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Fibronectin is a multidomain glycoprotein found ubiquitously in human body fluids and
extracellular matrices of a variety of cell types from all human tissues and organs,
including intestinal epithelial cells. Fibronectin plays a major role in the regulation of
cell migration, tissue repair, and cell adhesion. Importantly, fibronectin also serves as a
common target for bacterial adhesins in the gastrointestinal tract. Fibronectin-binding
proteins (FnBPs) have been identified and characterized in a wide variety of host-
associated bacteria. Single bacterial species can contain multiple, diverse FnBPs. In
pathogens, some FnBPs contribute to virulence via host cell attachment, invasion,
and interference with signaling pathways. Although FnBPs in commensal and probiotic
strains are not sufficient to confer virulence, they are essential for attachment to
their ecological niches. Here we describe the interaction between human fibronectin
and bacterial adhesins by highlighting the FnBPs of Gram-positive pathogens and
commensals. We provide an overview of the occurrence and diversity of FnBPs with
a focus on the model pathogenic organisms in which FnBPs are most characterized.
Continued investigation of FnBPs is needed to fully understand their divergence and
specificity in both pathogens and commensals.
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INTRODUCTION

Fibronectin is a multidomain glycoprotein found ubiquitously in human body fluids and
extracellular matrices (ECM) of a variety of human tissues and organs, including intestinal
epithelial cells (Hynes, 1973; Frantz et al., 2010) (Figure 1). After secretion, fibronectin molecules
bind to transmembrane integrins, which facilitate dimerization and cytoskeletal coupling (Schmidt
and Friedl, 2010). The integrin-bound fibronectin is capable of binding to ECM components such
as collagen and laminin. Human fibronectin plays a major role in the regulation of cell migration,
tissue repair, and adhesion. Fibronectin is also a common target for bacterial adhesins in the
gastrointestinal tract.

After its discovery in the mid-1970s, fibronectin was described as a non-integral glycoprotein
that mediates attachment to fibroblasts and hepatocytes (Hynes, 1973; Klebe, 1974). Researchers
first showed that Staphylococcus aureus binds to fibronectin in vitro (Kuusela, 1978). In the nearly
40 years since the discovery of fibronectin-bacterial interactions, fibronectin-binding proteins
(FnBPs) have been identified in both Gram-positive and Gram-negative bacteria, including
pathogens and commensals. Notably, no common sequence features have been identified among
the large collection of known FnBPs. To further complicate the classification of bacterial FnBPs,
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FIGURE 1 | Schematic diagram of extracellular matrix (ECM) components in the intestinal epithelium. The epithelial layer is comprised of simple columnar
epithelial cells (pink). Goblet cells (blue) secrete mucin for cell lubrication and protection. Fibroblasts (dark green) synthesize components of the ECM, including
fibronectin. The gut microbiota (green ovals) consists of a complex community of microorganisms that inhabit the gastrointestinal tract of animals.

single bacterial species often contain multiple, diverse FnBPs.
In this review, we describe the interaction between human
fibronectin structures and bacterial adhesins by highlighting the
FnBPs of Gram-positive pathogens and commensals. We provide
an overview of the multiplicity and diversity of FnBPs, with a
focus on the model pathogenic organisms in which FnBPs are best
characterized.

FIBRONECTIN STRUCTURE

The mature form of fibronectin exists as a heterodimer linked
by two C-terminal disulfide bonds (Keski-Oja et al., 1977)
(Figure 2). There are two distinct forms of mature fibronectin:
soluble and insoluble. Soluble fibronectin is produced by liver
cells and secreted into the bloodstream. Meanwhile, fibroblasts
and endothelial cells synthesize insoluble, cellular fibronectin.
Cellular fibronectin is involved in cell adhesion, migration, and
the deposition of other ECM proteins (Knox et al., 1986; Sottile
and Hocking, 2002). In general, fibronectin consists of 12 FN
type I repeats (FNI), 2 FN type II repeats (FNII), and 15 FN
type III repeats (FNIII). The modular structure of insoluble
fibronectin can include two alternatively spliced FNIII domains
(EIIIA/EIIIB) and one FNIII connecting segment (IIICS).
Notably, soluble fibronectin does not contain the EIIIA and EIIIB
domains (Tressel et al., 1991; Wilson and Schwarzbauer, 1992).
Though both forms of fibronectin are encoded by a single gene,
they contain different arrangements of domains due to alternative
splicing (Schwarzbauer et al., 1983). In fact, 20 isoforms of

