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Although variability and structure are often considered as antonyms in many 
everyday settings, a mathematically disciplined view contradicts this 
opposition. To initiate fifth- (10 years old) and sixth-grade (11 years old) 
students in this disciplinary view, we engaged students in practices of 
modeling data. These practices included inventing and revising data displays, 
inventing and revising measures of centre and variability, and inventing and 
revising models of chance to account for variability. Here we focus on 
prospective correspondences between students’ invented measures (statistics) 
of variability and those favoured by the discipline. We suggest that inventing 
measures positions students to transform their vision of variability from mere 
difference to more structured forms, some of which coordinate centre and 
spread. By tracing interactions among an inventor, her classmates, and the 
teacher, we trace how structuring variability and constituting its measure co-
originated during the course of negotiations about the meaning of the measure. 
Consideration of the coherency, transparency and generalisability of a statistic, 
all of which are valued by the discipline of statistics, emerged during the course 
of invention.  

Variability is foundational to statistics. G. W. Cobb and Moore (1997) 
suggest that the very need for the discipline of statistics arises from the 
omnipresence of variability, and Wild and Pfannkuch (1999, p. 226) suggest 
“noticing and acknowledging variation” as a critical initial step for initiating 
statistical reasoning. Yet in everyday discourse, variability is often 
associated with a lack of structure or pattern, as mere difference among data. 
The disciplined view is very different: Variability is structured as 
distribution, and the nature of the distribution reflects the operation of a 
repeated random process (deGroot, 1975; Thompson, Liu, & Saldanha, 2007). 
Random is not a synonym for haphazard, but is instead a description of 
phenomena having uncertain individual outcomes and a predictable 
pattern, given sufficient repetition (Moore, 1990).  

Moore (1990) suggests that recognition and coordination of uncertainty 
and pattern is foundational for reasoning statistically about variability, but 
many studies suggest that integrating chance with variability is often 
challenging. For example, Metz (1998a, 1998b) investigated children’s and 
adults’ conceptions of the operation of three random devices (a marble tilt 
box, spinners, and urns). Although there was an increasing tendency with 
age to conceive of the operation of these devices as involving chance, 
university students often could not reconcile uncertain individual outcomes 
with predictable aggregate structure.  

Konold (1989) found that for many phenomena, there is a pronounced 
tendency to treat a single outcome or event (e.g., rain tomorrow) as isolated 
and not as participating in a long-term process involving similar conditions 
(i.e., other occasions when the atmospheric conditions were similar). An 
implication of the outcome view is that coming to see phenomena as part of 
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a stochastic process is often challenging. Even when the repetition of a 
repeated random process is made explicit, and the sample space is relatively 
simple, students at all ages do not readily perceive relations between the 
mathematical structure of the random process and the distribution of 
variability that results from this repeated process (Shaughnessy, Canada, & 
Ciancetta, 2003; Shaughnessy, Watson, Moritz, & Reading, 1999; Torok & 
Watson, 2000; Watson, 2006).  

The challenges to reasoning statistically about variability are evidently 
formidable, suggesting the need for the design of learning environments 
that support the growth and development of this specialised form of 
reasoning. The central challenge for instructional design is to generate 
prospective pathways that potentially help students transform initial 
understandings of variability as unstructured, and chance as haphazard (or 
even as personally controlled), to forms of reasoning that coordinate chance 
with variability. To support development of this form of reasoning, we 
engage students in an approach that we term data modeling (Lehrer & 
Romberg, 1996; Horvath & Lehrer, 1998). As the name suggests, data 
modeling positions students to invent and revise models of chance as 
accounts of observed variability. As we describe more completely in the next 
section, data modeling is grounded in related forms of activity that include 
decisions about which aspects of the world are relevant to a particular 
question, how best to measure them, and how to structure and represent the 
resulting measures so that pattern (reproduceable features) in variability can 
be manifested. Without structuring variability as pattern, modeling 
founders, because model fit is determined by approximating the structure of 
what one is attempting to model.  

