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We describe OLAE as an assessment tool that collects data from students solving problems in
introductory college physics, analyses that data with probabilistic methods that determine
what knowledge the student is using, and flexibly presents the results of analysis. For each
problem, OLAE automatically creates a Bayesian net that relates knowledge, represented as
first-order rules, to particular actions, such as written equations. Using the resulting Bayesian
network, OLAE observes a student's behavior and computes the probabilities that the student
knows and uses each of the rules.

1. Introduction

An assessment system determines what a student knows. This information is used by
an assessor (i.e. the student's teacher, the student, education researchers, etc.) to
make decisions. Unlike most conventional assessment (testing), which measures how
much a student knows, OLAE 1 measures what the student knows. In particular, given
a "domain model" containing a nearly complete list of the relevant pieces of
knowledge in a domain, OLAE assigns a probability to each subset of the domain
model that indicates how likely it is that the student knows just that subset of the
domain knowledge. This detailed analysis of the student's knowledge can be
aggregated in various ways appropriate for the assessor's decision making.

1.1. MODELS OF PROBLEM SOLVING

A domain model of problem solving is the union of all correct and incorrect rules
(components of knowledge) that students and experts use for solving problems in a
given domain. These rules are specified as logical Horn clauses and can be used with a
Prolog interpreter to solve physics problems. The computational specification of the
domain model distinguishes it from alternative models of expertise (e.g. Hunt &
Mistrell, 1994).
    The particular rules in OLAE's current domain model are sufficient to solve a test

                                                
1 OLAE is an acronym for On-Line Assessment of Expertise or Off-Line Assessment of Expertise,
depending on how quickly assessments can be produced. The current version of OLAE does not
deliver its analyses in real time and hence performs its analysis off-line
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suite of college physics problems and to model the problem solving  behavior of a
sample of students. They are adapted from the CASCADE model, which is based on
substantial empirical analyses (VanLehn & Jones, 1992a, b). The rules not only
produce the same answers as the students but can also model the problem solving
process students engage in when answering questions in the domain. The rules in the
domain model will be augmented and made more complete as problems are added to
the test suite and as students are observed using novel methods, whether correct or
incorrect, for solving the problems.

1.2. UNCERTAIN ASSESSMENT

Assessment is the problem of determining what a student knows. With reliable
evaluations of their performance students, teachers, and school boards can improve
the distribution of pedagogical resources. In OLAE, assessment produces a student
model, i.e. a collection of correct and incorrect rules from the domain model are
known and used by a particular student. A student model is essentially a rule-based
computer program that computes answers to actual problems in the same way as does
the student. OLAE uses such an approach because assessments of which rules a student
uses are necessarily uncertain. There are two general situations in which a student's
behavior does not determine what that student knows. First, the student may produce
an answer or intermediate result that includes an unintentional slip, such as a typing
error. This unintentional error may mimic the effects of some rule, resulting in an
incorrect indication that the student was using that rule. Second, a student may simply
be guessing, and occasionally produce correct answers. Third, when there are many
ways to produce the same answer to a problem, the answer is not enough to credit the
student with any specific knowledge. This can occur when there are multiple correct
paths to the answer. For instance, if a physics student correctly determines the
velocity of a ball just before it hits the around, she may have done so using an
equation of motion that relates distance, acceleration, and velocity or she may have
used equations for calculating potential and kinetic energies.

To address this uncertainty, OLAE uses Bayesian nets. The Bayesian approach was
chosen because it not only allows the ranking of hypotheses, but also acknowledges
the impact of prior knowledge about relative frequencies. Early work has often found
that some rules are much more common than others, sometimes by one or two orders
of magnitude. For instance, the most common subtraction misconception (i.e.
"always subtracting smaller digits from larger ones") occurs about 100 times more
frequently than the least common ones (VanLehn, 1990). When there is a strong
difference in population base rates, decisions must be based upon both those
expectations and the student's behavior.

2. OLAE

OLAE collects data from a student using five computer based activities, one of which
is physics problem solving. This paper will focus exclusively on the problem solving
activity. The other activities are described in Martin and VanLehn (1993, in press).
This section describes OLAE's input (student behavior) and output (assessment
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presentation), and the way that OLAE uses the behavioral data to calculate the
assessments.

2.1. DATA COLLECTION AND ASSESSMENT PRESENTATION

The data about a student's problem solving behavior is collected online using a
graphical interface.2 The interface divides the screen into several windows (Figure 1).
Along the top of the screen are icons for specific physics problems. The student
selects a problem by clicking on its icon and can choose to do problems in any order.