insoluble fibronectin have been identified in humans (Ffrench-
Constant, 1995). Specific domain organizations are responsible
for interaction with other host proteins, including collagen,
laminin, integrin, and fibrin (Engvall and Ruoslahti, 1977;
McDonald et al., 1982; Hayashi and Yamada, 1983; Tamkun et al.,
1986; Potts and Campbell, 1994). Modifications to subdomain
structure have been shown to affect structural conformation of
fibronectin, thus affecting the presentation of domains (Pickford
and Campbell, 2004). Changes in loop structures and domain
availability can alter the intricate and specific interactions of
fibronectin with its surroundings (Spitzfaden et al., 1997).

The N-terminal FNI1–FNI5 modules were the first domains in
fibronectin shown to interact specifically with bacteria (Mosher
and Proctor, 1980). As many FnBPs have since been shown
to bind to this region, the FNI1–FNI5 modules represent the
canonical bacterial binding site on fibronectin. These domains
are also required for binding to heparin, fibroblasts, and fibrin
(Sottile et al., 1991; Potts and Campbell, 1994). However, the
FNI4–FNI5 modules alone are sufficient to bind fibrin (Matsuka
et al., 1994). The FNI1–FNI5 modules are required for proper
assembly of the ECM, as well as self-interaction with FNIII
domains (Schwarzbauer, 1991; Vakonakis et al., 2009).

The region immediately downstream of the FNI1–FNI5
modules, consisting of the domains FNI6FNII1−2FNI7−9, is
necessary for binding collagen (Owens and Baralle, 1986a,b;
Banyai et al., 1990). This region is also a non-canonical bacterial
binding site for select FnBPs in Streptococcus pyogenes (Sela
et al., 1993). Additional non-canonical bacterial binding sites
are located at the FNIII12 module and FNIII9–FNIII10 modules,
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FIGURE 2 | Schematic diagram of the multidomain architecture of a cellular fibronectin heterodimer, consisting of 12 FN type I repeats (FNI), 2 FN
type II repeats (FNII), and 15 FN type III repeats (FNIII). The lower branch contains splice variants, which can include two alternatively spliced FNIII domains
(EIIIA/EIIIB) and one FNIII connecting segment (IIICS). The presence and arrangement of these domains are responsible for interaction with bacterial FnBPs (red) and
host proteins (black).

which have been shown to bind FnBPs from Staphylococcus
epidermidis and Clostridium perfringens (Christner et al., 2010;
Katayama et al., 2015). The FNIII12–FNIII14 modules are
necessary for heparin binding, although FNIII13 has been
identified as the primary binding site (Novokhatny et al., 1992;
Ingham et al., 1993). A second fibrin-binding site is located
at the C-terminal FNI10–FNI12 modules (Rostagno et al., 1994;
Williams et al., 1994).

Fibronectin attaches to the host cell surface via membrane-
spanning α5β1 integrin receptor molecules (Hynes et al., 1987).
Integrins bind fibronectin at the RGD loop of the FNIII10
module and the adjacent PHSRN sequence of the FNIII9 module
(Tamkun et al., 1986; Aota et al., 1994). By this mechanism,
fibronectin, integrin, and FnBPs form a three-component bridge
between host cells and bacterial cells (Sinha et al., 1999).

FIBRONECTIN-BINDING PROTEINS

In 1978, researchers showed that S. aureus binds to fibronectin
in vitro (Kuusela, 1978; Espersen and Clemmensen, 1982;
Froman et al., 1987). The proteins FnBPA and FnBPB were
initially identified as FnBPs in S. aureus (Flock et al., 1987;
Jonsson et al., 1991). The two proteins contain N-terminal signal
peptides with the YSIRK/GS motif that direct the proteins to
localize at the cell surface, while a C-terminal region with the
LPXTG motif anchors them to the cell wall (Signas et al., 1989;
Bae and Schneewind, 2003; DeDent et al., 2008). Once anchored
to the cell wall, an array of fibronectin-binding repeats (FnBRs)
mediates direct interactions with fibronectin (Schwarz-Linek
et al., 2003). Originally, a series of 38-amino acid C-terminal
repeats were thought to constitute the FnBPA binding site (Signas
et al., 1989). However, the binding site has since expanded to
contain 11 tandem repeats in FnBPA and 10 tandem repeats in
FnBPB, with each repeat consisting of 30–40 amino acids (Massey