In this paper, we focus on the role of inventing measures of variability 
as a means for structuring variability. Inventing measures (statistics) of 
variability affords opportunities for coming to see differences among cases 
in new ways. As in the discipline of statistics (e.g., Hall, Wright & Wieckert, 
2007), inventing statistics is not a solitary act: The meaning of a statistic is 
negotiated in a classroom community. In the next section, we situate the role 
of inventing statistics within the larger framework of an instructional design 
intended to leverage historic relations between repeated measure and 
statistical reasoning.  

Designing Instruction to Link Variability and Chance 
We approach the problem of coordinating variability and chance by 
engaging students in a series of design challenges, each of which is intended 
to promote conceptual change through an interaction of tasks (e.g., the 
explicit problem posed), material means (e.g., paper-and-pencil, computer 
tools), modes and means of argument (e.g., justifying a particular design 
solution by appealing to its generality), classroom norms (e.g., student 
justifications need to be rendered in ways that are sensible for classmates), 
and activity structures (e.g., producing displays, methods, critiquing 
displays, methods). The design challenges are aimed at students in the late 
elementary and early middle school years (Grades 5 to 7 in the USA). Our 
focus on design challenges reflects an explicit commitment to student 
authoring (invention), because we intend to support an epistemology of 
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mathematics as a productive and generative enterprise (Boaler, 2002; Greeno 
& MMAP, 1998). Invention positions students as authors and provides a 
pathway for understanding conventions that are used in the discipline. After 
invention, students have a clearer idea about the problems that conventions 
solve. However, careful pedagogical design is needed to create 
opportunities for students to consider multiple aspects of a problem and to 
consider particular solutions as representing trade-offs. The context of these 
design challenges is one of repeated measure: See Konold & Lehrer (2008) 
for a discussion of the pedagogical affordances and constraints of different 
contexts for the study of variability. 

Repeated Measurement 
To begin, all students measure the same attribute, typically a length such as 
the circumference of a person’s head or the distance of their outstretched 
arms, fingertip to fingertip. We ensure that students have had opportunities 
to explore qualities of spatial measure as a preamble, because we wish to 
draw upon measurement as a resource for learning (Lehrer, 2003). While 
measuring, students directly experience processes involved in generating a 
measure, such as the repeated iteration of a ruler, which we later draw upon 
to make sense of the resulting collection of measurements; and because they 
are measure-agents, students are in a position to think simultaneously about 
individual (i.e., a particular value) and collective levels (i.e., the batch of 
measurements). Moreover, students measure with different tools, a change 
in process that affects the variability of the resulting collection. The repeated 
measurement context affords ready interpretation of statistics as reflecting 
signal and error (Konold & Pollatsek, 2002; Petrosino, Lehrer, & Schauble, 
2003). 

Designing and Comparing Displays 
Individual measurements are recorded in some fashion and often 

literally stuck on a whiteboard or other surface. Students work in small 
group to design paper-and-pencil displays that present some “pattern” or 
“trend” that they notice, although occasionally students will insist that the 
values are only different and are without any structure “unless someone is 
imagining things,” as one sixth-grade team acerbically suggested. Students 
produce a variety of displays, and we use this variety to highlight issues of 
structure, such as order, count, and interval. These collectively contribute to 
the shape of the data. Computer tools typically construct intervals for 
students. Because we wish to problematise interval, we have students use 
paper-and-pencil, so that the choice of whether to construct or even consider 
intervals is left to them.  

By comparing displays, suggesting what they show and hide about the 
measurements, students consider how the choices of designers affect the 
resulting shape of the data. For example, some students order data, resulting 
most often in lists, while others create intervals and counts. As students 
account for how attention (or lack thereof) to order, interval, and count give 
rise to a particular representational form, they are also developing meta-
representational competence (diSessa, 2004). We select a representation 
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based on frequency (typically invented by students, albeit not always in a 
conventional form), and students consider how the processes of 
measurement could account for the shape of the data. Why, for example, is 
the data clumped in the middle? Our intention is to link process and a now 
more structured variability—one where there are regions of values and not 
mere differences. 

