
Stubborn Mining: Generalizing Selfish Mining and Combining with an

Eclipse Attack

Kartik Nayak∗†, Srijan Kumar∗†, Andrew Miller∗◦ and Elaine Shi‡◦

∗University of Maryland, College Park,
‡Cornell University, Ithaca,

◦Initiative for Cryptocurrency and Contracts (IC3)

Abstract—Selfish mining, originally discovered by Eyal et

al. [9], is a well-known attack where a selfish miner, under

certain conditions, can gain a disproportionate share of reward

by deviating from the honest behavior.

In this paper, we expand the mining strategy space to

include novel “stubborn” strategies that, for a large range of

parameters, earn the miner more revenue. Consequently, we

show that the selfish mining attack is not (in general) optimal.

Further, we show how a miner can further amplify its gain

by non-trivially composing mining attacks with network-level

eclipse attacks. We show, surprisingly, that given the attacker’s

best strategy, in some cases victims of an eclipse attack can

actually benefit from being eclipsed!

1. Introduction

Decentralized cryptocurrencies like Bitcoin [21] and
other altcoins have captured the public’s interest, and have
been much more successful than any prior incarnations of
electronic cash. Many would call the rise of these electronic
currencies a technological revolution, and the “wave of the
future” [1].

These emerging cryptocurrencies embody a novel
blockchain technology, where miners reach consensus about
the history of transactions and the status of the ledger. Initial
analyses of Bitcoin’s security relied on the assumption that
a majority of the network, as measured by computational
resources, would honestly run the default reference client.
It soon became clear that this assumption should be justified
by consideration of the incentives of users or attackers to
deviate.

Since cryptocurrencies carry monetary value, they nat-
urally become a valuable target of attacks. Intuitively, for
a secure-by-design cryptocurrency, an attacker controlling
α fraction of the network’s computational resource should
be able to obtain only α fraction of the mining reward.
However, a malicious attacker can employ various types of
attacks to gain an unfair share of the mining reward. We
refer to such attacks generically as mining attacks. Among
the most well-known are “selfish-mining”-style attacks that
exploit weaknesses in the distributed consensus protocol [9],

†The first two authors contributed equally to this work.

[8], and network-level attacks that seek to create network
partitions between mining powers, referred to as the “eclipse
attack” [13].

1.1. Our Contributions

In this paper, we take an in-depth look at the mining
attack strategy space, and make several interesting revela-
tions. We investigate strategies that increase the revenue of
the attacker.

• Selfish mining is not optimal for a large parameter space.

We introduce a new family of alternative “stubborn min-
ing” strategies that generalize and outperform the selfish
mining attack. For a large fraction of the interesting pa-
rameter space, our new strategies significantly increase the
attacker’s revenue. Depending on the environment param-
eters, stubborn mining strategies can beat selfish mining
by up to 25% (even without leveraging any network-level
attacks). Depending on the parameters, and at the price
during the time of writing, this can translates to $73K
additional gains per day in comparison with the selfish
miner.
In one of our mining strategies, called trail-stubbornness,
the attacker keeps mining on her private fork even if
the public fork is ahead, thus violating the longest-chain
rule. This surprisingly benefits the attacker since if she
happens to overtake the public later, she will have wasted
more of the public’s mining power. We show that in some
cases, a trail-stubborn strategy can result in 13% gains in
comparison with a non-trail-stubborn counterpart.

• An attacker’s revenue is increased by non-trivial combi-

nations of stubborn mining and network-level attacks. A
stubborn miner can additionally exploit network-level at-
tacks to further increase its gains. In particular, with a suc-
cessful eclipse attack, the attacker isolates a victim from
the rest of its peers at the network-level, by controlling its
incoming and outgoing connections. We show that a space
of non-trivial strategies exist when combining stubborn
mining with eclipse attacks. Depending on the parameters,
these strategies can sometimes result in 30% gains in
comparison with the naı̈ve usage of eclipsed nodes. We
also show that surprisingly, in some parameter ranges, the

attacker’s best strategy actually helps the eclipsed nodes,
hence victims may have little incentive to prevent, detect,
or react to such attacks.

• Systematic exploration of strategy space. We are the first
to systematically explore the space of strategies combin-
ing selfish-mining-style attacks with network-level eclipse
attacks. We show that no single strategy is a “one-size-fits-
all” optimal strategy. Instead, an attacker should choose
her strategy based on estimated parameters including the
amount of computation power it can wield, the fraction of
network it can potentially eclipse and the fraction of the
remaining network that it can influence.

1.2. Interpreting Our Results

Although we significantly expand the strategy space
considered by the selfish mining paper, we do not claim
to study the full possible strategy space. Under the strategy
space we consider, we show dominant strategies for different
regions of the parameter space. However, we do not preclude
the possibility of other strategies outside our strategy space
that perform better.

Our findings can be interpreted as below. First, we show
that the space of viable mining strategies is complicated, and
that selfish mining [9] is not optimal in general. Second,
we show that the possibility of combining mining attacks
with network-level attacks further complicate the space of
possible strategies. A notable challenge that we pose is
the task of designing a consensus protocol (without pre-
established trust or PKI) whose security is formally founded
under rationality assumptions rather than honest majority
– the latter was adopted by Garay et al. in their proof of
the Bitcoin backbone protocol [10]. The findings of our
paper demonstrate that achieving this could be difficult –
especially if one also wishes to take into account realistic
models of network formation and propagation.

1.3. Related Work

Mining attacks. Garay et al. proved certain security prop-
erties of the Bitcoin consensus protocol under highly ideal-
ized assumptions about the network propagation, and more
importantly, assuming honest majority in hashpower [10].
However, it has been shown that the security of the consen-
sus protocol can be broken when nodes are rational rather
than honest majority [9].

Bitcoin’s reference implementation mandates that, when-
ever some miner produces a valid block, it distributes this to
the rest of the network. Eyal and Sirer [9] show selfish min-
ers can gain an unfair share of the block reward by deviating
from the reference client. Specifically, a miner with more
than 33% computational power can attain disproportionate
gains by maintaining a private blockchain and withholding
blocks that have been mined. This forces honest miners
to perform wasted computations on a stale public branch.
Selfish mining works because honest miners are forced to

spend (some of) their computation cycles on blocks that are
destined to not be on the public chain.

Various other attacks have been studied. For example,
members of a mining pool can launch a block withholding
attack against the pool itself [5] – this harms the victim pool
and its other members, but in fact increases the revenue of
the rest of the network. Several recent works have examined
the game theoretic consequences of attacks and cooperation
between pools [8], [16], [14].

Network-level attacks. At the network layer, each Bitcoin
node (about 7000 in total, today) is connected over TCP
to many peers, with a default maximum of 125. The peer-
to-peer connections between these nodes can be inferred
through various techniques [2], [19].

Heilman et al. [7] demonstrated a network-level eclipse
attack where a single node monopolizes all possible connec-
tions to a victim and eclipses it from the network. This way
the eclipsing node can filter the eclipsed node’s view of the
blockchain. Their paper [7] describes elaborate techniques to
achieve eclipse attacks on the Bitcoin network. Although a
few proposed counter-measures have been implemented that
reduce the feasibility of carrying out an eclipse attack by a
single node, multiple nodes can collude and still succeed in
eclipsing – in particular, in Section 7, we argue that it may
in fact be incentive compatible for selfish players to collude
in launching eclipsing attacks. Furthermore, we provide a
basis for understanding how an attacker could exploit an
eclipsed node to profit and analyze the gains that can be
achieved.

Knowledge of the Bitcoin network can further help a
network-level attacker. For example, Coinscope[19] pro-
poses non-trivial techniques to map out the Bitcoin network
topology as well as the hashpower of various nodes. Such
knowledge would enable an attacker to make targeted at-
tacks to eclipse mining entities.