et al., 2001; Schwarz-Linek et al., 2003). These domains bind
fibronectin with differing affinities at the N-terminal five-module
region (FNI1–FNI5) by a tandem β-zipper model (Joh et al., 1994;
Meenan et al., 2007). Recent studies examine the structure of
FnBPA in complex with fibronectin and reveal the role of each
domain in fibronectin attachment (Bingham et al., 2008; Casillas-
Ituarte et al., 2012). These findings suggest multivalent binding
between a single copy of FnBPA/B and multiple fibronectin
molecules.

Studies on FnBPA and FnBPB of S. aureus are guided by
an interest in virulence factors of model pathogenic organisms.
However, S. aureus expresses many other FnBPs that contribute
to the complexity of bacterial adherence to host ligands. The
largest of these is 1.1-MDa Ebh (>10,000 amino acids), a surface
protein with 44 imperfect repeats of 126 amino acids (Clarke
et al., 2002). Ebh is tightly associated with the bacterial cell surface
despite the absence of an LPXTG motif. A region within the
central repeat sequence has been identified as the binding site for
fibronectin (Clarke et al., 2002). Recent studies on S. aureus show
that inactivation of Ebh leads to a drastic increase in cell volume
with irregular shape and thickness, suggesting Ebh plays a major
role in cell growth and envelope assembly (Cheng et al., 2014).
An additional FnBP in S. aureus, the 15-kDa cell wall-attached
protein Eap, mediates fibronectin binding using an alternative
cell wall-anchoring mechanism in which externally added protein
can bind cells of S. aureus in addition to a variety of ECM
proteins (Braun et al., 1997; Palma et al., 1999). Eap contains
a central MAP domain that is presumed to bind fibronectin,
S. aureus cells, and a variety of extracellular proteins (Jonsson
et al., 1995; Harraghy et al., 2003; Geisbrecht et al., 2005). The
ECM-binding protein (Emp) also mediates fibronectin-binding
in S. aureus (Hussain et al., 2001). Like Ebh, Emp is tightly
associated with the bacterial cell surface despite the absence of
an LPXTG motif. Notably, Emp exhibits broad affinity for ECM
components, including fibronectin, fibrinogen, collagen, and
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vitronectin. This highlights an important problem inherent in
the study of FnBPs: though they have long been studied with the
assumption of single ligand-specificity, a multifunctional model
of bacterial adhesins is emerging (Hartleib et al., 2000; Foster
et al., 2014). For example, FnBPA binds to fibrinogen and elastin
(Wann et al., 2000; Keane et al., 2007); Eap binds vitronectin,
fibrinogen, and prothrombin (Jonsson et al., 1995; Harraghy
et al., 2003); Aaa binds to vitronectin and fibrinogen (Heilmann
et al., 2005; Hirschhausen et al., 2012). Given the limited number
of cell wall-associated adhesion proteins and their importance
in evasion of host immune responses, cell invasion and biofilm
formation, it is expected that FnBPs have evolved to bind multiple
ligands (Foster et al., 2014). Furthermore, the apparent functional
redundancy of FnBPs makes it difficult to attribute definitive
adhesion phenotypes.

While many of the FnBPs in S. aureus are conserved across
staphylococci, other Gram-positive bacteria possess an entirely
different collection of FnBPs. The human pathogen S. pyogenes,
for example, expresses at least 11 additional distinct FnBPs
(Henderson et al., 2011). Perhaps the most studied of these is
a set of homologous proteins, F1 and Sfb1 (Talay et al., 1991;
Hanski and Caparon, 1992). As with many of the S. aureus
FnBPs, both F1 and Sfb1 are cell wall-anchored. Another shared
feature between S. aureus FnBPs and F1/Sfb1 is a series of
central FnBRs similar to those observed in FnBPA/FnBPB (Ozeri
et al., 1998). Like FnBPA/B, the FnBRs of F1/Sfb1 bind to
fibronectin at the N-terminal FNI1-FNI5 region (Schwarz-Linek
et al., 2004). In F1/Sfb1, a 43-amino acid N-terminal region also
binds fibronectin, but at modules FNI6–FNI9 (Sela et al., 1993)
(Figure 2).