Inventing Measures of Distribution 
The second design challenge posed to students invites closer inspection of 
the qualities of the aggregate now literally visible in displays. Students 
invent measures of the “best guess of the real measurement”, and they 
invent measures of “precision.” The former effort capitalises on the signal 
interpretation of the data: Children do not believe that the actual length of 
the object has changed, but they are confronted with the problem that the 
true score does not announce itself and hence must be estimated (Lehrer & 
Schauble, 2002).  Measuring precision entails further challenge: What might 
precision mean? How might a measure be designed to support the intended 
meaning? We suggest precision rather than spread, because “spread” often 
signals range and thus disrupts tendencies to scrutinize variability in 
relation to centre (delMas & Liu, 2007; Garfield, delMas & Chance, 2007; 
Petrosino et al., 2003). We also introduce students to the Tinkerplots 
software at this junction, because this tool affords a variety of means for 
partitioning and organizing data (Konold, 2007). 

As children invent measures, they propose their inventions to their 
classmates in whole-group settings. The variety of invented statistics sparks 
classroom conversation about which aspects of the collection of values are 
attended to by particular methods and engages students in productive 
comparison among these invented statistics. Students realise that multiple 
solutions to the problem are possible and perhaps even desirable. During 
classroom conversations, we focus especially on those invented statistics that 
coordinate conceptions of centre and spread. As we will elaborate later, it is 
during whole-class conversation that the meaning of a measure is 
negotiated. It is rare that an invented measure goes unscathed: Students 
typically do not uncritically accept initial proposals. The variety of invented 
statistics provides a secure foundation for better understanding of practices 
within the discipline of statistics, where multiple measures of centre and 
variability are used. At this point in children’s development, we are content 
with securing this starting point, although one criterion for choosing among 
measures that we support explicitly is that of generalisation. To encourage 
this disciplinary practice, after children invent measures (statistics) with the 
sample generated with one measurement tool (e.g., a 15 cm. ruler), they 
explore the utility of their measures (statistics) with a second sample 
generated with the tool that allows more precise measurement (e.g., a metre 
stick). Children justify whether or not their measures generate values that 
make sense in light of the change in distribution. For example, the centres of 
the two distributions are usually similar but their variability is distinct. Do 
the measures adequately reflect these properties? 
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Modeling Chance 
We next support coordination between variability and chance by 

challenging students to invent models of the measurement process that take 
into account the tendency toward true score as well as the variability 
attributable to “mistakes.” This is a challenging step, because it involves the 
supposition that the syntax of a chance process is akin to the process 
employed by the agent-measures. As in most situations, the role of 
uncertainty is not apparent in the representation of the data. We approach 
this difficult threshold by engaging students in the analysis of error: 
Students make decisions about likely sources of error. After enumerating 
various sources of mis-measurement, they design a chance device for each 
source of error in which they specify magnitudes of error (e.g., + or – 2 cm.) 
and likelihood of error (e.g., a probability of ½). Models of the measurement 
process are represented as a combination of these chance devices and a 
constant that designates the true score (Lehrer, Kim & Schauble, 2007). In 
measurement theory, this is the familiar additive model of true score and 
error (Lord & Novick, 1968). 

Design Studies 
This prospective pathway for learning encompasses resources for reasoning 
and explicit attention to the conditions under which learning can best be 
supported. Thus, investigation takes the general form of a design study 
(Brown, 1992; Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). One 
understands learning by designing the elements of a learning system and 
then studying the functions of these inter-related elements as the design is 
put into play. The purpose is to contribute to greater understanding of 
domain-specific processes of learning, not to evaluate one design against 
another. Instead, the intent is to construct and revise what diSessa (Cobb et 
al., 2003) calls a “humble theory,” that is, an account of knowledge 
development tightly tied to the particulars, even if the particular topic in 
question is as omnipresent and important as variation. Design studies 
typically entail multiple iterations of refinement and ours is no exception: 
We have conducted four iterations of this prospective pathway for learning.  

