

constructing a proof for
N

p
l→ p′

and this concludes the proof of our claim. ⊠

For the second item, we have to prove that ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L11
tss0 ∪

tss1 ⊢ p
l→ p′ ⇔ p = p′. To prove this item, we can confine ourselves to rules in

D11 since rules in D0 ∪D10 have disjoint labels and hence cannot provide a proof

for p
l→ p′. tss11 satisfies the hypotheses of Theorem 6.46 and hence it grants L11

transitions on Σ0 terms. Using a similar proof as of Theorem 6.46, we can prove
that for Σ0-terms as a source, it can only prove self transitions with L11 labels,
hence, the second item. ⊠

Note that, in general, the proof obligation for orthogonality cannot be decomposed
into the proof of orthogonality of two subsets of an extension. However, we con-
jecture that if the two subsets have sets of disjoint labels and one has a disjoint
set of labels with the original TSS, the orthogonality of the combination can be
guaranteed (yielding a generalization of the above theorem).

Another way to decompose orthogonality is to apply conservativity and granting
extension theorems in sequence. This is possible by virtue of the following corollary
which follows trivially from the definition of orthogonality (Definition 6.7).

Corollary 6.48 Orthogonal extension is a preorder.

Proof. For an arbitrary tss, it trivially holds that tss is an orthogonal extension
of itself. Consider three TSS’s tss0, tss1 and tss2 with tssx

.
= (Σx, Lx, Dx) for
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x ∈ {0, 1, 2} such that tss2 is an orthogonal extension of tss1 and tss1 is an
orthogonal extension of tss0. One can easily check that the two conditions for
tss2 to be an orthogonal extension of tss0 hold:

1. ∀p,p′∈C(Σ0) ∀l∈L0
tss2 � p

l→ p′ ⇔ tss1 � p
l→ p′ ⇔ tss0 � p

l→ p′, and

2. ∀p,p′∈C(Σ0) tss2 � p ∼ p′ ⇔ tss1 � p ∼ p′ ⇔ tss0 � p ∼ p′.

⊠

Using this corollary one can interleave several steps of operationally conservative
and granting extensions to define different new aspects and, in the end, have an
orthogonal extension of the original language. The following example illustrates
applications of the above results.

Example 6.49 (Timed-MPA: Orthogonality) Consider the tssm of MPA in Ex-
ample 6.2 and tsst of Example 6.4. TSS tsst can be decomposed into the following
three parts: tss0

.
= ({a. , δ}, A, {(ua), (td)}), tss1

.
= ({δ, a. , + }, {1}, {(tc0),

(ta), (d)}) and tss2
.
= ({ + }, {1}, {(tc1), (tc2)}).

It follows from Definition 6.42 that tss1 is source preserving since:

1. the conclusions of (ta) and (d) are unifiable using any substitution, hence
using the unifiers of the empty set of premises, and

2. the conclusion of (tc0) is unifiable using the unifiers of the premises, i.e.,
those that evaluate x and x′ to the same term and y and y′ to the same
term.

It then follows from Definition 6.45 that tss1 ∪ tss2 grants time transitions over
MPA terms since

1. tss1 is strictly stratified using a simple measure of size on terms, it is source
preserving as shown before, and by applying unifiers to the source of con-
clusion of (tc0), (ta) and (d), i.e., the set {x + y, a.x, δ}, we can cover the
syntax of MPA,

2. in tss2, deduction rules (tc1) and (tc2) have source-dependent negative
premises with label 1 (note that (tc1) and (tc2) are the same as their reduced
versions).

From Theorem 6.46, it follows that the extension of tssm with tss1 ∪ tss2 is a
granting extension, hence an orthogonal extension. Furthermore, the extension
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of tssm ∪ tss1 ∪ tss2 with tss0 is conservative, hence orthogonal, following The-
orem 3.15. Since orthogonality is a preorder, we conclude that tssm ∪ tsst is an
orthogonal extension of tssm .

Alternatively, we could use Theorem 6.47 to obtain orthogonality by using the
above results. Namely, tss0 satisfies the criteria for operational conservativity of
Theorem 3.15 w.r.t. tssm , tss1 ∪ tss2 satisfies the granting criteria of Theorem
6.46 w.r.t. tssm and finally, the labels of tss0 and tss1 ∪ tss2 are disjoint. Hence,
using Theorem 6.47, we can conclude that tssm ∪ tsst is an orthogonal extension
of tssm .

To give an idea how to deal with predicates in our settings, we treat the process
algebra timed-MPA enriched with a termination predicate and successful termi-
nation constants.

Example 6.50 (Timed-MPA: Termination)

(1) (et)
ǫ ↓

(ct0)
x0 ↓

x0 + x1 ↓
(ct0)

x1 ↓
x0 + x1 ↓

(2) (te)
ǫ

1→ ǫ
(ue)

ǫ ↓

Consider the above TSS which is supposed to be added to the tsst of Example
6.4. In order to deal with the termination predicate in our setting, we transform
it to the form of a binary transition formula with a new label ↓. However, a choice
can be made concerning the target of the newly formed formulae. In [135], it is
suggested to take different fresh variables as targets of transformed premises and
a new dummy constant as targets of premises. Thus, the above example would
be transformed to the following TSS, where

√
is the dummy constant. Using the

following TSS, we can now apply Theorem 3.15 and conclude that timed-MPA
with successful termination is an orthogonal extension of both timed-MPA and
MPA.

(1) (et)
ǫ

↓→√ (ct0)
x0

↓→ y0

x0 + x1
↓→√ (ct0)

x1
↓→ y1

x0 + x1
↓→√

(2) (te)
ǫ

1→ ǫ
(ue)

ǫ
↓→√

The above choice of targets for the target of transformed formulae is motivated
by the desire to make the transformed TSS conform to a certain rule format, i.e.,
PANTH format of [135]. However, for proving orthogonality, we do not necessarily
need the conformance to the PANTH format and one can take other targets for
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the targets. For example, a natural choice would be to take the source terms as
the target and this way, we end up with the following TSS.

(1) (et)
ǫ

↓→ ǫ
(ct0)

x0
↓→x0

x0 + x1
↓→x0 + x1

(ct0)
x1

↓→x1

x0 + x1
↓→x0 + x1

(2) (te)
ǫ

1→ ǫ
(ue)

ǫ
↓→ ǫ

Actually, the above transformation may be preferable in the case of proving a
granting extension since it discharges all obligation concerning unification.

6.4.4 Orthogonality and Equational Conservativity

The following theorems establish the link between orthogonality and equational
conservativity. They are very similar to those in [135, 4] about the relation be-
tween operational and equational conservativity. The first theorem states that
a sound axiomatization of an operationally conservative extension cannot induce
new equalities on the old syntax.

Theorem 6.51 (Equational Conservativity Theorem) Consider two TSS’s
tss0 = (Σ0, V, L0, D0) and tss1 = (Σ1, V, L1, D1) where tss1 is an orthogonal ex-
tension of tss0. Also let E0 be a sound and ground-complete axiomatization of tss0
and E1 be a sound axiomatization of tss1. If ∀p,p′∈C E0 ⊢ p = p′ ⇒ E1 ⊢ p = p′

then E1 is an equationally conservative ground-extension of E0.

Proof. We have to prove that ∀p,p′∈C(Σ0)E0 ⊢ p = p′ ⇔ E1 ⊢ p = p′. The impli-
cation from left to right is given by the hypothesis, thus it remains to prove that
E1 ⊢ p = p′ ⇒ E0 ⊢ p = p′. Since E1 is sound, it follows that tss1 ⊢ p ∼ p′ and
since tss1 is an orthogonal extension of tss0, it holds that tss0 ⊢ p ∼ p′. Then it
follows from the completeness of E0 that E0 ⊢ p = p′. ⊠

The next theorem enables us to use orthogonality as a means to equational con-
servativity.

Theorem 6.52 Consider TSS’s tss0 = (Σ0, L0, D0) and tss1 = (Σ1, L1, D1)
where tss1 is an orthogonal extension of tss0. Also let E0 and E1 be sound
and ground-complete axiomatizations of tss0 and tss1, respectively. Then, E1 is
an equationally conservative ground-extension of E0.
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Proof. We have to prove that ∀p,p′∈C(Σ0)E0 ⊢ p = p′ ⇔ E1 ⊢ p = p′. From
E0 ⊢ p = p′, by soundness of E0, tss0 ⊢ p ∼ p′. Since tss1 is an orthogonal
extension of tss0, we obtain tss1 ⊢ p ∼ p′. From the hypothesis that E1 is a
ground-complete axiomatization of ∼ w.r.t. tss1, we have E1 ⊢ p = p′. Similarly,
from E1 ⊢ p = p′, since E1 is sound, we have tss1 ⊢ p ∼ p′. Due to orthogonality,
tss0 ⊢ p ∼ p′. The completeness of E0 then gives E0 ⊢ p = p′. ⊠

Using the above theorem, we can obtain the equational conservativity result for
timed-MPA.

Example 6.53 (Timed-MPA: Equational Conservativity) Consider the equational
theories for MPA and timed-MPA presented in Example 6.3 and 6.6. Assuming
the soundness and ground-completeness of both axiomatizations which we claimed
without a proof, and the orthogonality of the extension of MPA to timed-MPA
which we proved in Example 6.49, we can deduce using Theorem 6.52 that the
equational theory of Example 6.6 is an equationally conservative ground-extension
of that of Example 6.3.

Finally, the last theorem establishes sufficient conditions for a sound equationally
conservative ground-extension to be a ground-complete equational theory for the
extended language. To establish such a useful result we need to eliminate the
function symbols from the extending theory, as defined below.

Definition 6.54 An equational theory E on Σ eliminates function symbols from
Σ′ ⊆ Σ if and only if for all p ∈ C there exists a term p′ ∈ C(Σ \ Σ′) such that
E ⊢ p = p′.

Theorem 6.55 (Elimination Theorem) Consider TSS’s tss0 = (Σ0, V, L0, D0)
and tss1 = (Σ1, V, L1, D1) where tss1 is an orthogonal extension of tss0. Also
let E0 and E1 be sound axiomatizations of tss0 and tss1, respectively. If E0 is
also ground-complete on tss0, E1 is an equationally conservative ground-extension
of E0 and E1 eliminates function symbols from Σ1\Σ0, then E1 is ground-complete
for tss1.

Proof. Consider two closed terms p, p′ ∈ C(Σ1) such that tss1 ⊢ p ∼ p′. Since
E1 eliminates terms from Σ1 \ Σ0, there exist two terms q, q′ ∈ C(Σ0) such that
E1 ⊢ p = q and E1 ⊢ p′ = q′. It follows from soundness of E1 that tss1 ⊢ p ∼ q and
tss1 ⊢ p′ ∼ q′ and since ∼ is an equivalence relation, it follows that tss1 ⊢ q ∼ q′.
But tss1 is an orthogonal extension of tss0 and hence, we have tss0 ⊢ q ∼ q′. E0

is a ground-complete axiomatization of tss0 and thus, E0 ⊢ q = q′ and it follows
from the equational conservativity of E1 with respect to E0 that E1 ⊢ q = q′.
From p = q, q = q′ and p′ = q′, we conclude that E1 ⊢ p = p′. ⊠
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A typical line of reasoning starts with taking an orthogonal extension and a sound
axiomatization thereof, and proving equational conservativity using Theorem 6.51.
Then, by proving an elimination result for newly introduced operators, one can
get completeness of the axiomatization following Theorem 6.55.

6.5 Conclusions

In this chapter, we defined a more relaxed notion of operational conservativity,
called orthogonality which allows for non-destructive extension of the behavior of
the old language. We gave a meta-theorem providing sufficient conditions (which
are indeed more relaxed than the sufficient conditions for the traditional notion).
Also, we presented the slightly more general notion of equational conservativity
for ground-extensions and established the link between these two notions. The
concepts and results were illustrated by extending the Minimal Process Algebra
of [14] to a timed setting.

In [10], we design a spectrum of timed process algebras with successful termination
that are related using our relaxed notion of equational conservativity. This has not
been possible before (cf. [133]) due to the restrictions imposed by the old definition.
In [10], we use orthogonality as a means to prove equational conservativity among
these process algebras.

Extending the theory presented in this chapter with the concept of variable binding
is a straightforward extension along the lines of [48]. The second enhancement
of our work concerns operational extensions that require a translation of labels
(using a kind of abstraction function). Finally, investigating the possibility of
other realizations of orthogonality is an interesting subject for future research.

Studying extensions such as the timed extension of µCRL [109] in which the old
labels are augmented with new information is also an interesting line for future
work.
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Chapter 7

Implementation

“The construction itself is an art, its application to the world an evil
parasite.”

[Luitzen Egbertus Jan Brouwer]

An earlier version of this chapter is to appear as: M.R. Mousavi, M.A. Reniers, Prototyping
SOS Meta-theory in Maude, In P. Mosses and I. Ulidowski eds., Proceedings of the 2nd Workshop
on Structural Operational Semantics (SOS’05), Lisbon, Portugal, Electronic Notes in Theoretical
Computer Science, Elsevier, July 2005.
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7.1 Introduction

Defining a formal semantics for a language is usually among the very first steps of
bringing it into the formal world. The process of defining the semantics involves
many choices some of which are very implicit and hidden from the designer’s naked
eyes. Furthermore, there is usually no reference point to check whether the end
result is “correct” and the right choices have been made during the process of
defining the semantics. For a complicated language, it soon goes beyond human
capabilities to keep track of the consequences of design-decisions in the seman-
tics and one can often overlook possible counter-intuitive phenomena introduced
there. Proving theorems about intuitive properties and checking several instances
of system runs (according to the given semantics) against one’s intuition are good
ways to build insight and confidence in the semantics.

In this chapter, we report an initial attempt to implement a general-purpose tool
that provides a language designer with the above possibilities for languages en-
dowed with an Structural Operational Semantics.

As illustrated in Chapter 3, there has been a reasonable body of knowledge devel-
oped around the concept of SOS. But unfortunately, little has been done about
implementing these theories. We aim at defining a framework which allows us to
check the premises of some of the meta-theorems for SOS specification and further
allows for animating programs according to the given semantics. The Maude term
rewriting language [1] comes very handy as the base language for our implemen-
tation.

The rest of this chapter is structured as follows. In Section 7.2, we review the
related work in prototyping SOS languages and checking meta-theorems about
them. Afterwards, in Section 7.3, our implementation of Transition System Speci-
fications in Maude is described. An instance of a congruence meta-theorem is then
defined in Section 7.4 and implemented. Section 7.5 defines a simple operational
conservativity theorem and illustrates its implementation. Section 7.6 is devoted
to animating SOS specifications. Finally, Section 7.7 concludes the chapter and
proposes several possible extensions of our prototype. In this chapter we recall
the GSOS format (Definition 3.5) without re-stating it. The Maude code of the
prototype presented in this chapter can be downloaded from the following URL:
http://www.win.tue.nl/∼mousavi/sos05-meta-theory.maude.

7.2 Related Work

In [99], we report our initial experiment with implementing an instance of SOS
specification in the Maude rewriting logic [1] which was used as a prototype sim-
ulation and model checking environment for the particular target language. This
initial prototype helped us check and remove a few “bugs” in our initial semantics.
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Apart from our previous implementation, other authors have studied the, rather
evident, link between the rewriting logic [80] and SOS [108] both from a theoretical
[43, 80, 81, 82] as well as practical point of view [32, 33, 129, 131, 132].

In [32], the outline of a translation from Modular SOS (MSOS) [93, 94] to Maude
rewriting logic is given and proven correct. The translation is quite straightforward
and the main technical twist is in the decomposition of labels into the configura-
tions in the source and the targets of the transitions which is due to the structure
of labels in MSOS. The translation is fully implemented and details of this im-
plementation can be consulted in [31]. The main difference between this research
and ours stems from the fact that we take SOS as our point of departure and this
may help us benefit from its theoretical history and practical popularity.

Verdejo in [129] and Verdejo and Marti-Oliet in [131, 132] report the implemen-
tation of a number of instances of SOS semantics in Maude. Our approach is
very close in essence to their work in that SOS deduction rules are interpreted as
Maude conditional rewrite rules. We contribute to their work by first, raising the
level of abstraction a bit so that one can talk about SOS rules in general, specify
and execute them and reason about them and second, we implement the slightly
involved case of SOS with negative premises in our framework.

Earlier versions (of Maude) did not support conditional rewriting with rewrites
as conditions. Thus, a different approach has been proposed in [80] to implement
SOS, called transitions as judgements. In this approach each transition is im-
plemented as a term and SOS deduction rules are implemented as rewrite rules
that rewrite the transition in the conclusion to the transitions in the premises
or vice versa (i.e., constructing a proof structure using a bottom-up or top-down
approach). Both of these approaches have been suggested by [80] and the former
has been implemented in [130]. Both transitions as rewrites and as judgements
can be useful. In [131], it is reported that the transitions as rewrites approach is
easier to implement and causes less complications. Furthermore, modeling transi-
tions as rewrites allows for exploiting available search and model checking libraries
implemented in Maude to investigate the behavior of a model.

LETOS [65] is a tool that generates LATEX documents as well as executable anima-
tion code in Miranda [124] from a wide range of semantics, including some forms of
SOS. A first attempt to implement an SOS meta-theorem, concerning operational
conservativity of [64] is also reported in [65]. However, the implementation does
not fully check this theorem and only checks the source-dependency requirement
which is one of the hypotheses of the conservativity theorem of [64].

Centaur tool-set [28, 40] provides several formalisms for defining syntax and se-
mantics of languages and supports them by tools for generating user-interfaces,
interpreters and debuggers. Thanks to the expressive-ness and reflective semantics
of Maude, all these formalisms collapse into one formalism in our implementation
and so far, we do not see the need to use any other formalism or programming lan-
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guage to define any aspect of syntax and semantics and to implement the back-end
of our tool.

7.3 Transition System Specifications in Maude

In this section, we formalize the concept of TSS with constant labels (Definition
3.1) in Maude. A natural extension of our implementation would be to support
terms as labels.

Formalization in Maude Labels and variables are defined as sorts Labels

and Vars, respectively. Elements of sort Labels are left to be defined by the
user but we treat the labels as constants (possibly with some algebraic structure).
Basic constructors X- n and Y- n are defined for variables Xn and Yn indexed by
natural numbers. A signature is to be defined per specification. Function symbols
in the signature are to be defined using the Maude syntax. For example, a binary
operator + can be defined as op + : T T -> T [ctor] ., where T is the
given name for the sort of terms and ctor stands for constructor. Substitutions
and matching are already defined for variables and have to be lifted by the user to
the term level. We foresee the possibility of generating substitution and matching
axioms automatically by examining the signature at meta-level.

Formulae s
l→ s′ and s

l
9 are denoted by expressions s == l ==> sp and s == l

=/=>, respectively. A TSS is a functional theory parameterized by the signature,
variables and labels. However, since the parameterized modules are not supported
at meta-level by the current implementation of Maude, we implement them as
plain functional modules. Transforming our implementation to the parameterized

setting is a matter of renaming interfaces and sort names. A deduction rule
H

c
is

denoted by H === c and deduction rules in a set are separated by commas.

Using the general implementation of TSS’s and related concepts, we can specify
instances of SOS specification as shown in the examples given below. Note that
the examples are there for explanation purposes and do not necessarily stand for
practical and meaningful instances of SOS.

Examples Table 7.1 shows the SOS specification of the Minimal Process Algebra
(MPA) (Example 6.2) in our framework. Note that this is precisely the amount of
text that has to be typed in, to benefit from the meta-theory implemented in our
framework and possible extensions thereof. The Maude code is self-explanatory
and is almost the same as the text appearing in Example 6.2. The signature
consists of a constant delta for the deadlocking process, a class of unary operators
a ; for action prefixing with a being a member of the sort BAct (for Basic



7.4 A Congruence Meta-Theorem 117

fmod MPA-TSS is eq vars (delta) = emptyVars .

inc Term-Match . eq vars (act ; s) = vars (s) .

inc TSS-Definition . eq vars (s + t) =

sort BAct . vars (s) cup vars (t) .

subsort BAct < Labels . eq match (delta, delta) = emptySbst .

*** MPA Signature eq match ((s + t), (sp + tp) ) =

op delta : -> T [ctor] . (match (s, sp), match (t, tp)) .

op _ ; _ : BAct T -> T [ctor] . eq match ((act ; s), (act ; t)) =

op _ + _ : T T -> T [ctor] . match (s, t) .

*** Substitutions and Matching *** Operational Semantics of MPA

op a : -> BAct [ctor] . op MPA : -> TSS .

var act : BAct . eq MPA =

var sigma : Sbst . ( ===

vars s t sp tp : T . a ; X- 0 == a ==> X- 0 ) ,

eq sigma ( delta ) = delta . ( X- 0 == a ==> Y- 0

eq sigma (act ; s) = ===

act ; sigma (s) . X- 0 + X- 1 == a ==> Y- 0 ) ,

eq sigma (s + t) = ( X- 1 == a ==> Y- 1

sigma (s) + sigma (t) . ===

X- 0 + X- 1 == a ==> Y- 1 ) .

endfm

Table 7.1 Structural Operational Semantics of MPA in Maude

Actions) and a binary operator + for nondeterministic choice. The concepts of
substitution, matching and variables of a term are defined by a simple structural
induction on terms (the base cases for these definitions are defined generically
in the module Term-Match). Deduction rules define the operational semantics of
action prefixing and nondeterministic choice.

Our next example is a simple extension of MPA with the aspect of timing (Example
6.4) presented in Table 7.2. In this extension, we have a new label tick for the time
transition and a new unary operator delay ; which causes a time transition to
happen. Apart from the deduction rules specified before, we have to add deduction
rules defining the behavior of the delay operator and also the time-deterministic
nature of choice, i.e., time will only decide about non-deterministic choice if one
of the two components blocks the time transition.

To simplify matters in the remainder, we assume that TSS’s extending other spec-
ifications import (include) the theory to be extended but have all the newly
introduced function symbols, labels and deduction rules in a single module.

7.4 A Congruence Meta-Theorem

In this section, we chose a simple congruence format, i.e., the GSOS format of [25]
(see Definition 3.5) and explain its implementation in Maude.
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fmod MPAT-TSS is (( X- 0 == tick =/=> ,

inc MPA-TSS . X- 1 == tick ==> Y- 1 )

op tick : -> Labels [ctor] . ===

op delay ; _ : T -> T [ctor] . X- 0 + X- 1 == tick ==> Y- 1 ) ,

eq sigma (delay ; s) = (( X- 0 == tick ==> Y- 0 ,

delay ; sigma (s) . X- 1 == tick =/=> )

eq match ((delay ; s), ===

(delay ; t)) = match (s , t) . X- 0 + X- 1 == tick ==> Y- 0 ) ,

eq vars (delay ; s) = vars (s) . (( X- 0 == tick ==> Y- 0 ,

*** Operational Semantics of MPAT X- 1 == tick ==> Y- 1 )

op MPAT : -> TSS . ===

eq MPAT = ( MPA, X- 0 + X- 1 == tick ==>

( === Y- 0 + Y- 1 )) .

delay ; X- 0 == tick ==> X- 0 ), endfm

Table 7.2 A Simple Extension of MPA with Time in Maude

Formalization in Maude Our formalization of the GSOS format makes use
of the reflective semantics of Maude. Reflection in this context means that any
rewrite theory can be interpreted as an object inside a “universal” rewrite theory.
This way one can look at theories from a meta-level viewpoint and reason about
them. Using this capability we examine the structure of deduction rules by first,
automatically compiling a list of function symbols in the signature (with a target
source T) using the meta-level operation getOps and then, checking whether the
premises contain only the right kind of variables in their source and target. Again,
checking the type of terms appearing in premises is performed using meta-level
functions. So, our implementation remains independent from the choice of sig-
nature and the set of defined and used variables. The implemented GSOS-Check

operator takes the name of the TSS (of type Qid) as a parameter, reads the signa-
ture of the TSS from the corresponding functional module, checks the conformance
of rules and outputs a string which states the positive result, or alternatively, out-
puts one deduction rule which does not conform to the GSOS format.

Examples Consider the TSS’s of MPAT given in Table 7.2. The following state-
ments show how to check conformance of MPA to the GSOS format and the out-
come of this check (applying a similar commands on MPA results in a similar
result).

Example Checking the conservativity of the extension of MPA (Table 7.1) with
time (Table 7.2) goes as follows.

Maude> red in GSOS-Check : GSOS-Chk ( ’MPAT-TSS , MPAT ) .

reduce in GSOS-Check : GSOS-Chk(’MPAT-TSS,MPAT) .

rewrites: 211 in 30ms cpu (80ms real) (7033 rewrites/second)

result Message: successmsg
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fmod Test-TSS is

inc Term-Match .

inc TSS-Definition .

*** Signature

ops a b : -> T [ctor] .

op f : T -> T [ctor] .

op l : Labels [ctor] .

*** Operational Semantics

op Test : -> TSS .

eq Test =

( ===

f (a) == l ==> f(a)) .

endfm

Table 7.3 A Simple TSS Violating GSOS Format

("GSOS-Check: TSS conforms to GSOS.")

Now, consider the TSS shown in Table 7.3. Applying GSOS-Check on this TSS
results in the following error messages.