When a problem is selected, the problem description is displayed in the upper left
window. It consists of a statement of what is known, what needs to be found, and a
picture of the problem situation. Right below the problem description is a copy of the
picture. The student uses this window to draw axes and vectors that describe the
physical situation of the problem. The window on the right is a "worksheet" in which
the student is to show all their work, including intermediate equations and their final
answer. OLAE records all the student's actions and the duration of those actions. All
of these actions are parsed and contribute to the assessment.
    Once a probabilistic assessment has been determined as described below, OLAE
presents that assessment to any interested party which may include the student or a
teacher. The assessment is computed at the level of rules in the domain model.
However, the assessor may wish to view that assessment at different levels of
abstraction. For example, a parent may not care what specific rules are missing or
incorrect, but may care about overall mastery of various parts of the physics
curriculum.
    To allow assessors to view coarse-grained assessments, OLAE permits them to

                                                
2This interface is written in LISP using CLIM an is run on a DECstation 5133. Those
interested in. adapting this interface may contact the first author.
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define factors. These factors are aggregations of the rule-based assessment and are
similar to constructs in other assessment systems, such as "facets" in Hunt and
Minstrell's (1994) DIAGNOSER. Specifically, in OLAE a factor is some function of
the probabilities of a specified set of rules and represents the student's overall mastery
of those rules. For example, there may be a factor called "Kinematics Mastery" that
is a two-valued variable: either the student has mastered Kinematics or she has not.
The factor would be defined as some imperfect conjunction of the student's
knowledge of the rules necessary for solving kinematics problems.

The assessor's interface displays a network of rules and factors as shown in Figure
2. The assessor can scroll through these networks in order to get an overview of the
student's competence. At any time, the assessor can zoom in on a factor. A window
appears containing OLAE's assessment of the degree to which the student has
mastered the factor represented as a probability distribution, a list of factors that
contributed to the selected factor, and a list of factors to which the selected factor
contributes.

Finally, the assessor can manipulate OLAE's assessment. For instance, if the
assessor has spoken to the student and strongly believes that the student knows a
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particular rule, the assessor can manually increase the probability of that rule, and
OLAE will update the probabilities of other factors to reflect this new information.

2.2. PERFORMING THE ASSESSMENT

For each problem, OLAE builds a probabilistic network based on the domain model
and uses this Bayesian net to analyse student behavior. A Bayesian net is a directed
acyclic graph. Each node in the graph refers to a variable with two or more values.
Edges in the graph specify dependencies between the values of different variables,
with actual conditional probabilities associated with each node. The edges are directed
to specify different patterns of conditional dependencies. For example, one variable
might represent a rule and another might represent an answer to a problem. The link
between those two variables would represent that the probability of the answer
depends in some way on whether the rule is known. The prior probability of knowing
the rule would be associated with the Rule node.

A Bayesian net is a representation for a joint probability distribution in that it can
assign a probability to every possible combination of values for all the variables. In
OLAE, it can assign a probability to any subset of the rule library. A Bayesian net is
almost always easier and more efficient to use than a complete joint probability
distribution. It achieves this efficiency through conditional independence
assumptions.
     In OLAE's Bayesian net, there are four types of node that represent whether or
not: (a) the student knows a rule from the student model of elementary physics (rule
node), (b) the student actually used a rule during solution of a given problem (rule
application node), (c) the student believes a particular fact about the given problem
(fact node), and (d) the student has performed a particular action (action node). Fact
nodes include equations that the student might write. These nodes are connected by
directed edges (arrows) in the net. Different paths of directed edges through the graph
represent the many different paths of inferences a student might follow when solving
a given problem. After the student data are used to create action nodes and clamp
them to true, probabilistically exact (or heuristic) algorithms propagate this
information along the edges to determine which rules a student probably knows.

The analysis of a student's actions is a multi-stepped process as depicted in Figure
3. It begins with the domain model and a physics problem. The OLAE domain model
is a rule-based reasoner based on CASCADE (VanLehn, Jones, & Chi, 1992; VanLehn
& Jones, 1993a, b, c), a model of physics skill acquisition. It consists of 250 rules for
Newtonian mechanics and Kinematics. It includes several incorrect rules identified in
earlier analyses. The domain model is applied to the current problem to produce a
problem solution graph. This step of the analysis need only be done once for each
problem, because it is independent of the student data.