Exploring Measurement of Variability 
Having situated student invention of measures (statistics) of actual 

value and variability within the framework of the trajectory of learning 
envisioned by the design, we turn now to focus on the role that inventing 
measures of variability plays in students’ efforts to structure variability. Our 
focus on measure follows from its ubiquitous properties: Developing 
measures of a phenomenon typically involves analysis of qualities and 
transformation of these qualities into a metric. In some views, the progress 
of science is attributed to efforts to quantify natural systems —to develop 
measures and establish relations among these measures for phenomena 
ranging from falling objects to magnetic fields (Crosby, 1997). The historic 
development of statistics fits squarely in this realm (Porter, 1986). Hence, 
inventing measures reflects the history of the development of the field, 
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although the pedagogical utility of positioning students to invent measures 
remains open to question.  

As in professional or discipline-based practice, invention does not occur 
in a vacuum or solely in the heads of interested individuals. Once drafted, 
measures are subject to further rigors, including the perception of their 
utility and intelligibility to a wider community of prospective users. As we 
described previously, to simulate this aspect of discipline-based practice, 
students participate in whole-class showcases, during which the meaning of 
a particular measure, or component of a measure, is often contested, so that 
the resulting measure emerges as a negotiated outcome. Local contests 
reveal what students understand as a legitimate measure, and we infer from 
these interactions the nature of the criteria that appear to guide negotiation. 
These negotiations are also windows to the qualities of the distribution that 
the author(s) of the measure chose as worthy of measure, as are the forms of 
measure ultimately developed. 

To illustrate the prospective contributions of inventing statistical 
measures to structuring variability, we first present representative samples 
of students’ inventions. We suggest that these student inventions provide a 
window on to how students sought to structure variability. Then, we turn to 
an extended episode of interaction with one student, Shakira, because she 
represents a difficult and protracted negotiation, one that threatened to 
break down at any moment. Yet despite its tenuous character, the case 
illuminates how measurement of variability serves to create structure, and 
how this structuring was interactively constituted. 

Method 

Participants 
Participants (10 males and 8 females) attended an urban school serving 
primarily underrepresented youth in the southeastern region of the United 
States. The proportion of children attending the school who qualify for free 
or reduced-price lunch ranges from 60 to 80 per cent from year-to-year, 
suggesting comparatively lower SES status. Students were 11-12 years of age 
and came from a wide range of ethnic backgrounds. Although this class is 
the primary source of data, we also occasionally refer to student work 
collected during the previous iteration of the design study, conducted with 
students attending the same school. 

Procedure 
One of us (RL) served as the primary classroom teacher for mathematics 

during the school year. Mathematics classes were conducted twice each 
week for 1.5 hours each. During most weeks, students responded to a 
weekly assessment for an additional 45 minutes per week. Each classroom 
lesson was videotaped and digitally rendered for further analysis. One small 
group of students was videotaped with a second, wall-mounted camera 
throughout the year. Field notes contextualized the video recordings and 
served as a platform for further reflection and planning. Within this broader 
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context, we conducted a design study over several months where students 
were introduced to distribution, statistics, data and chance. As we indicated 
previously, the design culminated in students’ efforts to invent and revise 
models.  

For the extended analysis described below, we transcribed portions of 
the video of one lesson that included the whole-class conversation about 
Shakira’s method for measuring precision (variability). The transcript 
conventions that we employed included a ? to indicate a rising intonation, a 
?? to indicate an interrogative accompanied by a rising intonation, a period 
(.) to indicate a falling intonation, ### to indicate unintelligible speech, < > 
to indicate overlapping speech, ( ) to indicate specific behaviors 
accompanying speech, and = to indicate latched talk (talk immediately 
following an utterance, without pause). 