Concurrent and independent work. Concurrent to and
independent of our work, Sapirshtein et al.[23] also observe
that selfish mining is suboptimal. They define a broad strat-
egy space and use a combination of analytic bounds and nu-
meric solvers to compute approximately-optimal strategies
from this space. Their strategy space is a generalization of
our stubborn mining strategies; however, they do not con-
sider how to compose mining attacks with eclipse attacks.

2. Modeling of Bitcoin Mining

We begin by defining the basic model of Bitcoin mining
(cf. [9]) in the presence of an attacker. We will use this
basic model throughout this paper; however, later we will
extend the model to include eclipse attacks as well.

2.1. Defining Key Parameters

Our mining model has three main parameters:

• Hashpower of attacker (i.e., Alice) α: the fraction of
the network’s total hashpower controlled by the attacker,
henceforth referred to as “Alice”.

k ≥ 0 blocks k ≥ 0 blocks

k ≥ 0 blocks k ≥ 0 blocks

Private chain (Alice’s)

Public chain (Bob’s)

Block public (Bob) is min-
ing onγ

γ

1− γ

1− γ

(a) lead = 0 (b) lead = 0′

(d) lead = 2 (e) lead = 2′

(c) lead = 0′′

(f) lead = −2

Figure 1: Representation of Alice and Bob’s blockchain at different Markov chain states. Bob’s public chain is
represented using black boxes, while Alice’s private chain is represented using magenta boxes. The orange arrow indicates
the block(s) at which Bob is presently mining. When two orange arrows exist, it means that Bob’s mining power is divided
across two different forks.

TABLE 1: Table of notations

Bitcoin mining model

α Computation power of Alice (stubborn and/or eclipsing miner)
β Computation power of Bob (public miners, honest)

γ
Fraction of Bob’s network that will mine on Alice’s block when Alice and Bob have
released a block at (approximately) the same time resulting in an equal length fork.

Stubborn mining strategies (Section 3)

S Selfish mining strategy
H Honest strategy

L-stubborn Lead stubbornness - risks blocks after a high lead
F -stubborn Equal fork stubbornness - does not reveal next block after an equal length fork
Tj-stubborn Trail stubbornness - does not merge with public chain even when trailing the public by j blocks

Eclipse mining strategies (Section 5)

λ Computation power of Lucy (eclipsed miner, honest)
C Collude strategy - Alice colludes with Lucy to create a common private chain
D Destroy strategy - Alice destroys Lucy

DNS Destroy if no stake - Alice colludes with Lucy only if it has a stake in their common private chain

• Hashpower of the honest public (i.e., Bob) β: the
fraction of the hashpower of the remaining network,
henceforth referred to as “Bob”. Note that β + α = 1.

• Alice’s network influence γ: fraction of Bob’s network
(in terms of hashpower) that will mine on Alice’s (i.e.,
the attacker’s) block when Alice and Bob have released
a block at (approximately) the same time resulting in an
equal length fork.

The notations used in the paper are summarized in Table 1.
We represent the attacker and the rest of the network only in
aggregate; our model does not distinguish between the var-
ious separate entities (e.g., mining pools, industrial mining
operations) that constitute the network.

2.2. Markov Chain Model of Mining

We model Bitcoin mining using a Markov decision
process, where the state captures relevant aspects of the

information available to Alice and Bob, and the transitions
occur when Alice or Bob find a new block. If a honest miner
(i.e., one that runs the default reference client software) finds
a block, he publishes the block immediately. In our model,
however, Alice may keep a private chain (i.e., hidden from
Bob) of blocks she has found.

We note that our model generalizes that of the selfish
mining work [9] – in particular, as a warm up, we will
express selfish mining in our model in Section 2.3.

Defining states. Roughly speaking, each state in the Markov
chain encodes the following dimensions of information:

• Alice’s lead, i.e., how much Alice’s private chain is ahead
of Bob’s, i.e.,

lead := len(Alice’s chain)− len(Bob’s chain)

• Whether there exists a fork. As shown in Figure 1, for
the same value of lead, there are two cases: 1) no fork,
i.e. Bob and Alice are mining on the same chain, either

on top of the same block (Figure 1a) or Alice is ahead
of Bob such that the last few blocks are mined by Alice
and not known to Bob (Figure 1d) ; 2) with fork, i.e.,
Alice and Bob are mining on different chains. In other
words, the head of the longest chain seen by Bob is not
a predecessor of Alice’s chain (Figures 1b, 1e).

• Which chain’s head Bob is mining on. Bob always mines
on the longest chain it sees. When there is a fork, if the
revealed portion of Alice’s fork is equal length as Bob’s
fork, then depending on when these blocks are revealed,
Bob may be mining on 1) divided between its own fork
and Alice’s fork – if the two competing blocks are released
closely in succession (Figures 1b, 1e); or 2) all mining
on its own fork – if Bob’s fork was released first (see
Figure 1c).

Naming states. For clarity, we use the notation

lead = 0, 0′, 0′′, 2, 2′,−2

to denote different states in the Markov chain. The numeric
value encodes Alice’s lead (a negative value indicates trail-
ing behind). The prime (i.e., single apostrophe) notation
denotes that there exists a fork, the revealed portion the
two forks are equal in length, and that Bob is divided
between mining on these two forks. Similarly, states with
only numerical value (no apostrophe) denotes that there does
not exist a fork. The double-prime (i.e., double apostrophe)
notation denotes that there exists a fork, the revealed portion
the two forks are equal in length, and that Bob is all mining
on its own fork. Figure 1 graphically illustrates all of these
cases and may aid understanding.

We note that besides the states depicted in Figure 1,
other conceivable states are either impossible by definition
of Bob’s honest behavior or are undesirable choices for
Alice. We therefore elide these.

State transitions. In any state, Alice has α probability of
mining the next block, and Bob has β probability of mining
the next block – but in some cases (the single-prime states),
Bob’s mining power can be divided between two forks. As
we shall see, the effects of each transition is defined by
Alice’s strategy.

Mining revenue. Whenever a miner finds a block, she
earns a reward of freshly minted Bitcoins. Currently, and
for the near future, this reward is 25 BTC per block (i.e.,
at the time of writing, ≈ $6000USD per block). However,
only blocks on the main chain count towards their income.
For example, whenever there is a fork (two blocks of the
equal length, i.e., lead = 0′), one of the two blocks will
eventually be discarded. Furthermore, every two weeks,
Bitcoin automatically adjusts the difficulty of the puzzle so
that on average one block is added to the main chain every
10 minutes; thus regardless of the rate of discarded blocks,
miners on the whole earn mining rewards at a constant rate.
We are therefore primarily interested in studying the steady

state ratio of blocks in the main chain mined by Alice or
Bob, as this ultimately reflects the revenue (i.e., in dollars
per day) to each party.

2.3. Expressing Honest and Selfish Mining

Alice’s mining strategy is defined by two decisions: i)

when to reveal the private chain to the public, and ii) when
to accept the public’s chain (i.e., mine off the public’s block
chain head).

Honest mining: If Alice follows the protocol and runs the
reference client, then she reveals a block immediately after
she mines it. Alice accepts the longest block and mines on
top. Note that equal forks do not occur1.

Selfish mining [9]: The selfish mining strategy (illustrated
in Figure 2) consists of the following deviations from honest
mining:
• When lead = 2 and Bob mines the next block: Reveal

Alice’s entire private chain to Bob (resulting in lead = 0).

• When lead = 0′ and Alice mines the next block: Reveal

Alice’s private chain to Bob (resulting in lead = 0).

• When lead = 0 or lead > 0 and Alice mines the next
block: Do not reveal Alice’s private chain

• Alice always accepts the longest chain.