Maude> red in GSOS-Check : GSOS-Chk ( ’Test-TSS , Test ) .

reduce in GSOS-Check : GSOS-Chk(’Test-TSS,Test) .

rewrites: 49 in 0ms cpu (0ms real) (~ rewrites/second)

result Message: errormsg(

"GSOS-Check: Error, the following rule:",

emFr === ft(a) == l ==> ft(a),

"has more than one operator in its source of conclusion.")

The GSOS format only provides sufficient (and not necessary) conditions for the
congruence of bisimilarity. In the above case, bisimilarity is indeed not a congru-
ence: a ↔ b since both of them have no operational behavior but it does not hold
that f(a) ↔ f(b) since the former can make a transition using the rule mentioned
above while the later cannot.

7.5 Operational Conservativity

The following theorem is a simplification of the general theorem presented in [48].

Theorem 7.1 (Operational Conservativity for GSOS) Consider consistent
TSS’s tss0 = (Σ0, V, L0, D0) and tss1 = (Σ1, V, L1, D1) in the GSOS format.
tss0 ∪ tss1 is an operationally conservative extension of tss0 if for each deduction
rule d ∈ D1, one of the following conditions hold:

1. d mentions a function symbol from L1 \L0 in the source of its conclusion, or

2. d has a positive premise xi
lij→ yi with lij ∈ L1 \ L0.



120 Chapter 7 Implementation

Formalization in Maude Formalization of the conservativity meta-theorem
goes along the same lines as that of congruence meta-theorem. First, we compile a
list of function symbols and labels in the extended and extending TSS’s and then
check the deduction rules of the extending TSS to either include a fresh function
symbol in the source of conclusion or a fresh label in the positive premises.

Example Checking the conservativity of the extension of MPA (Table 7.1) with
time (Table 7.2) goes as follows.

Maude> red in CONSV-Check : Cons-Chk ( ’MPA-TSS , MPA, ’MPAT-TSS, MPAT ) .

reduce in CONSV-Check : Cons-Chk(’MPA-TSS,MPA,’MPAT-TSS,MPAT) .

rewrites: 14 in 0ms cpu (0ms real) (~ rewrites/second)

result Message: successmsg

("CONS-Check: Operational conservativity theorem checked successfully.")

Trying the same routine on a non-conservative extension results in an error mes-
sage which points out the deduction rule and the hypotheses of the conservativity
theorem that has been violated.

7.6 Animating SOS

Motivation Despite their operational nature, SOS specifications are not in gen-
eral executable. As shown in [25], slight extensions to GSOS easily ruin the decid-
ability of proving a transition. To add to the complications, it was shown in [61]
that not all SOS specifications are meaningful, in that they may not define a tran-
sition relation at all or they may ambiguously allow for more than one transition
relation. By taking GSOS as a framework, one may be relieved of these hassles.
Our animation method does not require the TSS to be in GSOS. However, it
guarantees to terminate and produce a sound result if the TSS is in a superset of
GSOS specifications called strictly and finitely stratified TSS’s. Next, we precisely
define what does it mean for a transition to be provable from a TSS and how this
concept is formalized in Maude.

Definition 7.2 (Finite Stratification) A stratification measure is finite if its
range is the natural numbers. A transition system specification is called finitely
stratified if and only if there exists a finite stratification function for it.

Proposition 7.3 A TSS in GSOS is strictly and finitely stratified.

Formalization in Maude We interpret deduction rules as conditional rewrite
rules. In order to check for possible transitions for a closed term s, we first look for
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a deduction rule d ∈ tss of the form
H

s′
l→ t

such that s′ can match (i.e., is unifiable

with) s. The unification of s′ with s results in a substitution σ0 evaluating the
variables of s′. We aim at completing σ0 into σ such that first, σ evaluates all the
variables in d (thus, the variables in t), second, all positive premises evaluated by
σ are provable from tss and finally, negative premises evaluated by σ cannot be
contradicted by a proof from tss. To this end, we examine the premises in the
following order.

We search for premises of d of which its source is evaluated by the substitution σj

constructed so far.1 If the premise is a negative one, we make sure that this fully
evaluated premise cannot be contradicted by a proof from tss. If it is a positive

premise of the form ti
li→ t′i, we try to construct a proof for a transition of σj(ti)

to evaluate the variable in t′i. If we succeed in constructing such a proof, we add
the valuation of the variable in t′i to σj resulting in σj+1. This process continues
until no premise remains to be examined.

Each of the above mentioned steps is implemented as a conditional rewrite rule,
rewriting a set of premises and a partial substitution to a (possibly more complete)
substitution. The transition of term s is then modeled as a conditional rewrite
rule from σ0(s) to σn(t) where σn results from the rewrite rules of the procedure
described above. For pure TSS’s [64] such a substitution evaluates all variables
in t (the target of the transition). For non-pure TSS’s, variables in t that are not
evaluated by the above procedure are mapped in σn to an arbitrary closed term
(again using a rewrite theory).

Next, we quote an excerpt of the Maude code implementing this procedure.

crl ( tss |- ( s == l ==> ) ) =>

( ( sigma, rho ) ( target ( conc ( rule ))))

if

( rule , tssp ) := tss /\

sigma := match ( conc(rule), ( s == l ==> )) /\

( tss ||- ( sigma (prem(rule)))) => rho /\

( ( sigma , rho ) :: Sbst ) /\

( closed ( (sigma, rho) (target (conc(rule) )))) .

In the above code, crl stands for conditional rewriting which rewrites the term
before the arrow => to the term after provided the condition specified by the if

clause holds. In this case, the term before the rewrite arrow consists of the TSS
under consideration (tss) the source (s) and the label (l) of the transition. The
term after the rewriting arrow is the target of the conclusion of the matching
deduction rule (rule) with the substitution (sigma, rho) to be constructed by
the above mentioned procedure applied to it. In the condition part of the rewrite

1In a large class of TSS’s such a premise can be found. Such TSS’s are theoretically charac-
terized as pure and well-founded TSS’s [64]. For TSS’s that do not have such property, a premise
is chosen arbitrarily and different closed substitutions for its source are examined.
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rule, first, pattern matching is used to pick an arbitrary rule from the TSS. Then,
it is checked whether there is a substitution sigma matching the source of the
rule and s. Next, it is checked whether a substitution rho can be constructed
so that the premises of the rule can be satisfied (to be explained further in the
remainder). If such a substitution can be found and it evaluates all variables in the
target of the conclusion of rule, then the animation procedure has reached its goal.
Otherwise, if all the premises are satisfied and still some variables in the target of
the conclusion remain to be evaluated, they can be chosen non-deterministically
from the set of closed terms. Here, we omit the case (of non-pure thus, non-GSOS
rules) where the resulting substitution does not evaluate all variables in the target
of the conclusion of rule.

We distinguish the following two cases for checking the premises of the deduction
rule. If the premise is a positive one, then the check is nothing but looking for a
transition from the source which matches the target of the premise. The matching
substitution sigma is then used to evaluate the rest of the premises.

crl ( tss ||- ( s == l ==> t ) ) => sigma

if

( tss |- ( s == l ==> ) ) => sp /\

sigma := match ( t, sp ) .

If the premise is a negative one, we use the meta-level method metaRewrite to
check whether a contradicting rewrite (transition) can be found using the same
rewriting theory. Note that the check for negative premises does not add any
information with respect to the substitution under construction. Thus, the result
of the rewrite is the empty substitution (emSbst). Again in both of these cases,
we omit the rewrite rules dedicated to the cases where the chain of premises is
broken (i.e., the rule is not pure) and no transition with a closed source can be
found among the evaluated premises.

crl ( tss ||- (s == l =/=> ) ) => ( emSbst )

if

possible? := metaRewrite( [’TSS-Animation],

upTerm( ( tss |- ( s == l ==> ) ) ), 1 ) /\

(possible? :: ResultPair ) .

The above procedure, upon termination, gives us a complete proof for the transi-
tion with a guarantee that negative premises cannot be refuted using our rewrite
theory, thus, using the SOS semantics. However, in general this procedure need
not terminate. Consider the following two SOS specifications.

a == l ==> a a == l =/=>

=== ===

a == l ==> a a == l ==> a
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The Maude tool crashes when trying to animate any of the above two TSS’s since
the procedure results in an infinite chain of rewrites each being a condition for the
next. However, this problem does not occur in GSOS specifications and in general,
strictly and finitely stratified TSS’s because for such TSS’s checking conditions of
each rewrite results in a condition with a lower stratification measure. Hence, the
depth of conditional rewrite checks for a transition is always finite. Also, breadth
of this search is always finite, since we can only specify a finite number of rules
each having a finite number of premises. If the proof search is successful on all
premises, it provides us with a substitution that evaluates the variables in the
target of the deduction rule and hence, we are able to find a possible transition
for term s using the label and evaluated target of the conclusion of the deduction
rule.

It is worth mentioning that this procedure is non-deterministic in that there may
be several provable transitions for a closed term s. The Maude semantics has
an inherent support for non-deteriministic rewrite theories and hence the choice
among such transitions remains non-deterministic and is eventually made by the
Maude rewriting engine. Using the Maude tool one can browse through provable
transitions, check for provability of a particular transition and even use logical
formulae (Linear Temporal Logic (LTL) formulae) to model check properties of
transitions and runs.

Example Consider the TSS MPA of Table 7.1. We can animate a transition for
the term a ; (( a ; delta) + delta ) as follows.

Maude> rew in TSS-Animation :

( MPA |- ( a ; ( a ; delta + delta ) == a ==> ) ) .

rewrite in TSS-Animation : MPA |- a ; (a ; delta + delta) == a ==> .

rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)

result T: a ; delta + delta

7.7 Conclusions and Future Extensions

In this paper, we presented an initial attempt to implement SOS meta-theory in
Maude. Our implementation defines a basic SOS framework with constant labels
and provides a way to prove congruence and operational conservativity meta-
theorems. Furthermore, it allows for animating SOS specifications.

Maude was a very convenient choice for our implementation. In particular, the
correspondence between rewrites and transitions simplified the translation from
SOS to Maude. The reflective semantics of Maude was crucial in our implemen-
tation. We expect easier and more efficient implementations as the meta-level
facilities provided by Maude improve gradually.
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In order to turn this prototype into a full-fledged tool for SOS, we foresee the
following possible extensions:

1. Implementing the more general SOS frameworks and their corresponding
meta-theorems: There are more general SOS frameworks that allow for
terms as labels, multi-sorted and binding signatures. Implementing such
frameworks increases the applicability of our tool. Furthermore, the meta-
theorems we implemented in this paper are among the simplest versions of
the available meta-theorems for congruence and operational conservativity.
By extending the SOS framework to more general settings, implementing
more general meta-theorems such as those of [96, 48] would be beneficial;

2. Generating sound and (ground-)complete equational theories: A class of
meta-theorems that we did not address in this paper concerns generating
equational theories from SOS specifications (see [3], for example). These
meta-theorems also have an algorithmic nature and can be implemented in
our framework;

3. Generating natural language documentation (and possibly research papers!)
from the specified semantics;

4. Automatically generating the term matching and substitution definitions:
To check the congruence and operational conservativity meta-theorems, we
used routines that extract function symbol definitions from a theory. Using
similar routines we may automate the substitution and matching procedures
and make the Maude code for SOS specifications even more compact;

5. Building a graphical user interface and importing SOS specifications from a
general (e.g., XML) input format.



Chapter 8

SOS with Data

“Errors using inadequate data are much less than those using no data
at all.”

[Charles Babbage]

A summarized version of this chapter has appeared as: M.R. Mousavi, M.A. Reniers, J.F.
Groote, Congruence for SOS with Data, In P. Panangaden ed., Proceedings of Nineteenth Annual
IEEE Symposium on Logic in Computer Science (LICS’04), Turku, Finland, pp. 303-312, IEEE
Computer Society Press, July 2004. A detailed version has appeared as: M.R. Mousavi, M.
Reniers, J. F. Groote, Notions of Bisimulation and Congruence Formats for SOS with Data,
Information and Computation, 200(1):107–147, Elsevier Science B.V., 2005.



126 Chapter 8 SOS with Data

8.1 Introduction

From early beginnings, SOS has been used for languages with data as an integral
part of their operational state (e.g., the original report on SOS contains several
examples of state-bearing transition system specifications [106]). Programming
languages have traditionally had a notion of data. As systems get more complex,
the integration of a data state in their semantics becomes more vital. Besides
the systems that have an explicit notion of data such as [17] and [35], real-time
languages [9, 29, 62, 71] and hybrid languages [41, 20] are other typical examples
of systems in which a data state shows itself in the operational semantics in one
way or another. However, the introduction of data turns out not to be as trivial as
it seems and leads to new semantical issues such as adapted notions of bisimilarity
[29, 62, 41, 95].

To the best of our knowledge, no standard congruence format for these different
notions of bisimilarity with a data state has been proposed so far. Hence, most
of the congruence proofs are done manually [95] or are just neglected by making
a reference to a standard format that does not cover the data state [29]. The
proposal that comes closest ([26]) is unfinished and encodes rules for state-bearing
processes into rules without a state, for which a format is given.

In this chapter, we address the implications of the presence of a data state on
notions of bisimilarity and propose standard formats that induce congruence with
respect to these notions of bisimilarity.

The rest of this chapter is structured as follows. In Section 8.2, we set the scene by
extending our SOS framework to the setting with data and by defining notions of
bisimilarity in this new setting. In this section, we also sketch the relationship be-
tween these notions and point out their application areas. The main contribution
of this chapter is introduced in Section 8.3, where we define standard syntactic
formats for proving congruence with respect to the defined notions of bisimilarity.
Furthermore, we give a full comparison between congruence results for the no-
tions of bisimilarity with data. Subsequently, Section 8.4 presents applications of
the proposed theory on transition system specifications from the literature in the
domains of coordination languages, real-time process algebra, and hybrid process
algebra. Finally, Section 8.5 concludes the chapter and presents possible extensions
of the proposed approach.

8.2 Preliminaries

8.2.1 Basic Definitions

We assume infinite and disjoint sets of process variables Vp (typical members:
x, y, xi, yi . . .) and data variables Vd (typical member: v). A process signature Σp
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is a set of pairs (f, n) where f is a function symbol and n is its fixed arity (denoted
by ar(f) in the rest of the chapter). Functions with zero arity are called constants
(typical members: a, b, c). Process terms t ∈ T (Σp, Vp) are defined inductively
as expected (see Definition 2.2) Process terms are typically denoted by t, t′, ti, . . ..
Similarly, data terms u ∈ T (Σd, Vd) are defined inductively based on a data sig-
nature Σd and the set of variables Vd and typically denoted by u, u′, ui, u

′
i, . . ..

Closed terms C(Σp) and C(Σd) in each of these contexts are defined as expected
(closed process terms are typically denoted by p, q, p′, q′, pi, qi, p

′
i, q

′
i . . .).

A process substitution (σ or σ′) replaces a process variable in an open process
term with another (possibly open) process term. A data substitution (ξ) replaces
a data variable in an open data term with another (possibly open) data term. The
set of variables appearing in term t is denoted by vars(t).

Definition 8.1 (Transition System Specification with Data) A transition
system specification with data is a tuple (Σp,Σd, Vp, Vd, L,Rel , D) where Σp is a
process signature, Σd is a data signature, Vp and Vd are sets of process and data
variables, L is a set of labels (with typical members l, l′, l0, . . .), Rel is a set of
(unary) relation symbols and D is a set of deduction rules. For all r ∈ Rel , l ∈ L
and s, s′ ∈ T (Σp, Vp) × T (Σd, Vd) we define that (s, l, s′) ∈ r is a formula. A
deduction rule dr ∈ D is defined as a pair (H, c) where H is a set of formulae and
c is a formula. The formula c is called the conclusion and the formulae from H
are called premises.

Notions of open and closed and the concept of substitution are lifted to formulae in

the natural way. As usual, we denote formula (s, l, s′) ∈ r by s
l→r s

′ and deduction

rules (H, c) by
H

c
.

Using the re-defined notion of deduction rule, the notion of proof of a formula
(Definition 2.5) carries over naturally to the setting with data.

Note that in this paper, we only consider transition relations and notions of bisim-
ulation on closed terms. The techniques developed in [110] can be used to define
these concepts on open terms.

8.2.2 Notions of Bisimilarity

The introduction of data to the state adds a new dimension to the notion of
bisimilarity. One might think that we can easily deal with data states by imposing
the original notion of strong bisimilarity [86, 102] to the extended state. In such
a case processes are compared regardless of the data they have. Our survey of
the literature has revealed that such a notion of strong bisimilarity is not used at
all. In this article, we restrict ourselves to comparing processes with respect to
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the same data state. In this way, we get to what we call a state-based bisimilarity,
depicted in Figure 8.1.

(p0, d0)

(p1, d1) (p2, d2)

(p′0, d0)

(p′1, d1) (p′2, d2)

Rsb

Rsb

Rsb

Figure 8.1 State-based Bisimilarity

Definition 8.2 (State-based Bisimilarity) A relationRsb ⊆ (C(Σp)×C(Σd))×
(C(Σp) × C(Σd)) is a state-based bisimulation relation if and only if
∀p,q,d0,d1,r,l (p, d0) Rsb (q, d1)) ⇒ d0 = d1 ∧

1. ∀p′,d′ (p, d0)
l→r (p′, d′) ⇒ ∃q′ (q, d0)

l→r (q′, d′) ∧(p′, d′) Rsb (q′, d′);

2. ∀q′,d′ (q, d1)
l→r (q′, d′) ⇒ ∃p′ (p, d1)

l→r (p′, d′) ∧(p′, d′) Rsb (q′, d′).

Two closed state terms (p, d) and (q, d) are state-based bisimilar, denoted by
(p, d) ↔sb (q, d), if and only if there exists a state-based bisimulation relation
Rsb such that (p, d) Rsb (q, d)).

Definition 8.3 (Process-congruence) An equivalence relation ∼⊆ (C(Σp) ×
C(Σd))× (C(Σp)×C(Σd)) is called a process-congruence w.r.t. (f, ar(f)) ∈ Σp if
and only if for all −→p ar(f)−1,

−→q ar(f)−1 ∈ C(Σp), for all d ∈ C(Σd), if (pi, d) ∼ (qi, d)
(for 0 ≤ i < ar(f)), then (f(−→p ar(f)−1), d) ∼ (f(−→q ar(f)−1), d). Furthermore, ∼ is
called a process-congruence for a transition system specification if and only if it is
a process-congruence w.r.t. all members of the process signature.

Example 8.4 Consider a transition system specification, where the signature con-
sists of three (distinct) process constants a, b and c, one binary process function
f , and three (distinct) data constants d, d′ and d′′, and the deduction rules are
the following.

(1)
(a, d)

l→ (a, d′′)
(2)

(a, d′)
l→ (a, d′)

(3)
(b, d)

l→ (b, d′′)

(4)
(c, d)

l→ (a, d′′)
(5)

(x0, v)
l→ (y, v′)

(f(x0, x1), v)
l→ (x1, d

′)
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Then, the following state-based bisimilarities hold:

(a, d) ↔sb (b, d), (b, d) ↔sb (c, d).

However, the following state-based bisimilarities do not hold: (a, d′) ↔sb (b, d′)
and (f(c, a), d) ↔sb (f(c, b), d). From the latter case, we can observe that state-
based bisimilarity is not a process-congruence for the above transition system
specification.

State-based bisimilarity is a rather weak notion of bisimilarity for most practical
examples. The problem lies in the fact that in this notion of bisimilarity the
process parts are only related with respect to a particular data state. Thus, if
the common initial data state is not known (e.g., if the components have to start
their execution on the result of an unknown or non-deterministic process), then
state-based bisimilarity is not useful.

This problem leads to the introduction of a new notion of bisimilarity which takes
all possible initial states into account [63, 62]. We call this notion initially stateless
bisimilarity (see Figure 8.2). This notion of bisimilarity is very useful for the case
where components are composed sequentially. In such cases, when we prove that
two components are bisimilar, we do not rely on the initial starting state and thus,
we allow for sequential composition with any other component.

Definition 8.5 (Initially Stateless Bisimilarity) Two closed process terms p
and q are initially stateless bisimilar, denoted by p ↔isl q, if and only if there
exists a state-based bisimulation relation Rsb such that (p, d) Rsb (q, d) for all
d ∈ C(Σd).

For initially stateless bisimilarity (and also for stateless bisimilarity, to be defined
shortly), congruence is defined as expected (see Definition 3.3).

Example 8.6 Consider the transition system specification of Example 8.4. The
following initially stateless bisimilarities hold b ↔isl c and f(b, c) ↔isl f(c, c)
but the following initially stateless bisimilarities do not hold a ↔isl b and f(c, a)
↔isl f(c, b). We observe that the previous problem of congruence does not exist

anymore for initially stateless bisimilarity. Later on, in Example 8.36, we show
that for this transition system specification, initially stateless bisimilarity is indeed
a congruence.

However, initially stateless bisimilarity does not solve all problems, either. If there
is a possibility of change in the intermediate data states (by an outside process),
then initially stateless bisimilarity is not preserved in such an environment. This,
for instance, happens in open concurrent systems.

Stateless bisimilarity [29, 41, 63, 95], shown in Figure 8.3, is the solution to this
problem and the finest notion of bisimilarity for state-bearing processes that one
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Figure 8.2 Initially Stateless Bisimilarity
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Figure 8.3 Stateless Bisimilarity

can find in the literature. Two process terms are stateless bisimilar if, for all
identical data states, they can mimic transitions of each other and the resulting
process terms are again stateless bisimilar. In other words, we compare process
terms for all identical data states and allow all sorts of change (interference) in
the data part after each transition.
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Definition 8.7 (Stateless Bisimilarity) A relation Rsl ⊆ C(Σp) × C(Σp) is a
stateless bisimulation relation if and only if ∀p,q,d,r,l p Rsl q ⇒

1. ∀p′,d′ (p, d)
l→r (p′, d′) ⇒ ∃q′ (q, d)

l→r (q′, d′) ∧ p′ Rsl q
′;

2. ∀q′,d′ (q, d)
l→r (q′, d′) ⇒ ∃p′ (p, d)

l→r (p′, d′) ∧ p′ Rsl q
′.

Two closed process terms p and q are stateless bisimilar, denoted by p ↔sl q, if
and only if there exists a stateless bisimulation relation Rsl such that p Rslq.

Example 8.8 Consider the transition system specification of Example 8.4. None
of the non-trivial examples of bisimilarity hold anymore for stateless bisimilarity.
Namely, it does not hold that a ↔sl b, a ↔sl c or b ↔sl c. From these one may
conclude that stateless bisimilarity is a congruence for the above transition system
specification. We prove this formally in Example 8.16.

None of the three notions of bisimilarity is the perfect notion. State-based bisimi-
larity is the easiest one to check and establish but is not very robust in applications.
It is most suitable for systems that are not subject to any further composition and
interference. Initially stateless bisimilarity is a bit more difficult to check and es-
tablish but is more robust and suitable for systems that are amenable to further
sequential compositions. Finally, stateless bisimilarity is the hardest one to es-
tablish but it is considered the most robust one for open concurrent systems. In
general, a compromise has to be made in order to find the right level of robustness
and strength and as a result the most suitable notion of bisimilarity has to be
determined for each language/application separately.

A common practice in establishing bisimulation relations for concurrent systems
is to transform them to nondeterministic sequential systems preserving stateless
bisimilarity and then using initially stateless bisimilarity in that setting [63]. An-
other option for open systems with a limited possibility of intervention from the
environment is to parameterize the notion of bisimilarity with an interference re-
lation [63, 38, 41]. Our congruence format for state-based bisimilarity can be
adapted to the parameterized notion of bisimilarity.

Next, we compare the above three notions of bisimilarity.

8.2.3 Comparing the Notions of Bisimilarity

In Examples 8.4 and 8.8, we have shown that two processes b and c are state-based
bisimilar (w.r.t. data state d) but stateless bisimilarity fails to hold between them.
Thus, we may infer that stateless bisimilarity is finer than state-based bisimilarity
(w.r.t. a particular data state). The following corollary states that if a state-based
bisimulation relation is closed under the change of data state then it induces a
stateless bisimilarity.
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Corollary 8.9 Let R be a state-based bisimulation relation. If ∀p,q (∃d (p, d) R
(q, d) ⇒ ∀d′ (p, d′) R (q, d′) then ∀p,q (∃d (p, d) R (q, d) ⇒ p ↔sl q).

Finally, the following corollary positions initially stateless bisimilarity in between
the two other notions of bisimilarity we have discussed so far.

Corollary 8.10 For two arbitrary closed process terms p and q, we have

1. if p ↔sl q, then p ↔isl q;

2. p ↔isl q if and only if, (p, d) ↔sb (q, d) for all closed data terms d.

Again, in Examples 8.4 and 8.6, we have shown that a and b are state-based
bisimilar with respect to d but they are not initially stateless bisimilar. Thus,
state-based bisimilarity (with respect to a particular data state) is strictly weaker
than initially stateless bisimilarity.

The following corollary states that stateless bisimilarity implies state-based bisim-
ilarity with respect to all data states.

Corollary 8.11 For two arbitrary closed process terms p and q: if p ↔sl q, then
(p, d) ↔sb (q, d) for all d ∈ C(Σd).

8.3 Standard Formats for Congruence

In this section, we present standard formats and prove congruence results with
respect to aforementioned notions of bisimilarity. To do this, we extend the tyft
format of [62] with data in three steps for stateless, state-based, and initially
stateless bisimilarity. Finally, we present how our formats can be extended to cover
tyxt rules and rules containing predicates and negative premises (thus, extending
the PANTH format [135] with data).