Results 
In the first section, we present a representative sample of some of the 

methods and measures of variability invented by children during the course 
of the last two iterations of the design that contain the seeds of statistics 
employed by the disciplinary community. Recall that the challenge posed to 
students was one of inventing a measure of the precision of their 
measurements. 

Figure 1 displays a measurement method for finding the precision of the 
observed measures of the length of a teacher’s arm-span. Note that this 
invented measure focuses on the sum of pair-wise differences among the 
ordered set of measures. The student, Renee (all student names are 
pseudonyms), justified the validity of the measure by demonstrating that the 
sum decreases as the precision increases (and the variability decreases). 
Other students noticed that this measure bore some resemblance to the 
range, invented by a classmate, in that it focused on difference, but Renee’s 
measure included all the data, instead of just two cases. Students thought 
that this might be a good idea, because the range presented the whole class 
with the two “worst measurers.” 
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Figure 1. Renee’s pair-wise distance method.  

Figure 2 displays a measure “piggybacked” on that invented by Renee 
by two other classmates. It also focuses on differences among cases as the 
basis of measure, but these students suggested an improvement based on a 
common point of reference – the sample median – perhaps because they had 
previously invented the median as a best estimate of the true value. They 
suggested that precision could be thought about as distance from the real 
length (the median). They were also confident that the sums of these 
(absolute value) differences were valid measures because the sums 
decreased as the variability decreased (317 vs. 112), suggesting greater 
“closeness” among the measurements of the teacher’s arm-span.  
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Figure 2. Mikela’s method, using the differences between the measurements and the 

median  

 
Figure 3 displays an alternative approach to coordinating centre with 

variability drawn from a fifth-grade class during a previous iteration of the 
design study. The measurements are of the height of the school’s flagpole, 
estimated by use of similar triangles. Henry focused on the neighborhood of 
values surrounding the median and used TinkerPlots to create a “centre 
clump region”, with precision defined by the percentage of cases in the 
centre clump. As precision increased, so too did the percentage of cases in 
the centre clump. However, he did not have a method for determining the 
boundaries of the centre clump. 
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Figure 3. Henry’s method, using the percentage of mesurements in a “centre 
clump”. 

Although none of these inventions are conventional statistics, they 
contain the seeds of the structuring of variability upon which more formal 
statistical conventions rely. The solutions represented in Figures 2 and 3 
especially illustrate coordination of centre with variability and hence 
provide the grounds for further productive refinement, both for the 
individuals involved and for the class collectively.  

Although we have focused on particular products, each of these 
measures was constituted interactively—with peers and with the teacher—
and were often refined, revised, or outright abandoned. In the next section, 
we illuminate one of these episodes of negotiation to clarify how structuring 
variability emerged during interactions with peers and the teacher. 

Negotiating Variability 
Shakira’s method for measuring precision relied on her intuition that 
measurements ought to cluster around the median, which was previously 
established in this class as an indicator of true measure. She also believed 
that precision should take the modal clustering of the data into account. She 
used TinkerPlots to first partition the data into two large bins. This rough 
partition (a default setting of TinkerPlots) effectively eliminated outliers 
from consideration, on the grounds that these outliers were clear instances 



126  Lehrer & Kim 

of disagreement and hence not worth including. Shakira used the drawing 
tools provided by TinkerPlots to graphically structure her sense of a 
neighborhood of values surrounding the modes and median of the data, 
displayed in Figure 4. Shakira’s initial description was figurative, in the 
sense that she said: “What I did was I circled the median and mode, our 
numbers that were close to it.” 

 

Figure 4. Shakira’s “wrap-around” method for measuring precision. 

She immediately proceeded to justify her measure by relating it to 
previous conversations in the classroom about what the data might look like 
if one had more or less agreement (e.g., if everyone agreed, there would be 
no variability):  

All the numbers will figure out how do difference, all the numbers that are 
outside of the circle, if we disagree on them, they will get bigger [pointing 
to measurements outside of the regions depicted in Figure 4]. All the 
numbers inside here [pointing to outlined region in Figure 4]. See how 
small they are? If we agree on them, they will get bigger. But if we disagree 
on them, they will get smaller [pointing again to the interior of the outlined 
region in Figure 4].  