The problem- solution graph is a large (150 nodes) directed graph that indicates all
possible inferences that can be drawn from the problem's description using OLAE's
rules. Whenever a rule can be applied to produce a conclusion from certain
antecedents, a node is entered into the network to represent the rule application (see
Figure 4). An edge is entered running from the rule application node to a fact node
representing its conclusion (this node is created if it does not exist already). For each
antecedent (a fact used to justify firing the rule), an edge is entered running from its
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fact node to the rule application node. An edge is also entered running from the node
for the rule to the rule application node. If a fact has a corresponding observable
action, an action node is created and an edge is created from the fact node to the
action node. No edges leave the action node.
    Many of the intermediate nodes in such a net are hidden variables, that is, they are
not observable. These nodes represent intermediate facts (what the student believed
but did not say) and rule applications (what the student did silently). OLAE assumes
their existence based on the domain model of physics problem solving. These nodes
are part of the problem-solution graph because they capture the probabilistic structure
of the problem.
    The prior probabilities that are used in the Bayesian nets in OLAE are currently
set to be uniform. With data from a large number of students, these can be set
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empirically using the EM parameter estimation technique. The conditional
probabilities used are derived   from two assumptions. First, OLAE assumes that rule
application is almost logical: if the rules and all its antecedents are known, then the
rule will "almost always" be applied, where "almost always" is computed using a
leaky-AND gate. There is a system-wide "slip" parameter (e in Table 1) that
determines the probability that a boolean function will be computed incorrectly.
Second, OLAE assumes that people rarely infer the same fact twice. Thus, a fact
node with multiple inputs is true only if just one input is true. This relationship is
implemented with a leaky-XOR gate (Table 2).

The next step of the analysis (Figure 3) connects two Bayesian networks: the
student model and the problem solution graph. OLAE connects the two Bayesian
networks by creating an edge from a ride node in the student model to the
corresponding ride node in the problem-solution graph. The student model is the
Bayesian network generated based on previous assessments of the student. The initial
student model may have additional nodes (SM-0, SM-1, SM-2, etc) that enforce
theoretical dependencies between rules. For example, if there are two very similar
rules, one correct and one incorrect, those two rules would likely be mutually
exclusive. A particular student would use only one of them. Any such dependencies
may be encoded in the initial student model.

In order to maintain all probabilistic dependencies between rules, the student model
should consist of problem solution graphs for all previous problems. However,
retaining such a graph can become computational, infeasible. As a result, OLAE can
summarize the dependencies in the Bayesian net. It uses either an exact dependency
preserving technique (Shachter, 1986) or a heuristic technique (Martin & Billman, in
press).
    Once the student model for preceding problems has been connected to the problem
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-solution graph for the current problem, OLAE is ready to process data from the
interface. However, the equations from the interface do not correspond directly to
nodes in the problem-solution graph. They must first be interpreted to remove
algebraic variation (e.g. that F = ma  and m = F/a  are the same equation). Such
translation is often needed for assessment in limited domains. The assessment is
focused on one area of expertise, such as statistics, physics, or computer science, and
is less interested in assessing the subskills, such as algebraic manipulation, necessary
for the focus area.
    Removing algebraic variation is not as easy as it may seem. Table 3 shows how the
equations are interpreted, and Table 4 shows a sample set of equations that are
equivalent under algebraic manipulation and variable substitution. Once for each
problem, the problem-solution graph is used to determine a set of equations that
might be entered by a student while solving that problem. These equations are then
translated into a canonical format by moving all terms to one side of the equation,
collecting like terms, sorting variables alphabetically and by power, removing
common factors, etc. These canonical equations are then stored in a hashed database
along with the fact nodes that correspond to them.
    When an equation is typed on the interface, it is put into canonical form and look
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looked up in the database and the fact nodes corresponding to it are retrieved.3 A new
action node is added to the problem-solution graph with incoming edges from each of
the fact nodes that have observable consequences. The new action node represents
the action performed by the student. It is assigned a probability of 1.0. The edges
from fact nodes to action nodes implement a leaky-XOR relation. Exactly one of the
possible derivations of the action can be true.

Once the problem-solution graph as been augmented with the student's actions, the
new evidence is propagated across the Bayesian net. In other words, OLAE calculates
the probability of every value for every node, given the new evidence. There are
many sound methods for doing this propagation (Pearl, 1988). OLAE provides two
methods for doing this propagation: one is fast and heuristic, and the other is slow
and exact. The fast method is a form of stochastic simulation (Hrycej, 1990) and is
fast enough to update probabilities in real time. However, its updating will produce
probabilities with some degree of error, with the error decreasing as the amount of
processing time increases. The slow and exact method used in OLAE is the Lauritzen
and Spiegelhalter method (1988).