8.3.1 Congruence Format for Stateless Bisimilarity

In this article, we allow for deduction rules that adhere to the tyft-format with
respect to the process terms and are not restricted in the data terms. This format
is called process-tyft.

Definition 8.12 (Process-tyft) Let (Σp,Σd, Vp, Vd, L,D(Rel)) be a transition sys-
tem specification. A deduction rule dr ∈ D(Rel) is in process-tyft format if it is of
the form

(dr)
{(ti, ui)

li→ri
(yi, u

′
i) | i ∈ I}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

,
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where I is a set of indices, r ∈ Rel , l ∈ L, (f, ar(f)) ∈ Σp, t′ ∈ T (Σp, Vp),
u, u′ ∈ T (Σd, Vd), the variables x0, . . . , xar(f)−1 and yi (i ∈ I) are all distinct
variables from Vp, and, for all i ∈ I: →ri

∈ Rel , li ∈ L, ti ∈ T (Σp, Vp) and
ui, u

′
i ∈ T (Σd, Vd).

We name the set of process variables appearing in the source of the conclusion Xp

and in the target of the premises Yp. The two sets Xp and Yp are obviously disjoint
following the requirements of the format. The above deduction rule is called an
f -defining deduction rule.

A transition system specification is in process-tyft if all its deduction rules are in
the process-tyft format.

It turns out that for any transition system specification in the process-tyft format,
stateless bisimilarity is a congruence. For simplicity in proofs, we require the
acyclicity of the variable dependency graph (a slight variation of Definition 3.2),
as well. However, this requirement can be removed using the result of [46].

Theorem 8.13 If a transition system specification is in the process-tyft format,
then stateless bisimilarity is a congruence for that transition system specification.

Before we prove this theorem, we first define the closure of a relation under state-
less congruence and give and prove a lemma that is very useful in the proof of
Theorem 8.13.

Definition 8.14 (Closure under stateless congruence) Let R ⊆ C(Σp) ×
C(Σp). We define the relation R̃ ⊆ C(Σp) × C(Σp) to be the smallest congru-

ence on C(Σp) such that the relation R is contained in R̃. Formally, R̃ is defined
to be the smallest relation that satisfies:

1. R̃ is reflexive;

2. R ⊆ R̃;

3. f(−→p ar(f)−1) R f(−→q ar(f)−1)) for all (f, ar(f)) ∈ Σp,
and for all −→p ar(f)−1, −→q ar(f)−1 ∈ C(Σp) such that −→p ar(f)−1 R

−→q ar(f)−1.

Lemma 8.15 Let R ⊆ C(Σp) × C(Σp) and t ∈ T (Σp, Vp). For any two pro-

cess substitutions σ and σ′ such that σ(x) R̃ σ′(x) for all x ∈ vars(t), we have
σ(t) R σ′(t).

Proof. By induction on the structure of process term t. See [64] for a complete
proof. ⊠
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Proof of Theorem 8.13 It suffices to prove that stateless bisimilarity is a con-
gruence for each of the process functions of Σp. Let (f, ar(f)) ∈ Σp, −→p ar(f)−1,−→q ar(f)−1 ∈ C(Σp) and suppose that −→p ar(f)−1 ↔sl

−→q ar(f)−1. This means that
there are stateless bisimulation relations Ri (for 0 ≤ i < ar(f)) that witness these

stateless bisimilarities. Let R be the union of these relations Ri: R =
⋃ar(f)−1

i=0 Ri.

Obviously R is also a stateless bisimulation relation. We prove that the relation R̃
contains the pair (f(−→p ar(f)−1), f(−→q ar(f)−1)) and that it is a stateless bisimulation

relation. The first claim is obvious from the definition of R̃.

So, we only have to prove the following for any p R̃ q: if for arbitrary r, l, p′, d

and d′, (p, d)
l→r (p′, d′), then there exists a q′ such that (q, d)

l→r (q′, d′) and p′

R̃ q′ and vice versa for transitions of q. Due to symmetry, it suffices to provide
the proofs for the transitions of p only.

We prove this by induction on the depth of the proof of a transition. We do
not show the proof for the induction base as it is an instance of the proof of the
induction step where there are no premises.

For the induction step, we distinguish three cases based on the structure of the
definition of R̃. In case the pair (p, q) is contained in R̃ due to reflexivity of R̃
or due to the requirement that R̃ contains R, the proof is obvious (and requires
no induction at all). For the remaining case, we find p = f(−→p ar(f)−1) and q =

f(−→q ar(f)−1) for some −→p ar(f)−1,
−→q ar(f)−1 such that −→p ar(f)−1R̃

−→q ar(f)−1. The last
step of the proof of the transition of p is due to the application of a deduction rule
of the following form:

{(ti, ui)
li→ri

(yi, u
′
i) | i ∈ I}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

.

This means that there are a process substitution σ and a data substitution ξ such
that σ(xi) = pi for all 0 ≤ i < ar(f), ξ(u) = d, σ(t′) = p′ and ξ(u′) = d′.

Furthermore, for each i ∈ I, there exist a proof of (σ(ti), ξ(ui))
li→ri

(σ(yi), ξ(u
′
i))

with smaller depth.

We assume acyclicity of the process-variable dependency graph (a slight variation
of Definition 3.2). A process-variable dependency graph has variables as its nodes
and for each i ∈ I there exists an edge from any variable x ∈ vars(ti) to variable
yi. Hence, we can define a rank, rank(x), for each variable x, as the maximum
length of a backward chain starting from x in the process-variable dependency
graph. The rank of a premise is the rank of its target variable. Then, for each

x ∈ vars(ti) of each premise (ti, ui)
li→ri

(yi, u
′
i) of the deduction rule, it holds that

rank(x) < rank(yi).
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We define the process substitution σ′ as follows:

σ′(x) =

{
qi if x = xi for some 0 ≤ i < ar(f),

σ(x) if x /∈ Xp ∪ Yp.

Note that thus far this process substitution is not defined for variables from Yp.
We extend the definition while proving, by induction on the rank of a premise r,
three essential properties: for all r, for all i ∈ I such that rank(yi) = r,

1. σ(ti) R̃ σ′(ti);

2. (σ′(ti), ξ(ui))
li→ri

(σ′(yi), ξ(u
′
i));

3. σ(yi) R̃ σ′(yi).

Again, we do not show the proof of the induction base (r = 0) as it is an instance
of the proof of the induction step.

For the induction step, suppose r ≥ 1. Let (ti, ui)
li→ri

(yi, u
′
i) for some i ∈ I be a

premise of rank r. First, we prove property (1). Let x ∈ vars(ti). We distinguish
three cases:

1. x ∈ Xp. Then x = xi for some 0 ≤ i < ar(f). From the definition of σ′ we

have that σ(x) = σ(xi) = pi and σ′(xi) = qi and we already know that pi R̃
qi. Thus, we have σ(x) R̃ σ′(x).

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained

in R̃ obviously σ(x) R̃ σ′(x).

3. x ∈ Yp. Then x = yj for some j ∈ I. Obviously, also rank(yj) < rank(yi).

Thus by the induction hypothesis (property (3)) we have, σ(yj) R̃ σ′(yj).

But, as x = yj , we also have σ(x) R̃ σ′(x)).

From the fact that σ(x) R̃ σ′(x) for all x ∈ vars(ti), we have, by Lemma 8.15,
that σ(ti) R̃ σ′(ti); which proves property (1).

As we have a proof of smaller depth for (σ(ti), ξ(ui))
li→ri

(σ(yi), ξ(u
′
i)), by the

induction hypothesis, we have the existence of a process term q′i such that (σ′(ti),

ξ(ui))
li→ri

(q′i, ξ(u
′
i)) and σ(yi)R̃q

′
i. We choose σ′(yi) to be q′i. Observe that

this proves existence of an appropriate process term σ′(yi). Then, we also have

(σ′(ti), ξ(ui))
li→ri

(σ′(yi), ξ(u
′
i)) and σ(yi)R̃σ

′(yi), which prove properties (2) and
(3).

Now, we finish our reasoning using process substitution σ′ and the same data
substitution and deduction rule.
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Observe that indeed σ′(f(−→x ar(f)−1)) = f(−→q ar(f)−1) = q. By property (2) we
have proven that there are proofs for all premises using the process substitution
σ′ and data substitution ξ. Then, according to the same deduction rule and

using σ′ instead of σ, we have (σ′(f(−→x ar(f)−1)), ξ(u))
l→r (σ′(t′), ξ(u′)). Since

σ′(f(−→x ar(f)−1)) = f(−→q ar(f)−1) = q, ξ(u) = d and ξ(u′) = d′ we obtain (q, d)
l→r

(σ′(t′), d′).

We only have to show that σ(t′) R̃ σ′(t′). By Lemma 8.15, it suffices to show that
σ(x) R̃ σ′(x) for all x ∈ vars(t′). Three cases can be distinguished:

1. x ∈ Xp. Then x = xi for some 0 ≤ i < ar(f). We have that σ(xi) = pi and

σ′(xi) = qi and we already know that pi R̃ qi and xi = x. Thus, we have
σ(x) R̃ σ′(x).

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained

in R̃ obviously σ(x) R̃ σ′(x).

3. x ∈ Yp. Then x = yj for some j ∈ I. We have σ(yj) R̃ σ′(yj) by property

(3). But, as x = yj , we also have σ(x) R̃ σ′(x).

So this concludes the proof of Theorem 8.13. ⊠

Example 8.16 Consider the transition system specification of Example 8.4. Ob-
viously, all deduction rules are in the process-tyft format, hence, by Theorem 8.13,
stateless bisimilarity is a congruence for all process functions from the signature
of this transition system specification.

8.3.2 Congruence Format for State-based Bisimilarity

In this section, we introduce a format for establishing process-congruence of state-
based bisimilarity. First, we show that we cannot simply use the previously intro-
duced process-tyft format.

Example 8.17 Consider a transition system specification in process-tyft format,
where the signature consists of three process constants a, b, and c, one unary
process function f , and two data constants d and d′ and the deduction rules are
the following:

(1)
(a, v)

l→ (b, d′)
(2)

(b, d)
l→ (b, d′)

(3)
(f(x), v)

l→ (x, d′)

Then, we have: (a, d) ↔sb (b, d). On the other hand, however, it does not hold that
(f(a), d) ↔sb (f(b), d), since (f(a), d) has an l-transition to (a, d′), while (f(b), d)
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only has an l-transition to (b, d′) and these two states are not state-based bisimilar
as the first one has an l-transition due to deduction rule (1), while the second one
does not. Hence, state-based bisimilarity is not a process-congruence (for f).

In the conclusions of the deduction rules of the above example, we have transitions
that (potentially) change the data state while keeping the process variable. That is
the reason why we fail to have that state-based bisimilarity is a process-congruence.

We remedy this shortcoming by adding more constraints to the format. Namely,
we force the links between process variables and data terms to remain consistent
in each of the deduction rules as follows.

Definition 8.18 (Sfsb) A deduction rule dr of the following form

(dr)
{(ti, ui)

li→ri
(yi, u

′
i) | i ∈ I}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

, s

is in the sfsb format (for standard format for state-based bisimilarity) if it is in
process-tyft format and satisfies the following data-dependency constraints:

1. If a variable x ∈ Xp appears in t′, then u′ = u;

2. If a variable yi ∈ Yp appears in t′, then u′ = ui;

3. If a variable x ∈ Xp appears in some ti, then ui = u;

4. If a variable yi ∈ Yp appears in some tj , then uj = u′i.

A transition system specification is in the sfsb format when all its deduction rules
are.

Informally speaking, we foresee a flow of binding, as depicted below, between
process variables and data terms from the source of the conclusion to the source of
the premises and the target of the conclusion and from the target of the premises
to the sources of other premises and finally, to the target of the conclusion.

· · · (C ′[xi], ui)
li→ri

(yi, u
′
i) · · ·

(f(x0, · · · , xi, · · · , xn−1), u)
l→r (C[xi], u

′)
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· · · (tj , uj)
lj→rj

(yj , u
′
j) · · · (C ′[yj ], ui)

li→ri
(yi, ui) · · ·

(f(x0, · · · , xn−1), u)
l→r (C[yi], u

′)

Theorem 8.19 If a transition system specification is in the sfsb format, then
state-based bisimilarity is a process-congruence for that transition system specifi-
cation.

Before proving this theorem, we first define the closure of a relation under state-
based congruence and give and prove a lemma that is very useful in the proof of
Theorem 8.19.

Definition 8.20 Let R ⊆ (C(Σp) × C(Σd)) × (C(Σp) × C(Σd)). We define the

relation R̂ ⊆ (C(Σp) × C(Σd)) × (C(Σp) × C(Σd)) to be the smallest reflexive

process-congruence that contains R. Formally, R̂ is defined to be the smallest
relation that satisfies:

1. R̂ is reflexive;

2. R ⊆ R̂;

3. (f(−→p ar(f)−1), d) R̂ (f(−→q ar(f)−1), d) for all (f, ar(f)) ∈ Σp, d ∈ C(Σd), and

all −→p ar(f)−1,
−→q ar(f)−1 ∈ C(Σp) such that (pi, d) R̂ (qi, d) for all 0 ≤ i <

ar(f).

Lemma 8.21 Let R ⊆ (C(Σp) × C(Σd)) × (C(Σp) × C(Σd)), t ∈ T (Σp, Vp), and

d ∈ C(Σd). For any process substitutions σ and σ′ such that (σ(x), d) R̂ (σ′(x), d)

for all x ∈ vars(t), we have (σ(t), d) R̂ (σ′(t), d).

Proof. By induction on the structure of process term t. The proof is similar to
the proof of Lemma 8.15 which can be consulted in [64]. ⊠

Proof of Theorem 8.19 It suffices to prove that state-based bisimilarity is a
process-congruence for each of the process functions of Σp. Let (f, ar(f)) ∈ Σp,−→p ar(f)−1,

−→q ar(f)−1 ∈ C(Σp) and d ∈ C(Σd). Suppose that (pi, d) ↔sb (qi, d)
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for 0 ≤ i < ar(f). This means that there are state-based bisimulation rela-
tions Ri (for 0 ≤ i < ar(f)) that witness these state-based bisimilarities. Let

R be the union of these relations Ri: R =
⋃ar(f)−1

i=0 Ri. Obviously R is also

a state-based bisimulation relation. We prove that the relation R̂ contains the
pair ((f(−→p ar(f)−1), d), (f(−→q ar(f)−1), d)) and that it is a state-based bisimulation

relation. The first part is obvious from the definition of R̂.

So, we only have to prove the following for any (p, d) R̂ (q, d): if for an arbitrary r,

l, p′ and d′, (p, d)
l→r (p′, d′), then there exists a q′ such that (q, d)

l→r (q′, d′) and

(p′, d′) R̂ (q′, d′)and vice versa for transitions of q. Due to symmetry, it suffices to
provide the proofs for the transitions of p only.

We prove this by induction on the depth of the proof of a transition. We do
not show the proof for the induction base as it is an instance of the proof of the
induction step where there are no premises.

For the induction step, we distinguish three cases based on the structure of the
definition of R̂. In case the pair ((p, d), (q, d)) is contained in the identity relation
or the relation R, the proof is obvious (and requires no induction at all). For
the remaining case, we find p = f(−→p ar(f)−1) and q = f(−→q ar(f)−1) for some
−→p ar(f)−1,

−→q ar(f)−1 such that (pi, d) R̂ (qi, d) for all 0 ≤ i < ar(f). The last step
of the proof of the transition of p is due to the application of a deduction rule of
the following form:

{(ti, ui)
li→ri

(yi, u
′
i) | i ∈ I}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

.

This means that there are a process substitution σ and a data substitution ξ such
that σ(xi) = pi for all 0 ≤ i < n, ξ(u) = d, σ(t′) = p′ and ξ(u′) = d′. Furthermore,

for each i ∈ I, there exists a proof of (σ(ti), ξ(ui))
li→ri

(σ(yi), ξ(u
′
i)) with smaller

depth.

Since we have assumed acyclicity of the process-variable dependency graph, we can
define a rank, rank(x), for each variable x, as the maximum length of a backward
chain starting from x in the process-variable dependency graph. The rank of
a premise is the rank of its target variable. Then, for each x ∈ vars(ti) of each

premise (ti, ui)
li→ri

(yi, u
′
i) of the deduction rule, it holds that rank(x) < rank(yi).

We define the process substitution σ′ as follows:

σ′(x) =

{
qi if x = xi for some 0 ≤ i < ar(f),

σ(x) if x /∈ Xp ∪ Yp.

Note that thus far this process substitution is not defined for variables from Yp.
We extend the definition while proving, by induction on the rank of a premise r,
three essential properties: for all r, for all i ∈ I such that rank(yi) = r,
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1. (σ(ti), ξ(ui)) R̂ (σ′(ti), ξ(ui));

2. (σ′(ti), ξ(ui))
li→ri

(σ′(yi), ξ(u
′
i));

3. (σ(yi), ξ(u
′
i)) R̂ (σ′(yi), ξ(u

′
i)).

Again, we do not show the proof of the induction base (r = 0) as it is an instance
of the proof of the induction step.

For the induction step, suppose r ≥ 1. Let (ti, ui)
li→ri

(yi, u
′
i) for some i ∈ I be

a premise of rank r. First, we prove property (1). Let x ∈ vars(ti). We show

that (σ(xi), ξ(ui)) R̂ (σ′(xi), ξ(ui))). To do this, the following three cases are
distinguished:

1. x ∈ Xp. Then x = xi for some 0 ≤ i < ar(f). The source of the premise has
process variable xi ∈ Xp; hence, by data-dependency constraint 3, ui = u.
We also have that σ(xi) = pi and σ′(xi) = qi and we already know that

(pi, d) R̂ (qi, d) and ξ(u) = d. Thus, we have (σ(xi), ξ(ui)) R̂ (σ′(xi), ξ(ui)),

i.e., (σ(x), ξ(ui)) R̂ (σ′(x), ξ(ui)).

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained

in R̂ obviously (σ(x), ξ(u′)) R̂ (σ′(x), ξ(u′)).

3. x ∈ Yp. Then x = yj for some j ∈ I. Hence, by data-dependency constraint
4, ui = u′j . Obviously, also rank(yj) < rank(yi). Thus by the induction

hypothesis (property (2)) we have, (σ(yj), ξ(u′j)) R̂ (σ′(yj), ξ(u′j)). But, as

x = yj , and u′j = ui, we also have (σ(x), ξ(ui)) R̂ (σ′(x), ξ(ui)).

From the fact that (σ(x), ξ(ui)) R̂ (σ′(x), ξ(ui))) for all x ∈ vars(ti), by Lemma

8.21, we have (σ(ti), ξ(ui)) R̂ (σ′(ti), ξ(ui)); which proves property (1).

As we have a proof of smaller depth for (σ(ti), ξ(ui))
li→ri

(σ(yi), ξ(u
′
i)), by the

induction hypothesis, we have the existence of a process term q′i such that (σ′(ti),

ξ(ui))
li→ri

(q′i, ξ(u
′
i)) and (σ(yi), ξ(u

′
i)) R̂ (q′i, ξ(u

′
i)). We choose σ′(yi) to be

q′i. Observe that this proves existence of an appropriate process term σ′(yi).

Then, obviously, we also have (σ′(ti), ξ(ui))
li→ri

(σ′(yi), ξ(u
′
i)) and (σ(yi), ξ(u

′
i))

R̂ (σ′(yi), ξ(u
′
i)), which prove properties (2) and (3).

Now, we finish our reasoning using process substitution σ′ and the same data sub-
stitution and deduction rule. Observe that indeed σ′(f(−→x ar(f)−1)) = f(−→q ar(f)−1) =
q. By property (2) we have proven that there are proofs for all premises using the
process substitution σ′ and data substitution ξ. Then, according to the same

deduction rule and using σ′ instead of σ, we have (σ′(f(x0, . . . , xn−1)), ξ(u))
l→r
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(σ′(t′), ξ(u′)). Since σ′(f(−→x ar(f)−1)) = f(−→q ar(f)−1) = q, ξ(u) = d and ξ(u′) = d′

we obtain (q, d)
l→r (σ′(t′), d′).

We only have to show that (σ(t′), d′) R̂ (σ′(t′), d′). By Lemma 8.21, it suffices

to show that (σ(x), d′) R̂ (σ′(x), d′) for all x ∈ vars(t′). Three cases can be
distinguished:

1. x ∈ Xp. Then x = xi for some 0 ≤ i < n. Hence, x ∈ Xp and by data-
dependency constraint 1, u = u′. Hence, d = ξ(u) = ξ(u′) = d′. We also have

that σ(xi) = pi and σ′(xi) = qi and we already know that (pi, d) R̂ (qi, d),

xi = x, and d = d′. Thus, we have (σ(x), d′) R̂ (σ′(x), d′).

2. x /∈ Xp and x /∈ Yp. As σ(x) = σ′(x) and the identity relation is contained

in R̂ obviously (σ(x), d′) R̂ (σ′(x), d′).

3. x ∈ Yp. Then x = yj for some j ∈ I. Hence, by data-dependency constraint
2, u′j = u′. We obtain d′ = ξ(u′) = ξ(u′j). By property (3) we have,

(σ(yj), ξ(u′j)) R̂ (σ′(yj), ξ(u′j)). But, as x = yj , and ξ(u′j) = d′, we also have

(σ(x), d′) R̂ (σ′(x), d′).

So this concludes the proof of Theorem 8.19. ⊠

Next, we show that if the proposed format is relaxed by dropping each of the
syntactic constraints, the congruence result is lost. The first example shows that
we cannot remove data-dependency constraint 1.

Example 8.22 Consider a transition system specification, where the process sig-
nature consists of process constants a and b, and a unary function symbol f ; the
data signature consists of data constants d and d′; and the following deduction
rules:

(1)
(a, d′)

l→ (a, d′)
(2)

(f(x), d)
l→ (x, d′)

These deduction rules are in the process-tyft format. Data-dependency constraint 1
is not satisfied by deduction rule (2) as in the target of the conclusion the variable
x ∈ Xp appears but d 6= d′. The other data-dependency constraints are indeed
satisfied.

The process-congruence result fails on the above specification. As both (a, d)
and (b, d) cannot perform any transitions, we have (a, d) ↔sb (b, d). However, it
does not hold that (f(a), d) ↔sb (f(b), d) since the former state can perform a
transition due to deduction rule (2) to (a, d′), while the latter is forced to make
the same transition to (b, d′) and it clearly does not hold that (a, d′) ↔sb (b, d′)
(see deduction rule (1)).
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The next example shows that we cannot remove data-dependency constraint 2.

Example 8.23 Consider a process signature consisting of process constants a and
b and a unary process function f ; a data signature consisting of data constants d
and d′; and a transition system specification with the following deduction rules:

(1)
(a, v)

l→ (a, v)
(2)

(b, d)
l→ (b, d)

(3)
(x, d)

l→ (y, d)

(f(x), d)
l→ (y, d′)

These deduction rules are in process-tyft format and all data-dependency con-
straints, except for constraint 2, which is violated by deduction rule (3). This
violation results in breaking the process-congruence result. Two states (a, d) and
(b, d) are state-based bisimilar. However, (f(a), d) is not state-based bisimilar to
(f(b), d) since the former can perform a transition using deduction rule (3) to
(a, d′), while the latter performs a similar transition to (b, d′). These two states
are not state-based bisimilar as the former performs an l-transition and the latter
deadlocks.

The next example shows that we cannot remove data-dependency constraint 3.

Example 8.24 Consider a transition system specification, where the process sig-
nature consists of process constants a and b, and a unary function symbol f ; the
data signature consists of data constants d and d′; and the following deduction
rules:

(1)
(a, d′)

l→ (a, d′)
(2)

(x, d′)
l→ (y, v′)

(f(x), v)
l→ (x, v)

The deduction rules are in the process-tyft format and satisfy data-dependency
constraints 1, 2, and 4. Data-dependency constraint 3 is violated in deduction
rule (2) since variable x ∈ Xp appears in the source of the premise but d′ 6= v.

For this transition system specification, state-based bisimilarity is not a process-
congruence. Although we have (a, d) ↔sb (b, d) (because both states cannot make
a transition), it is not the case that (f(a), d) and (f(b), d) are state-based bisimilar,
since the former state can make a transition due to deduction rule (2) while the
latter cannot make any transition.

The next example shows that we cannot remove data-dependency constraint 4.

Example 8.25 Consider a process signature consisting of process constants a and
b and a unary process function f ; a data signature consisting of data constants d
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and d′; and a transition system specification with the following deduction rules:

(1)
(a, v)

l→ (a, v)
(2)

(b, d)
l→ (b, d)

(3)
(x, d)

l→ (y, d) (y, d′)
l→ (y′, d′)

(f(x), d)
l→ (y′, d′)

The above deduction rules are in the process-tyft format and satisfy all data-
dependency constraints apart from constraint 4. Deduction rule (3) breaks this
constraint in the source of its second premise. This also turns out to be harmful for
the congruence property, since we have (a, d) ↔sb (b, d) but not (f(a), d) ↔sb (f(b), d)
because deduction rule (3) allows for a transition of the former but not the latter.