Fibronectin-binding repeats with sequence similarity to those
in S. aureus have been found in other FnBPs from S. pyogenes,
including F2, FbaB, Sof, SfbX, and FbaA (Henderson et al., 2011).
F2 is similar to F1, though it lacks the domain for binding
modules FNI6–FNI9 (Kreikemeyer et al., 2004). FbaB shows
homology to the C-terminal domain of protein F2 (Terao et al.,
2002). Although serum opacity factor (Sof) contains functional
FnBRs, an additional N-terminal opacity domain is necessary for
cell binding (Rakonjac et al., 1995). SfbX features a C-terminal
array of four FnBRs. The sfbX gene, which occurs immediately
downstream of sof, is found only in sof -positive streptococci
(Jeng et al., 2003). The dominant theme in this set of FnBPs is the
role of FnBRs in binding the N-terminal domain of fibronectin
(FNI1–FNI5). Furthermore, these proteins contain C-terminal
LPXTG cell wall anchors.

A second subset of FnBPs in S. pyogenes and other streptococci
do not possess the canonical FnBRs. These include the M1
protein, GAPDH, protein H, Shr, and Scl1. Protein M1 anchors
to the cell wall by an LPXTG motif binds fibronectin with
two N-terminal domains (Cue et al., 2001). Unlike the other
FnBPs discussed, protein H binds to FNIII modules instead of
FNI modules (Frick et al., 1995). Glyceraldehyde-3-phosphate-
dehydrogenase (GAPDH) also shows fibronectin-binding activity
(Pancholi and Fischetti, 1992). Shr and Scl1 are relatively new
additions to the non-FnBR subset of S. pyogenes FnBPs (Fisher
et al., 2008; Caswell et al., 2010). The streptococcal surface
enolase, a glycolytic pathway enzyme with plasminogen-binding

capability, has been identified as a FnBP in S. suis (Pancholi
and Fischetti, 1998; Esgleas et al., 2008). More recently a
putative peptidase (Ssa) in S. suis and an endopeptidase (PepO)
in S. pneumoniae have been implicated in fibronectin-binding
(Agarwal et al., 2013; Li et al., 2013). The discovery of these novel
FnBPs represents a new paradigm in which bacterial proteins
with other known functions double as FnBPs.

A 54-kDa protein was originally identified in streptococci and
termed Fbp54 after it was shown to bind to fibronectin and
fibrinogen, despite a lack of typical fibronectin-binding sequences
(Courtney et al., 1994). Since the initial characterization of Fbp54,
distant homologs have been found among a variety of host-
associated bacteria including streptococci, lactococci, lactobacilli,
clostridia, listeria, pneumococci, enterococci, and bacilli. There
has been inconsistency in the naming of Fbp54 homologs, such
as PavA in S. pneumoniae, FbpA in S. gordonii, and FbpS is S. suis
(Holmes et al., 2001; Christie et al., 2002; de Greeff et al., 2002).
This has led to confusion about the prevalence and identity of this
FnBP. The Gram-positive pathogen C. perfringens, a common
cause of wound-associated infections and food poisoning, also
expresses an Fbp54 homolog (FbpA). FbpA recognizes a non-
canonical FNIII9-FNIII10 region of fibronectin (Katayama et al.,
2009, Katayama et al., 2015). Despite its ubiquity, little is known
about the binding mechanism of the Fbp54 family of FnBPs in
other organisms.

HOST INTERACTIONS

The ability to attach to the surface of host cells, followed by entry
and proliferation, can lead to severe host diseases specifically
mediated by FnBPs (Joh et al., 1999; Lammers et al., 1999;
Henderson et al., 2011; Ribet and Cossart, 2015; Stones and
Krachler, 2015). Pathogenic strains of staphylococci are one of
the most common causes of skin and bloodstream infections
in the United States (Lowy, 1998; Wisplinghoff et al., 2004;
Moran et al., 2005; Tong et al., 2015). Bacterial cells use FnBPs
to form a three-component bridge between themselves and the
host cell through attachment to fibronectin molecules, which
are further attached to α5β1 integrins (Tamkun et al., 1986;
Hynes et al., 1987). The linkage between integrins and the
bacteria-fibronectin complex brings about the recruitment of cell
signaling molecules and a rearrangement of the cytoskeleton that
facilitates host cell invasion (Hoffmann et al., 2011). The absence
of FnBPA/B in S. aureus leads to a nearly 500-fold reduction in
the internalization of bacteria (Sinha et al., 2000). Importantly,
expression of S. aureus FnBPA in non-invasive Lactococcus lactis
bacteria confers the ability to invade human endothelial cells
(Heying et al., 2009).