3. An example assessment

As an example, consider the simple domain model shown in Table 5. This domain
model has five rules in a shorthand representation for Horn clauses. In this
representation, the head of the clause is an equation and the body is a set of
conditions. Any quantity in the equation in the head of the rule may be designated as
the consequent of the rule at any time during rule use. All other quantities in the
equation then become additional antecedents of the clause. In essence, this
representation is a shorthand for several Horn clauses. The first rule in Table 5 is
equivalent to three Horn clauses, each with a different quantity as the consequent.
    In the sample domain model (Table 5), the first two rules concern how to project a
vector onto an axis to determine a component of the magnitude. The first rule
correctly states that the X component of the vector is the product of the vector's

                                                
    3 When a student's equation is an algebraic combination of the equations from two or more fact
nodes in the problem -solution graph, a new fact node and a new action node are created that
represent that combined equation. It is implemented as a leaky-AND combination of the
constituent fact nodes. This new fact node is then connected to the new action node.
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magnitude and the cosine of its angle with the x-axis. The second rule incorrectly
omits the influence of the vector's magnitude. The last three rules describe how the
same axis components of vectors can be combined along an axis. The third rule
correctly states that the resulting magnitude on the axis is the sum over the same axis
components from all forces acting on the physical body. The fourth and fifth rules
are overly specific and are only correct when there are just one or two forces
(respectively) acting on the body.

For the problem shown in Table 6, the first step of the analysis generates a
Bayesian net like that shown in Figure 5. The rules are shown in dashed boxes and the
given parts of the problem are on the left side of the figure. The rules are labeled with
their rule-names. The possible actions are on the right side and represent various
interpreted equations that a student could type. Here they are represented with no
substitutions. The intermediate nodes represent rule applications (labeled "RA") and
intermediate conclusions.

Suppose that a particular student is new to OLAE and has a default student model
(Figure 6) with all rules having some arbitrary probability (here, 0.33). As noted
above, the initial student model may have additional nodes (SM-0, SM-1, SM-2, etc)
that enforce theoretical dependencies between rules. For example, if there are two
very similar rules, one correct and one incorrect, those two rules would likely be
mutually exclusive. A particular student would use only one of them. In Figure 6, the
first two rules are mutually exclusive as are the third and fourth, and the third and
fifth. When the student is presented with the problem in Table 6, the student model
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is connected to the problem solution graph producing the Bayesian net in Figure 7.
Suppose that the student writes the equation, F = cos (45) + cos (60). This equation

is put into canonical form. It is used as a key to the database of possible equations and
it matches an equation corresponding to the node labeled "net force (B, sx, x) = cos
[incline (fl)] + cos [incline (f2)]" (bottom-most node in the last column of Figure 7).
A new node is created to represent the action and a deterministic link is created from
the equation node to the new action node. The new equation node is clamped to a
probability of 1.0, and this new information is propagated backward to the rules. The
rule labeled "cos-rule" in Figure 7, has its probability raised from 0.33 to 0.94. In this
case, the student is almost certainly using the incorrect rule, "cos-rule" and not the
correct rule "mag-cos-rule" (p = 0.03). The rules "sum-two-rule" and the "sum-all
-rule" are equally likely with a probability of 0.49, because the observed equation
could have been generated by either. Finally, the probability of the rule " sum-one
-rule" decreases from 0.33 to 0.228. After updating the probabilities, the whole
network will be carried along as the student model. As noted earlier, OLAE can
compact the Bayesian nets when they grow too large.

In Figures 6, 7 and 8 the nodes that are highly probable (0.8-1.0) have a thick
border, the nodes that are moderately probable (0.5-0.8) have a medium border. and
the remaining nodes are low probability.
    Suppose a second problem is analysed and attached to the network (Figure 8). In
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this case, the second problem was a simpler, related problem in which the student
only had to compute the x-component of a single force. Again, student actions for
this problem are matched (via canonicalization) to the equation fact nodes, a new
action node is created, that node is clamped to a probability of 1.0 and the net's
probabilities are updated.

Suppose that the student typed the equation, F = cos (75). Now, the probability
that the "cos-rule" is known has increased from 0.94 to 0.998. The probability that
the " sum-all- rule" is known has also increased from 0.49 to 0.77 because it is
consistent with both observations. The probability of the "sum-two-rule" has
decreased to 0.206 and the probability of the "sum-one-rule" has not changed.
Furthermore, the overall Bayesian net now represents the fact that the student either
has the "sum-all-rule" or both the "sum-one -rule" and the "sum-two-rule". If OLAE
later sees evidence to discredit "sum-all-rule", then it immediately has a strong belief
in both the other rules. After analyzing the second problem, OLAE uses the whole
Bayesian net as the new student model, and the process repeats once for every
remaining problem.