8.3.3 Congruence Format for Initially Stateless Bisimilarity

Later, when comparing congruence conditions for the different notions of bisim-
ilarity, we show that the sfsb format works perfectly well for initially stateless
bisimilarity. However, it may turn out to be too restrictive in applications. The
following example shows a common problem in this regard.

Example 8.26 Consider the following transition system specification (with pro-
cess constants a and b, unary process function f , and data constants d and d′) and
the following deduction rules:

(1)
(a, v)

l→ (a, v)
(2)

(b, d)
l→ (b, d)

(3)
(x0, v)

l→ (y, v)

(f(x0, x1), v)
l→ (x1, d

′)

This transition system specification does not satisfy the sfsb format and state-
based bisimilarity is not a congruence (since (a, d) ↔sb (b, d), but it does not hold
that (f(b, a), d) ↔sb (f(b, b), d)). However, it can be checked that initially stateless
bisimilarity is indeed a congruence. The reason is that although deduction rule
(3) violates data-dependency constraint 1, the violating change in the data is
harmless since x1’s are now related using all data states including d′ (e.g., the
above counterexample does not work anymore since it does not hold that a ↔isl b).

This gives us some clue that, for initially stateless bisimilarity, we may weaken the
data-dependency constraints.

Definition 8.27 (Sfisl) A deduction rule dr of the following form

(dr)
{(ti, ui)

li→ri
(yi, u

′
i) | i ∈ I}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

,
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is in the sfisl format (for standard format for initially stateless bisimilarity) if it is in
the process-tyft format and satisfies the following local (relaxed) data-dependency
constraints:

1. If a variable yi ∈ Yp appears in t′, then u′ = ui;

2. If a variable yi ∈ Yp appears in some tj , then uj = u′i.

Note that the above two constraints are the same as constraints 2 and 4 in Def-
inition 8.18. However, the two other data-dependency constraints of Definition
8.18 that were required for variables from the set Xp, need not be satisfied for
this format anymore. The reason of violating these constraints is that we rely on
the fact that certain positions are instantiated by process terms that are related
for all possible data. To formalize this concept, first we define positions for which
the two constraints are violated and then we check the global consequences of this
violation.

Definition 8.28 For a deduction rule (dr) of the above form, variable x ∈ Xp

is called unresolved if

∃i∈I (x ∈ vars(ti) ⇒ u 6= ui) ∨ (x ∈ vars(t′) ⇒ u 6= u′).

We define Xu
p to be the set of unresolved variables from the set Xp.

For each process function f , we define a set IV f that contains indices of f for which
we need initially stateless bisimilarity because a data-dependency is violated with
respect to the variable that occurs in that position in the source of the conclusion.
The set IV f contains at least the indices of the unresolved variables of the f -
defining deduction rules, but it may contain more indices due to the use of f in
other deduction rules in the target of the conclusion or the source of a premise.

Definition 8.29 For a given transition system specification in the process-tyft
format, we define, for all (f, ar(f)) ∈ Σp, IV f as a minimal set that satisfies, for
all f -defining deduction rules dr :

1. the indices of unresolved variables (i.e., variables from Xu
p ) of dr are in IV f ;

2. for all n-ary process functions g ∈ Σp: for each occurrence of a process term
g(t0, . . . , tn−1) in the source of a premise or the target of the conclusion of
dr :

∀i∈IV g
∀x∈vars(ti) ∃j∈IV f

x = xj .

Note that with the above definition, it is possible that such a set does not exist.
In such cases, the two global data-dependency constraints given above cannot
be consistently established. The following two examples illustrate existence and
absence of IV f .
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Example 8.30 Consider the transition system specification of Example 8.26, in
deduction rule (3), variable x1 is unresolved, and thus 1 ∈ IV f . For the deduction
rules defining the two constants a and b, there are no unresolved variables and
IV a = IV b = ∅. The second global condition is trivially satisfied for all IV sets.

Example 8.31 Consider the following transition system specification with pro-
cess constants a, b and c, unary process functions f and g and data constants d,
d′ and d′′.

(1)
(a, d)

l→ (b, d′)
(2)

(b, d)
l→ (c, d′)

(3)
(c, d′′)

l→ (c, d′′)

(4)
(x0, d)

l→ (y0, d
′)

(f(x0), d)
l→ (g(y0), d′)

(5)
(g(x0), d′)

l→ (x0, d
′′)

In deduction rule (5), variable x0 is unresolved and hence 0 ∈ IV g. However, global
constraint 2 requires that in deduction rule (4), y0 = x0 which is a contradiction
(since 0 ∈ IV g, y0 ∈ vars(y0) and f is a unary process function). Hence, we
may conclude that no consistent IV g exists. In fact, one can check that initially
stateless is not a congruence for the above transition system specification, as it
holds that a ↔isl b but not f(a) ↔isl f(b) ((f(a), d) after two steps arrives in
(b, d′′) which deadlocks but (f(b), d) arrives in (c, d′′) which can perform self-
transitions).

Definition 8.32 (Sfisl) A transition system specification is in the sfisl format
when all its deduction rules are in the sfisl format and furthermore for each process
function f the set IV f exists.

Informally, this means that a deduction rule may change the data state associated
with a process term (arbitrarily) if according to the other rules, the process term
is guaranteed to be among the initial arguments of the topmost process function
(thus, benefitting from the initially stateless bisimilarity assumption). The po-
sitions of a process function f benefitting from the initially stateless bisimilarity
assumption are thus denoted by IV f .

Theorem 8.33 If a transition system specification is in the sfisl format, then ini-
tially stateless bisimilarity is a congruence for that transition system specification.

Before we prove this theorem, we first define the closure of a relation under initially
stateless congruence and give and prove a lemma that is very useful in the proof
of Theorem 8.33.

Definition 8.34 (Closure With Initially Stateless Congruence) Let R ⊆
(C(Σp)×C(Σd)) × (C(Σp)×C(Σd)). We define the relation R ⊆ (C(Σp)×C(Σd))×
(C(Σp) × C(Σd)) to be the smallest relation that satisfies:
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1. R is reflexive;

2. R ⊆ R;

3. (f(−→p ar(f)−1), d) R (f(−→q ar(f)−1), d) for all (f, ar(f)) ∈ Σp, d ∈ C(Σd), and
all −→p ar(f)−1,

−→q ar(f)−1 ∈ C(Σp) such that

(a) ∀i/∈IV f
(pi, d) R (qi, d);

(b) ∀i∈IV f ,d′∈C(Σd) (pi, d
′) R (qi, d

′).

For a process term t, we define the set V (t) to be the set of variables that appear
in the places indicated by the sets IV f (for all f).

V (x) = ∅,
V (f(

−→
t ar(f)−1)) =

⋃
0≤i<ar(f),i∈IV f

vars(ti) ∪
⋃

0≤i<ar(f),i/∈IV f

V (ti).

Lemma 8.35 Let R ⊆ (C(Σp) × C(Σd)) × (C(Σp) × C(Σd)), t ∈ T (Σp, Vp), d ∈
C(Σd). For any two process substitutions σ and σ′ such that

1. ((σ(x), d′), (σ′(x), d′)) ∈ R for all x ∈ V (t), d′ ∈ C(Σd), and

2. ((σ(x), d), (σ′(x), d)) ∈ R for all x ∈ vars(t) \ V (t);

we have (σ(t), d) R (σ′(t), d).

Proof. By induction on the structure of process term t. In case t is a variable,
say x, we obtain σ(t) = σ(x) and σ′(t) = σ′(x) and V (t) = V (x) = ∅. As x ∈
vars(t)\V (t), we have ((σ(x), d), (σ′(x), d)) ∈ R and therefore (σ(t), d) R (σ′(t), d)
as well.

In case t is a constant, say c, we obtain σ(t) = σ(c) = c = σ′(c) = σ′(t). Then,
from reflexivity of R, it follows immediately that (σ(t), d) R (σ′(t), d).

Finally, consider the case where t = f(
−→
t ar(f)−1) for some (f, ar(f)) ∈ Σp and

−→
t ar(f)−1 ∈ T (Σp, Vp). If we prove

((σ(ti), d), (σ′(ti), d)) ∈ R (8.1)

for all i /∈ IV f , and
((σ(ti), d

′), (σ′(ti), d
′)) ∈ R (8.2)

for all i ∈ IV f and d′ ∈ C(Σd), then ((σ(t), d), (σ′(t), d)) ∈ R according to Defini-
tion 8.34.

For the first part, assume that i /∈ IV f . Then, by definition of V , we have
V (ti) ⊆ V (t). Therefore, by the first assumption on σ and σ′ of Lemma 8.35,
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we have (σ(x), d′) R (σ′(x), d′) for all x ∈ V (ti) and d′ ∈ C(Σd). By the first
and second assumption and the fact that vars(ti) \ V (ti) ⊆ vars(t), we have
(σ(x), d) R (σ′(x), d) for all x ∈ vars(ti)\V (ti). Thus, by the induction hypothesis,
we have (σ(ti), d) R (σ′(ti), d).

For the second part, assume that i ∈ IV f and that d′ ∈ C(Σd). From the definition
of V we obtain vars(ti) ⊆ V (t). Hence, by the first assumption on σ and σ′ of
Lemma 8.35, we have ((σ(x), d′), (σ′(x), d′)) ∈ R for all x ∈ vars(ti). Thus, by the
induction hypothesis, we have ((σ(ti), d

′), (σ′(ti), d
′)) ∈ R. ⊠

Proof of Theorem 8.33. It suffices to prove that initially stateless bisimilarity is a
congruence for each of the process functions of Σp. Let (f, ar(f)) ∈ Σp, −→p ar(f)−1,−→q ar(f)−1 ∈ C(Σp) and d ∈ C(Σd). Suppose that −→p ar(f)−1 ↔isl

−→p ar(q)−1. This
means that there are state-based bisimulation relations Ri (for 0 ≤ i < ar(f))
such that (pi, d) Ri (qi, d) for all d ∈ C(Σd). Let R be the union of these relations

Ri: R =
⋃ar(f)−1

i=0 Ri. Obviously R is also a state-based bisimulation relation. We
prove that the relation R contains the pair ((f(−→p ar(f)−1), d), (f(−→q ar(f)−1), d)),
for all d ∈ C(Σd), and that it is a state-based bisimulation relation.

As (pi, d) Ri (qi, d)) and Ri ⊆ R ⊆ R, for all 0 ≤ i < ar(f) and all d ∈ C(Σd), it
follows that (pi, d) R (qi, d), for all 0 ≤ i < ar(f) and all d ∈ C(Σd). Hence, by the
definition of R obviously also (f(−→p ar(f)−1), d) R (f(−→q ar(f)−1), d)), for d ∈ C(Σd).

So, we only have to prove the following for any ((p, d), (q, d)) ∈ R: if for arbitrary

r, l, p′ and d′, (p, d)
l→r (p′, d′), then there exists a q′ such that (q, d)

l→r (q′, d′)
and ((p′, d′), (q′, d′)) ∈ R and vice versa for transitions of q. Due to symmetry, it
suffices to provide the proofs for the transitions of p only.

We prove this by induction on the depth of the proof of a transition. We do
not show the proof for the induction base as it is an instance of the proof of the
induction step where there are no premises.

For the induction step, we distinguish three cases based on the structure of the
definition of R. In case the pair ((p, d), (q, d)) is contained in R due to reflexivity
of R or due to the requirement that R contains R, the proof is obvious (and
requires no induction at all). For the remaining case, we find p = f(−→p ar(f)−1)
and q = f(−→q ar(f)−1) for some −→p ar(f)−1,

−→q ar(f)−1 such that

∀i/∈IV f
((pi, d), (qi, d)) ∈ R, (8.3)

and

∀i∈IV f ,d′∈C(Σd) ((pi, d
′), (qi, d

′)) ∈ R. (8.4)
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The last step of the proof of the transition of p is due to the application of a
deduction rule of the following form:

{(ti, ui)
li→ri

(yi, u
′
i) | i ∈ I}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

.

This means that there are a process substitution σ and a data substitution ξ such
that σ(xi) = pi for all 0 ≤ i < ar(f), ξ(u) = d, σ(t′) = p′ and ξ(u′) = d′.

Furthermore, for each i ∈ I, there exist a proof of (σ(ti), ξ(ui))
li→ri

(σ(yi), ξ(u
′
i))

with smaller depth.

Since we have assumed acyclicity of the process-variable dependency graph, we can
define a rank, rank(x), for each variable x, as the maximum length of a backward
chain starting from x in the process-variable dependency graph. The rank of
a premise is the rank of its target variable. Then, for each x ∈ vars(ti) of each

premise (ti, ui)
li→ri

(yi, u
′
i) of the deduction rule, it holds that rank(x) < rank(yi).

We define the process substitution σ′ as follows:

σ′(x) =

{
qi if x = xi for some 0 ≤ i < ar(f),

σ(x) if x /∈ Xp ∪ Yp.

Note that thus far this process substitution is not defined for variables from Yp.
We extend this definition while proving, by induction on the rank of a premise r,
three essential properties: for all r, for all i ∈ I such that rank(yi) = r,

1. ((σ(ti), ξ(ui)), (σ
′(ti), ξ(ui))) ∈ R;

2. (σ′(ti), ξ(ui))
li→ri

(σ′(yi), ξ(u
′
i));

3. ((σ(yi), ξ(u
′
i)), (σ

′(yi), ξ(u
′
i))) ∈ R.

Again, we do not show the proof of the induction base (r = 0) as it is an instance
of the proof of the induction step.

For the induction step, suppose r ≥ 1. Let (ti, ui)
li→ri

(yi, u
′
i) for some i ∈ I be

a premise of rank r. First, we prove property (1). We aim at using Lemma 8.35.
Hence we prove

∀x∈vars(ti)\V (ti) ((σ(x), ξ(ui)), (σ
′(x), ξ(ui))) ∈ R (8.5)

and

∀x∈V (ti),d′′∈C(Σd) ((σ(x), d′′), (σ′(x), d′′)) ∈ R (8.6)

by induction on the structure of term ti.
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1. Suppose that ti is a variable, say x. Then vars(ti) \ V (ti) = {x} \ ∅ = {x}.
For the first property, we distinguish three cases:

• x /∈ Xp and x /∈ Yp. Then, we have σ(ti) = σ′(ti). Since R is reflexive
we obtain ((σ(x), ξ(ui)), (σ

′(x), ξ(ui))) ∈ R.

• x ∈ Yp. Then x = yj for some j ∈ I. Hence, by local data-dependency
constraint 2, ui = u′j . Observe that rank(yj) < r. By the induction hy-

pothesis (property (3)), we have (σ(yj), ξ(u′j)) R (σ′(yj), ξ(u′j)). Hence,

as yj = x and ξ(uj) = ξ(ui), we have (σ(x), ξ(ui)) R (σ′(x), ξ(ui)).

• x ∈ Xp. Then, x = xj for some 0 ≤ j < n. We distinguish two cases:

– j ∈ IV f . Then, we use assumption (8.4) to obtain the desired
(σ(x), ξ(uj)) R (σ′(x), ξ(uj));

– j /∈ IV f . Then by assumption (8.3) we have (pj , d) R (qj , d). By
definition of IV we obtain that xj is not an unresolved variable.
Hence, by definition of unresolved variables, we have ui = u. Hence
d = ξ(u) = ξ(ui). Thus, we have (σ(x), ξ(ui)) R (σ′(x), ξ(ui))).

The second property holds trivially, as V (ti) = ∅.

2. Suppose that ti is a process constant, say c. Then both properties hold
trivially, as vars(ti) = ∅ and V (ti) = ∅.

3. Suppose that ti = g(
−→
t′ ar(g)−1) for some (g, ar(g)) ∈ Σp and

−→
t′ ar(g)−1 ∈

T (Σp, Vp). For the first property observe that x ∈ vars(ti) \ V (ti) implies
that x ∈ vars(t′j) \ V (t′j) for some j /∈ IV g. By the induction hypothesis

(first property), we then have (σ(x), ξ(ui)) R (σ′(x), ξ(ui)).

For the second property observe that x ∈ V (ti) implies (1) x ∈ vars(t′j)
for some 0 ≤ j < ar(g) such that j ∈ IV g; or (2) x ∈ V (t′j) for some
j /∈ IV g. In the first case, the global data-dependency constraint requires
that x = xk for some 0 ≤ k < n such that k ∈ IV f . We have σ(x) = pk and
σ′(x) = qk. Using assumption (8.4) we then obtain (σ(x), d′′) R (σ′(x), d′′)
for all d′′ ∈ C(Σd). In the second case, by the induction hypothesis (second
property), we have (σ(x), d′′) R (σ′(x), d′′) for all d′′ ∈ C(Σd).

From property (1), we have that (σ(ti), ξ(ui)) R (σ′(ti), ξ(ui)). We also have a

proof of smaller depth for (σ(ti), ξ(ui))
li→ri

(σ(yi), ξ(u
′
i)). Then, by the induction

hypothesis, we have the existence of a process term q′i such that (σ′(ti), ξ(ui))
li→ri

(q′i, ξ(u
′
i)) and ((σ(yi), ξ(u

′
i)), (q

′
i, ξ(u

′
i))) ∈ R. We choose σ′(yi) to be q′i. Observe

that this proves existence of an appropriate process term σ′(yi). This concludes
the proof of properties (2) and (3).

Now, we finish our reasoning using process substitution σ′ and the same data sub-
stitution and deduction rule. Observe that indeed σ′(f(−→x ar(f)−1)) = f(−→q ar(f)−1)
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= q. By property (2) we have proven that there exist proofs for all premises us-
ing the process substitution σ′ and data substitution ξ. Then, according to the

same deduction rule and using σ′ instead of σ, we have (σ′(f(−→x ar(f)−1)), ξ(u))
l→r

(σ′(t′), ξ(u′)). Since σ′(f(−→x ar(f)−1)) = f(−→q ar(f)−1) = q, ξ(u) = d and ξ(u′) = d′

we obtain (q, d)
l→r (σ′(t′), d′).

We only have to show that (σ(t′), d′)R(σ′(t′), d′). We aim at using Lemma 8.35.
Hence we prove

∀x∈vars(t′)\V (t′) (σ(x), d′) R (σ′(x), d′) (8.7)

and
∀x∈V (t′),d′′∈C(Σd) (σ(x), d′′) R (σ′(x), d′′)) (8.8)

by induction on the structure of term t′.

1. Suppose that t′ is a variable, say x. Then vars(t′) \ V (t′) = {x} \ ∅ = {x}.
For the first property, we distinguish three cases:

• x /∈ Xp and x /∈ Yp. Then, we have σ(ti) = σ′(ti). Since R is reflexive
we obtain (σ(x), d′) R (σ′(x), d′).

• x ∈ Yp. Then x = yj for some j ∈ I. Hence, by local data-dependency
constraint 1, u′ = u′j . By property (3), we have (σ(yj), ξ(u′j)) R
(σ′(yj), ξ(u′j))). Hence, as yj = x and ξ(uj) = ξ(u′) = d′, we have

(σ(x), d′) R (σ′(x), d′).

• x ∈ Xp. Then, x = xj for some 0 ≤ j < n. We distinguish two cases:

– j ∈ IV f . Then, we use assumption (8.4) to obtain the desired
((σ(x), d′)), (σ′(x), d′)) ∈ R;

– j /∈ IV f , then by assumption (8.3) we have ((pj , d), (qj , d)) ∈ R.
By definition of IV we obtain that xj is not an unresolved variable.
Hence, by definition of unresolved variables, we have u′ = u. Hence
d = ξ(u) = ξ(u′) = d′. Thus, we have (σ(x), d′) R (σ′(x), d′).

The second property holds trivially, as V (t′) = ∅.

2. Suppose that t′ is a process constant, say c. Then both properties hold
trivially, as vars(t′) = ∅ and V (t′) = ∅.

3. t′ = g(
−→
t′ ar(g)−1) for some process function (g, ar(g)) ∈ Σp and t′j ∈ T (Σp)

for 0 ≤ j < ar(g). For the first property observe that x ∈ vars(t′) \ V (t′)
implies that x ∈ vars(t′j) \ V (t′j) for some j /∈ IV g. By the induction

hypothesis (first property), we then have (σ(x), d′) R (σ′(x), d′).

For the second property observe that x ∈ V (t′) implies (1) x ∈ vars(t′j) for
some 0 ≤ j < ar(g) such that j ∈ IV g; or (2) x ∈ V (t′j) for some j /∈ IV g.
In the first case, the global data-dependency constraint requires that x = xk
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for some 0 ≤ k < ar(f) such that k ∈ IV f . We have σ(x) = pk and
σ′(x) = qk. Using assumption (8.4) we then obtain (σ(x), d′′) R (σ′(x), d′′)
for all d′′ ∈ C(Σd). In the second case, by the induction hypothesis (second
property), we have (σ(x), d′′) R (σ′(x), d′′) for all d′′ ∈ C(Σd).

So this concludes the proof of Theorem 8.33. ⊠

Example 8.36 Consider the transition system specification of Example 8.4. Ob-
viously the deduction rules are in the process-tyft format. They also satisfy the
sfisl format as no variables introduced in the target of any premise are used in the
source of a premise or in the target of the conclusion. Variable x1 in deduction
rule (5) is unresolved. Hence, we obtain IV f ⊇ {1}. As the process function f is
not used in any other deduction rule we find IV f = {1}. Obviously, for all process
constants we find that the set IV is empty: IV a = IV b = IV c = ∅. Hence, the
transition system specification is also in sfisl format. From this we conclude that
initially stateless bisimilarity is a congruence.

In the next two examples, we show that none of the two constraints of sfisl can be
relaxed in any conceivable way.

Example 8.37 Consider the following transition system specification (with pro-
cess constants a, b, c, and c′, unary process function f , and data constants d and
d′) and the following deduction rules:

(1)
(a, d)

l→ (c, d)
(2)

(b, d)
l→ (c′, d)

(3)
(c, d′)

l→ (c, d′)
(4)

(x, v)
l→ (y, d)

(f(x), v)
l→ (y, d′)

The deduction rules (1)-(3) are in the sfisl format, trivially. Deduction rule (4)
does not satisfy local data-dependency constraint 1, since y ∈ Yp but d 6= d′.
Local data-dependency constraint 2 and the global data-dependency constraint
are satisfied (with IV f = ∅).

That initially stateless bisimilarity is not a congruence w.r.t. f can be seen as
follows: we have that a ↔isl b, but not that f(a) ↔isl f(b) since (f(a), d) can
perform a transition to (c, d′) while (f(b), d) is forced to perform the same transi-
tion to (c′, d′) and it does not hold that (c, d′) ↔sb (c′, d′).

Example 8.38 Consider the transition system specification from Example 8.37
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with deduction rule (4) replaced by:

(4)
(x, v)

l→ (y, v′) (y, d′)
l→ (y′, v′′)

(f(x), v)
l→ (y′, v′′)

The deduction rules (1)-(3) are in the sfisl format, trivially. Deduction rule (4)
satisfies local data-dependency constraint 1 of sfisl, but local data-dependency
constraint 2 is not satisfied as y ∈ Yp but d′ 6= v′. The global data-dependency
constraint is satisfied by this transition system specification.

That initially stateless bisimilarity is not a congruence w.r.t. f can be seen as
follows: a ↔isl b holds, but it does not hold that f(a) ↔isl f(b) since (f(a), d)
is able to perform an l transition (due to rules (4), (3) and (1)) while (f(b), d)
deadlocks.

8.3.4 Comparing Congruence Results

When motivating the different notions of bisimilarity, we stated that state-based
bisimilarity is considered the weakest (least distinguishing) and least robust notion
of bisimilarity with respect to data change. This statement, especially the least
robust part, may suggest that if for a transition system specification state-based
bisimilairty is a congruence, stateless and initially stateless bisimilarity are trivially
congruences, as well. This conjecture can be supported by the standard formats
that we gave in this section where the state-based format is the most restrictive
and stateless is the most relaxed one. Surprisingly, this conclusion is not entirely
true. It turns out that congruence for state-based bisimilarity is indeed stronger
than congruence for initially stateless bisimilarity but incomparable to congruence
for stateless bisimilarity. A similar incomparability result holds for congruence for
initially stateless bisimilarity versus stateless bisimilarity, as well.

The following two examples show that congruence results for state-based bisimi-
larity and stateless bisimilarity are incomparable. In other words, there are both
cases in which one of the two notions is a congruence and the other is not.

Example 8.39 Consider the following transition system specification (with pro-
cess constants a and b, unary process function f , and data constants d and d′) and
the following deduction rules:

(1)
(a, d′)

l→ (a, d′)
(2)

(f(a), d)
l→ (a, d′)

In the above transition system specification, the process constants a and b are
not stateless bisimilar and hence, congruence of stateless bisimilarity follows triv-
ially. However, we have (a, d) ↔sb (b, d), but not (f(a), d) ↔sb (f(b), d). Hence,
congruence of state-based bisimilarity does not hold.
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Example 8.40 Consider the following transition system specification (with pro-
cess constants a, b, and c, unary process function f , and data constants d and d′)
and the following deduction rules:

(1)
(c, d′)

l′→ (c, d′)
(2)

(f(a), d)
l→ (b, d)

(3)
(f(b), d)

l→ (c, d)
(4)

(f(c), d)
l→ (a, d)

State-based bisimilarity is obviously a congruence though the transition system
specification does not satisfy the proposed format. Now, consider the processes a
and b. These two processes are stateless bisimilar, however, f(a) and f(b) are not
stateless bisimilar, since (f(a), d) can make a transition to (b, d), whereas (f(b), d)
is forced to make a transition to (c, d). Clearly, b and c are not stateless bisimilar
(due to their difference w.r.t. data state d′).