The same mechanism of host cell invasion via integrin-
binding is observed in streptococci (LaPenta et al., 1994; Molinari
et al., 1997). Protein F1 and Sfb1 of S. pyogenes interact with
fibronectin on the surface of non-phagocytic cells to trigger
bacterial internalization (Molinari et al., 1997; Jadoun et al., 1998;
Ozeri et al., 1998). Though not as essential as protein F1 and Sfb1,
other FnBPs such as FbaA, FbaB, Ssa, and protein M1 promote
cell invasion (Henderson et al., 2011; Li et al., 2013). Because
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fibronectin interacts with integrin by means of its RGD peptide, it
has been proposed that FnBPs with the RGD integrin attachment
domain, such as FbaB, interact directly with integrin (Lamont,
2004).

Arguably the most prevalent FnBP, Fbp54 and its homologs
(FbpA, FbpS, and PavA) play an important role in virulence-
associated internalization (Holmes et al., 2001). An fbpA-
deficient mutant of Listeria monocytogenes exhibited a reduced
ability to invade hepatocytes (Dramsi et al., 2004; Osanai et al.,
2013). A pavA-deficient mutant of S. pneumoniae exhibited a
similar decrease in adherence and internalization ability (Pracht
et al., 2005). Recent evidence suggests that staphylococcal FnBPs
are also required to form biofilms. A homolog of the 1.1-MDa
S. aureus FnBP (Ebh) was identified in S. epidermidis and found
to be sufficient and necessary for biofilm formation (Christner
et al., 2010). The introduction of mutations into fnbpA and
fnbpB, encoding FnBPA and FnBPB, reduced biofilm formation
in multiple methicillin-resistant strains of S. aureus (O’Neill et al.,
2008). A full deletion of fnbpA and fnbpB from S. aureus also
reduced biofilm formation, highlighting reduced initial bacterial
aggregation as the underlying mechanism (McCourt et al.,
2014). Further evidence suggests that low-affinity homophilic
interactions between FnBPA domains on adjacent cells promote
cell accumulation and contribute to biofilm formation (Herman-
Bausier et al., 2015).

In addition to exploiting fibronectin as a method of host
cell attachment and invasion, bacterial FnBPs can modify the
signaling activity of human fibronectin. Fragments of fibronectin
are often found in the blood after injury or infection (Clark
et al., 1982). These fragments are important for host cell signaling
and have been linked to essential biological functions (Woods
et al., 1986; Hanenberg et al., 1996). Fibronectin fragments of
110 kDa stimulate human macrophages in vitro, significantly
increasing output of TNF-alpha, FGF-1, IGF-1, and LIF (Trial
et al., 2004a). Fibronectin fragments can also influence monocyte
behavior in HIV-1-infected patients (Trial et al., 2004b). The
role of fibronectin fragments in biological processes appears
to be shaped by the domains present on the fibronectin
fragment. For example, the alternatively spliced EIIIA domain
is associated with cell motility and fibrosis. However, the EIIIA
domain is non-essential for differentiation of hepatic stellate
cells and portal fibroblasts to myofibroblasts (Olsen et al.,
2012).

Smaller sequences within fibronectin domains have
also been linked with specific biological functions. A 13-
residue stretch of fibronectin (FN13) is responsible for
inducing matrix assembly in cultured cells. In the absence
of this peptide, migration of tumorigenic cells is inhibited
(Colombi et al., 2003). An N-terminal 29-kDa fragment of
fibronectin increases phosphorylation of ERK1/2, p38 and
JNK1/2 protein kinases, leading to enhanced cartilage matrix
damage (Ding et al., 2009). Larger fibronectin fragments
of 50 and 140-kDa show less kinase activation, though all
three fragments show significantly more activity than native
fibronectin, which is inactive in terms of cartilage degradation
(Ding et al., 2008). In binding these fragments, FnBPs may
interfere with host cell signaling. A 49-residue sequence

of the F1 protein in S. pyogenes binds the N-terminal 70-
kDa region of fibronectin and inhibits matrix assembly
(Tomasini-Johansson et al., 2001). This interaction illustrates
the ability of FnBPs to block the activity of fibronectin
fragments.

