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Abstract. We propose a novel and efficient method for generic arbitrary-view

object class detection and localization. In contrast to existing single-view and

multi-view methods using complicated mechanisms for relating the structural

information in different parts of the objects or different viewpoints, we aim at

representing the structural information in their true 3D locations. Uncalibrated

multi-view images from a hand-held camera are used to reconstruct the 3D visual

word models in the training stage. In the testing stage, beyond bounding boxes,

our method can automatically determine the locations and outlines of multiple ob-

jects in the test image with occlusion handling, and can accurately estimate both

the intrinsic and extrinsic camera parameters in an optimized way. With exemplar

models, our method can also handle shape deformation for intra-class variance.

To handle large data sets from models, we propose several speedup techniques

to make the prediction efficient. Experimental results obtained based on some

standard data sets demonstrate the effectiveness of the proposed approach.

1 Introduction

In recent years, generic object class detection and localization has been a topic of ut-

most importance in the computer vision community. Remarkable improvements have

been reported in the challenging problem of true 3D generic multi-view object class

detection and localization [1,2,3]. In this work, we focus on the problem of automati-

cally determining the locations and outlines of object instances as well as the camera

parameters by reconstructing 3D visual word exemplar models. The objects in the test

images can be at arbitrary view and the camera parameters are completely unknown.

Under this setting, object detection and localization is a very challenging problem.

1.1 Related Work

Most existing approaches for object detection focus on detecting an object class from

some particular viewpoints by modeling the appearance and shape variability of objects

[4]. These approaches, however, are only limited to a few predefined viewpoints. On

another research strand, several powerful systems focus on detecting specific objects in

cluttered images in spite of viewpoint changes [5,6,7]. Although the reported results are

impressive, they can only find specific objects shown in the training images.
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In the context of multi-view generic object class modeling and detection, differ-

ent models with geometric and appearance constraints have been proposed. Thomas et
al. [1] developed a system for detecting motorbikes and sport shoes by establishing ac-

tivation links and selecting working views. Savarese et al. [2] also proposed a model

for 3D object categorization and localization by connecting the canonical parts through

their mutual homographic transformation. Without a real 3D model, both methods have

to use complicated mechanisms for approximately relating the structural information of

the training views or different parts of the objects with simplified assumptions. These

indirect representations cannot capture the complete spatial relationship of objects, and

may fail to recognize objects when the test images are taken from quite different view-

points from the training images. In this sense, a real 3D model plays an essential role

in further improving the performance of multi-view object class detection. A closely

related work is [3], which creates a 3D feature model for object class detection. How-

ever, in the process of matching between a test image and the 3D model, their method

is computationally costly because it directly operates with a SIFT descriptor and has to

enumerate a large space of viewing planes. Another closely related work is [8], which

renders a synthetic model from different viewpoints and extracts a set of poses and class

discriminative features. During detection, local features from real images are matched

to the synthetically trained ones. However, since the features are extracted from a syn-

thetic database, they may deviate significantly from those extracted from real-world

images. Moreover, the camera poses are still estimated by searching for the registration

of 3D models to images.

1.2 Our Approach

In this paper, we propose an exemplar-based 3D representation of visual words for

arbitrary-view object class detection and localization. This model produces a powerful

yet simple, direct yet compact representation of object classes. During the training pro-

cess, our method removes the unknown background of images and obtains the region of

interest for class instances. Also, given a test image of arbitrary view containing single

or multiple object instances, our algorithm detects all the instances and outlines them

precisely. For finding the viewing angle, instead of enumerating all the possible view-

points of the 3D model, it accurately estimates both the intrinsic and extrinsic camera

parameters in an optimized way. Moreover, with exemplar models, our method can also

handle shape deformation with intra-class variance. To handle large data sets, several

speedup techniques are also proposed to make the prediction more efficient.

2 Automatic Training of 3D Visual Word Models

This section presents the training procedure for the automatic training of 3D visual word

models from a set of images taken around each object with unknown background and

unknown camera parameters.
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Fig. 1. Training Procedure for an Exemplar Model.

2.1 Creating Visual Words and Learning Word Discriminability

Local image patches are the basic building blocks of 2D images. In practice, we choose

the Hessian-Laplace detector [9] to detect interest points on a set of images and the SIFT

descriptor [10] to characterize local features, described by a set of 128-dimensional

SIFT vectors. These SIFT vectors are then vector-quantized into visual words by k-

means [11]. Each visual word is a cluster center of the quantized SIFT vectors. In our

work, this procedure is performed over an image set containing two types of images.