The following lemma states that if state-based bisimilarity is a congruence, then
initially stateless bisimilarity is a congruence as well.

Lemma 8.41 For a transition system specification, if state-based bisimilarity is
a congruence, then initially stateless bisimilarity is a congruence, as well.

Proof. Consider an arbitrary (f, (ar(f)) ∈ Σp and suppose that for some −→p ar(f)−1,−→p ar(f)−1 ∈ C(Σp), −→p ar(f)−1 ↔isl
−→q ar(f)−1. By definition this means that there

exist state-based bisimulation relations Ri such that ((pi, d), (qi, d)) ∈ Ri for all d.
Since state-based bisimilarity is a congruence (by assumption), we have, for each d,
the existence of a state-based bisimulation relation Sd such that (f(−→p ar(f)−1), d)
Sd (f(−→q ar(f)−1), d). Let S =

⋃
d Sd, and observe that S is a state-based bisim-

ulation relation such that, for all d, (f(−→p ar(f)−1), d) S (f(q0, . . . , qn−1), d). This
means that f(−→p ar(f)−1) ↔isl f(−→q ar(f)−1). ⊠

Corollary 8.42 If a transition system specification is in the sfsb format, then
initially stateless bisimilarity is a congruence for it.

Lemma 8.41 shows that congruence for initially stateless bisimilarity is either
stronger than or incomparable to congruence for stateless bisimilarity (since in
Example 8.40, we have already shown that there exists a case were state-based
bisimilarity, thus initially stateless bisimilarity, is a congruence but stateless bisim-
ilarity is not). To prove the incomparability result, we need a counterexample
where stateless bisimilarity is a congruence but initially stateless bisimilarity is
not (the counterexample of Example 8.39 does not work in this case). The follow-
ing example establishes this fact.
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Example 8.43 Consider the following transition system specification (with pro-
cess constants a, b, and c, unary process function f , and data constants d and d′)
and the following deduction rules:

(1)
(a, d′)

l→ (a, d)
(2)

(b, d′)
l→ (c, d′)

(3)
(c, d)

l→ (c, d)

(4)
(f(a), d)

l→ (c, d)
(5)

(f(b), d′)
l→ (c, d′)

According to the above transition system specification, none of the three constants
a, b and c are stateless bisimilar, thus congruence of stateless bisimilarity is obvious.
However, we have a ↔isl b but not f(a) ↔isl f(b).

So, to conclude, we have proved in this section, that congruence for state-based
bisimilarity implies congruence for initially stateless bisimilarity (and not vice
versa). However, proving congruence for stateless bisimilarity does not necessarily
mean anything for congruence for the two other notions.

8.3.5 Seasoning the Process-tyft Format

The deduction rules in all three proposed formats are of the following form:

{(ti, ui)
li→ri

(yi, u
′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t, u′)

.

Using this form we cannot go far with proving congruence properties of existing
theories since there are many other constructs and patterns that are not present in
the above format. In this section, we show how to exploit the formats in presence
of such constructs.

Deduction Rules in Tyxt Format

A common type of deduction rule used in transition system specifications is the
tyxt form which has the following structure:

(dr)
{(ti, ui)

li→ri
(yi, u

′
i) | i ∈ I}

(x, u)
l→r (t′, u′)

.

Rules of the above form fit within the tyft form if we replace it with a copy the
above rule for each function symbol (f, ar(f)) ∈ Σp where all occurrences of x are
replaced by f(−→x ar(f)−1) with xi /∈ vars(dr):

(drf )
{(ti[f(x0, . . . , xn−1)/x], ui)

li→ri
(yi, u

′
i)|i ∈ I}

(f(−→x ar(f)−1), u)
l→r (t′[f(−→x ar(f)−1)/x], u′)

.
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Observe that the resulting deduction rule is indeed in the process-tyft format. In
[64], it is shown that the original transition system specification and the unfolded
one are transition equivalent (meaning that the same transitions can be derived).

For our congruence results there is no problem in also allowing deduction rules
in tyxt format. It is not necessary to explicitly transform the transition system
specification as described above to apply our congruence results for stateless and
state-based bisimilarity since deduction rules in tyxt format transform into de-
duction rules in the process-tyft format and since any data-dependency constraint
involving x in the original deduction rule is replaced by data-dependency con-
straints involving the xi variables in the unfolded deduction rule and vice versa.

Checking whether initially stateless bisimilarity is a congruence is not as straight-
forward due to the global data-dependency constraint. There are two simple so-
lutions. First, check whether state-based bisimilarity is a congruence; if so, so is
initially stateless bisimilarity. Or second, check congruence of initially stateless
bisimilarity on the unfolded transition system specification.

Deduction Rules with Predicates

Another common phenomenon is the presence of predicates. Predicates of the
form P (t, u) may be present in the premises or the conclusion of a deduction rule.
Thus, we allow deduction rules of the following forms:

(dr1)
{(ti, ui)

li→ri
(yi, u

′
i)|i ∈ I} ∪ {Pj(t′j , vj) | j ∈ J}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

and

(dr2)
{(ti, ui)

li→ri
(yi, u

′
i)|i ∈ I} ∪ {Pj(t′j , vj) | j ∈ J}

P (f(−→x ar(f)−1), u)
.

Predicates can be dealt with in the above formats, as if they are source of a
transition relation. This can be formally proved by introducing a fresh dummy
transition relation for each predicate and replacing occurrences of that predicate
in premises by this transition relation with a target consisting of a fresh dummy
process variable and a fresh dummy data variable and occurrences in conclusions
by this transition relation with a state consisting of a fresh process constant and
a fresh data constant in the target. This transformation is similar to the transfor-
mation from [12] for the path format.

Hence, a deduction rule of the form (dr1) is replaced by a deduction rule of the
form

(dr ′
1)

{(ti, ui)
li→ri

(yi, u
′
i)|i ∈ I} ∪ {(t′j , vj)RPj

(zj , wj) | j ∈ J}

(f(−→x ar(f)−1)), u)
l→r (t′, u′)
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where the zj are all different process variables that did not occur in (dr1) and the
wj are all different data variables that did not occur in (dr1).

A deduction rule of the form (dr2) is replaced by a deduction rule of the form

(dr ′
2)

{(ti, ui)
li→ri

(yi, u
′
i)|i ∈ I} ∪ {(t′j , vj)RPj

(zj , wj) | j ∈ J}

(f(−→x ar(f)−1), u)RP (a, d)
.

where additionally a is a process constant such that a /∈ Σp and d is a data constant
such that d /∈ Σd.

As before, this transformation does not have to be carried out explicitly. Ob-
serve that the original transition system specification is in the process-tyft format
(by considering the arguments of the predicates as sources of premises and con-
clusions) iff the transformed transition system specification is in the process-tyft
format. Thus, stateless bisimilarity is a congruence for the original transition
system specification iff it is a congruence for the transformed transition system
specification.

With respect to the sfsb format, observe that the sources of data-dependencies
are the same for the original rules and the transformed rules. This is due to the
decision to treat the argument of the predicates as sources of conclusions and
premises. Also observe that there are new targets of premises introduced by the
transformation, but those only contain fresh variables and can therefore never be
used to satisfy a data-dependency constraint. Hence, the transformed transition
system specification satisfies the sfsb format when the original transition system
specification does.

For the local data-dependencies of the sfisl format a similar observation holds. For,
the new process constant a, we find IV a = ∅ and for all other process constants
and functions we find that the sets IV are the same for the original transition
system specification and the transformed one. Therefore, the transformed transi-
tion system specification satisfies the sfisl format iff the original transition system
specification does.

Deduction Rules with Negative Premises

As argued by Groote [61], it is often convenient to describe that certain activity
can be performed based on the absence of certain actions. Thus, we allow for
deduction rules of the following form:

(dr)
{(ti, ui)

li→ri
(yi, u

′
i) | i ∈ I} ∪ {(tj , uj)

lj
9rj

| j ∈ J}

(f(−→x ar(f)−1), u)
l→r (t′, u′)

.

For such transition system specifications another definition is required of what a
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proof of a transition is (see [61, 135]). Not every transition system specification
with negative premises defines a transition relation. Different interpretations of
negative premises can be considered (see [59]), but here we adopt the interpretation
put forward by [61]. A sufficient condition for the existence of a transition relation
is that the transition system specification is stratifiable.

A stratification is a metric on formulae that, for each deduction rule of the transi-
tion system specification, does not increase from conclusion to all positive premises
and strictly decreases from conclusion to negative premises (i.e., if a stratification
for all rules exists). For stratifiable transition system specifications, our congru-
ence results can be used safely.

8.4 Applications of the Formats

In this section, some process languages from the literature for which an operational
semantics is provided by means of a transition system specification with a data
state are considered.

For each of these languages, we establish which of the notions of bisimilarity intro-
duced in this article are used (possibly with a different formulation) and whether
the deduction rules are in the corresponding format. We focus on stateless bisim-
ilarity and initially stateless bisimilarity as these seem to be of most interest in
these applications.

8.4.1 The Coordination Language Linda

In [35], the operational semantics of Linda is given using a combination of SOS
rules and a structural congruence. As this kind of transition system specification
is not purely in the format used in this article, we have transformed it in such a
way that it fits the format (by extending the language with a process constant ǫ).
A formulation of this semantics without the constant ǫ is also possible, but the
resulting transition system specification is much larger. In this section, we apply
the proposed formats on the extended language. Process constants (atomic process
terms) in this language are ǫ (for terminating process), ask(t) and nask(t) (for
checking existence and absence of tuple t in the shared data space, respectively),
tell(t) (for adding tuple t to the space) and get(t) (for taking tuple t from the
space). Process composition operators in this language include nondeterministic
choice (+), sequential composition (;) and parallel composition (||). The data
signature of this language consists of a constant {} for the empty multiset and
a class of unary function symbols ∪{t}, for all tuples t, denoting the union of a
multiset with a singleton multiset containing tuple t. The operational state of a
Linda program is denoted by (p, ς) where p is a process term in the above syntax
and ς is a multiset modelling the shared data space.
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The transition system specification defines one relation → and one predicate ↓.
Negative premises and deduction rules in tyxt format are not used.

The deduction rules of our reformulation of the SOS for Linda from [35] are the
following:

(1)
(ǫ, ς) ↓

(2)
(ask(t), ς ∪ {t})→ (ǫ, ς ∪ {t})

(3)
(tell(t), ς)→ (ǫ, ς ∪ {t})

(4)
(get(t), ς ∪ {t})→ (ǫ, ς)

(5)
[t /∈ ς]

(nask(t), ς)→ (ǫ, ς)
(6)

(x0, ς) ↓
(x0 + x1, ς) ↓

(7)
(x1, ς) ↓

(x0 + x1, ς) ↓

(8)
(x0, ς)→ (y, ς ′)

(x0 + x1, ς)→ (y, ς ′)
(9)

(x1, ς)→ (y, ς ′)

(x0 + x1, ς)→ (y, ς ′)

(10)
(x0, ς)→ (y, ς ′)

(x0 ; x1, ς)→ (y ; x1, ς
′)

(11)
(x0, ς) ↓ (x1, ς)→ (y, ς ′)

(x0 ; x1, ς)→ (y, ς ′)

(12)
(x0, ς)→ (y, ς ′)

(x0||x1, ς)→ (y||x1, ς
′)

(13)
(x1, ς)→ (y, ς ′)

(x0||x1, ς)→ (x0||y, ς ′)

(14)
(x0, ς) ↓ (x1, ς) ↓

(x0 ; x1, ς) ↓
(15)

(x0, ς) ↓ (x1, ς) ↓
(x0||x1, ς) ↓

Obviously these deduction rules are all in the process-tyft format (with appropriate
seasoning for termination predicate ↓). As a consequence, stateless bisimilarity is a
congruence. Initially stateless bisimilarity is a congruence for all operators except
parallel composition. Note that IV + = ∅ and IV ; = {1}. Thus, initially stateless
bisimilarity is a congruence for the sequential part of Linda.

Because congruence of initially stateless bisimilarity w.r.t. parallel composition
cannot be concluded using our format, we may wonder whether this result must
have been expected. In the following example, we show that this is indeed the case
and the indications given by our format are true (i.e., initially stateless bisimilarity
is not a congruence for the language with parallel composition operator).

Example 8.44 Consider the processes p = ask(1) ; (nask(1) ; ask(2)) and
q = ask(1) ; nask(1). According to the above transition system specification,
it holds that p ↔isl q (in both processes, using an arbitrary common initial state,
either ask(1) executes followed by deadlock or both deadlock immediately). How-
ever, if we compose each of the two processes in parallel with the process r = get(1),
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then the two processes may behave differently for some data states. For exam-
ple, consider the data state {1, 2}. For this data state, one execution path of
(p || r, {1, 2}) is: first executing ask(1) from p successfully, then get(1) from r
(thus, resulting in data state {2}), and executing nask(1) followed by ask(2) suc-
cessfully. However, all possible executions of (q || r, {1, 2}) can never make four
consecutive transitions before termination. Thus, we conclude that initially state-
less bisimilarity is not a congruence with respect to the parallel composition.

8.4.2 The Timed Process Algebra Timed µCRL

In [62], a timed extension of the language µCRL, called timed µCRL, is defined.
In this section, we consider a fragment of this language consisting of the following
process constants and functions:

• process constants: δ, (a)a∈A;

• unary process functions:

(∑
x

)

x∈V

, ( ֒t)t∈T ;

• binary process functions: +, ·, ( ✁ b✄ )b∈B , ‖ .

The meaning of the sets A, V , T , and B, and the meaning of the process constants
and functions are irrelevant. The process functions that we do not consider here,
are either only introduced for axiomatization purposes (‖ , | , ≪) or renaming
of actions (∂H , ρR, τI). The transition system specification defines the following
predicates and relations:

• a ‘delay-predicate’ U ;

• a family of ‘action-termination’ predicates
(

a→X
)

a∈A
;

• a family of ‘action-transition’ relations
(

a→
)

a∈A
;

• a ‘time-transition’ relation
ι→ .

The data state consists of an element of the set T (reflecting time). In [62], U(p, t)

is written as U(t, p) and ( p, t )
a→X is written as ( p, t )

a→ (X, t ). In this section,

we use the notations U(p, t) and ( p, t )
a→X. The deduction rules are given below.

(1)
( a, t )

a→X
(2)

U(a, t)
(3)

U(δ, t)
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(4)
(x0, t )

l→X
(x0 + x1, t )

l→X
(x1 + x0, t )

l→X

(5)
(x0, t )

l→ ( y, t )

(x0 + x1, t )
l→ ( y, t )

(x1 + x0, t )
l→ ( y, t )

(6)
U(x0, t)

U(x0 + x1, t)
U(x1 + x0, t)

(7)
(x0, t )

l→X
(x0 · x1, t )

l→ (x1, t )

(8)
(x0, t )

l→ ( y, t )

(x0 · x1, t )
l→ ( y · x1, t )

(9)
U(x0, t)

U(x0 · x1, t)

(10)
(x0, t )

l→X [|= b]

(x0 ✁ b✄ x1, t )
l→X

(11)
(x1, t )

l→X [6|= b]

(x0 ✁ b✄ x1, t )
l→X

(12)
(x0, t )

l→ ( y, t ) [|= b]

(x0 ✁ b✄ x1, t )
l→ ( y, t )

(13)
(x1, t )

l→ ( y, t ) [6|= b]

(x0 ✁ b✄ x1, t )
l→ ( y, t )

(14)
U(x0, t) [|= b]

U(x0 ✁ b✄ x1, t)
(15)

U(x1, t) [6|= b]

U(x0 ✁ b✄ x1, t)

(16)
(x[e/v], t )

l→X(∑
v
x, t

)
l→X

(17)
(x[e/v], t )

l→ ( y, t )(∑
v
x, t

)
l→ ( y, t )

(18)
U(x[e/v], t)

U(
∑
v
x, t)

(19)
(x, t )

l→X
(x֒t, t )

l→X
(20)

(x, t )
l→ ( y, t )

(x֒t, t )
l→ ( y, t )

(21)
U(x, t) [t ≤ t′]

U(x֒t′, t)

(22)
U(x, t′) [t < t′]

(x, t )
ι→ (x, t′ )

(23)
(x0, t )

l→X (x1, t )
l′→X [γ(l, l′) = l′′]

(x0 ‖x1, t )
l′′→X

(24)
(x0, t )

l→X
(x0 ‖x1, t )

l→ (x1, t )

(x1 ‖x0, t )
l→ (x1, t )

(25)
(x0, t )

l→ ( y, t )

(x0 ‖x1, t )
l→ ( y ‖x1, t )

(x1 ‖x0, t )
l→ (x1 ‖ y, t )
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(26)
(x0, t )

l→X (x1, t )
l′→ ( y, t ) [γ(l, l′) = l′′]

(x0 ‖x1, t )
l′′→ ( y, t ) (x1 ‖x0, t )

l′′→ ( y, t )

(27)
(x0, t )

l→ ( y0, t ) (x1, t )
l′→ ( y1, t ) [γ(l, l′) = l′′]

(x0 ‖x1, t )
l′′→ ( y0 ‖ y1, t )

(28)
U(x0, t) U(x1, t)

U(x0 ‖x1, t)

Observe that in this transition system specification two relations and two predi-
cates are used. Negative premises do not occur, but there is a deduction rule in
tyxt format.

The equivalence used in [62] for timed µCRL process terms is timed bisimilarity,
which coincides with our notion of initially stateless bisimilarity. The definition
of timed bisimilarity in [62] does not require the delay predicate to be transferred
between related processes. The notion of initially stateless bisimilarity presented
in this article is based on transferring all predicates and relations used in the
transition system specification. This difference is not problematic as it can easily
be proved that any two timed bisimilar process terms are also initially stateless
bisimilar and vice versa. Congruence of timed bisimilarity is claimed without proof
in [62]. In [109], a reformulation of the semantics of timed µCRL is given in such
a way that the data state is encoded into the process terms at the expense of an
auxiliary operator. Then, the notion of timed bisimilarity corresponds with the
traditional notion of bisimilarity, for which congruence is proven using traditional
means.

Stateless bisimilarity Note that although stateless bisimilarity is not consid-
ered in [62], from the format of the deduction rules, congruence for this equivalence
follows easily.

State-based bisimilarity All deduction rules of timed µCRL are in the sfsb for-
mat except for deduction rule (22). For this deduction rule, the data-dependency
constraints 1 and 3 of sfsb are violated in the target of the conclusion and the
source of the (only) premise as x ∈ Xp but t′ 6= t (note that data-dependency con-
straints 2 and 4 are respected by this rule). Hence, state-based bisimilarity cannot
be concluded to be a congruence for any of the non-nullary1 process functions of
timed µCRL.

1For nullary process functions there is no data dependency at all.
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Nevertheless, using traditional means one can quite easily establish that state-
based bisimilarity is a congruence for some of the operators, for example alternative
composition.

Initially stateless bisimilarity Before we discuss initially stateless bisimilarity
in more detail we emphasize that deduction rule (22) needs to be transformed
before the format can be applied. Deduction rule (22) maps to a collection of
deduction rules of the form

(22f )
U(f(x0, . . . , xn−1), t′) [t < t′]

( f(x0, . . . , xn−1), t )
ι→ ( f(x0, . . . , xn−1), t′ )

;

one for each n-ary process function f in the signature of timed µCRL.

All deduction rules of timed µCRL except for deduction rules derived from deduc-
tion rule (22) for non-nullary process functions are in the sfsb format. Thus, with
respect to the local constraints of sfisl, only those derived deduction rules have to
be considered.

Note that the set of variables Yp is empty for such a deduction rule. Hence, the
local data-dependency constraints of sfisl are satisfied trivially.

For an arbitrary function symbol f with arity n, the set of unresolved variables
consists of the indices of all arguments. As a consequence, IV f ⊇ {0, . . . , n −
1}. For all process functions, except for sequential and parallel composition, the
defining deduction rules do not contain any occurrences of process functions in the
source of a premise or in the target of the conclusion. Hence, for all those process
functions, we obtain IV f is the set of all indices of f .

For sequential composition (deduction rule (8)) and parallel composition (deduc-
tion rules (25) and (27)) the occurrences of y, y0 and y1 in the use of the process
functions do not satisfy the requirement that these should be initial variables
(∈ Xp). Hence, for those process functions, the set IV does not exist. Therefore,
congruence of initially stateless bisimilarity w.r.t. those process functions cannot
be concluded. For the other process functions, as they are independently defined
operationally, congruence can be concluded.

We claim that a reformulation of the operational semantics of timed µCRL without
the predicate U along the following lines results in an ‘equivalent’ transition system
specification for which the sfisl format can be applied to obtain congruence:

(x0, t )
ι→ ( y, t′ )

(x0 · x1, t )
ι→ ( y · x1, t )

,
(x0, t )

ι→ ( y0, t
′ ) (x1, t )

ι→ ( y1, t
′ )

(x0 ‖x1, t )
ι→ ( y0 ‖ y1, t′ )

.

The reason is that the first argument of sequential composition and both arguments
of parallel composition are no longer forced to be part of the set IV which avoids
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the problem with y, y0 and y1 not being initial variables. Calculation of the sets
IV · and IV ‖ gives: IV · = ∅ and IV ‖ = ∅.

8.4.3 The Hybrid Process Algebra HyPA

In [41], a process algebra is presented for the description of hybrid systems, i.e.,
systems with both discrete events and continuous change of variables. The process
signature of HyPA consists of the following process constants and functions:

• process constants: δ, ǫ, (a)a∈A, (c)c∈C ;

• unary process functions: (d≫ )d∈D, (∂H ( ))H⊆A;

• binary process functions: ⊕ , ⊙ , ◮ , ⊲ , ‖ , ‖ , and | .

Negative premises and rules in tyxt format are not used in this transition system
specification.

We refrain from giving further information about the intended meaning of the sets
A, C, and D, and the meaning of the process constants and functions as these are
irrelevant to the application of our congruence theorems on this language. The
data state consists of mappings from model variables to values, denoted by V al.
The data signature is not made explicit.

The transition system specification defines the following predicate and relations:

• a ‘termination’-predicate X;

• a family of ‘action-transition’ relations
(

l→
)

l∈A×V al
;

• a family of ‘flow-transition’ relations
(

σ
❀

)

σ∈T→V al
.

Also, the meaning of the set T is irrelevant for our purposes. The deduction rules
are given below.

(1)
( ǫ, ν ) X

(2)
( a, ν )

a,ν→ ( ǫ, ν )
(3)

[(ν, σ) |=f c] [dom(σ) = [0, t]]

( c, ν )
σ
❀ ( c, σ(t) )

(4)
[(ν, ν′) |=r d] (x, ν′ ) X

( d≫ x, ν ) X
(5)

[(ν, ν′) |=r d] (x, ν′ )
l→ ( y, ν′′ )

( d≫ x, ν )
l→ ( y, ν′′ )
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(6)
(x0, ν ) X

(x0 ⊕ x1, ν ) X
(x1 ⊕ x0, ν ) X

(7)
(x0, ν )

l→ ( y, ν′ )

(x0 ⊕ x1, ν )
l→ ( y, ν′ )

(x1 ⊕ x0, ν )
l→ ( y, ν′ )

(8)
(x0, ν ) X ( y0, ν ) X

(x0 ⊙ y0, ν ) X
(9)

(x0, ν )
l→ ( y, ν′ )

(x0 ⊙ x1, ν )
l→ ( y ⊙ x1, ν

′ )

(10)
(x0, ν ) X s (x1, ν )

l→ ( y, ν′ )

(x0 ⊙ x1, ν )
l→ ( y, ν′ )

(11)
(x0, ν ) X

(x0 ◮ x1, ν ) X
(x0 ⊲ x1, ν ) X

(12)
(x0, ν )

l→ ( y, ν′ )

(x0 ◮ x1, ν )
l→ ( y ◮ x1, ν

′ )

(x0 ⊲ x1, ν )
l→ ( y ◮ x1, ν

′ )

(13)
(x1, ν ) X

(x0 ◮ x1, ν ) X
(14)

(x1, ν )
l→ ( y, ν′ )

(x0 ◮ x1, ν )
l→ ( y, ν′ )

(15)
(x0, ν ) X (x1, ν ) X

(x0 ‖x1, ν ) X (x0 |x1, ν ) X
(16)

(x0, ν )
σ
❀ ( y0, ν

′ )

(x1, ν )
σ
❀ ( y1, ν

′ )

(x0 ‖x1, ν )
σ
❀ ( y0 ‖ y1, ν′ )

(x0 |x1, ν )
σ
❀ ( y0 ‖ y1, ν′ )

(17)
(x0, ν )

σ
❀ ( y, ν′ ) (x1, ν ) X

(x0 ‖x1, ν )
σ
❀ ( y, ν′ )

(x1 ‖x0, ν )
σ
❀ ( y, ν′ )

(x0 |x1, ν )
σ
❀ ( y, ν′ )

(x1 |x0, ν )
σ
❀ ( y, ν′ )

(18)
(x0, ν )

a,ν′

→ ( y, ν′′ )

(x0 ‖x1, ν )
a,ν′

→ ( y ‖x1, ν
′′ )

(x1 ‖x0, ν )
a,ν′

→ (x1 ‖ y, ν′′ )

(x0 ‖ x1, ν )
a,ν′

→ ( y ‖x1, ν
′′ )

(19)
(x0, ν )

a,ν′

→ ( y0, ν
′′ ) (x1, ν )

a′,ν′

→ ( y1, ν
′′ ) [a′′ = a γ a′]

(x0 ‖x1, ν )
a′′,ν′

→ ( y0 ‖ y1, ν′′ )

(x0 |x1, ν )
a′′,ν′

→ ( y0 ‖ y1, ν′′ )

(20)
(x, ν )

a,ν′

→ ( y, ν′′ ) [a /∈ H]

( ∂H (x) , ν )
a,ν′

→ ( ∂H (y) , ν′′ )
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(21)
(x, ν )

σ
❀ ( y, ν′ )

( ∂H (x) , ν )
σ
❀ ( ∂H (y) , ν′ )

(22)
(x, ν ) X

( ∂H (x) , ν ) X

On HyPA process terms, in [41], a notion of robust bisimilarity is defined that,
for HyPA, coincides with our definition of stateless bisimilarity. Furthermore, in
[41], for the purpose of analyzing sequential HyPA processes (i.e., HyPA processes
without operators for parallel composition), a notion of bisimilarity is defined that
coincides with our notion of initially stateless bisimilarity.