Although Shakira elaborated further, her references were indistinct in 
the sense that neither the teacher nor her classmates were certain about what 
she meant by “bigger” or “smaller.” For example, Jamir asked: “What do 
you mean? Like ‘we, we disagree on that it would be smaller.’ What do you 
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mean by that?” 

The conversation was redirected by several students to request 
justification of values included in the region, as exemplified in the following 
exchange between Lena and Shakira in which Shakira proposes criteria of 
“close” and “surround:” 

 
Lena: Why did you add 50 to that and along with 51?? Why 

did you add that??  
Shakira: Add 58??  
Lena: No. You added 50.   
Teacher: Fifty and 51, Lena is pointing out. 
Lena:  =Ya.  
Teacher: =She is asking you why those, and not others. 
Lena:  <Because###> 
Shakira: Forty. Because 49 is the mode, and these are two 

closest numbers (Shakira points at 50 and 51) that 
surround 49. And others 48. And 48 is the median. 
And 47 and 49 both surround 48. 

Teacher: <Okay>. 
Lena: <I still> don’t get why you put 50 and 51. 

 
 In response to another series of queries initiated by Mikela (Line 1, 

below), Shakira provided further elaboration of “numbers that are close”, 
aligning closeness with agreement, in response to another series of queries 
initiated by Mikela (Line 1, below). Renee attempted to prompt Shakira to 
elaborate her criteria for closeness by asking whether or not the same 
standard should be applied to the region surrounding the second mode as 
well (Line 1). Lena suggested not, referring to “important” numbers (Line 
21), but Renee explicitly rejected Lena’s proposal that an exception to the 
standard of closeness be made (Line 22). Shakira’s response appeared to rely 
on her authority as the drawer of the boundary, and the exchange ended 
with Renee challenging this assertion (Line 28). 

 
1 Mikela: How do you get of the agree, if 47, 48, 49, 50 and 

51?  
2 Shakira:  =Okay.  
3 Mikela:  How are those agreeing? 
4 Shakira: First you get the median and mode. Okay. For the 

median and mode here 49 and 48. So? those two 
numbers you keep automatically. Okay. What are 
the numbers that closest to 49?? 

5 Amanda: 47. 
6 Lena: And 48. 
7 Shakira: What?? 
8 Mikela: 47…, 48…, 50…, 51... 
9 Shakira: No. They are close to 49 up here. 50 is one right 

after 49, and 51 is going after 50. So those two are 
closest to the 49. They agree the most.  

10 Mikela: Why did you? [Hand gesture, open palms 
indicating confusion] 
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11 Amanda:  Why ###  
12 Mikela:  <Why did she?> [Directing her gaze toward to her 

table partner, Amanda and hand gesturing again to 
indicate her confusion]  

13 Shakira:  Renee.  
14 Renee: Okay. How can you put 47 and 49? But you can’t 

put 37 and 39??  
15 Shakira:  Huh?? 
16 Renee:  In the two little circle things you have up there, in 

the little groups how can you put 47 and 49 but not 
37 and 39?? 

17 Shakira:  What did you say?  
18 Renee:  How can you put 47 and 49, but you can’t put 37 

and 39?? 
19 Shakira: Okay, you said put 47 and 49, but I can't put 37 

and 39?? 
20 Renee: No. Why can't put 47 and 49 together, no, no, no, 

why can't you put 37 and 39 together when you 
can? put 47 and 49 together? 