The net effect of selfish mining is to “waste” mining
power on blocks that eventually get discarded. Sometimes
Alice spends effort to no avail and her private chain falls
behind Bob’s; on other occasions, Bob wastes work while
Alice is already ahead. The surprising result [9] is that for
many values of α and γ, this strategy causes Bob to waste
more work than Alice. After the network adjusts the puzzle
difficulty to compensate for discarded blocks (which do not
contribute to the main chain), Alice earns more revenue than
if she were mining honestly.

2.4. Revenue Gain

We consider relative gain of Alice in comparison to Bob as
a metric to evaluate a strategy. The relative gain of selfish
mining (SM) strategy compared to a honest strategy (H) is
defined as:

relative gain(SM,H) =
gainSM − α

α

More generally, given strategies X and Y , the relative gain
of X over Y is defined as:

relative gain(X,Y) =
gainX − gainY

α

where gainX is the fraction of blocks earned by Alice
under strategy X . Observe that the relative gain metric is
normalized with respect to the “fair share α” that represents
Alice’s gain under a honest strategy.

2.5. Plausible Choices of α and γ

As the attacker’s profit will depend on the key parame-
ters α and γ, in this section, we discuss realistic choices

1. Our framework effectively models instantaneous block propagation. In
reality, due to network latency, sometimes a fork will occur if two honest
miners find a block at approximately the same.

1 2 30

0’

ααα

α

β

ββ

β
γβ(1− γ)β

α

β

Figure 2: Selfish Mining [9].

TABLE 2: Hypothetical attack scenarios and parameters

α

40% largest mining pool over most of 2014
41% the two largest mining pools today
21% largest pool today
17% if “unknown” mining power is a rogue miner

γ 0− 0.92
depending on the attacker’s influence
on the overlay network (see Section 2.5)

of values for these parameters based on a combination
of realistic measurements and reasoning of likely attack
scenarios.

Plausible values for α. As mentioned earlier, α is the
fraction of the attacker’s hashpower relative to the entire
network. As is well-known, most Bitcoin miners participate
in mining pools where they join efforts in solving compu-
tational puzzles and share block rewards. Today, the top
9 pools account for 75% of the network. Mining pools
might deviate from the honest protocol to maximize their
rewards [9]. We can easily measure overall hashpower of
the Bitcoin network using the timestamps and proofs-of-
work published in the blockchain itself. The distribution of
hashpower among mining pools and other entities can be
inferred using several heuristics (e.g., mining pools typically
sign the blocks they mine). Figure 3 shows an estimate from
blockchain.info based on such heuristics. According to this
snapshot (May 2015), the largest pool at the time of writing
represents 21% of the network’s cumulative hashpower. In
most of the past year (2014) the largest mining pool was
over 40%, and briefly exceeded 51% [17]. The “unknown”
hashpower cannot be attributed to any publicly-known enti-
ties. It could include individual “solo-miners”, private pools,
or even deliberately obfuscated hashpower from other pools.

We only consider values of α under 50% in this paper –
when the attacker controls over 50% of the hashpower, the
fundamental security properties of the cryptocurrency are
broken anyway (e.g., the attacker can guarantee she earns all

of the mining reward, and can revert or delay transactions).
Table 2 summarizes what we consider realistic values

for parameter α. For example, we will consider α = 40%
to be a typical value – this could correspond to either the
compromise of a large mining pool (i.e., such as GHash.IO
during most of 2014), or else to a coalition or simultaneous
compromise of several top mining pools (such as AntPool
and F2Pool) today. (We discuss implications of various

Figure 3: Known mining entities and their hashpower (from
https://blockchain.info/pools, accessed May 16 2015).

scenarios in Section 7).

Plausible values for γ. Suppose that at some point, the
Markov chain is in state lead = 2′ or lead = k′ for any
k > 1 (see Figure 1e). At this point, Bob finds a block and
announces it. Alice can now immediately announce a next
block on her private chain to create a race with Bob’s new
block – and the Markov chain state transitions to lead =
(k − 1)′. The fraction of Bob that will accept on Alice’s
fork depends on to what extent Alice can successfully race
the arrival of Bob’s new block.

Let A denote Alice, and let i and j denote two public
miners (either mining pool or solo miner) that are part of
Bob. When i is the miner that found the new block, whether
j will accept it depends on the effective latency of the two
overlay paths i A j and i j.

There are numerous possible avenues Alice can take to
increase the likelihood of j accepting her own block instead
of the one found by i. First, Alice can perform attacks
targeting the overlay network’s topology and place corrupted
nodes on paths between (i, j) pairs. These attacks can be
exacerbated by known weaknesses of Bitcoin’s networking
stack. For example, each Bitcoin node by default accepts
only 117 incoming connections, and an attacker can easily
consume these slots by establishing multiple connections to
every peer. Second, Alice can attempt to reduce the end-to-
end latency of the overlay paths she controls. As is known,
the Bitcoin protocol takes three rounds of interaction to
actually deliver a block. The first two rounds are optional,
but serve to reduce unnecessary network traffic; an attacker
can trivially skip these, and achieve better latency accord-
ingly. Finally, known vulnerabilities such as the “Inv-Block”
attack [12], [19] effectively allows the attacker to sway j to
only request i’s block through the overlay path i A j,
as long as the attacker can relay a small metadata message
to j more quickly than the i j overlay path.

Despite these known weaknesses, the Bitcoin network
also has several defenses that may mitigate such attacks.
Coinscope [19] provides evidence that the public Bitcoin
network is not uniformly random and the topology is skewed
by well-connected “super-nodes” running customized soft-
ware (e.g., operated by exchanges or other services). Even a
single benign super-node can significantly improve network

propagation [6]. Furthermore, large miners and mining pools
are believed to peer directly (e.g., a Bitcoin core developer
operates a dedicated “miner backbone” [4] that is immune
to Inv-Block attacks) in order to defend themselves against
network attackers.

As a simple model, we consider a graph where public
miners i and j have an edge i ։ j if i A j is a
higher latency path than i j, i.e., if miner i finds a block,
then miner j will accept that block, even if the attacker
releases a tying block. An effective “miner backbone” means
that the large mining pools form a clique. Mining pools
can be expected to have a self-edge — even an eclipse
attacker cannot prevent a pool from building on its own

recently-mined block. On the other hand, a collection of
many vulnerable individuals may be modeled as a single
vertex without a self-edge. We can compute the effective
value of γ from such a graph as:

γ = 1−
∑

i։j

βiβj

β2

where βi is the hashpower of i (expressed as a fraction
of the total network). More specifically, the sub-term βi

β

denotes the conditional probability that i finds the next block
given that Bob finds a block. 2

We now use the known distribution of mining hashpower
to pose plausible attack scenarios. For example, suppose the
attacker is the largest mining pool (α = 21%,β = 79%),
another β0 = 27% (rounding down) comprises the small
pools and other unknown or uncategorized miners, and the
remaining 52% is distributed among six other large pools as
shown in Figure 3. For a worst-case attack, we may model
β0 as disconnected and vulnerable nodes (i.e., no self-edge
for βi), and allow the attacker to defeat the miner backbone
and win every race (i.e., no edges between different pools),
then the effective γ value would be 0.92. Alternatively, we
may suppose the “miner backbone” is effective, and that the
other miners are well-connected (i.e., there is a self-edge for
β0), but the attacker can win races between the large pools
and the other miners: this would result in a γ value of 0.45.
Lower values of γ are likely attainable at lower cost to the
attacker.

We will therefore consider the entire range 0 ≤ γ ≤ 0.92
to be plausible values.

3. Stubborn Mining

In this section, we introduce a new class of Bitcoin
mining strategies, called stubborn mining, that strictly gen-
eralizes (and improves upon) the prior known selfish mining

strategies [9].