Stateless bisimilarity One can easily observe that all deduction rules of HyPA
are in the process-tyft format. Hence, stateless bisimilarity is a congruence for all
constant and function symbols from the process signature of HyPA.

State-based bisimilarity With respect to the notion of state-based bisimilar-
ity, as defined in this article, it can be established that state-based bisimilarity
is a process-congruence for the constants of HyPA, the alternative composition
operator (⊕ ), and the encapsulation operator (∂H ()), based on the format of the
deduction rules. For the other operators however, this is not the case. Deduction
rules (4) (after a transformation) and (5) violate data-dependency constraint 3.

Deduction rules (9), (12), and (18) for sequential composition (⊙ ), disrupt (◮ )
and left-disrupt (⊲ ), and the parallel composition operators ( ‖ , ‖ , and | ) all
violate data-dependency constraint 1 as the data dependency for variable y in the
target of the conclusion has no base in the source of the conclusion.

One might wonder whether this means that our format for state-based bisimilarity
is too restrictive in the sense that process-congruence cannot be concluded for
many operators. This is not the case, for none of these operators state-based
bisimilarity is a process-congruence!

Initially stateless bisimilarity In case we consider initially stateless bisimi-
larity, it turns out that the deduction rules are all in sfisl. Hence, what remains is
to check whether the global constraints are satisfied. For this, we need to compute
the sets IV f for each process function f of HyPA. For alternative composition and
encapsulation, we obtain IV ⊕ = IV ∂H() = ∅ as there are no unresolved variables
in the deduction rules defining these process functions and there are no process
functions used in sources of premises or targets of conclusions.

For re-initialization, due to the unresolvedness of variable x (at position 0) in
deduction rules (4) and (5), and the fact that no process functions are used in
sources of premises or targets of conclusions of re-initialization defining deduction
rules, we have IV d≫ = {0}.
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For sequential composition IV ⊙ ⊇ {1} since x1 is unresolved in deduction rule
(9). Also note that in the same deduction rule sequential composition is used in
the target of the conclusion. The term occurring as argument 1 of this use, x1, is
the index 1 variable from the source of the conclusion and hence this occurrence
of sequential composition does not add to the set IV ⊙ . As there are no other
process functions used in ⊙ -defining deduction rules, we have IV ⊙ = {1}. Using
a similar reasoning as for sequential composition, we obtain IV ◮ = IV ⊲ = {1}.

For the parallel composition operators, based on the unresolvedness of variables
in deduction rule (18) we need IV ‖ ⊇ {0, 1} and IV ‖ ⊇ {1}. All parallel com-

position operators use parallel composition in the target of at least one of their
defining deduction rules. This leads to the additional requirement that all vari-
ables occurring in the use of parallel composition are from the set Xp. That this
is not the case can be seen easily by considering the deduction rules (18) and (19).
Hence, it turns out that the sets IV ‖ , IV ‖ , and IV | are not defined.

The transition system specification though does not respect the global constraints
imposed by sfisl. However, if we restrict to the part of HyPA without parallel
composition operators, i.e., sequential HyPA, then we can conclude that initially
stateless bisimilarity is a congruence. In fact, in [41], our congruence theorem for
initially stateless bisimilarity has been used to obtain this result.

The fact that we cannot derive that initially stateless bisimilarity is a congruence
w.r.t. the parallel composition operators is not a weakness of our format. Also in
this case, initially stateless bisimilarity is not a congruence w.r.t. parallel compo-
sition. An example of process terms illustrating this for parallel composition is
given in [41].

8.4.4 The Discrete-event Process Language χσ

In [29], the process language χσ is presented. This language is used for the speci-
fication, simulation and validation of discrete-event systems.

The signature of χσ consists of the following process constant and function sym-
bols:

• process constants: δ, ǫ, skip, (∆t)t∈T , (x := e)x∈V,e∈E , (c!e)c∈C,e∈E ,
(c?x)c∈C,x∈V ;

• unary process functions: (b→ )b∈B , ∗, (|[s | ]|)s∈S , (∂H)H⊆A, π, (τI)I⊆A

• binary process functions: [], ;, ‖

In the transition system specification of this language both predicates and relations
are used. For both types of formulae negative occurrences as a premise occur.
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The notion of equivalence that is considered in [29] is (a different formulation
of) stateless bisimilarity. The authors attempt to prove that this equivalence is
a congruence for the constant and function symbols of χσ by using the so-called
relaxed PANTH format [83, 9]. For that purpose they consider the begin and
end data state of a transition as part of the label of that transition. This way
their transition relations and predicates are defined on process terms (without
data state). A mistake they make is that in defining which formulae are negative
formulae they do not consider the start state as a part of the label. This means
that their negative formulae and the ones allowed by [83] are different. Therefore
we have serious doubts as to the applicability of the relaxed PANTH format to the
given transition system specification of χσ. Nevertheless, stateless bisimilarity is
a congruence since all deduction rules of the transition system specification are in
the process-tyft format.

8.5 Conclusions

In this chapter, we investigated the impact of the presence of a data state on
notions of bisimilarity and standard congruence formats. To do this, we defined
three notions of bisimilarity with data and elaborated on their existing and possible
uses. Then, we proposed three standard formats that provide congruence results
for these three notions. Furthermore, we briefly pointed out the relationships
between these notions and between the corresponding congruences. The proposed
formats are applied to several examples from the literature successfully. In this
article, we illustrated the use of our format using a data coordination language,
called Linda, and several process algebras.

Extending the format for a parameterized notion of bisimilarity (with an explicit
interference relation or a symbolic/logical representation of interference possibil-
ities) is another interesting extension which should follow the same line as our
relaxation of state-based constraints to initially stateless. Furthermore, we may
extend the theory to bisimulation relations which allow for different data states
but so far we have seen no practical application of such a bisimilarity notion. In-
vestigating the possibility of applying the same techniques for congruence with
respect to weaker notions of bisimulation (e.g., branching bisimulation) is another
interesting direction for our future research.

We are currently investigating a bi-algebraic and categorical interpretation of no-
tions of bisimulation with data, following the approach of [122, 123, 111]. In this
article, we have only proved sufficient conditions for the notions of bisimulation
with data to be a congruence. Although we have already shown that no straightfor-
ward relaxation of our formats is possible, we could not prove that no relaxation is
possible at all. Using the abstract interpretation of semantic rules (as distributive
laws), bisimulation and congruence in a co-algebraic settings, we might be able to



168 Chapter 8 SOS with Data

investigate whether our imposed formats are indeed necessary for congruence or
they can be relaxed in any way.

Generating equational theories from transition systems specifications is another
direction of our ongoing research. Deriving algebraic axioms for SOS rules in
[3, 16] are among notable examples in this direction which try to generate a set
of sound and (ground-)complete axioms for a given operational semantics in a
syntactic format. Both [3] and [16] assume the existence of a number of standard
constants and operators in the signature and we believe that these restrictions on
the semantics can be relaxed in several ways (even in a setting without data).
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9.1 Introduction

Congruence meta-theorems [5] form an important class of semantic meta-theorems
formulated for languages with Structural Operational Semantics. For languages
with a higher order notion of behavior (which may emit and receive their own
terms as labels), a few proposals exist in the literature [21, 70, 114]. This work’s
most direct inspiration is from Bernstein’s promoted tyft/tyxt format [21] which
aims at proving congruence of strong bisimilarity for higher order processes. We
lay the foundations for an SOS framework for higher order languages and extend
Bernstein’s promoted tyft/tyxt, making it both easier to use and strictly more
expressive.

For processes with a higher-order behavior, strong bisimilarity might be too re-
strictive since it requires the emitted or received processes (shown as labels) to be
syntactically the same. In practice, however, processes are considered important
up to their behavior and hence they should be related using a behavioral (and not
syntactic) notion of equality. This leads to a higher order notion of bisimilarity
[6, 30, 119]. In this chapter, we also present a novel format that is shown to induce
congruence for higher order bisimilarity.

This chapter is organized as follows: In the next section, we give more details of
our contribution in the context of the literature. Section 9.3 fixes the definitions
to be used in this chapter. Based on these concepts, our promoted PANTH format
is presented in Section 9.4. Section 9.5 studies a higher order notion of bisimilarity
and proposes higher order PANTH which induces congruence for this notion. We
conclude the chapter and comment on future work in Section 9.6. The SOS frame-
work used in this chapter is a single-sorted TSS with terms as labels as specified
in Definition 2.3.

9.2 Related Work

Promoted Tyft/tyxt. Bernstein in [21] proposes the promoted tyft/tyxt format
which extends the tyft/tyxt format by allowing for the use of terms as labels. Rules
in this format have the following form:

{ti
t′i→ yi | i ∈ I}

f(−→x ar(f)−1)
g(−→z ar(g)−1)→ t

{ti
t′i→ yi | i ∈ I}

f(−→x ar(f)−1)
z→ t

{ti
t′i→ yi | i ∈ I}

x
g(−→z ar(g)−1)→ t

{ti
t′i→ yi | i ∈ I}
x

z→ t

The intuition behind the symbols in common with the tyft/tyxt format (Definition
3.6) remains unchanged. For the rest, g is a function symbol, zk’s and z are
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variables, variables in the source and label of the conclusion and targets of the
premises are all distinct and furthermore, all labels of premises are assumed to
contain at least one function symbol, i.e., they are not variables. Bernstein proves
congruence of strong bisimilarity for TSS’s conforming to the promoted tyft/tyxt
format.

Promoted PANTH. In this chapter, we show that most of the restrictions on
labels imposed above are not necessary in general and propose a more general
and relaxed format based on the promoted tyft/tyxt format of [21]. We call our
new format for strong bisimilarity promoted PANTH. Furthermore, the promoted
PANTH format extends syntactic capabilities of the promoted tyft/tyxt format by
allowing for predicates, negative premises and lists of terms as labels. We show that
the promoted PANTH format is strictly more expressive than promoted tyft/tyxt
and point out some usual patterns of SOS rules that the promoted tyft/tyxt format
cannot deal with and the promoted PANTH can.

Proof Methods for Evaluation Systems. The proof method of Howe [70]
and related methods such as those proposed in [113] have been used for proving
congruence of applicative bisimulation for functional languages. Sangiorgi also
proposes a similar framework in [114] for concurrent extensions of lambda-calculi.
Although some of the standard concepts of Howe’s method, such as abstraction
and evaluation structures, are not explicitly present in our framework, as shown
by [21], we can still model the systems studied by [70, 113, 114] and obtain similar
results using our formats.

Higher Order Bisimulation and higher order PANTH. It was first noted in
[6, 30] that there is a need for a notion of behavioral equivalence that relates the
behavior of labels instead of their syntax. This notion was also used in [118, 119]
for the Calculus of Higher Order Communicating Systems (CHOCS).

In this chapter, we give a general framework for defining the semantics of such
systems and proving congruence for the higher order notion of bisimilarity. We also
specify CHOCS [119] in our framework, show that the higher order bisimilarity of
[119] trivially coincides with ours and conclude that bisimilarity in this framework
is indeed a congruence. This way, one can save pages of proof (such as those given
explicitly in [119]) for proving congruence.

In [115], it is argued that the higher order notion of bisimilarity may be still
too strong for systems with static restriction while it works fine with dynamic
restriction of names. It goes beyond the scope of this chapter to discuss this issue
but the techniques developed here can be useful in formulating congruence meta-
theorems for other notions of bisimilarity for higher order processes (e.g., normal
and context bisimilarities of [115]).
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It is worth mentioning that in [21], promoted tyft/tyxt is used to prove that higher
order bisimilarity is a congruence for CHOCS. But to do so, the semantics of
CHOCS is translated into a new semantics and, with a rather lengthy proof, it
is shown that higher order bisimilarity in CHOCS coincides with strong bisim-
ilarity in the new semantics. Using our approach, one can save these laborious
intermediate steps and arrive at the desired result directly.

Other SOS Frameworks. Our SOS framework is closest to that of [48] (sim-
plified by omitting the binding signatures) for which no known congruence format
exists. The generalized PANTH format [84] includes variable binding operators
(which are not addressed in this chapter), but does not allow for terms as labels
and hence cannot deal with higher order process algebras such as CHOCS directly.
Galpin in [52] defines a multi-sorted SOS framework with terms as labels. How-
ever, there the sort of labels is necessarily different from the sort of processes.
Thus, higher-order behavior and higher-order bisimilarity do not have a natural
presentation in the extended TSS format of [52].

9.3 Preliminaries

We use the TSS framework of Definition 2.3 with single-sorted signatures through-
out this chapter. To give an idea of the kind of systems that we are aiming at, we
give the TSS of a higher order process algebra called CHOCS [119] which serves
as a running example throughout the rest of the chapter.

Example 9.1 (Calculus of Higher Order Communicating Systems (CHOCS))
The signature of CHOCS consists of the following operators: 0, a, τ. , c! . , c?a. ,
|| , + , \ c and [S] where c is taken from the set C of channel names, a

from the set A of atoms and S : C → C is a function on channel names. (In [119],
atoms are called process variables. To avoid confusion with variables in our SOS
setting, we use the term atom instead.)

Process 0 is a deadlocking process. An atom a is supposed to represent a “hole” in
the process description which can be substituted by another process term. Other
than being substituted by a term, an atom does not have any other observable
behavior. Internal action prefixing τ.p first performs a τ -step and then behaves as
p. A send prefixed process c!p.p′ sends process p along the channel c and becomes
p′ afterwards. A receive prefixed process c?a.p, receives a process along c and
substitutes it for atom a in p. Choice is denoted by + and parallel composition
by ||. To make a channel name c internal to process p the restriction expression
p \ c is used. Finally, the renaming expression p[S] renames all channel names of
p as specified by the renaming function S.

The transition relations for this formalism are classes of unary substitution
t→/a ,
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a
z→/a z b

z→/a b
a 6= b

x0
z→/a y0 x1

z→/a y1

c!x0.x1
z→/a c!y0.y1

x
z→/b y

c?a.x
z→/b c?a.y

a 6= b

x0
z→/a y0 x1

z→/a y1

x0 + x1
z→/a y0 + y1

x0
z→/a y0 x1

z→/a y1

x0 || x1
z→/a y0 || y1

x0
z→/a y0

x0 \ c z→/a y0 \ c
x0

z→/a y0

x0[S]
z→/a y0[S]

τ.x→τ x c!x0.x1
x0→c! x1

x1
z→/a y1

c?a.x1
z→c? y1

x0 →τ y0

x0 + x1 →τ y0

x0
z→c! y0

x0 + x1
z→c! y0

x0
z→c? y0

x0 + x1
z→c? y0

x0 →τ y0

x0 || x1 →τ y0 || x1

x0
z→c? y0 x1

z→c! y1

x0 || x1 →τ y0 || y1
x0

z→c! y0

x0 || x1
z→c! y0 || x1

x0
z→c? y0

x0 || x1
z→c? y0 || x1

x0 →τ y0

x0 \ c→τ y0 \ c
x0

z→c′! y0

x0 \ c z→c′! y0 \ c
c 6= c′

x0
z→c′? y0

x0 \ c z→c′? y0 \ c
c 6= c′

x0 →τ y0

x0[S]→τ y0[S]

x0
z→c! y0

x0[S]
z→S(c)! y0[S]

x0
z→c? y0

x0[S]
z→S(c)? y0[S]

Figure 9.1 Deduction Rules for CHOCS

send
t→c! and receive

t→c? transitions and a nullary internal action →τ transition.

Substitution transition p
p′

→/a p
′′ stands for “substituting a with p′ in p results in

p′′”. Send transition p
p′

→c! p
′′ means that process p emits process p′ along channel

c and arrives in p′′, similarly p
p′

→c? p
′′ means that p receives p′ along channel c and

becomes p′′. No predicates are used in the TSS of CHOCS.

Deduction rules of the CHOCS semantics are given in Figure 9.1. For brevity,
we have omitted the rules dedicated to commutativity of choice and parallel com-
position. Also, we assume that processes are written in such a way that the
substitution happening in the receive rule avoids capture of bound atoms. This
can be dealt with explicitly in our SOS framework (cf. [21]) but it will only clutter
our presentation and hence we dispense with it.

We also recall stratification from Definition 3.9. We assume all TSS’s under study
are stratified and consequently, induce a unique stable model.
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9.3.1 Bisimilarity

Due to the slight change in the notation we use in this chapter (by the introduction
of terms as labels), we re-visit the notion of strong bisimilarity. In the following
definitions, we write L for the set of finite lists of terms.

Definition 9.2 (Strong Bisimilarity [102]) Given a TSS (Σ, V, Rel , Pr , D)
which induces a unique set of transition relations and predicates, a relation R ⊆
C × C is a strong simulation relation if and only if ∀p,q∈C pRq ⇒

1. ∀r∈Rel,L∈L,p′∈C p
L→r p

′ ⇒ ∃q′∈C q
L→r q

′ ∧ p′Rq′;

2. ∀P∈Pr ,L∈L P (L)p ⇒ P (L)q.

A strong bisimulation relation is a symmetric strong simulation relation. Closed
terms p and q are strongly bisimilar, denoted by p ↔s q, if and only if there exists
a strong bisimulation relation R such that pRq.

We treat this notion in Section 9.4 and there, we formulate a congruence meta-
theorem for it in Theorem 9.12.

On one hand, our SOS framework allows for processes as labels. On the other
hand processes are usually considered important up to their behavior (and not
up to their syntax). Hence, it seems more natural to use a different notion of
bisimilarity, rather than the strong one, which not only relates the behavior of
source and target processes but also the behavior of label processes. This way, we
come to the notion of higher order bisimilarity defined below.

Definition 9.3 (Higher Order Bisimilarity) Given a TSS (Σ, V,Rel , Pr , D)
which induces a unique set of transition relations and predicates, a relation R ⊆
C × C is a higher order simulation relation if and only if ∀p,q∈C pRq ⇒

1. ∀r∈Rel,L∈L,p′∈C p
L→r p

′ ⇒ ∃L′∈L,q′∈C q
L′

→r q
′ ∧ LRL′ ∧ p′Rq′;

2. ∀P∈Pr ,L∈L P (L)p ⇒ ∃L′∈L P (L′)q ∧ LRL′.

A higher order bisimulation relation is a symmetric higher order simulation rela-
tion. Closed terms p and q are higher order bisimilar, denoted by p ↔h q, if and
only if there exists a higher order bisimulation relation R such that pRq.

We treat this notion in Section 9.5 and the corresponding congruence results are
given in Theorem 9.20.

Note that higher order bisimilarity is usually required to be closed under substi-
tution of atoms. Here, we do not add this requirement for the sake of generality
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but in the coming examples, we show that this additional constraint can easily be
coded in the semantic model.

It is also worth noting that higher order bisimilarity, though more natural in our
setting, does not make strong bisimilarity obsolete. In some cases, the labels
have a syntactic structure and use terms from the language but do not show any
behavior, or alternatively, scrutinizing their behavior is a very complex task. In
other words, not always terms on the labels are processes or treated as such. In
cases, where labels are indeed terms but do not show any observable behavior, all
labels are considered equal from a bisimilarity viewpoint and hence higher order
bisimilarity renders very weak and impractical. Thus, presenting a meta-theorem
for congruence of bisimilarity is interesting even in the presence of terms as labels.

As one might expect, higher order bisimilarity is strictly coarser than strong bisim-
ilarity, i.e., it identifies more processes and examples of this are shown in the re-
mainder. In Section 9.5, we also give some sufficient criteria for the two notions
to coincide.

9.3.2 Congruence for Bisimilarity

None of the above mentioned notions of bisimilarity are necessarily a congruence.
In the rest of this chapter, we endeavor to find sufficient conditions that guarantee
them to be a congruence. After all, it turns out that the sufficient conditions for the
two notions are somewhat different. A natural question is whether this difference
is genuine or not. In the following two examples we show that the notions of
congruence for these two equivalences are indeed unrelated, i.e., for neither of the
two equivalences, congruence for one implies congruence for the other.

Example 9.4
f(a)

a→r a a
a→r a b

b→r b

Consider the above set of deduction rules defined on the signature a, b and f( ).
In the above TSS, it holds that a ↔h b but not f(a) ↔h f(b) since f(a) can make
an r-transition with label a but f(b) cannot make any transition. Higher order
bisimilarity is not a congruence for the above TSS. As for strong bisimilarity,
it does not hold that a ↔s b in the first place and hence, strong bisimilarity is
trivially a congruence.

Example 9.5
f(a)

a→r a f(b)
b→r a a

a→r a b
a→r b

Consider the above set of deduction rules defined on the same signature as of
Example 9.4. This time, higher order bisimilarity is a congruence since a ↔h b
and f(a) ↔h f(b). However, strong bisimilarity is not a congruence since a ↔s b
but not f(a) ↔s f(b).
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9.4 Congruence for Strong Bisimilarity

In this section, we propose a syntactic restriction on TSSs, in the form of a format,
that guarantees strong bisimilarity is a congruence. To begin with, we define the
auxiliary notion of volatile operators.

9.4.1 Volatile Operators

Due to the possible interaction between terms and labels, for some operators, it is
essential to make sure that transitions with these operators (as labels) are always
possible under the change of their arguments by bisimilar ones. First, we give a
simple example motivating this concept and then we present the formal definition.

Example 9.6
a

g(x)→r y

f(x)
a→r′ y a

g(a)→r a b
g(a)→r a

Consider the above TSS with a and b as constants and f and g as unary function
symbols. It holds that a ↔s b but it does not hold that f(a) ↔s f(b) and hence
strong bisimilarity is not a congruence.

In this case, we call g volatile for r transitions because in the premise of the left-
most rule, g appears as a label with an argument that comes from the source of
the conclusion of this rule and as such can be replaced by different terms. In order
for strong bisimilarity to be a congruence, we require that r-transitions with g
in the label should be indifferent to replacing arguments of g by bisimilar ones.
However, this is clearly not the case for the middle and rightmost rules since for
both an r transition with g(a) is allowed while the same transitions with g(b) are
prohibited, thus causing the anomaly.

Definition 9.7 (Volatile Operators) Given a TSS (Σ, V,Rel ,Pr , D) an opera-
tor f ∈ Σ is called volatile for r ∈ Rel (similarly for P ∈ Pr) when there exists a
rule d ∈ D of the following form:

{Pi(Li)ti or ti
Li→ri

t′i | i ∈ I} {¬Pj(Lj)tj or tj
Lj

9rj
| j ∈ J}

P ′(L)t or t
L→r′ t′

and f(
−→
t ar(f)−1) is a subterm of a component of Lm for some m ∈ I ∪ J such

that r = rm (P = Pm) and vars(
−→
t ar(f)−1) ∩ vars(t) 6= ∅ or ∃i∈Ivars(

−→
t ar(f)−1) ∩

vars(t′i) 6= ∅.

Informally speaking, in the above definition, we call operator f volatile if in some
deduction rule it appears in the label of a premise in such a way that it has a
parameter from the source of the conclusion or from a target of a premise. It
follows trivially from the above definition that no constant is volatile.
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9.4.2 The Promoted PANTH Format

Next, we formulate our congruence format for strong bisimilarity.

Definition 9.8 (The Promoted PANTH Format) A deduction rule is in the pro-
moted PANTH format when it is of the following form

{Pi(Li)ti or ti
Li→ri

yi | i ∈ I} {¬Pj(Lj)tj or tj
Lj

9rj
| j ∈ J}

P (L)f(−→x ar(f)−1) or f(−→x ar(f)−1)
L→r t

′

and all the variables xi and yj (0 ≤ i < ar(f) and j ∈ I) and the variables in L are
pairwise distinct, if a component of Lk (k ∈ I ∪J) is a variable (i.e., does not have
any function symbol) then it is not among xi’s and yj ’s and for all components t′′

of L

1. if t′′ contains a volatile g ∈ Σ for r (for P ) then t′′ is of the form g(−→z ar(g)−1)
where all zi’s are distinct variables and for all k ∈ I ∪ J ,

2. if there is a volatile operator for r (for P ) in the signature and if t′′ is a
variable z then all components of Lk containing z are either z itself or are
of the form g′(

−→
t ar(g′)−1) where g′ is volatile for rk (for Pk),

3. if there is a volatile operator for r (for P ) in the signature, for all i ∈ I ∪ J ,
if a component of Li contains a variable among xi’s, yj ’s or the variables of
L, then ti contains at least one function symbol (i.e., ti is not a variable).