21 Lena: Because those are not the important numbers. 
<47> 

22 Renee:  <No!> (refers to Lena) But she said the mode is 37 
no, the mode is 39 and 49. 

23 Shakira:  <The mode is 39.> 
24 Lena:  <I know. > 
25 Renee: <So> why she can’t put 37 together 39? 39 and 49 

are the important numbers. 
26 Shakira: Okay. Okay. 37 isn’t the one closest numbers to 39. 
27 Teacher: Okay, So you’re. <If I understand correct> 
28 Renee:  <But 47 is??>  [Tone indicates disbelief] 

 
In the next conversational exchange, the teacher revoiced Shakira’s 

approach, pointing out its appeal to trust in repeated measures and aligning 
her approach with Jamir, who had presented his measure and rationale the 
day before. The teacher then attempted to negotiate a boundary for the 
Shakira’s regions of agreement that might extend beyond her personal writ: 
“And what’s your rule, how come 50 is OK [Teacher gestures toward upper 
clump], but 54 isn’t? How come 51 is OK [pauses]? That’s, I think, what we 
are asking.”  

Shakira responded by seeking clarification: “How close is 49 to 54?” The 
teacher followed up by asking: “Are you asking us? How would we find 
out? How close is it?” Lena immediately suggested subtracting 49 from 54, 
with the result of 5. In the next exchange, a boundary condition was 
negotiated:  

 
Shakir How close is 49 and 51?? 
Teacher: Okay. It’s two away??  
Shakir Right. Those are the numbers, 49 and 50 and 51 are 

closest numbers in the clump to the 49. 
Teacher: So, are you defining (gestures toward region)?? Are 
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you suggesting that if the number is within two?? 
Shakir Right.  
Teacher: Okay. But see we didn’t understand that. This makes 

it clear. If the number is within two, then you would 
include it in the clump. Does it matter the direction?  

Shakir The direction? No. 
 

Although the teacher prompted this exchange, in the subsequent 
exchange two other classmates held Shakira’s (perhaps reluctant) acceptance 
of a defining difference to account. Mikela repeated Renee’s earlier inquiry: 
“Why didn’t you include 37?” Renee added that “37 is 2 away from 39,” and 
Shakira signaled her agreement by altering the display depicted in Figure 4 
to enlarge the lower region to include the value of 37. Shakira then reminded 
the class again about how the regions depicted related to agreement, asking 
the class to consider “the tightness of the clump”, “how the measurements 
agree”, and “think about what would happen if everybody agree on those 
numbers”. After a few exchanges which established that the class considered 
the size of the region as a legitimate indicator of agreement, the teacher 
again prompted further consideration of the measure: “I think we 
understand now how to count whether or not something belongs or not. So 
what do we do now? If this is giving us a precision number, what would 
that number be?” 

Shakira suggested: “You see all the numbers that wrapped around. All 
the numbers wrapped around 48. Become wrap-around-number. That 
would be your precision number.” The teacher prompted: “How do I know 
how much wrapping around they are doing?” The teacher appealed to the 
class for help in generating a precision number. 

 

 
 

Figure 5. Mikela’s measure of precision, the median (9) of differences among 
each observed value and the sample median. 

 
This appeal was responded to by Mikela, who had previously invented 

a measure of precision based on the median of the absolute values of the 
differences between each measurement and the sample median, 
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demonstrating that when crude tools were used to measure the height of the 
flagpole, its value was high, indicating lack of agreement, and when the 
tools used were better, its value was low, indicating more agreement. 
Mikela’s measure is displayed in Figure 5. (It was a revision of the measure 
displayed in Figure 2, prompted by considering a hypothetical instance 
proposed by the teacher involving a large number of very small deviations.) 
Mikela re-deployed her focus on difference in her invented measure to 
suggest using each mode as a reference point, and then finding differences 
between each value and the corresponding mode. She recommended that 
Shakira then consider using the median of the absolute value of these 
differences as the measure. Because the class was nearly over, the teacher 
asked for some clarifications of Mikela’s proposal and then endorsed 
distance as a good way of looking at the “tightness” of a region. The teacher 
also suggested that Shakira consider counting the number of values within a 
cluster, asking if that might also indicate agreement. The class concluded 
with the teacher situating Shakira’s measure within the emerging collection 
of measurers being developed in the class: “Could you do some thinking 
about that and get back to us about different ways that we can take 
advantage of your method? And, try to help us understand how we know 
where to draw the clumps, because we have to be able to tell other people.” 