Intuition. In a nutshell, all known deviant mining strate-
gies work by selectively withholding blocks mined by the

2. Here we make a simplifying assumption that if i ։ j, then the
attacker always loses the race between public miners i to j. In reality,
overlay paths have variance in propagation time and bandwidth, therefore
the existence of an edge is not binary, but can be fractional. However, our
basic model suffices for estimating a plausible range of γ.

attacker, causing the rest of the network to waste its hash-

power on redundant blocks. The selfish mining strategy,
in particular, withholds blocks when it is “in the lead”
(i.e., when it has created a private chain longer than that
of the honest network), but cooperates with the honest
network when it falls behind. The key insight behind our
new stubborn mining strategies is that the attacker should

not give up so easily! Instead, the attacker can often increase
profits by mining on its private chain more often, even
under circumstances where a selfish-mining attacker would
acquiesce to the public chain.

As mentioned earlier in Section 2, abstractly, a mining
strategy defines a state machine, where each state represents
lead of Alice’s private block chain over Bob’s public block
chain and whether there exists a fork. There are two types
of state transitions in this state machine:

1) State transitions that take place when Bob finds a new
block. In this case, Bob always announces the new block
immediately. At this point, Alice has the freedom of
performing the following actions: 1) if Alice’s private
chain is leading, Alice can decide whether and how many
blocks to reveal from its private chain to Bob; and 2) if
Alice’s private chain is sufficiently behind Bob’s chain,
Alice may choose to abandon mining on its private chain
and accept Bob’s chain. Alice’s decision in this case will
define how the Markov chain will transition when Bob
mines a next block.

2) State transitions that take place when Alice finds a new
block. In the latter case, i.e., when Alice mines a next
block, we assume that Alice may simply continue to mine
on her own private chain. Whether Alice immediately
reveals her new block to Bob depends on the strategy
and the current state.

Roadmap. Depending on Alice’s actions when Bob mines
a new block, we will introduce the following three stubborn
strategies.

1) Lead stubborn, a.k.a., “L-stubborn” (Section 3.1)
2) Equal Fork stubborn, a.k.a., “F -stubborn” (Section 3.2)
3) Trail stubborn, a.k.a., “Tj-stubborn” (Section 3.2)

These three strategies are not mutually exclusive but can be
combined to form hybrid strategies (Section 3.3).

3.1. Warm Up: “Lead-Stubborn” Mining

We begin by describing a simple strategy, called lead-

stubborn, that outperforms selfish mining. We will describe
lead-stubborn mining by comparing it with selfish min-
ing [9]. Figure 4 shows the state machines of selfish mining
and lead-stubborn mining simultaneously.

As we can see, when lead = 2 and if Bob finds the
next block and closes the gap by 1, the selfish miner would
immediately reveal her private chain to guarantee that the
network chooses her private chain over Bob’s. Therefore,
the state transitions to lead = 0. In lead-stubborn mining,
instead of revealing her entire private chain, Alice reveals
the next block on her private chain only, to match the length

TABLE 3: Possible actions of Alice (stubborn miner) upon state transition, and expressing strategies in terms of these
actions.

State Transition Action Selfish Mining Stubborn Strategy

lead = 2 and Alice finds a block Reveal private chain to Bob? Reveal Do not reveal in L-stubborn

lead = 0
′ (with a fork) and Alice finds a block Reveal private chain to Bob? Reveal Do not reveal in F-stubborn

Behind by x, x ≥ 0 and Bob finds a block Accept Bob’s block? Accept
Do not accept till x = j

in Tj -stubborn

of the public chain. In this case, γ fraction of Bob will mine
on Alice’s private chain, and 1− γ fraction mines on Bob’s
fork; and the state transitions to lead = 1′. This has pros and
cons for the attacker Alice: if the (1 − γ) fraction of Bob
succeeds in advancing Bob’s chain, Alice may risk losing
her private chain. However, if Alice or the γ fraction of Bob
advances Alice’s fork, then Alice has successfully diverted
a part of Bob, (1− γ) fraction, to do useless work.

Moreover, when lead = k for some k > 2, and if Bob
finds the next block, the selfish miner [9] does not reveal
her private chain, and thus the state machine transitions
to lead = k− 1. However, the lead-stubborn miner would
again, immediately reveal one more block on her private
fork, and the state thus transitions to lead = (k − 1)′.

More generally, we could consider a more sophisticated
lead-stubborn miner whose action (including whether to
reveal her private chain and how many blocks to reveal)
depends on the value of lead, i.e., state-dependent actions.
Our simulation results suggest that even without consider-
ing state-dependent actions, a simple-minded lead-stubborn-
miner already achieves up to 13.94% higher gains than
selfish miner under typical parameterizations of α and γ
(see Section 2.5).

Selfish mining

1 2 30

0′

ααα

α

β

ββ

β
γβ(1− γ)β

α

β

Lead stubborn mining

1′ 2′

β β

γβ γβ

(1− γ)β (1− γ)β

α

γβ

(1− γ)β

α

Figure 4: Lead-stubborn mining. Black + magenta transi-
tions define selfish mining. Black + green transitions define
lead-stubborn mining. Markov chain states are defined in
Section 2.2 and Figure 1.

3.2. Other Stubborn Mining Strategies

We now explore other possible strategies besides lead-
stubborn mining. All these stubborn-mining strategies are in
Table 3 where we highlight the difference from the selfish
miner.

1) Equal Fork stubborn (F -stubborn): When Alice wins
a race in state lead = 0′, the selfish-miner [9] would
hurry to reveal her new block to the public, transitioning
to lead = 0. By contrast, the F -stubborn miner would

1 2 30

0′

-1
ααα

α

β

ββ

γβ

(1− γ)β

0′′

(1− γ)β

α

α

β

β

α

β

α
Equal-Fork stubborn mining

Lead stubborn mining

Trail stubborn mining (T1)

β

1′ 2′

β β

γβ γβ

(1− γ)β (1− γ)β

α

α

Selfish mining

γβ

(1− γ)β

α

Figure 5: Lead, Equal-Fork, and Trail Stubborn min-
ing strategies. Black + magenta transitions denote selfish
mining [9]. Black + green transitions denote lead-stubborn
mining. Black + blue transitions denote equal-fork stubborn
mining. Black + brown transitions denote T1-stubborn min-
ing. Markov chain states are defined in Section 2.2 and
Figure 1.

conceal her new block and continue mining on it pri-
vately, thus proceeding to state lead = 1. In Figure 5,
this event corresponds to the dotted blue edge (labeled
with α) leaving state 0′ into state 1.

2) Trail stubborn (Tj-stubborn): When Alice’s private
chain falls behind the public chain, she may decide to
continue mining on it anyway, in the hope of catching up.
In this case, the Markov model includes negative states
(e.g., lead = −j indicates that Alice’s private chain lags
behind the public by j blocks).
We consider a family of “trail stubborn” strategies pa-
rameterized by a threshold j, such that if Alice is Tj-
stubborn then she accepts the public blockchain once
her private chain falls j +1 behind. Thus a Tj-stubborn
strategy is characterized by a β edge from lead = −j
to lead = 0. Finally, when Alice catches up from
lead = −1, the state machine transitions to lead = 0′′:
in this special double-primed state, all of Bob is mining
on the public fork since Alice’s private chain just caught
up from behind (c.f. in the single-primed states, Bob’s
mining power is divided between the two forks). The T1

strategy is illustrated in Figure 5 by the brown dashed
states and edges.

S

F

L

LF

T1

FT1

LT1

LFT1

T2

FT2

LT2

LFT2

Lead
Stubbornness

Trail Stubbornness

Equal Fork

Stubbornness

H

Figure 6: Partial ordering of (hybrid) stubborn strategies.
All edges’ directions are along one of the three arrows. A
path from a strategy X to a strategy X’ to its right indicates
that X’ is “more stubborn” than X i.e. X’ spends more time
mining on a private chain than X.