It is important to note that because fibronectin is produced
at basolateral surfaces, bacteria must bypass the epithelial
barrier to gain access. However, adenosine, a proinflammatory
signaling molecule, induces transport of fibronectin to the apical
surface where it is accessible to bacteria (Walia et al., 2004).
Adenosine-induced apical display was shown to facilitate the
adherence and consequent invasion of Salmonella enterica. By
this mechanism, other signaling molecules could induce apical
display of fibronectin, providing an ecological advantage to
species with FnBPs.

NON-PATHOGENIC FnBPs

In both pathogenic and commensal bacteria, host attachment
allows access to nutrients, suitable environmental conditions,
and interaction with the host immune system by promoting
retention in a particular niche. The diverse array of FnBPs
identified in pathogens is unparalleled in commensals, though
some FnBPs are expressed in both pathogens and commensal
species. The clearest example is Fbp54, which is found across a
variety of host-associated commensals, as well as the probiotic
species Lactobacillus acidophilus, L. casei, L. plantarum, L. brevis,
L. rhamnosus, and Bacillus subtilis (Altermann et al., 2005;
Boekhorst et al., 2006; Velez et al., 2007; Munoz-Provencio
et al., 2010). Purified FbpA from L. casei exhibits a stronger
affinity for immobilized fibronectin than soluble fibronectin —
a trend also seen in the FbpA homolog of S. pneumoniae
(Holmes et al., 2001; Munoz-Provencio et al., 2010). In
L. acidophilus, a mutant with inactivated fbpA exhibited a
significant decrease in adhesion to epithelial cells in vitro (Buck
et al., 2005).

A subset of lactobacilli forms surface layers (S-layers) that
are crystalline arrays self-assembling, proteinaceous subunits
called S-layer proteins (Boot and Pouwels, 1996; Sara and Sleytr,
2000). S-layer proteins are important for protection, cell shape,
immunomodulation, and adhesion (Sara and Sleytr, 2000; Buck
et al., 2005; Hynönen and Palva, 2013; Lightfoot et al., 2015).
The S-layer protein in L. brevis (SlpA) binds fibronectin, while
inactivation of the S-layer protein in L. acidophilus (SlpA)
reduced binding to epithelial cells (Hynonen et al., 2002; Buck
et al., 2005). Although SlpA has not been further investigated
for specific fibronectin-binding, the recent identification of
S-layer associated proteins (SLAPs) in L. acidophilus has led to
the implication of an additional FnBP, termed FbpB (Johnson
et al., 2013; Hymes et al., 2016). FbpB contains an FNIII
domain, which bears homology to the FNIII domain of human
fibronectin. This suggests that FbpB may interact with the self-
binding region of fibronectin (FNI1–FNI5) known to target the
FNIII domain (Vakonakis et al., 2009). Strikingly, homologs
of FbpB are found only within the S-layer-forming subset of
gut-associated lactobacilli. The unique FnBPs of lactobacilli and
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other non-pathogens may possess distinctive mechanisms to bind
fibronectin in competition with pathogens.

CONCLUDING REMARKS

There appears to be fewer FnBPs in commensals than pathogens,
but this is likely due to sampling bias: pathogen “virulence
factors” have been studied more often than commensal
adhesins. Consequently, commensal and probiotic FnBPs are
less understood than the FnBPs in pathogenic bacteria. Due
to the presence of so-called “virulence factors” in commensals,
it may be more accurate to refer to bacterial adhesins as
“niche factors,” as suggested in Hill (2012). It is proposed that
attachment proteins be categorized as niche factors because they
are found in both pathogens and commensals that occupy an
identical niche. However, proteins unique to pathogens that play
a significant role in pathogenesis, such as exotoxins or coagulases,
would remain classified as virulence factors. Addressing these
concerns will be important from a regulatory perspective, as
the probiotic potential of gut microbes is being increasingly
investigated.

Bacteria employ adhesins as a means of attachment to their
ecological niches. Adhesins play an important role in competition
between organisms on host cell surfaces. The evolution of
diverse FnBPs that interact with distinct regions of human
fibronectin would likely provide an advantage to a bacterial
species. Advances in genome sequencing technologies will enable
extensive characterization of FnBPs in a growing number of
microorganisms. The continued investigation of FnBPs will
enhance our understanding of their diversity and specificity.
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