Discussion 
Measurement is often conceived as a mundane activity, and in school it 
often arrives pre-formed. Students may learn “skills” of measuring, but 
rarely are they asked to grapple with the foundational problematic of the 
relation between a measure and a particular phenomenon. We suggest an 
alternative tactic, one in which students are positioned to invent and revise 
measures, because inventing measures inherently involves structuring 
phenomena. In this instance, we positioned students to invent and revise 
measures of variability. Many of these invented solutions coordinated centre 
and spread in ways that anticipate the kinds of solutions that are used in the 
discipline of statistics, such as inter-quartile range and deviation-based 
metrics such as average deviation and standard deviation. This form of 
structuring variability often escapes much older students. For example, 
Garfield, delMas and Chance (2007) indicated that despite “multiple lessons 
on measures of variability” (p. 141), college students did not understand the 
grounds of these measures of variability until nearly the end of a course of 
conceptually oriented instruction. 

Although invention is often associated with individual acts, the case 
study of Shakira suggests the importance of both collective and individual 
views, what Cobb (1999) referred to as an emergent perspective. Shakira 
initially structured variability by literally drawing regions surrounding the 
modes and median of the sample. The mode corresponded to literal 
agreement among measurers and the median as the best guess of the true 
score. But this first approximation, although intuitively sound, relied 
primarily on Shakira’s authority. Her classmates pressed her to make her 
decisions more transparent and consistent by seeking definition of the 
bounded regions and by suggesting that she re-conceptualise the regions as 
deviation scores. Other students’ experiences and invented measures came 
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into contact with Shakira’s, resulting in some transformation of her initial 
intuitions. As the episode drew to a close, Sharika began to consider how to 
develop a quantity, a work in progress which was made possible by the 
emergence of a more explicit structure of variability. 

The students in the classroom, although clearly not practicing statistical 
scientists, were embarked on the development of what Goodwin (1994) 
called professional vision. That term refers to practices that uniquely allow a 
practitioner to experience the profession in ways that align one practitioner’s 
activity with another’s. Although clearly we are not involved here in 
developing professional statisticians, nonetheless students’ participation 
showcases a forum for developing practices of measure, and as a result, 
coming to see variability in ways that were more like those of the discipline. 
Signals of participation in a practice, rather than a string of activity, were 
suggested by Shakira’s initial attempt to justify her measure by appeal to 
grounds of sensibility (e.g., how the measure reflected a quality of 
agreement among measurers), and by her classmates’ insistence, and her 
acceptance, that a measure be consistent and coherent. These negotiations 
suggested development of an aesthetic consistent with disciplinary values of 
clarity, consistency, and prospective generalisation. The nature of the 
interactions also indicates that mathematical identities reflecting this 
aesthetic were being constituted through participation in the practice of 
measure critique (Boaler, 2002). The teacher’s role, in addition to 
orchestrating the ongoing negotiation about the nature of the measure, also 
was to promote the notion of quantity by suggesting that the measure of 
variability should correspond to changes in state (e.g., amount) of 
variability. In our instructional design, changes in variability arose from use 
of two tools, one crude and one more refined. In subsequent activity, the 
structuring of variability generated by inventing displays and statistics set 
the stage for re-interpreting these structures as reflecting the operation of 
chance processes, as students invented models of the original batch of 
measurements that included random error.  

In summary, although variability is at first glance an antonym of 
structure, a view from the mathematics of chance (Stevens & Hall, 1998)  
suggests instead that variability reflects a structure, however initially 
obscure. For both practitioners of the discipline and students, variability is 
merely difference until it has been cognitively and materially transformed.  
Since structure, as we have seen, has to be constructed, the utility of 
particular measures (statistics), and their potential to capture and represent 
such a structure, always remain open to contest. The students in this class 
were embarked on this realization, in a manner that we anticipated would 
promote their broader participation in the mathematics of data modeling.  
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