3.3. Hybrid Stubborn Mining Strategies

Altogether, these three insights (L, F , and Tj stub-
born) represent heuristic components of mining strategies
that can be applied independently or jointly. We represent
these choices pictorially in Figure 6 as dimensions on a
directed graph.This chart suggests a partial ordering among
the strategies. Indeed, if there is a path from strategy X to
X’ in the directed graph, then X’ is “more stubborn” than X
in the sense that X’ spends more time mining on a private
chain than X. Looking ahead, our simulation results will
show that this intuitive notion of stubbornness is a useful
heuristic for identifying the best strategy depending on the
network parameters.

Further possible extensions. These are not the only strate-
gies that are possible. In fact, there are an infinite number
of possible strategies. Such strategies can be developed by
combining different strategies. One way to do so is based on
conditions. A miner may change its stubbornness condition-
ally based on certain factors, for example depending on the
length of its private blockchain. As an instance, a miner
may behave according to the T2-stubborn strategy if its
private blockchain has j blocks for j ≥ 3, and T0-stubborn

otherwise. If the miner’s private blockchain contains at least
three blocks in total, then it will continue to mine on it
until it falls behind the public blockchain by 2. Otherwise,
if the private blockchain contains fewer than three blocks,
the miner accepts the public blockchain as soon as it falls
behind.

Allowing strategies to depend on the length of the private
blockchain adds another dimension to the potential strategy
space. There may be other strategies based on different
conditions as well. In this paper, we limit our attention
to strategies that depend only on lead, and leave possible
generalizations for future work.

4. Stubborn Mining Results

4.1. Methodology

In this section we use numeric simulations to evaluate
the profitability of our stubborn mining strategies. We sim-
ulate the gains of each of the parties when Alice employs

these strategies, while Bob mines honestly. For each choice
of α, γ, and each strategy, we simulate 100 sample paths
of the state machine, where each sample path contains 105

iterations. For each sample path, it is easy to calculate the
respective gains of Alice and Bob. Therefore, from the 100
sample paths, we can estimate both the mean of Alice’s
and Bob’s gains, as well as the confidence interval for this
estimate.

4.2. Which strategies earn the most revenue?

Result 1. There is no one-size-fits-all dominant strategy for
all parameters.

In particular, Figure 7b shows the dominant strategy
under different parameters. Region R1 denotes the parameter
space when honest mining wins. Region R2 denotes the pa-
rameter space when the selfish-miner wins. All other colors
denote our new stubborn strategies. For trail-stubbornness,
our results depict strategies involving only T1. For T2 and
hybrid strategies involving T2, we checked a large portion
of the parameter space and did not observe a case where
T2 outperformed T1. Therefore, trail-stubborn strategies Tj

for j ≥ 2 are likely effective only for tiny regions of the
parameter space.

Result 2. Selfish mining is not optimal for a large fraction

of the parameter space.
Specifically, Figure 7a shows the region where selfish

mining outperforms honest – this was observed by Eyal et
al. [9]. Interestingly, Figure 7b shows that selfish mining
is the dominant strategy (among the strategy space we
consider) only for a narrow range, i.e., the region labeled 2
in Figure 7b.

4.3. How much revenue can a miner earn using our

new strategies?

Figure 8 shows the gain of the best stubborn strategy
compared to baseline strategies (honest mining or selfish
mining).

We highlight several observations:

Result 3. Stubborn mining strategies can perform up to
25% better than selfish mining for many reasonable values
of α and γ. For example, at α = 0.4, γ = 0.9, the best
stubborn strategy outperforms selfish mining by 23% and
outperforms honest mining by 63%.

As seen in Figure 8b, for a typical value of γ = 0.9,
selfish mining strategy is outperformed by other stubborn
strategies at α ≥ 0.15. At the time of this writing, all the
Bitcoin miners together earn ˜$800K per day. Thus, a 23%
increase in computation power corresponds to $800K × 0.23
× 0.4 = $73K of additional revenue per day.

Result 4. Although seemingly counter-intuitive at first
sight, for α > 0.33 trail stubbornness outperforms non-trail-
stubborn counterparts by up to 13%.

When Alice’s private chain is lagging behind, the con-
ventional wisdom is that Alice should give up and mine

(a) Selfish mining [9] outperforms honest in region 2. (b) Stubborn mining outperforms selfish mining in regions
R3-R7.

Figure 7: Dominant strategies for different values of α and γ. The black dots indicate regions with no dominant strategy
at 95% confidence – this typically happens at the boundary of strategies.

(a) Compared to honest mining. (b) Compared to selfish mining.

Figure 8: Relative gain of Alice’s best stubborn strategy.

on the public’s chain. However, a trail-stubborn miner does
not give up. By not giving up, although it is less probable
for Alice to overtake the public again, her rewards are
larger when she does manage to overtake the public. Trail
stubbornness is effective for reasonably large values of α.

In Figure 7b, regions R4-R7 depict when trail-
stubbornness helps. In Region R5 of Figure 7b, T1-stubborn
mining is the best strategy, and leads to 1.44% additional
gains relative to selfish mining, and 94.35% gains relative
to the honest miner.

Trail stubbornness is also desirable as part of hybrid
strategies (e.g., regions R4, R6, and R7 in Figure 7b). In
these regions, Strategy LT1 has up to 12.43% relative gain
over L, FT1 up to 2.73% over F , and LFT1 up to 8.4%
over LF strategy.

Result 5. The relative gain from stubborn mining (relative
to honest mining) is greater when either γ or α increases.

As seen from Figure 8a, the gains increase with increas-
ing value of one of γ and α for fixed value of the other.

4.4. Comparison with Sapirshtein et al.[23]

Concurrent to and independent of our work, Sapirshtein
et al.[23] also observe that selfish mining is suboptimal.

They define a broad strategy space and use a combina-
tion of analytic bounds and numeric solvers to compute
approximately-optimal (“eps-OPT”) strategies given α and
γ. However, they do not consider how stubborn mining
attacks can be composed with eclipse attacks (Section 5).

In Figure 9, we compare the revenue of our best stubborn
strategies with those reported by Sapirshtein; our stubborn
mining strategies perform very similar (at worst within 1.4%
relative gain versus honest mining) to theirs.

5. Exploiting an Eclipsed Miner

In this section, we investigate how stubborn mining
strategies can be (non-trivially) composed with eclipse at-
tacks.

We use the terminology eclipse attack to describe net-
work attacks where the adversary essentially partitions the
honest miners into Bob (the public), and Lucy (the eclipsed)
as shown in Figure 10. Alice controls the communication
between Bob and Lucy.

Prior works demonstrating eclipse attacks. The feasibility
of eclipse attacks (either short-term or long-term) have been
demonstrated in a couple of earlier works [13], [11]. These
works show how to exploit flaws in Bitcoin’s networking
stack to facilitate such eclipse attacks without having to

0.0 0.1 0.2 0.3 0.4 0.5
Hashpower of Alice (α)

0%

20%

40%

60%

80%
R

el
at

iv
e

G
ai

n
o

f
A

li
ce

γ = 0.0

Selfish Mining
eps-OPT policy [23]
This paper

(a) γ = 0.0

0.0 0.1 0.2 0.3 0.4 0.5
Hashpower of Alice (α)

0%

20%

40%

60%

80%

R
el

at
iv

e
G

ai
n

o
f

A
li

ce

γ = 0.5

Selfish Mining
eps-OPT policy [23]
This paper

(b) γ = 0.5

0.0 0.1 0.2 0.3 0.4 0.5
Hashpower of Alice (α)

0%

20%

40%

60%

80%

100%

R
el

at
iv

e
G

ai
n

o
f

A
li

ce

γ = 1.0

Selfish Mining
eps-OPT policy [23]
This paper

(c) γ = 1.0

Figure 9: Comparing stubborn mining with the results of Sapirshtein et al. [23] Relative gain due to stubborn mining
strategies perform very similar to eps-OPT.