A TSS is in the promoted PANTH format when all its deduction rules are.

Observe that if there is no volatile operator in the signature then none of the
two checks on the labels are needed. Volatile operators are very rare in process-
algebraic formalisms as it can be observed in the coming examples. Hence, most
of the times, the above format can be simplified and checks on the labels can be
saved. Surprisingly, the promoted tyft/tyxt format is formulated in such a way that
all operators can be considered volatile and thus, it turns out to be more restrictive
and less expressive than ours. Examples of these phenomena are pointed out next.

Example 9.9 (Congruence of Strong Bisimilarity for CHOCS) Consider the TSS
of CHOCS given in Example 9.1. No operator in this language is volatile. All
the deduction rules of this TSS are in the promoted PANTH format but the one
concerning the send operator c! . . This rule violates the format by exploiting
variable x0 in both the source and the label of the conclusion. All the other
rules, having a premise are not in the promoted tyft/tyxt format, however, since
they have variables as labels of premises. Note that this restriction of promoted
tyft/tyxt can be seen as a disadvantage since using this format, one cannot deal
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with ordinary process algebraic operators (e.g., choice and parallel composition)
by replacing variables for constant labels. This restriction is not present in the
promoted PANTH format.

Hitherto, one can imagine two scenarios. Either our format is too weak to capture
the congruence of strong bisimilarity for CHOCS (since syntactic formats only give
sufficient and not necessary conditions) or strong bisimilarity for CHOCS is not a
congruence in the first place. Fortunately, the latter is the case and this can be
shown by a very simple example.

Consider two processes 0 and 0 + 0. It clearly holds that 0 ↔s 0 + 0 and 0 ↔s 0
but it does not hold that c!0.0 is bisimilar to c!(0 + 0).0 as the former can only

perform a
0→c! transition but the latter can only make a

0+0→c! a transition and 0
and 0 + 0 are not (syntactically) the same terms.

However, one can change the language a bit so that strong bisimilarity becomes a
congruence. One such approach is presented in [21] and with a proof of more than
a page, it is shown that strong bisimilarity in the new language coincides with a
notion of higher order bisimilarity [119] in the original semantics and hence, it is
concluded that this notion of higher order bisimilarity for the original language
is a congruence. In Section 9.5, we propose a congruence format for higher order
bisimilarity and using that we give a direct proof for congruence of higher order
bisimilarity. So, we do not take the approach of [21] in this section.

Alternatively, in order to make the strong bisimilarity a congruence, we propose to
change the send operator as follows. First, we change the syntax of a send operator
to be a class of unary send operators c!p. for p ∈ P where P is a fixed set of closed
terms. Then, we change the semantics of the send operator and replace it with
this rule:

c!p.x0
p→c! x0

.

Note that in the above rule the p in the source of the conclusion is part of the
function symbol while the p in the label is a term. To check that this rule fits
in the promoted PANTH format one has to check the following two conditions:
first, the set of variables appearing in p and c!p.x0 should be disjoint which holds
trivially since the former p is a closed term and second, either p contains no volatile
operator or it is of the form g(−→x ar(g)−1) for a volatile g. Since the language
contains no volatile operator the second obligation is also discharged and hence,
we can conclude that strong bisimilarity is a congruence for this slightly modified
language. Note that one cannot get a similar result by using the promoted tyft/tyxt
format for it only allows for labels of the form x or g(−→x ar(g)−1) in the conclusion.

Next, by a simple and abstract example, we show that our format is strictly more
expressive than the promoted tyft/tyxt format of [21].

Example 9.10
x

z→r y

f(x)
z→r y a

f(a)→r b b
f(a)→r b
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Consider a TSS defined by signature {a, b, f( )}, a transition relation →r , no
predicate and the deduction rules given above. None of the three deduction rules
are in the promoted tyft/tyxt format while they are all in the promoted PANTH
format and one can check that strong bisimilarity is indeed a congruence. Our
claim is that there exists no TSS in the promoted tyft/tyxt format that induces the
same transition relation as the one induced by the above TSS.

The proof of our claim is quite simple and follows from the proof of Theorem 3 in
[21]. There, it is shown that, for a TSS in the promoted tyft/tyxt format, for all

terms f(−→p ar(f)−1) and g(−→q ar(g)−1) if there exists p′ ∈ C and
−→
p′ ar(f)−1,

−→
q′ ar(g)−1 ∈

L such that f(−→p ar(f)−1)
g(−→q ar(g)−1)→r p′, −→p ar(f)−1 ↔s

−→
p′ ar(f)−1 and −→q ar(g)−1 ↔s

−→
q′ ar(g)−1 then there exists a p′′ ∈ C such that f(

−→
p′ ar(f)−1)

g(
−→
q′

ar(g)−1)→r p′′. Getting
back to our example, suppose that there exists a TSS in the promoted tyft/tyxt
format that induces the same transition relation as the one induced by the above

TSS. Then, since a ↔s b and f(a)
f(a)→r b, it should hold that f(b)

f(b)→r p
′′ for some

p′′ ∈ C such that b ↔s p
′′. But note that in the transition relation induced by the

above TSS, no transition with label f(b) is provable.

9.4.3 Characteristic Theorem

Common to [21], we impose an extra constraint on the promoted PANTH format
to prove congruence, namely the well-foundedness of the TSS under consideration.

Definition 9.11 (P-Well-Foundedness) For a deduction rule, the p-variable
ordering ≤p is an ordering among variables from the deduction rule. We write
x ≤p y, for two variable x and y, when x appears in the source or the label of
a premise of the deduction rule and y in the target of the same premise. A TSS
is called p-well-founded when for all deduction rules in TSS, there is no infinite
backward chain of variables with respect to ≤p.

Note that in [46] it has been shown by that the well-foundedness assumption,
although being very convenient for our congruence proofs, is not essential for the
PANTH format. Indeed, for each non-well-founded TSS in the PANTH format, one
can construct a well-founded one in a subset of this format (called NTree rules
format) that induces the same transition relations and predicates. We leave it
open whether the result of [46] carries over to our settings or not.

Theorem 9.12 (Congruence for Promoted PANTH) For a p-well-founded TSS in
the promoted PANTH format, strong bisimilarity is a congruence.

Proof.
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Proof Outline. The proof is inspired by the proof of the similar theorem (The-
orem 3) in [21]. We take the bisimilarity induced by a TSS in promoted PANTH
format and show that its closure under congruence is still a bisimulation relation.
From that we conclude that bisimilarity, being the greatest bisimulation relation,
is a congruence.

Next, we present the proof outlined above in full detail. Henceforth, without
making it explicit, we neglect the presence of predicates. They cause no technical
complication in our proofs but the presentation will be uncluttered by neglecting
them.

In this chapter, we assumed that all TSS’s are stratified and hence uniquely define
a set of transition relations and predicates. In [27], it is shown that defining
a unique stable model is not sufficient for a TSS in the ntyft/ntyxt format and
stratification is an essential condition by itself. We expect the same result to hold
for our case and our proofs essentially depend on the concept of stratification.
Hence, we formally define it at this point.

Definition 9.13 (Stratification) A stratification of a transition system specifi-
cation tss is a function S from closed positive formulae to an ordinal such that for
all deduction rules of tss of the following form:

(d)
{ti Li→ri

t′i | i ∈ I} {tj
L′

j
9rj

| j ∈ J}

t
L→r t

′

and for all closed substitutions σ, ∀i∈IS(σ(ti
Li→ri

t′i)) ≤ S(σ(t
L→r t

′)) and ∀j∈J,t′j∈T

S(σ(tj
Lj→rj

t′j)) < S(σ(t
L→r t

′)). A transition system specification is called strati-
fied if and only if there exists a stratification function for it.

It has been shown in [61] that if a TSS is stratified then it has a target-independent
stratification, i.e., a stratification that yields the same ordinal for all possible tar-
gets. Henceforth, for the TSS’s under consideration, we assume and use strati-
fication functions S(p, r, L) that only take a source (closed term) p, a transition
relation r and a label (list of closed terms) L as arguments.

Suppose that tss = (Σ, V,Rel ,Pr , D) in the promoted PANTH format is stratified
and thus has a unique stable model. Also, let ↔s indicate the strong bisimilarity
relation induced by tss and R̃ be the smallest relation satisfying the following
constraints:

1. ↔s ⊆ R̃;

2. ∀f∈Σ∀−→p ar(f)−1,−→q ar(f)−1∈C
−→p ar(f)−1 R̃

−→q ar(f)−1

⇒ f(−→p ar(f)−1) R̃ f(−→q ar(f)−1).
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It is easy to check that R̃ is reflexive and commutative (since ↔s is).

If we prove that R̃ is a bisimulation relation then we can conclude that ↔s is a
congruence since ↔s ⊆ R̃ and ↔s is the greatest bisimulation relation (thus,
R̃ ⊆ ↔s ) and hence, ↔s = R̃.

Instead of proving that R̃ is a strong bisimulation relation, we prove the following
stronger claim.

Claim. For arbitrary f ∈ Σ, p, q, −→p ar(f)−1,
−→q ar(f)−1 ∈ C,

1. If pR̃q, ∀
p′′∈C,r∈Rel,

−→
p′

n∈L
, such that r is of some arity n, p

−→
p′

n→r p
′′ ⇒ ∃q′′∈C

q
−→
p′

n→r q
′′ ∧p′′R̃q′′;

2. and furthermore, if p = f(−→p ar(f)−1) and q = f(−→q ar(f)−1) for an arbitrary

function symbol f and −→p −→
f −1

R̃−→q −→
f −1

, ∀
p′∈C,r∈Rel,

−→
p′

n∈L
, such that r is of

some arity n, p
−→
p′

n→r p
′′ ⇒ ∀−→

q′
n∈C

such that for each component q′i of
−→
q′ n,

either p′i = q′i or p′i = g(
−→
p′′ar(g)−1), q′i = g(

−→
q′′ar(g)−1), g is a volatile operator

for r and
−→
p′′ar(g)−1R̃

−→
q′′ar(g)−1, it holds that ∃q′′∈C q

−→
q′

n→r q
′′ and p′′R̃q′′.

and two other symmetric conditions for the transition of q, the proof of which we
omit due to the symmetric structure of R̃.

Note that if we prove the above claim then the transfer conditions for strong
bisimilarity follow vacuously from the first item (and its symmetric counterpart).

We prove the claim (both of the above items in parallel) by a transfinite induction

on the measure S(p, q, r,
−→
p′ n,

−→
q′ n) = S(p, r,

−→
p′ n) + S(q, r,

−→
q′ n), i.e., we assume

that for all instances transfer conditions for p and q having a measure less than
β the claim holds, we take a condition with measure β and prove that it indeed
holds.

Without loss of generality, we assume that
−→
l n and

−→
l′ n have only one component

(i.e., n = 1; the case for nullary relations is simpler while the case for n-ary
relations is equally difficult but requires a more complicated presentation). Hence,

we assume that transitions of p and q are of the form p
p′′

→r p
′ and q

q′′

→r q
′.

Inside the transfinite induction we use an induction on the depth of the proof
for the transition of p. (The base cases of this induction is a special case of the
induction step and hence, we dispense with re-stating it).

We proceed with a case distinction based on the structure of R̃.
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• If pR̃q is due to p ↔s q then we only concentrate on the first item of the
claim and the second item will be covered by the proof in the following case.
But the proof of the first item is obvious since it follows immediately from

p ↔s q (Definition 9.2) that q
p′′

→r q
′ for some q′ such that p′ ↔s q

′ and thus
p′R̃q′.

• If p = f(−→p ar(f)−1) and q = f(−→q ar(f)−1) and −→p ar(f)−1R̃
−→q ar(f)−1, then we

focus on the proof of the second item which covers the first item if the labels
are taken to be equal.

The last deduction rule applied in the proof tree is due to a closed substi-
tution σ and an f -defining rule (i.e., with f in the source of the conclusion)
(d) of the following form (N.B. If the rule has a variable as the source of
the conclusion, a simpler line of reasoning leads to the same conclusions and
hence we dispense with repeating the arguments):

(d)
{ti

t′i→ri
yi | i ∈ I} {tj

t′j
9rj

| j ∈ J}

t
t′′→r t

′

where t is of the form f(−→x ar(f)−1) and σ(−→x ar(f)−1) = −→p ar(f)−1, σ(t′′) = p′′

and σ(t′) = p′. We aim at defining a closed substitution σ′ such that σ and
σ′ respect R̃, so that we can prove the desired transition for q. To start with
we define σ′

0 as the basis for σ′, and for that we distinguish the following
three cases:

1. If p′′ = g(
−→
p′′ar(g)−1) for some non-volatile operator g , then define:

σ′
0(x) =

{
qi x = xi

σ(x) x /∈ {xi, yj |0 ≤ i < ar(f), j ∈ I}

2. If p′′ = g(
−→
p′′ar(g)−1) for some volatile operator g and t′′ is a variable

z, then we have to prove the transition of q for an arbitrary q′′ =

g(
−→
q′ ′ar(g)−1) such that

−→
p′′ar(g)−1R̃

−→
q′′ar(g)−1, then take:

σ′
0(x) =






qi x = xi

q′′ x = z
σ(x) x /∈ {xi, z, yj |0 ≤ i < ar(f), j ∈ I}

3. If p′′ = g(
−→
p′′ar(g)−1) for some volatile operator g and t′′ is a term

g(−→z ar(g)−1), then we have to prove the transition of q for an arbitrary

q′′ = g(
−→
q′′ar(g)−1) such that

−→
p′′ar(g)−1R̃

−→
q′′ar(g)−1, then take:

σ′
0(x) =






qi x = xi

q′′i x = zi

σ(x) x /∈ {xi, zj , yk|0 ≤ i < ar(f), 0 ≤ j < ar(g), k ∈ I}
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Note that in all of the above cases σ and σ′
0 respect R̃ on their common

domain. Now, we aim at completing the definition of σ′ by defining it on
the set Y

.
= {yi | i ∈ I} in such a way that σ(y)R̃σ′(y) for all y ∈ Y . We

do so in a step by step fashion, resulting in a new σ′
i at each step, while

preserving the aforementioned constraint. To do this, we take a premise

tj
t′j→rj

yj of which the variables in the source and label are all defined in σi.
Note that such a premise should exist initially and at each step due to the
p-well-foundedness assumption. We give the following general construction
for arriving at a σ′

i+1.

We distinguish two cases: either t′j does not contain a variable among xi’s,
yj ’s and variables of t′′ (for some i ∈ I and k ∈ J) or it does.

If t′j does not contain a variable among xi’s, yj ’s and variables of t′′, then it

holds that σ(tj)R̃σ′
i(tj) and σ(t′j) = σ′

i(t
′
j) and from the induction hypothesis

on the depth of the proof (the first item of the claim), it follows that there

exists a q′j such that σ′
i(tj)

σ′
i(t

′
j)→rj
q′j and σ(yj)R̃q′j . We define σ′

i+1 = σ′
i[yj 7→

q′j ] and σ and σ′
i+1 respect R̃ on their common domain.

If it does, then it follows from item 3 in Definition 9.8, tj is contains a
function symbol k and is of the form k(−→s ar(k)−1). Also, it follows from item
2 of the same definition that either t′j = t′′ = z or t′j = g(−→z (ar(g) − 1) for
some volatile operator g. In both cases, it follows from the construction of
σ′

i that σ(−→s ar(k)−1 R̃ σ′
i(
−→s ar(k)−1 and σ(−→z ar(g)−1) R̃ σ′

i(
−→z ar(g)−1). Since

σ(tj)
σ(t′j)→rj

σ(yj) has a proof of depth n − 1 and the sum of stratification
measures does not increase from the conclusion to the two premises, the
hypothesis of the induction on the proof depth (the second item of the claim)

applies and it follows that σ′
i(tj)

σ′
i(t

′
j)→rj
q′j for some q′j ∈ C and σ(yj)R̃q′j . In

this case, we define σ′
i+1 = σ′

i[yj 7→ q′j ] and σ and σ′
i+1 respect R̃ on their

common domain.

Substitution σ′ is defined as the union of all σ′
i’s. Since the procedure is

monotonic on the domain of σ′
i’s w.r.t. the set inclusion ordering, it follows

from Tarski’s fixpoint theorem that such a σ′ indeed exists.

Using σ′, we have a proof for all positive premises of (d). Also, negative
premises are satisfied by the stable model of tss, since otherwise, there

would be a transition σ′(t′j)
σ′(t′j)→rj

q′j provable for some q′j . On one hand,
if t′j contains a variable from xi’s, yi’s or variables of t′′, then σ′(t′j) should

be of the form gj(
−→
p′′ar(gj)−1) for a volatile operator gj for rj (and tj con-

tains a function symbol) and otherwise σ(t′′j ) = σ′(t′′j ). On the other hand,
S(σ′(t′j), rj , σ

′(t′′j )) < S(σ′(t), r, σ′(t′′)), S(σ(t′j), rj , σ(t′′j )) < S(σ(t), r, σ(t′′))
and hence S(σ(t′j), rj , σ(t′′j ))+S(σ′(t′j), rj , σ

′(t′′j )) < β. Hence, the induction
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hypothesis applies and there should be a transition σ(tj)
σ(t′′j )
→r p′j provable

for some p′j contradicting the provability of the transition for p.

In conclusion, using σ′ and deduction rule (d), we can derive a transition

σ′(f(−→x ar(f)−1)
t′′→r t

′) or f(
−→
q′ ar(f)−1)

σ′(t′′)→r σ′(t′) where σ′(t′′) is either p′′ or

g(
−→
q′′ar(f)−1) depending on the structure of p′′ and since σ′ respects R̃ by

construction, it holds that σ(t′′)R̃σ′(t′′) or p′R̃σ′(t′′).

⊠

In order to generalize the result of [21] in the setting without negative premises
(and with all operators considered volatile), we need to get rid of item 3 in Def-
inition 9.8 (of the promoted PANTH format). The following theorem realizes this
goal.

Theorem 9.14 If a positive and p-well-founded TSS satisfies all the constraints
of Definition 9.8 but item 3, then bisimilarity is a congruence.

Proof.

Proof Outline. The proof goes along the same line as the proof of Theorem
9.12 with two main differences. First, the induction is only on the proof depth of
each of the transitions instead of the sum of stratification measures and second,
the congruence closure R̃ now contains a phrase which resembles the transitivity
property. The detail of the proof is given below.

Let ↔s indicate the strong bisimilarity relation induced by the TSS under con-
sideration and R̃ be the smallest relation satisfying the following constraints:

1. ↔s ⊆ R̃;

2. ∀p,p1,q∈C pR̃p1 ∧ p1 ↔s q ⇒ pR̃q;

3. ∀f∈Σ∀−→p ar(f)−1,−→q ar(f)−1∈C
−→p ar(f)−1 R̃

−→q ar(f)−1 ⇒
f(−→p ar(f)−1) R̃ f(−→q ar(f)−1).

It is easy to check that R̃ is reflexive (since ↔s is).

We prove the following claim for R̃.

Claim. For arbitrary f ∈ Σ, p, q, −→p ar(f)−1,
−→q ar(f)−1 ∈ C, if pR̃q,
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1. ∀
p′′∈C,r∈Rel,

−→
p′

n∈L
, such that r is of some arity n, p

−→
p′

n→r p
′′ ⇒ ∀−→

q′
n∈L

such

that for each component q′i of
−→
q′ n, either p′i = q′i or p′i = g(

−→
p′′ar(g)−1),

q′i = g(
−→
q′′ar(g)−1), g is a volatile operator for r and

−→
p′′ar(g)−1R̃

−→
q′′ar(g)−1, it

holds that ∃q′′∈C q
−→
q′

n→r q
′′ ∧p′′R̃q′′;

2. ∀
q′′∈C,r∈Rel,

−→
q′

n∈L
, such that r is of some arity n, q

−→
q′

n→r q
′′ ⇒ ∀−→

p′
n∈L

such

that for each component p′i of
−→
p′ n, either q′i = p′i or q′i = g(

−→
q′′ar(g)−1),

p′i = g(
−→
p′′ar(g)−1), g is a volatile operator for r and

−→
q′′ar(g)−1R̃

−→
p′′ar(g)−1, it

holds that ∃q′′∈C q
−→
q′

n→r q
′′ ∧q′′R̃p′′;

If we prove the above claim, it follows that the symmetric closure of R̃, denoted by
R∗ also satisfies both of the above items and hence, R∗ is a bisimulation relation
containing ↔s and thus R∗ and ↔s coincide, hence ↔s is a congruence.

For the sake of brevity, we only prove the first item of the above claim and the
proof of the second item follows the same structure. Also, we confine ourselves to
the setting were the labels contain only a single term. Transitions of p are thus of

the form p
p′′

→r p
′.

We start with an induction on the depth of the proof for the transition of p and
proceed with another induction on the structure of R̃.

1. If pR̃q is due to p ↔s q then depending on the outermost symbol in p′′ the
following two cases can be distinguished:

(a) Either p′′ = g(
−→
p′′ar(g)−1) for some non-volatile operator g for r then it

follows immediately from p ↔s q (Definition 9.2) that q
p′′

→r q
′ for some

q′ such that p′ ↔s q
′ and thus p′R̃q′;

(b) Or, p′′ = g(
−→
p′′ar(g)−1) for some volatile operator g for r. This transition

of p should be due to a deduction rule (d) in the promoted PANTH
format of the following form

(d)
{ti

t′i→ri
yi | i ∈ I} {tj

t′j
9rj

| j ∈ J}

f(−→x ar(f)−1)
t′′→r t

′

and a substitution σ such that q = σ(f(−→x ar(f)−1)), p′ = σ(t′) and

g(
−→
p′′ar(g)−1) = σ(t′′). Since g is a volatile operator for r, it follows

from the constraints of the promoted PANTH format that either t′′ is
a variable z or it is of the form g(−→z ar(g)−1). To prove the claim, i.e.,
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q
q′′

→r q
′ for q′′ = g(

−→
q′′ar(g)−1) and p′R̃q′, we first prove p

q′′

→r p
′
1 for some

p′0 such that p′R̃p′1 and then using the definition of strong bisimilarity,

from p ↔s q, it follows that q
q′′

→r q
′ for some q′ such that p′1 ↔s q

′ and
by the construction of R̃, we deduce that p′R̃q′.

So, it only remains to prove that p
q′′

→r p
′
1 for some p′1 such that pR̃p′1. To

this end, we use deduction rule (d) and construct a new σ′ which w.r.t.
σ respects R̃ and furthermore satisfies σ′(f(−→x ar(f)−1)) = p, σ′(t′′) =

q′′ = g(
−→
q′′ar(g)−1) and σ′(t′) = p′ for some p′1 such that p′R̃p′1 and all

premises with σ′ applied to them are provable.

If t′′ is a variable z, then we define

σ′
0(x) =

{
g(
−→
q′′ar(g) − 1) x = z

σ(x) x /∈ {z, yi|i ∈ I}

and otherwise, if it is of the form g(−→z ar(f)−1) then,

σ′
0(x) =

{
q′′i x = zi, 0 ≤ i < ar(g)
σ(x) x /∈ vars(t′′) ∪ {yi|i ∈ I}

We aim at adding variables from {yi | i ∈ I} to the domain of σ′
0 in

a step by step fashion, resulting in a new σ′
i at each step, while pre-

serving the constraint ∀x∈dom(σi)σ(x)R̃σ′
i(x). (N.B. hitherto, it holds

that ∀x∈dom(σ0) σ(x) R̃ σ′
0(x)) To do this, we take a premise tj

t′j→rj
yj

of which the variables in the source and label are all defined in σi.
Note that such a premise should exist initially and at each step due
to the p-well-foundedness assumption. We give the following general
construction for arriving at a σ′

i+1.

Hence, it follows from the structure if σ′
i that σ(tj)R̃σ′

i(tj) and σ(t′j)R̃σ′
i(t

′
j).

Furthermore, if σ(t′j) 6= σ′
i(t

′
j), then it contains a variable amon zi’s or

yi’s and hence, it is of the form g(
−→
t′ ar(g)−1) for a volatile operator g.

Since transition σ(tj)
σ(t′j)→rj

σ(yj) has a proof of depth n− 1, the induc-

tion hypothesis on the depth of the proof applies and thus, σ′
i(tj)

σ′
i(t

′
j)→rj
p′′j

for some p′′j such that σ(yj)R̃p′′j . Take σ′
i+1 = σ′

i[yj 7→ p′′j ] and σ and

σ′
i+1 respect R̃ on their common domain.

Substitution σ′ is defined as the union of all σ′
i’s. Since the procedure

is monotonic on the domain of σ′
i’s w.r.t. the set inclusion ordering, it

follows from Tarski’s fixpoint theorem that such a σ′ indeed exists.

Using σ′, we have a proof for all positive premises of (d) and hence,
using σ′ and deduction rule (d), we are able to prove the transition
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σ′(f(−→x ar(f)−1)
t′′→r t′), or p

g(
−→
q′

ar(g)−1)→r σ′(t′) and by the construction

of σ′, it holds that p′R̃σ′(t′). As stated before, it follows from the defi-

nition of strong bisimilarity and the construction of R̃ that q
g(

−→
q′

ar(g)−1)→r

q′′ for some q′′ such that p′′R̃q′′.