One type contains images taken around the objects for reconstructing 3D models. The

other type contains the training images from the PASCAL Visual Object Classes (VOC)

challenge [12]. We take the visual words as descriptors for the interest points in both

2D images and 3D models.

For a particular class, not all the visual words play the same role in detection. For

a particular visual word w, its weight to an object class Ci is learnt by a ratio discrim-

inability function [13],

Di (w) =
# images in Ci containing w

# images in image set containing w
. (1)

The word weight measures the relevance of w with respect to the object class Ci. The

higher the value of Di (w), the more discriminative the visual word w is. For each

object class, we only preserve the top 512 most discriminative visual words for its 3D

models.

2.2 Creating 3D Visual Word Models

With these visual words, several exemplar models for each object class are created. For

each exemplar model 〈M,M+〉, the training procedure is shown in Fig. 1.
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In the first step, the input multiple-view images are used for 3D reconstruction by

the standard Structure from Motion algorithm [14]. Specifically, the unordered input

images are matched in a pairwise manner by the visual words. Taking these sparse

pixel-to-pixel correspondences as seeds, a dense matching is obtained by [15]. Then,

for three images with more than six mutual point correspondences, a projective recon-

struction is obtained by [16]. We merge all the triplet reconstructions by estimating the

transformation between those triplets with two common images as in [17]. Finally, the

projective reconstruction is metric upgraded to Euclidian reconstruction. In each step,

bundle adjustment is used to minimize the geometric error. Since our training data do

not contain any label information about the object location in the image, not only the

target object but also the background of the scene is reconstructed. However, we only

want to preserve the 3D model for the target object.

Hence, in the second step, a graph-cut based method [18] is used to automatically

identify image regions corresponding to a common space region seen from multiple

cameras. Briefly, we assume that the background regions present some color coherence

in each image and we exploit the spatial consistency constraint that several image pro-

jections of the same space region must satisfy. Each image is iteratively segmented into

two regions such that the background satisfies the color consistency constraints, while

the foreground satisfies the geometric consistency constraints with respect to the other

images. An EM scheme is adopted where the background and foreground model param-

eters are updated in one step, and the images are segmented in the next step using the

new model parameters. Because the silhouette is just used to filter out the background

of the 3D model, it does not need to be very precise. In most situations, the above auto-

matic extraction results are satisfactory. In other cases, an interactive method [19] can

be used. In our experiment, 8.5% of the silhouettes are annotated manually by [19].

After we have extracted the silhouette of the target object, we filter out all 3D points

with projection outside the silhouette of the object and the set of remaining 3D points

is the model M+. To facilitate fast indexing and dramatically accelerate the detection,

we record some 3D points in a hash table model M, with visual words as keys and the

3D points with coordinate (x, y, z) as content. The 3D points in the hash table model

M are from the sparse matching seeds of M+ and correspond to the top 512 most

discriminative visual words.

3 Object Localization and Camera Estimation

Given a new image with single or multiple instances, the task is to detect the locations of

objects from a particular class, outline them precisely and simultaneously estimate the

camera parameters for the test image. With the trained 3D exemplar models, our method

can estimate arbitrary pose of the target object with no restriction to some predefined

poses. The flow of the testing procedure is shown in Fig. 2 and Alg. 1.

3.1 Visual Word Detection and Image Over-segmentation

We follow the same procedure as in training to find local interest points in a test im-

age by the Hessian-Laplace detector [9] and characterize the local features by a set of
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Fig. 2. Testing Procedure.

128-dimensional SIFT vectors [10]. Each SIFT descriptor is then translated into its cor-

responding visual word by finding the nearest visual word around it. If the Euclidean

distance between the SIFT descriptor of the interest point and that of the nearest visual

word is two times larger than the mean distance of that cluster from its centroid, that

interest point is deleted. The mapping from SIFT descriptor to visual word descriptor

makes the matching between 2D image interest point and 3D visual word model very

efficient by just indexing with the visual word as key.

The target object in the test image may be embedded in a complicated background

that will affect the overall performance of detection and localization. Over-segmenting

the test image can help to improve the accuracy of object detection and get a much more

precise outline of the object. It will also be useful for camera hypothesis estimation in

the testing stage. Traditionally, over-segmentation is done by the watershed or mean-

shift algorithm. In this work we adopt the over-segmentation technique by [20], which

is very efficient and also stable with parameters to control the region size.