Eclipsing
Miner
(Alice)

Eclipsed
Miners
(Lucy)

Public
(Bob)

λαβ

Figure 10: An eclipse attack where the adversary Alice
partitions the honest network into Bob (the public) and Lucy
(the eclipsed). We use the notation β, α, λ to denote the
percentage of hashpower owned by Bob, Alice, and Lucy
respectively.

deploy a large number of corrupted peers. Moreover, these
works suggest the possibility of combining the eclipse attack
with a selfish mining attack to allow an adversary to gain a
higher advantage in the mining game.

Composing stubborn mining with an eclipse attack. In
the remainder of this section, we systematically explore how
a stubborn mining attack can be composed with an eclipse
attack. We first describe a few naı̈ve methods for combining
the two attacks (including “destroying” or “colluding with”
the eclipsed victim Lucy). We then show how the adversary
can increase its payoff by composing stubborn mining and
eclipse attacks in non-trivial ways. Surprisingly, we show
that in some cases, the attacker’s best strategy leads to a
benefit for the eclipsed nodes.

5.1. Extended Model with an Eclipsed Miner

We extend the basic model from Section 2 with a third
party, Lucy, who represents a mining entity accounting for
a λ fraction of the network’s hashpower (where α+β+λ =
1) (see Figure 10). Lucy is the victim of an eclipse attack
mounted by Alice. That is, Alice partitions the network and
controls all of the connections between Lucy and Bob.

Our goal is to find strategies that lead to the highest
gains for Alice. We only concern ourselves with Alice’s
steady state revenue in the view of the public network’s
(i.e., Bob’s) blockchain; a private chain kept only between
Alice and Lucy does not count.3

3. In reality, a private chain would allow Alice to perform double-spend
attacks against Lucy (if Lucy consists of any merchants or exchanges).

Most interesting regions of the parameter space. Through
the rest of this paper we will primarily focus on the case
when α + λ < β; that is, Alice and Lucy together still
comprise less than half the network’s total hashpower. As
we shall soon see, under these conditions the best strat-
egy depends heavily on the exact parameters and involves
strategically delaying messages, the eclipsing miner can
exploit the victim for greater profit. Other regions are either
degenerate or not as realistic. For example, α > β, Alice
should simply deliver no messages between Lucy and Bob,
as this degenerates to a 51% attack where Alice overwhelms
Bob and earns 100% of the mining reward. The remaining
regions of α+λ > β may be interesting, but are less likely
in realistic scenarios since it requires the adversary to wield
and eclipse a large fraction of the network.

5.2. Strategies Exploiting Eclipse Attack Victims

Naı̈ve compositions. We first describe some naı̈ve (i.e.,
extreme) ways through which Alice can combine stubborn
mining with an eclipse attack.

• No eclipsing: Even if Alice controls all the connections
between Lucy and Bob, she allows full communication of
blocks between Bob and Lucy and does not exploit the
attack. Alice may perform any of the stubborn strategies
against the union of Lucy and Bob. Clearly, for every strat-
egy of this class, Alice’s revenue corresponds to her revenue
in the simpler model without eclipse attacks after correcting
the parameters to include both Lucy and Bob. This strategy
is represented by the top-most layer of Figure 11 which we
will discuss in detail further on.

• Destroy the eclipsed victim: Alice ignores all of Lucy’s
mined blocks, even if Alice has no private fork. This has
the effect of destroying Lucy’s computation power, and
therefore increases Alice’s effective gain. This is represented
as the layer of strategies marked with ‘Destroy Lucy (D)’
in Figure 11. For example, if Alice follows selfish mining
and decides to destroy Lucy, then her gain would be equal
to

gainD(α, λ) = selfishGain(
α

α+ β
)

where selfishGain(x) is the function defining the gains of a
selfish miner with computation power x.

E
cl
ip
si
n
g
D
eg
re
e

S

F

L

LF

T1

FT1

LT1

LFT1

H

S

F

L

LF

T1

FT1

LT1

LFT1

H

S

F

L

LF

T1

FT1

LT1

LFT1

H

S

F

L

LF

T1

FT1

LT1

LFT1

H

Lead
Stubbornness

Equal Fork
Stubbornness

Trail Stubbornness

No Eclipsing

Collude with
Lucy (C)

Destroy if no
stake (DNS)

Destroy
Lucy (D)

Figure 11: Strategy Space. The strategies we consider are
derived by combining several heuristic components. Along
the vertical axis are different ways for the attacker to interact
with the “eclipse attack” victim (i.e., to collude with them or
to “destroy” them by permanently isolating them from the
network). The other three axes correspond to other forms
of “stubbornness” (i.e., conditions under which the selfish
miner continues to mine on an apparently losing block)

• Collude with the eclipsed victim: Alice can collude with
Lucy and force her to cooperate as a stubborn miner. Alice
and Lucy would maintain a single private blockchain, and
Alice would accept all the blocks mined by Lucy. However,
Alice would transmit blocks to Bob according to one of the
stubborn mining strategies. This is represented by the layer
marked as ‘Collude with Lucy(C)’ in Figure 11.
For example, if Alice follows selfish mining and she decides
to collude with Lucy, then her gain would be given by:

gainC(α, λ) =
α

α+ λ
× selfishGain(α+ λ)

where selfishGain(x) is the function defining the gains of a
selfish miner with computation power x.

Non-trivial composition. There are many possible moderate
strategies that strike some compromise between Collude and
Destroy. Below we describe a strategy that we find to be
particularly effective called “Destroy if No Stake” (DNS).

• Destroy if No Stake (DNS): In the DNS strategy, assume that
Alice always reveals the head of her own (private) chain to
Lucy. Lucy can be mining either on Alice’s chain or a private
chain of Lucy’s own. When Lucy mines a block, Alice will
decide whether to accept it based on the following strategy:

Alice accepts a block mined by Lucy only if Lucy’s block
builds on top of Alice’s private chain. Otherwise, when
Alice has no private blockchain or when Alice and Lucy
are working on their separate blockchains - Alice does not
accept the blocks mined by Lucy.
This strategy can be thought of as conditionally colluding
with or destroying Lucy, depending on the state of Alice’s
and Lucy’s blockchains.

Organizing the infinite strategy space. As we mentioned,
in conjunction with each of the three naı̈ve eclipsing strate-
gies (No Eclipse (N), Collude (C), and Destroy (D)), as
well as Destroy-if-No-Stake (DNS), the eclipse attacker can
employ any of the stubborn strategies we discussed in Sec-
tion 3. We can therefore classify each strategy according to
its “eclipse” behavior component and its “stubborn mining”
component, as illustrated in Figure 11. The X axis corre-
sponds to “stubbornness” as described in Figure 6 and the
Y axis roughly corresponds to the amount of communication
permitted between Alice and Bob.

Further variations not considered. There exist an infinite
number of strategies that lie between Collude and DNS and
between DNS and Destroy, and therefore we do not simulate
all of them. For instance, between Collude and DNS, we can
define strategies in the following way: Alice colludes with
Lucy only if it has a block in the first j blocks of the private
chain. If not, it ignores Lucy until it merges with the public.
j = 1 corresponds to DNS where j = ∞ corresponds to
Collude. As j increases from 1 to infinity, the degrees of
eclipsing decreases, i.e. the strategies move closer to the
collude strategy.

Since there are infinitely many such strategies, finding
an analytical solution to determine the dominate strategy for
any parameter choice is an interesting direction for future
research.