2. If p = f(−→p ar(f)−1) and q = f(−→q ar(f)−1) and −→p ar(f)−1R̃
−→q ar(f)−1, then the

remainder of the proof is similar to the second case in the first item (p ↔s q)
apart from the first step in defining σ0. Next, we give the details of this proof.

The last deduction rule applied in the proof tree is due to a closed substi-
tution σ and an f -defining rule (i.e., with f in the source of the conclusion)
(d) of the following form (N.B. If the rule has a variable as the source of
the conclusion, a simpler line of reasoning leads to the same conclusions and
hence we dispense with repeating the arguments):

(d)
{ti

t′i→ri
yi | i ∈ I} {tj

t′j
9rj

| j ∈ J}

t
t′′→r t

′

where t is of the form f(−→x ar(f)−1) and σ(−→x ar(f)−1) = −→p ar(f)−1, σ(t′′) = p′′

and σ(t′) = p′. We aim at defining a closed substitution σ′ such that σ and
σ′ respect R̃, so that we can prove the desired transition for q. To start with
we define σ′

0 as the basis for σ′, and for that we distinguish the following
three cases:

(a) If p′′ = g(
−→
p′′ar(g)−1) for some non-volatile operator g , then define:

σ′
0(x) =

{
qi x = xi

σ(x) x /∈ {xi, yj |0 ≤ i < ar(f), j ∈ I}

(b) If pR̃q is due to the fact that there is a term p1 ∈ C such that pR̃p1

and s ↔s q and p
p′′

→r p
′, we distinguish the following two cases based

on the the form of p′′.

i. If p′′ = g(
−→
p′′ar(g)−1) for some non-volatile operator g for r then

the hypothesis of the innermost induction (on the structure of R̃)

applies and p1
p′′

→r p
′
1 for some p′1 such that p′R̃p′1. Since p1 ↔s q,

there exists a q′ such that q
p′′

→r q
′ and p′1 ↔s q

′. It follows from the
construction of R̃ that p′R̃q′ and hence, the claim.

ii. Similarly, if p′′ = g(
−→
p′′ar(g)−1) for some volatile operator g for

r. Take an arbitrary
−→
q′′ar(g)−1 such that

−→
p′′ar(g)−1R̃

−→
q′′ar(g)−1. It

again follows from the hypothesis of the innermost induction (on
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the structure of R̃) that p1

g(
−→
q′′

ar(g)−1)→r p′1 for some p′1 such that

p′R̃p′1. Since s ↔s q, there exists a q′ such that q
g(

−→
q′′

ar(g)−1)→r q′

and p′1 ↔s q
′ and by the construction of R̃, p′R̃q′.

(c) If p′′ = g(
−→
p′′ar(g)−1) for some volatile operator g and t′′ is a variable

z, then we have to prove the transition of q for an arbitrary q′′ =

g(
−→
q′ ′ar(g)−1) such that

−→
p′′ar(g)−1R̃

−→
q′′ar(g)−1, then take:

σ′
0(x) =






qi x = xi

q′′ x = z
σ(x) x /∈ {xi, z, yj |0 ≤ i < ar(f), j ∈ I}

(d) If p′′ = g(
−→
p′′ar(g)−1) for some volatile operator g and t′′ is a term

g(−→z ar(g)−1), then we have to prove the transition of q for an arbitrary

q′′ = g(
−→
q′′ar(g)−1) such that

−→
p′′ar(g)−1R̃

−→
q′′ar(g)−1, then take:

σ′
0(x) =






qi x = xi

q′′i x = zi

σ(x) x /∈ {xi, zj , yk|0 ≤ i < ar(f), 0 ≤ j < ar(g), k ∈ I}

Note that in all of the above cases σ and σ′
0 respect R̃ on their com-

mon domain. The construction of σ′ = ∪σ′
i remains the same as in the

first item and hence, we can derive a transition σ′(f(−→x ar(f)−1)
t′′→r t

′) or

f(
−→
q′ ar(f)−1)

σ′(t′′)→r σ′(t′) where σ′(t′′) is either p′′ or g(
−→
q′′ar(f)−1) depending

on the structure of p′′ and since σ′ respects R̃ by construction, it holds that
σ(t′′)R̃σ′(t′′) or p′R̃σ′(t′′).

⊠

9.5 Congruence for Higher Order Bisimilarity

9.5.1 Persistency

In this section, we seek sufficient syntactic criteria for the higher order bisimilarity
induced by a TSS to be a congruence. We begin with an auxiliary definition that
has the same spirit as that for volatile operators. It is supposed to capture that
the labels of a transition can be replaced by bisimilar ones.
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Definition 9.15 (Persistent Transitions) Consider a TSS (Σ, V,Rel , Pr , D)
and a set Ps of tuples (U,L) where U ∈ Rel ∪ Pr and L ∈ L. We call Ps a
persistent set when for all (U,L) ∈ Ps and all deduction rules d ∈ D if (d) has U
in its conclusion then it is of the following form:

(d)
{P (Li)ti or ti

Li→ri
yi | i ∈ I} {¬P (Lj)tj or tj

Lj
9rj

| j ∈ J}

U(L′)f(−→x ar(f)−1) or f(−→x ar(f)−1)
L′

→U t
′

where L = σ(L′) for some substitution σ and

1. all xi’s, yj ’s (0 ≤ i < ar(f) and j ∈ I) and variables appearing in L′ are
pairwise distinct;

2. for all k ∈ I ∪ J , (rk, σ(Lk)) ∈ Ps (or (Pk, σ(Lk)) ∈ Ps).

If a set Ps is persistent and (U,L) ∈ Ps then we say that U -transitions (predicates)
are persistent for L labels. A transition relation (predicate) is persistent if it is
persistent for a label of the form −→z n where zi’s are distinct variables.

The following theorem gives an idea about the intuition behind persistency.

Theorem 9.16 If for a TSS all its transition relations and predicates are persis-
tent then:

1. higher order bisimilarity is a congruence;

2. higher order and strong bisimilarity coincide.

We defer the proof of this theorem to the next subsection where we give a proof
of congruence for our general rule format. Of course, we do not use this theorem
in the proofs of the rule format.

Example 9.17 (Persistency for CHOCS) Substitution, receive and τ -transitions
are all persistent in CHOCS, i.e., substitution and receive are persistent for a
variable.

9.5.2 Higher Order PANTH Format

Our criteria are formulated as a syntactic format which we call higher order PANTH.

Definition 9.18 (Higher Order PANTH Format) A deduction rule is in the higher
order PANTH when it is of the following form

{P (Li)ti or ti
Li→ri

yi | i ∈ I} {¬P (Lj)tj or tj
Lj

9rj
| j ∈ J}

P (L)f(−→x ar(f)−1) or f(−→x ar(f)−1)
L→r t

′
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where variables xi’s and yj ’s (0 ≤ i < ar(f) and j ∈ I) are all pairwise distinct
and for all k ∈ I ∪ J

1. either rk-transitions (predicates) are persistent for Lk labels (Definition 9.15);

2. or otherwise, k ∈ I, Lk is a list of variables −→z m which are all distinct among
themselves, different from variables in the labels of other non-persistent tran-
sitions and predicates and different from xi’s and yj ’s.

A TSS is in the higher order PANTH format when all its rules are.

Next, we define the notion of well-foundedness for TSS’s in the higher order PANTH
format.

Definition 9.19 (H-Well-Foundedness) An h-variable ordering ≤h with re-
spect to a deduction rule is an ordering on variables in the deduction rule. For two
variables x and y, x ≤h y if x appears in the source of a premise of the rule and
y appears in its label or target. A TSS is h-well-founded when for all deduction
rules in TSS, there is no infinite backward chain of variables with respect to ≤h.

We think that well-foundedness for this format, like for PANTH format, is a con-
venience for our proofs and is not a necessary ingredient for congruence.

Theorem 9.20 (Congruence for higher order PANTH) For an h-well-founded TSS
in the higher order PANTH format, higher order bisimilarity is a congruence.

Proof.

Proof Outline. The proof goes along the same lines as the proof of Theorem
9.12. In the proof of theorem 9.12, we tried to build a proof for transitions of terms
related by R̃ using the same deduction rule and a newly defined substitution. Here,
we follow the same idea, however, the main difference lies in the construction of
the substitution. There, the basic substitution evaluated everything but targets
of the premises and a procedure was given to make it complete by chasing the
chain of premises with respect to the variable ordering. Here, in addition to the
targets of all premises, we initially do not evaluate labels of freely-labelled premises.
These labels are also to be evaluated while traversing the chain of premises. This
difference arises from the fact that in higher order bisimulation, we cannot assume
that bisimilar terms make the same transitions with literally the same labels. Thus,
here, labels are to be chosen at will by the term making the transition.

A detailed account of the proof is given next.
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Definition 9.21 (Freely Labelled Premises) For a deduction rule in the higher
order PANTH format, positive premises that make use of the second condition of
Definition 9.18 are called freely-labelled premises. If a positive premise satisfies
both of the conditions, it does not matter whether it is considered freely-labelled
or not.

Suppose that tss = (Σ, V,Rel ,Pr , D) is in the higher order PANTH format and
is stratified. Hence, it has a unique stable model. Also, let ↔h indicate the
higher order bisimilarity relation induced by tss and R̃ be the smallest congruence
relation containing ↔h . If we prove that R̃ is a bisimulation relation then we
can conclude that ↔h is a congruence since ↔h ⊆ R̃ and ↔h is the greatest
higher order bisimulation relation (thus, R̃ ⊆ ↔h ) and hence, ↔h = R̃.

To prove that R̃ is a higher order bisimulation relation, we take arbitrary terms
p, q ∈ C such that pR̃q and show the following statements ∀r∈Rel,L∈L

1. ∀p′∈C , if p
L→r p

′ ⇒ ∃L′∈L,q′∈C q
L′

→r q
′, LR̃L′ ∧ p′Rq′;

2. if r is persistent for L′′, L = σ(L′′), p
L→r p

′ and σ and σ′ respect R̃ then

∃p′′∈C q
σ′(L′′)→r p′′, ∧ p′Rp′′;

Note that the last statement is in addition to the transfer conditions for proving
bisimilarity but is required for our proof.

We prove the above statements by a transfinite induction on S(p, r, L). We assume
that for all transitions of p with label L such that the above measure is less than
some ordinal β the above statements hold. Now we take a transitions of p for
which the above measure is β and prove the transfer conditions.

To simplify matters, we assume that the labels consist of a single term. Hence the

transitions of p are of the form p
p′′

→r p
′.

We proceed with an induction on the depth of the transition of p. We dispense
with the induction basis as it is a special case of the induction step in which the
last deduction rule in the proof tree has no premises.

To prove item 1, we distinguish the following two cases based on the structure of
R̃.

If pR̃q is due to p ↔h q then the theorem follows trivially from the definition of
higher order bisimilarity, i.e., Definition 9.3.

If pR̃q is due to the congruence closure of ↔h then p = f(−→p ar(f)−1) and q =
f(−→q ar(f)−1) and the transition of p should be due to a rule (d) in the higher order
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PANTH format which has the following form:

{ti Li→ri
yi | i ∈ I} {tj

Lj
9rj

| j ∈ J}

f(−→x ar(f)−1)
L→r t

′

Let X denote the set of variables in the source of the conclusion, Y the set of
variables in the target of the premises and Z the set of variables in the labels of
freely-labelled premises. Then, we aim at defining a new substitution σ′ which
respects R̃ w.r.t. σ and gives us a proof for the transition of q. To start with we
define σ′

0 as follows.

σ′
0(x) =

{
qi x ∈ X
σ(x) x /∈ X ∪ Y ∪ Z

Two substitutions σ and σ′
0 respect R̃. It remains to complete the definition of σ′

by defining it one the variables from Y ∪ Z.

We continue with a procedure to complete the definition of σ′
0. The procedure

is given in such a way that σ and σ′
i always respect R̃ on their common domain.

Take any σ′
i and a premise tj

t′j→rj
yj of which all the variable in the source are

valuated by σ′
i and the variable in the target remains to valuated. Either this

premise is freely labelled, then t′j = zj and it is not valuated by σ′
i (due to the

acyclicity constraint). Or, rj is persistent for t′j-labels. In the former case since

σ(tj)R̃σ′
i(tj), it follows from the natural induction hypothesis that there exists

p′j and p′′j such that σ(yj)R̃p′j and σ(zj)R̃p′′j and σ′
i(tj)

p′′
j→rj
p′j , then let σ′

i+1 be

σ′
i[zj 7→ p′′j ][yj 7→ y′′j ] and σ and σ′

i+1 respect R̃ on their common domain.

We can now verify whether negative premises do hold with respect to the in-

duced stable model or not. Consider a negative premise tj
t′j

9rj
. Suppose that

σ′
0(tj)

σ′
0(t

′
j)

9rj
does not hold and there exists a q′j such that σ′

0(tj)
σ′
0(t

′
j)→rj
q′j since

rj transitions are persistent for t′j-labels, it also holds that σ′
0(tj)

σ(t′j)→rj
q′j . Since

min(S(σ(tj), rj , σ(t′j)),S(σ′
0(tj), rj , σ(t′j))) ≤ S(σ(tj), rj , σ(t′j)) < S(p, r, p′′), the

induction hypothesis applies and hence there should exist a provable transition

σ(tj)
σ(tj)→rj

p′j , which is in contradiction with the provability of the transition for p.

Take σ′ as the union of all σ′
i and using σ′ we arrive in a proof for σ′(f(−→x ar(f)−1))

σ′(t′′)→r σ′(t′) or q
σ′(t′′)→r σ′(t′) and by construction of σ′, p′′R̃σ′(t′′) and p′R̃σ′(t′).

This concludes the proof item 1.

For the proof of item 3, consider a transition p
p′′

→r p
′ such that r is persistent for

some t′′ labels and t = σ(t′′). We show that for an arbitrary σ′ such that σ and σ′

respect R̃, it holds that p
σ′(t′′)→r p′′ and p′R̃p′′. Suppose that the statement holds
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for transitions with a proof of depth less than n and consider a transition with a
proof depth n.

Following Definition 9.15, the transition has to be due to a deduction rule of the
following form:

{ti
t′i→ri

yi | i ∈ I} {tj
t′j

9rj
| j ∈ J}

f(−→x ar(f)−1)
s→r t

′

and there should exist a substitution σ′′ such that p = σ′′(f(−→x ar(f)−1), p′′ =
σ(t′′) = σ(σ′′(t′′)) and p′ = σ(t′). As before, we aim at defining a new substitution
α. Take α0 to be defined as follows:

α0(x) =

{
σ′(σ′′(x)) x ∈ vars(t′′)
σ(x) x /∈ vars(t′′) ∪ {xi, yj | 0 ≤ i < ar(f) ∧ j ∈ I}

We complete the definition of α by adding the valuation of yi variables to α0 by
exploiting the induction step and the persistency of transitions in the premises.
Note that since σ and σ′ respect R̃ and R̃ is a congruence then σ ◦ σ′′ and σ′ ◦ σ′′

respect R̃, as well. Hence, σ and α0 respect R̃ on their common domain. Using a
similar procedure as before, we aim at completing the definition of α0 by following
the chain of premises with respect to variable ordering ≤h.

Take a premise of which all the variables of the source and labels are valuated by
αi. Such a premise should exist due to acyclicity of variable dependency graph.
Since σ(tj)R̃αi(tj) and σ(t′j)R̃αi(t

′
j), the induction hypothesis applies and there

exists a p′j such that αi(tj)
αi(t

′
j)→rj
p′j . Then let σi+1 be defined as σi[yj 7→ p′j ].

Take α to be the union of all αi. It only remains to show that the negative
premises of (d) hold when instantiated with α. Suppose that there exists a

premise tj
t′j→rj

such that for some p′j , it holds α(tj)
α(t′j)→rj

p′j . It also holds that
max(S(σ(tj), rj , σ(t′j)), S(α(tj), rj , α(t′j))) ≤ S(σ(tj), rj , σ(t′j)))< S(σ(f(−→x ar(f)−1)),

rj , σ(t′′))). Hence, the induction hypothesis applies and σ(tj)
σ(t′j)→rj

p′′j for some p′′j ,
contradicting the provability of the transition of p.

In conclusion, using α and deduction rule (d), we get a proof for α(t)
αt′′→r α(t′) and

by construction of α it holds that σ(t′)R̃α(t′). ⊠

Now, we are in the position, to give a shorter proof for Theorem 9.16.

Proof. Rules defined by the hypotheses of Theorem 9.16 are in the higher order
PANTH format and higher order bisimilarity is a congruence.

Next, we have to prove that ↔h = ↔s . It trivially holds that ↔s ⊆ ↔h , so,
it remains to show that ↔h ⊆ ↔s . We prove that ↔h is a strong bisimulation
relation by means of the following statement.
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For all p, q ∈ C such that p ↔h q and for all r ∈ Rel and L ∈ L:

1. ∀p′∈C p
L→r p

′ ⇒ ∃q′∈C q
L→r q

′ ∧ p′ ↔h q
′;

2. ∀q′∈C q
L→r q

′ ⇒ ∃p′∈C p
L→r p

′ ∧ p′ ↔h q
′.

As before, it suffices to prove the transition condition for p due to symmetry.

Since p ↔h q, it follows from p
L→r p

′ that ∃L′∈L q
L′

→r q
′ for some q′ such that

p′ ↔h q
′.

Since L ↔h L
′ then for a list −→z n of variables (of the same size as L and L′), there

exists two substitutions σ and σ′ such that L = σ(−→z n) and L′ = σ′(−→z n) and σ

and σ′ respect ↔h . Thus, it follows from the proof of Theorem 9.20 that q
L→r q

′′

for some q′′ such that q′ ↔h q
′′ (item 3 in the transfer conditions of the proof). It

follows, then, by transitivity of the higher order bisimilarity that p′ ↔h q
′′. ⊠

Example 9.22 (Congruence of Higher Order Bisimilarity for CHOCS) The se-
mantics of CHOCS as given in Example 9.1 conforms to our format. To verify this
claim we have to check that in the conclusion of all deduction rules mentions only
one function symbol at a time, the target of premises mention distinct variables
and the label of premises either mention distinct variables or are persistent. The
first two checks are straightforward. For the third, the only problem arises from
the rules having two premises mentioning the same label z. Three of such rules
appear in the definition of substitution transitions which is shown to be persistent,
so they conform to our format. The only other rule having the same condition is
the one defining communication for parallel composition. But in that rule, the re-
ceive transition is persistent and hence, the only non-persistent premise (the send
transition) trivially satisfies the second criterion of Definition 9.18. Note that the
notion of higher order bisimilarity in [119] also requires that bisimilarity should be
closed under substitution of atoms. Our notion does not require this in general,
but in the case of CHOCS semantics, the addition of substitution, makes sure that
bisimilar terms always have the same “substitution behavior”. Hence, the two
notions trivially coincide.

9.6 Conclusion

In this chapter, we presented two syntactic formats that guarantee congruence for
two notions of strong and higher order bisimilarity. We applied these formats to
the CHOCS process algebra [119].
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Due to the abundant presence of notions of names and binders in the formalisms
with higher-order behavior, the addition of these notions to our formats is a very
natural and useful extension. We are currently considering this extension and we
try to exploit the Gabbay-Pitts nominal techniques of [50, 104] for this purpose.

Acknowledgment Comments of the reviewers of the CONCUR conference are
gratefully acknowledged. Alan Jeffrey, Soren Lassen and Paul Levy provided useful
comments on this chapter leading to correction of Theorem 9.12.
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Chapter 10

Conclusions

“Now, Earthlings ...” whirred the Vogan [...]
“I present you with a simple choice!
Either die in the vacuum of space, or ...”
He paused for a melodramatic effect.
“Tell me how good you thought my poem was! ”

[“The Hitchhiker’s Guide to the Galaxy”, Douglas Adams]

“An expert is a person who has made all the mistakes, which can be
made, in a very narrow field.”

[Niels Bohr]

“One never notices what has been done; one can only see what remains
to be done.”

[Maria Sk lodowska-Curie]
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In this thesis, we presented an overview of Structural Operational Semantics (SOS)
and its formal frameworks in terms of a Transition System Specifications (TSS’s).
We also reviewed existing meta-results about TSS’s. Subsequently, we made the
following contributions to these frameworks and meta-results.

1. A commutativity meta-theorem was presented which guarantees that some
function symbols in the signature are commutative with respect to strong
bisimilarity.

2. The operational semantic specification was extended with a set of equational
specifications (called structural congruences) and meta-theorems concerning
congruence of bisimilarity and well-definedness of the semantics were re-
formulated in the extended setting.

3. Novel and more liberal notions for operational and equational conservativity
were introduced and some meta-results around them were presented.

4. A prototype version of an SOS toolset was implemented and reported. This
prototype allows for checking simple instances of congruence and conserva-
tivity meta-theorems and provides the possibility of animating SOS specifi-
cations.

5. Existing SOS frameworks were extended to the setting with an explicit data
part. Notions of bisimilarity with data were studied and congruence formats
for them were proposed.

6. A TSS framework for higher order processes was presented and congruence
meta-theorems for strong and higher-order bisimilarities were presented.

A lot remains to be done in this area. At the end of each chapter, we listed a
number of possible extensions to the contributions of the chapter. Among those,
the following items are our first priorities.

1. Studying the notions of names and binders. We see the nominal techniques
of Gabbay and Pitts [50, 104] as a very convenient departure point. Most of
the meta-results presented in this thesis can be extended with these concepts.
As a distinguished example, there is no congruence meta-theorem for strong
bisimilarity for TSS’s with binders and terms as labels. If we succeed in our
study, this framework will be the top element in the lattice of frameworks
presented in Chapter 3;

2. Studying the notions of congruence for bisimulation with data and higher-
order bisimulation in the bi-algebraic framework of Turi and Plotkin [123];

3. Turning our prototype into a full-fledged toolset for assisting language de-
signers.
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formática, Pontif́ıcia Universidade Católica de Rio de Janeiro, Brasil, 2001.
http://www.ic.uff.br/∼cbraga.

[32] Christiano de O. Braga, Edward Hermann Haeusler, José Meseguer, and
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In Ernst-Rüdiger Olderog, editor, Proceedings of third IFIP Working Con-
ference on Programming Concepts, Methods and Calculi (PROCOMET’94),
volume A-56 of IFIP Transactions, pages 274–302. Elsevier Science Publish-
ers, 1994.

[135] Chris Verhoef. A congruence theorem for structured operational seman-
tics with predicates and negative premises. Nordic Journal of Computing,
2(2):274–302, 1995.

[136] Yingzhou Zhang and Baowen Xu. A survey of semantic description frame-
works for programming languages. SIGPLAN Notices, 39(3):14–30, 2004.



212 References



Summary

Defining a formal (i.e., mathematical) semantics for computer languages is the
first step towards developing rigorous techniques for reasoning about computer
programs and specifications in such a language. Structural Operational Semantics
(SOS), introduced by Plotkin in 1981, has become a popular technique for defining
formal semantics. In this thesis, we first review the basic concepts of SOS and the
existing meta-results. Subsequently, we enhance the state of the art in this field
by offering the following contributions:

• developing a syntactic format guaranteeing a language construct to be com-
mutative;

• extending the existing congruence and well-definedness meta-results to the
setting with equational specifications;

• defining a more liberal notion of operational conservativity, called orthogo-
nality, and formulating meta-theorems for it;

• prototyping a framework for checking the premises of congruence and con-
servativity meta-theorems and animating programs according to their SOS
specification;

• defining notions of bisimulation with data and formulating syntactic rule
formats guaranteeing congruence for these notions;

• proposing syntactic rule formats for guaranteeing congruence of strong bisim-
ilarity and higher-order bisimilarity in the setting of higher order processes.
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Samenvatting

De beschrijving van een formele (i.e., wiskundige) semantiek voor een computer-
gerelateerde taal is de eerste stap naar ontwikkeling van nieuwe technieken voor
het redeneren over computerprogramma’s en specificaties in zo’n taal. Structurele
Operationele Semantiek (SOS), gëıntroduceerd door Plotkin in 1981, is een pop-
ulaire methode voor het beschrijven van formele semantiek. In dit proefschrift
bestuderen we eerst de fundamentele concepten van SOS en de huidige resultaten
daarover. Vervolgens verbeteren we de stand van zaken door middel van de on-
derstaande bijdragen tot dit gebied:

• ontwikkeling van een syntactisch formaat dat garandeert dat een taalcon-
structie commutatief is;

• uitbreiding van de huidige congruentie en wel-gedefinieerdheid meta-stellingen
met equationele beschrijvingen;

• definiëren van een liberale notie van conservatieve uitbreiding, genaamd or-
thogonaliteit, en het formuleren van meta-stellingen;

• het prototyperen van een raamwerk ter verificatie van de voorwaarden van
congruentie en conservativiteits meta-stellingen en het animeren van pro-
gramma’s volgens hun SOS beschrijvingen;

• definiëren van noties van bisimulatie met data en het formuleren van for-
maten voor congruentie;

• voorstellen van syntactische formaten voor congruentie van sterke en hogere
order bisimulatie voor hogere order processen.
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