3.2 Visual Word Indexing and Hypothesis Voting

Suppose a test image I is over-segmented into n regions and there are m exemplar

models. For each small region Ri in I and each 3D visual word model Mj , all corre-

spondence pairs of 2D interest point uk inside Ri (from the test image I) and 3D point

Xk (from the 3D visual word model Mj) that have the same visual word descriptor are

collected:

Sij = {uk ↔ Xk |w (uk) = w (Xk) ,uk ∈ Ri,Xk ∈ Mj}

Given N correspondence pairs between the 2D projections and 3D points, the cam-

era pose can be directly estimated by a linear unique-solution N -point method [21] with

SVD as the solver.

To improve the robustness of the above method, we refine it to automatically filter

out some obvious error correspondences in Sij . The filtering algorithm is based on

the following locality assumption: The 3D points {Xk}, with 2D projection {PijXk}
inside the same small over-segmentation region Ri, should be also close to each other

in 3D space. This assumption empirically holds since the over-segmentation algorithm
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Algorithm 1 Simultaneous Object Localization and Camera Estimation

1. Over-segment the test image I .

2. For each small region Ri in the over-segmentation and each exemplar model 〈Mj ,M
+

j 〉,

(a) get all 2D and 3D correspondence pairs Sij inside the region Ri

(b) compute the camera projection matrix Pij by SVD

(c) project the 3D point model M+

j and vote in the image space for hypothesis.

3. Take the cumulative voting score as data cost and image gradient as smoothness in MRF to

extract the outline O.

4. Use all 2D and 3D correspondence pairs S∗ inside each connected component R′ of the

outline O to compute the final camera matrix P ∗.

tries not to cross depth boundaries. With this assumption, we first compute the average

3D position p̄ of the 3D points in Sij . Then we filter out the correspondence pairs whose

3D points are far away from p̄. Specifically, we compute the mean d̄ and standard

deviation σ from the distances between p̄ and all the 3D points in Sij . Then if the

distance between a 3D point of a particular correspondence pair and p̄ is greater than

d̄ + 2σ, this correspondence pair is removed from Sij .

Since the camera matrix Pij is estimated from a local over-segmentation region

Ri, it is likely to be degenerated if the 3D points are nearly planar. Hence, to further

improve the camera estimation robustness, instead of the sparse visual word model

Mj , we make use of the dense 3D point model M+
j to increase the number of 2D to

3D correspondences for camera estimation. In detail, each 2D interest point uk to 3D

point Xk correspondence uk ↔ Xk in Sij is taken as the seed, and the pixels in the

neighborhood of uk in Ri are greedily matched with the points in the neighborhood

of Xk in the model M+
j . In this way, a new set Ŝij of 2D to 3D correspondences can

be obtained. Ŝij contains many more correspondences that can characterize the local

geometry changes and hence can greatly improve the camera estimation robustness.

With the new correspondence pair set Ŝij , the camera matrix Pij is computed in the

same way as before.

After estimating the camera matrix Pij , we project the whole 3D model M+
j ={

X+
k

}
onto the test image with projections

{
PijX

+
k

}
and vote in the image space for

the hypothesis Pij . In detail, we lay over the test image I a regular grid with the same

resolution as the image. For each X+
k ∈ M+

j , the value of the cell in position PijX
+
k

will increase by one. Therefore, for each over-segmentation region Ri, there is one vote

for each exemplar model 〈Mj ,M
+
j 〉. Because each over-segmentation region Ri has

its vote, our method is insensitive to occlusion since other un-occluded regions can

still vote for the occluded regions. To increase the effective regions for each point X+
k ,

the neighboring grid cells of PijX
+
k also have scores from X+

k weighted with a 2D

isotropic Gaussian. In our case, the variance is set to be 0.5% of the width of image I .

However, if most parts of the small region are not the object of interest, the estimated

camera projection matrix will be completely useless. In order to capture the difference,

the hypothesis Pij is associated with a score c (Ri,Mj) indicating the confidence of
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the vote:

c (Ri,Mj) =
(
medianXk∈Mj ,uk∈I,w(uk)=w(Xk) {‖uk − PijXk‖} + 1

)−1
. (2)

The smaller the re-projection error ‖uk − PijXk‖, the higher the confidence. Here, uk

and Xk form a correspondence pair. However, the 2D and 3D visual word correspon-

dence is not necessarily a bijection. Several 2D interest points {uk} in the test image

may have the same visual word w, and hence may correspond to several 3D points

{Xk} in Mj . For such multiple matched pairs {uk} ↔ {Xk}, the re-projection er-

ror is computed as the minimum distance between any 2D interest point {uk} and the

projection {PijXk} of any 3D visual word {Xk}.