5.3. Modeling Eclipse Mining Strategies

In order to model the revenue of the eclipse attacker
under various mining strategies, we must extend our state
diagram in a non-trivial way. We describe in detail the state
diagram model for the DNS-F (i.e., Destroy-if-No-Stake and
Equal-Fork Stubborn strategy), as shown in Figure 12.

In this strategy, Alice maintains a private chain as in the
selfish mining strategy. As the eclipsing strategy is DNS,
if Alice mines a block before Lucy does, Alice shares
its private chain with Lucy and they mine together on
the private chain until the chain is released to the public.
However, if Lucy mines the first block, Alice decides to
ignore her (destroy it) until she is ahead of Lucy again.
Moreover, since the stubbornness degree is F, whenever the
concerned party (Alice or Lucy, while colluding, or only
Alice otherwise) finds a block in case of a tie with Bob, the
block is not released and mined on privately.

The state diagram (in Figure 12) is divided into four
regions:

Region 1 represents the scenario where Alice, Bob and
Lucy mine on the same block.

l(α)− l(β)

l(λ)− l(α)

0 1

1

0

2

2

3

3

1

2

3

4

Bob
Lucy

Alice

Alice, Bob, Lucy
mine on the same
fork

Alice, Bob, Lucy
mine on different
forks

Alice, Bob mine
on the same fork.
Lucy mines on
another fork.

1

0

2

3

l(λ)− l(α)

0 1 2 3 l(α)− l(β)

Alice, Lucy mine on the same fork.
Bob mines on another fork.

Figure 12: The markov chain diagram of a combination of eclipsing and stubborn strategies: Destroy if No Stake
(DNS) and F -stubborn strategy. l(α), l(β), l(γ) represent the lengths of chains of Alice, Bob and Lucy, respectively.
Dotted blue arrow indicates transitions when Alice mines a block. Solid red arrow indicates transitions when Lucy mines
a block. Dashed green arrow indicates transitions when Bob mines a block.

Region 2 For all states in Region 2, Alice and Bob mine
on the same block, whereas Lucy mines on a different
block. In DNS, Lucy mines on a different block only
if it deviated from the public chain and Alice has no
stake in it; hence, Lucy essentially leads Alice and Bob.
Hence, the states represent the relative lead maintained
by Lucy over Alice.

Region 3 Similarly, in Region 3, Alice and Lucy mine on
the same block, whereas Bob mines on a different
block. This is the phase where Alice and Lucy mine
together on the same chain and are maintaining a lead
over the public. The states represent the lead of this
private chain over the public.

Region 4 In Region 4, all three parties mine on different
blocks. Similar to the reasoning mentioned earlier, for
all states in this region, Alice maintains a lead over the
public and Lucy maintains a lead over Alice. The states
are parameterized by two values representing the two
leads.

6. Eclipsed Mining Results

In this section, we discuss the insights we gain from our
experiments with stubborn and eclipsing strategies discussed
in Figure 11.

Result 6. No one strategy is the best at all parameter values.

Figure 13 shows the strategy that is most profitable for
Alice under different parameters. We show the cases for γ ∈
{0, 0.2, 0.5, 0.9} here.Similar to Section 4, we simulated all

the strategies and report the best strategy if it is significantly
more than the runner-up at a 95% confidence interval.

For extreme values of γ (near 1 or 0), naı̈ve strategies
(collude or destroy) perform best. For intermediate values
of γ, the conditional DNS strategy performs best.

Result 7. Compared to naı̈ve strategies, an eclipse attacker
using our best strategies can earn significantly more revenue.
For example, when α = 0.4, Alice can achieve up to 30%
more gains in comparison to naive combination of eclipsing
and selfish mining strategies.

Figures 14 and 15 show how much the attacker’s revenue
increases when she performs her best strategy, compared to
selfish mining and naı̈ve strategies, respectively.

Using the combination of eclipsing and stubborn strate-
gies, Alice can gain considerably more compared to their
naive combination.

These results show that an attacker should keep in mind
the full range of strategies we discuss, and should choose a
strategy based on estimated network parameters in order to
maximize revenue.

Result 8. Surprisingly, for some parameter values, the
attacker’s best strategy benefits the eclipse attack victim.

Let us look at Lucy and Bob’s gain when Alice performs
her best strategy. Their respective gains are represented in
Figures 16 and 17.

Compared to an ordinary network (one with no attacker),
Lucy’s revenue increases whenever Alice “colludes” with
her and uses any stubborn mining strategy. Intuitively, Alice
and Lucy both benefit from this collusion at Bob’s expense,

(a) γ = 0 (b) γ = 0.20

(c) γ = 0.50 (d) γ = 0.90

Figure 13: Alice’s dominant strategy for each value of α and λ. The green regions represent where non-trivial compositions
of mining and eclipse attack outperform other strategies. For clarity, we only show the best strategies in the legend, and
not all of them.

(a) γ = 0.2 (b) γ = 0.5 (c) γ = 0.9

Figure 14: Alice’s relative gain compared to selfish mining [9].

and Lucy unwittingly becomes a selfish miner. Lucy’s gains
can even double in some cases, when α+ λ is close to 0.5.

Since the victim benefits from being eclipsed, the at-
tacker and the victim effectively form a symbiotic relation-
ship, where eclipsed node shares in the increased profits
of the attacker. Since our empirical results suggest that
“colluding” strategies are optimal for the attacker at some
system parameters, this implies that there are equilibria
where the eclipsed node prefers to stay eclipsed, even if
the cost of defending is zero.

7. Discussion

Detecting and inferring attacks. Eclipse attacks and stub-
born mining can likely be detected if they occur in practice.
One way is by observing the stale block rate – a stale block
is one that has valid transactions and proof-of-work, but is
ultimately excluded from the main chain [3].4 Stale blocks
occur by chance in ordinary operation, even when every
miner is honest. When all miners are honest, the relative
rate of stale blocks is the same for all miners. However, if a
miner is stubborn and/or performs an eclipse attack, as we

4. Stale blocks are often (but inaccurately) referred to as “orphans” [18]

(a) γ = 0.2 (b) γ = 0.5 (c) γ = 0.9

Figure 15: Alice’s relative gain compared to to the best naı̈ve strategies. Naı̈ve strategies consist of naı̈ve compositions
of eclipsing and selfish mining (see Section 5.2).

(a) γ = 0.2 (b) γ = 0.5 (c) γ = 0.9

Figure 16: Lucy’s relative gains when Alice is performing her dominant strategy.

(a) γ = 0.2 (b) γ = 0.5 (c) γ = 0.9

Figure 17: Bob’s relative gains when Alice is performing her dominant strategy.

(a) Alice (b) Lucy (c) Bob

Figure 18: The stale block rate of Alice, Lucy and Bob when Alice performs her best strategy. Stale block rate is the
percentage of blocks that each one of them loses as compared to when they are mining honestly. Here γ = 0.9 in all the
cases.

Rate of block Eclipsing Stubbornness
orphanage Component Component

A = B = L No Honest
A < B = L No Any strategy but honest
A = L < B Collude Any strategy but honest
A = B < L Destroy/DNS Honest
A < B < L Destroy/DNS Any strategy but honest
A < L < B DNS Any strategy but honest

TABLE 4: Summary of inferences drawn about strategies
employed by the attacker based on the stale block rates. We
assume γ is high, which is practically feasible. The parties
are represented by their initial characters.

show in Figure 18, the relative rate of stale blocks depends
on the attacker’s strategy and the network parameters. Bob
can thus detect an attack by counting stale blocks and com-
paring with a baseline. Several public blockchain services
(e.g., blockchain.info) collect and report stale blocks.