3.3 Outline Extraction and Camera Matrix Re-estimation

The over-segmentation regions are used to construct a Markov random field (MRF)

graph. The smoothness cost is defined as the L2-norm of the RGB color difference be-

tween the background and the target object, as in [22]. The corresponding voting score

is normalized and taken as the data cost in the MRF. An implementation of the graph

cut algorithm from [23] is used for optimization and getting the outline O. Inside the

outline O, we can obtain several connected components {R′
i}. We use all corresponding

pairs inside each connected component region R′
i and the best matched 3D visual word

modelM∗ to re-estimate the camera matrix P ∗ by the same method as in Sec. 3.2. Here,

the best matched 3D visual word model M∗ for that connected component region R′

is the one with the highest cumulative voting score summing up all over-segmentation

regions Ri in R′, i.e.,

M∗ = arg max
Mj

∑

Ri∈R′

c (Ri,Mj) .

In fact, for each target object in the test image, what we want to estimate is its rela-

tive pose and the camera parameters. Since each 3D point model has its own coordinate

system, the camera so estimated is specific to that coordinate system. If multiple object

instances exist in the test image, multiple cameras, one for each object instance, should

be estimated in the respective coordinate system for the corresponding 3D point model.

These multiple cameras do not violate the principle that there is only one camera for

each image according to the perspective camera imaging theory. Because they are at

different coordinate systems and will align to be exactly one camera (only theoretically

when there is no noise) in the real-world coordinate system. In our case, we are more

concerned about the relative pose between each object and the corresponding camera.

Hence, we do not try to align the multiple cameras for multiple objects.

Now, for multiple object instances from the same object class in the same test image,

if the objects do not overlap with each other, the outline O will have several connected

components {R′
i}, and several best matched models

{
M∗

j

}
as well as several estimated

cameras
{
P ∗

ij

}
. If the objects overlap greatly with each other, the object outlines can

still be estimated correctly although the cameras cannot be estimated well. For objects

from different classes, exemplars from different classes will vote on different grids. The
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voting score is normalized as the data cost in MRF, and multi-label graph-cut can be

used to find the optimal outline for each class. After that the same procedure as in the

single class case is used to estimate the cameras for each class separately.

3.4 Acceleration

Unlike previous 2D voting based methods, our method is computationally more ex-

pensive due to the larger data size. The bottleneck is, for each region Ri and each 3D

model Mj , there is one SVD operation to compute the camera parameters and many

matrix multiplications to project all 3D points onto the 2D grid. However, for different

over-segmentation regions and different 3D exemplar models, there is no computational

dependency. So it is possible to do parallel computing for different hypotheses. Here,

we make use of a commercial programmable graphics hardware, a graphics processing

unit (GPU), to speed up the testing procedure. The SVD algorithm is implemented as

in [24] which mainly includes two steps: bidiagonalization of the given matrix by ap-

plying a series of householder transformations, and diagonalization of the bidiagonal

matrix by iteratively applying the implicit-shifted QR algorithm. In practice, after the

camera matrix is computed from SVD, the projection matrix in GPU is set to be the

same as the camera matrix, and the 3D model is rendered on the GPU while the frame

buffer is set to have the same resolution as the test image.

To speed up and handle intra-class variance, for each class, we use only some most

similar 3D exemplar models for hypothesis voting. For a rigid class with small intra-

class variance, the voting values from the top five most similar exemplar models are

added together to improve the robustness. For a very deformable object class such as

a person class, however, we use only one most similar exemplar model rather than five

for computation.

4 Experiments

There is a training data set with motorbikes and shoes provided by Leuven [1]. How-

ever, this data set is not specialized for 3D reconstruction, since the baseline is too large

to achieve a reliable two-view matching for structure from motion. In fact, in our ex-

periment, only two motorbike models can be successfully reconstructed from this data

set. Due to the lack of an appropriate multi-view database for 3D reconstruction for the

purpose of object class detection, we construct a 3D object database with 15 different

motorbikes and 30 different sport shoes. For each object, about 30 images with resolu-

tion 800× 600 are taken around it and the camera parameters are completely unknown.

Fig. 7 shows some sample images of our data set. Our exemplar models are mainly

trained based on this data set. Hence, including the two motorbikes reconstructed from

Leuven’s data set [1], there are 17 motorbike exemplar models and 30 shoe exemplar

models in our experiments. Some 3D exemplar models are shown in Fig. 3.

For a test image with resolution 480 × 360, it takes about 0.1 second for over-

segmentation, 6.1 seconds for hypothesis voting, and 0.5 second for outline extraction

on a desktop PC with Intel Core 2 Duo E6400 CPU and NVIDIA GeForce 8800 GTX

GPU. For voting, we use the five most similar exemplar models. Fig. 4 shows some
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Fig. 3. Some 3D exemplar models. The first row shows one of the training images for each model.

The second and third rows show two example views of the corresponding 3D visual word models.

results of over-segmentation, hypothesis voting and outline extraction. Our method can

handle occlusion very well, such as the persons on the motorbike. The estimated camera

positions of some test images are also shown in Fig. 5.

4.1 Evaluation and Comparison

For comparison with [1] and [2], although our model is obtained from different training

data using different kinds of supervision, it can be evaluated on the same test set. We

adopt the same evaluation protocol as in the PASCAL VOC Challenge, which is also

used in [1,2]. Precison/recall curves are used to evaluate the performance of localiza-

tion.

We adopt the same 179 images from the ‘motorbikes-test2’ set provided by the

PASCAL VOC Challenge 2005 [25] for testing. Fig.6(a) shows a substantial improve-

ment of our method compared to [1]. Although our performance in terms of precision

is similar to that of [2], we regard it as satisfactory, given the fact that the number of

exemplar models is not large enough in our motorbike experiment.

For more comparison, we use Leuven’s multi-view sports shoes data set for testing

[1]. The result is shown in Fig. 6(b). Observing that our proposed method is significantly

better than [1], we believe that this is partially due to the larger and better training data

that we used. [2] did not report results on Leuven’s multi-view sports shoes data set and

the shoes in their own data set are mainly leather shoes. Hence, we do not compare with

[2] on shoes.

4.2 Discussions

Our approach may be seen as a significant extension of many previous works. The

PASCAL VOC 2007 Detection Task winner [26] can be seen as the 2D version of our

method, although their method uses histogram due to the lack of explicit structural

information. [3] is a much simplified version of our method and does not take the ef-

ficiency issue into consideration, while [8] approximates our 3D visual word model
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(a) Motorbike (b) Sport Shoe

Fig. 4. Some output examples. For each subfigure, the first column contains the input test images,

the second column contains the over-segmentation images, the third column contains the voting

results, the fourth column contains the outlines of the detected objects, i.e., the final result of our

method, and the fifth column contains the result from [1].

(a) (b) (c) (d)

Fig. 5. Example results of camera estimation. The left of each subfigure is the input test image,

and the right is the best matched 3D exemplar model with the estimated camera for the test image

shown as the top view in 3D space. The camera is drawn by lines.

by synthetic data, and both of them determine the camera matrix through searching.

To handle large intra-class shape variance, state-of-the-art representations such as [27]

rely on deformable part models. Extending the deformable models to 3D is feasible but

quite complicated. In our method, instead of explicitly modeling the deformation, we

use an exemplar-based method to characterize the intra-class variance.

On the other hand, our method extensively uses many standard state-of-the-art meth-

ods for different problems in computer vision as building blocks, making it easy to

implement and achieve good performance. The Structure from Motion algorithm [14]

from the multiple view geometry community is used to reconstruct the 3D positions for

the visual words. Efficient over-segmentation [20] from the image segmentation com-

munity is used to outline the region in which visual word matching is collected for

hypothesis voting. A max-flow based MRF solver [23] from the energy minimization

community is used to extract the object boundary. Moreover, a graphics hardware GPU

is used to accelerate the voting procedure including camera estimation using SVD.

5 Conclusion

We have proposed a novel and efficient method for generic object class detection that

aims at representing the structural information in their true 3D locations. Uncalibrated

multi-view images from a hand-held camera are used to reconstruct the 3D visual word

models in the training stage. In the testing stage, beyond bounding boxes, our method
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Fig. 6. Precision-recall Curves

Fig. 7. Sample images from our 3D object category data set.

determines the locations and outlines of multiple objects in the test image, and accu-

rately estimates the camera parameters in an optimized way. To handle large data sets,

we propose several speedup techniques to make the prediction efficient. However, as a

limitation of our method, more specific training data needs to be collected than many

previous methods. Future work includes conducting more experiments with more ob-

ject classes such as person classes, and extending our method to estimate the camera

parameters for highly overlapping objects.
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