Furthermore, the relative impact on the parties involved
can depend on the strategy employed by the attacker. For
example, an eclipse attack victim may detect the attack
comparing with the public average. We summarize these
dependencies and the inferences that may be drawn in
Table 4.

Are these attacks likely to occur? Why hasn’t selfish
mining been seen in practice? Stimulated by the selfish
mining attack’s publication, the Bitcoin community has
deployed various services to monitor for evidence of the
attack occurring. Despite (or because of!) this widespread
awareness, the selfish mining attack has not been observed
in practice.

Recall that selfish mining has not been shown to be an
equilibrium strategy – in fact our models assume that the
rest of the network (Bob) is compliant with the reference
protocol. In reality, the members of the Bitcoin network may
react and change their strategy (for example, launching “vig-
ilante” attacks against Alice [15]) or upgrade the protocol
itself [3].

Another explanation is that potential selfish miners may
consider it risky to get caught. Several watchdog services
(e.g., [22]) already pay close attention to mining pools. Since
it takes two weeks for the Bitcoin difficulty to adjust, a
stubborn mining attack must be sustained this long before
any extra revenue comes in. A “brief” stubborn mining
attack, or one that is detected before the difficulty adjusts,
would not be profitable.

However, these explanations rely on conditions that may
later change. The governance structure of the Bitcoin net-
work is uncertain [3], so adaptive responses may be diffi-
cult to coordinate. Furthermore, the broader cryptocurrency
“ecosystem” already includes hundreds of rivals using sim-
ilar proof-of-work mining – these may also be vulnerable.

While our work shows that the potential profit of an
attacker is greater than previously known, the likelihood of
these attacks remain uncertain overall.

Should mining power be dispersed? Even using our im-

proved strategies, honest mining is an attacker’s best strategy
for small values of α. This is also true for the strategy
space considered by Sapirshtein et al. [23] in concurrent
and independent work. For the strategy space we consider,
honest mining is therefore a Nash equilibrium strategy as
long as no coalition or individual entity exceeds a threshold
size (depending on γ). This bolsters the motivation for
mechanisms intended to discourage consolidation of mining
influence, such as memory-bound proofs of work [24] and
coalition-resistant puzzles [20]. Eyal [8] has recently shown
that scenarios where one pool attacks another lead to an
equilibrium where pools have limited size, suggesting that
this property may be self-enforcing.

Eclipse attacks can benefit the victim. As it turns out,
the “victim” of an eclipse attack can sometimes even profit

from the attack, even when the attacker uses the optimal
strategy (as shown in Figure 16). In such cases, Alice and
Lucy effectively have a mutually beneficial relationship and
share their increased revenue relative to Bob.

This implies that users in some cases may have little
incentive to detect or defend against eclipse attacks. For
example, suppose Lucy has an accurate belief about the at-
tacker’s hashpower and the network propagation parameter,
and that Lucy’s strategy space consists of choosing to invest
(or not to invest) in an eclipse-resistant network connection.
Then for some values of α and γ (and still assuming that
Bob is unconditionally compliant), it is clear that the Lucy’s
dominant strategy is not to invest, and thus the unique
equilibrium involves a successful colluding eclipse attack.

8. Conclusion and Future Work

We show that in decentralized cryptocurrencies such as
Bitcoin, mining strategies form a complicated space, and this
space can be expanded further by combining mining attacks
and network-level attacks in non-trivial manners. Our work
leaves open the following challenges:

1) a more complete characterization of the complex strategy
space and an analytical method for deriving and proving
the optimal strategy given any parameter choice; and

2) designing a provable secure consensus protocol whose
security is formally founded on rationality assumptions
rather than honest majority. By unfolding the complexity
of the strategy space, our work suggests that to achieve
this goal is likely challenging especially if the formal
model also needs to capture realistic network-level prop-
agation.

9. Acknowledgements

We thank the anonymous reviewers for their insightful
feedback. We thank Yonatan Sompolinsky for providing
us with data corresponding to results in Sapirshtein et
al. [23]. This work is funded in part by NSF grants CNS-
1314857, CNS-1453634, CNS-1518765, CNS-1514261, a
Packard Fellowship, a Sloan Fellowship, two Google Fac-
ulty Research Awards, and a VMWare Research Award.

This work was done in part while a subset of the au-
thors were visiting the Simons Institute for the Theory of
Computing, supported by the Simons Foundation and by
the DIMACS/SimonsCollaboration in Cryptography through
NSF grant CNS-1523467. Parts of this work is supported
by Maryland Procurement Office contract H98230-14-C-
0137, ARO grants W911NF11103, W911NF1410358, and
W911NF09102.

References

[1] The rise and rise of bitcoin. Documentary, http://bitcoindoc.com/.

[2] A. Biryukov and I. Pustogarov. Bitcoin over tor isn’t a good idea.
arXiv preprint arXiv:1410.6079, 2014.

[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten. Research Perspectives and Challenges for Bitcoin
and Cryptocurrencies (Extended Version). Cryptology ePrint Archive,
Report 2015/452, 2015.

[4] M. Corallo. High-speed bitcoin relay network. http://sourceforge.net/
p/bitcoin/mailman/message/31604935/, November 2013.

[5] N. T. Courtois and L. Bahack. On subversive miner strategies and
block withholding attack in bitcoin digital currency. arXiv preprint

arXiv:1402.1718, 2014.

[6] C. Decker and R. Wattenhofer. Information propagation in the bitcoin
network. In IEEE P2P, 2013.

[7] S. G. Ethan Heilman. Alison Kendler, Aviv Zohar. Eclipse attacks
on bitcoins peer-to-peer network. Cryptology ePrint Archive, Report
2015/263, 2015.

[8] I. Eyal. The Miner’s Dilemma. In IEEE Symposium on Security and

Privacy, 2015.

[9] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Financial Cryptography, 2014.

[10] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Eurocrypt, 2015.

[11] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun. Is bitcoin
a decentralized currency? IEEE Security & Privacy, 12(3):54–60,
2014.

[12] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun. Tampering
with the delivery of blocks and transactions in bitcoin. Cryptology
ePrint Archive, Report 2015/578, 2015. http://eprint.iacr.org/.

[13] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks
on bitcoin’s peer-to-peer network. 2015.

[14] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S.
Rosenschein. Bitcoin mining pools: A cooperative game theoretic
analysis. In Proceedings of the 2015 International Conference on

Autonomous Agents and Multiagent Systems, pages 919–927. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2015.

[15] Littleshop. A user ghashthrow has announced that they are selfish
mining at ghash.io. https://bitcointalk.org/index.php?topic=651451.0,
June 2014.

[16] L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor. On
power splitting games in distributed computation: The case of bitcoin
pooled mining. Technical report, Cryptology ePrint Archive, Report
2015/155, 2015, http://eprint. iacr. org, 2015.

[17] J. Matonis. The bitcoin mining arms race: Ghash.io
and the 51% issue. http://www.coindesk.com/
bitcoin-mining-detente-ghash-io-51-issue/, 2014.

[18] A. Miller and R. Jansen. Shadow-bitcoin: Scalable simulation via
direct execution of multi-threaded applications.

[19] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and
B. Bhattacharjee. Discovering bitcoins public topology and influential
nodes.

[20] A. Miller, E. Shi, A. Kosba, and J. Katz. Nonoutsourceable Scratch-
Off Puzzles to Discourage Bitcoin Mining Coalitions (preprint), 2014.

[21] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http:
//bitcoin.org/bitcoin.pdf, 2008.

[22] organofcorti. Neighborhood Pool Watch. http://organofcorti.blogspot.
com/.

[23] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining
strategies in bitcoin. arXiv preprint arXiv:1507.06183, 2015.

[24] J. Tromp. Cuckoo Cycle: a memory-hard proof-of-work system. In
Workshop on Bitcoin Research, 2015.