With real problems and a more complete domain model, a problem-solution graph
for a single physics problem has between 100 and 200 nodes. We have compared
OLAE's assessment for two such problems to assessments performed by a human
from verbal protocols.4 In all cases where the human assessor determined that the
student knew a rule, OLAE had assigned a probability of greater than 0.85 to that
rule. Similarly, in all cases where the human assessor determined that the student did
not know a rule, OLAE had assigned a probability of less than 0.15.

4. Discussion

OLAE is an assessment tool like the student modeling component of many
intelligent tutoring systems. However, it uses a normative (or defensible) approach to
managing uncertainty. OLAE uses such an approach because highly accurate
assessments can improve the distribution of pedagogical resources. Students, teachers,
and school boards can have objective, reliable evaluations of their performance and
can change their efforts accordingly.

A few other student modeling efforts have used Bayesian networks as a basis for
assessment (Villano, 1992; Sime, 1993; Petrushin & Sinitsa, 1993; Gitomer,
Steinberg, & Mislevy, 1994). Unlike OLAE though, all of these efforts involve
non-automatic generation of the Bayesian nets, i.e. a human must construct the
network for each problem. In addition, they do not use a computationally sufficient
cognitive model of the problem solving involved. As one example, Villano (1992)
represents expertise as the ability to solve specific problems rather than mastery of
several components of knowledge. As a result, Villano's assessments cannot
communicate precisely what a student does not know and cannot identify the
components of knowledge that must be taught.

OLAE also differs from other student modeling efforts using Bayesian networks in
that it is specifically tailored to scientific domains. It provides techniques for
interpreting actions that are equations and related diagrams.

                                                
4 These protocols were collected and analysed before OLAE was constructed.
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Finally, the way OLAE generates its Bayesian network is similar in spirit to Poole's
(1992) methods for the representation and use of probabilistic Horn clauses  OLAE's
approach could be implemented using Poole's scheme or those proposed by Breese
(1992) and Charniak and Goldman (1989).

4.1. FUTURE WORK

One component of OLAE requiring future work is the interpretation and integration
of the additional tasks to complement the assessment obtained from problem solving
behavior. Physics students also naturally engage in other behavior that can be
diagnostic of what the student knows and indeed what they learn through study. For
instance, when students study worked out examples, they spend differing amounts of
time on different parts of the solution and show distinct patterns of referring back to
previous parts of the solution. We have implemented an interface to capture this
information from students as they study and have determined that the information
gleaned about a student is relevant to study habits such as the use of self explanation
(Chi, Bassok, Lewis, Reimann & Glaser, 1989 ) .

Besides integrating different tasks, we also plan a more extensive evaluation of
OLAE. Currently, OLAE's assessment has been verified against two hand-done
protocol analyses. We plan to extend these analyses first by comparing OLAE's
assessment to a human tutor's assessment and comparing both of these to a gold
standard, i.e. a line by line fine-grained assessment verbal protocols. This study will
measure the external validity of OLAE. Subsequently, we will evaluate OLAE's
internal validity by measuring its success at correctly interpreting artificially created
student data. For these assessments, we will create artificial students that each know
some random assortment of rules for physics. Then CASCADE, the cognitive model
of physics problem solving, will solve a variety of problems using the artificial
student's knowledge base. OLAE's task is then to work backwards from problem
solving actions to infer what rules the artificial student knows.

Although OLAE is a very general assessment tool for equation-based domains,
there are two additional characteristics that would increase its utility for practical
applications. First, OLAE should recognize the possibility of partially known rules to
enhance its ability to model rule-learning. Currently, OLAE assumes that students
either know or do not know a rule. It also assumes that if the student knows a rule
and that rule can be used, it will be used. This is not very realistic. As a rule is being
learned or forgotten, it may be used only sporadically. In such cases, the rule is
somewhere between known and not known.

A second enhancement to OLAE would allow the automatic revision or wholesale
learning of cognitive domain models. This would permit automatic acquisition of
incorrect rules as well as accurate rules. Currently, the practical use of OLAE hinges
on the existence of an appropriate, empirically justified model of the domain.
Producing such a model is a difficult task. If it can be generated automatically using a
large data sample, OLAE would be immensely more useful.
    To do this, OLAE could use existing algorithms (Quinlan. 1990; Pazzani & Kibler,
1992) to extract a set of Horn clause rules sufficient to produce all the actions in a
large collection of existing data. However, most of these are restricted to very small
first-order theories. Therefore, learning large theories, on the order of our physics
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knowledge, would be very time consuming. Indeed, similar attempts at learning
cognitive domain models have become bogged down in the combinatorial explosion
of possible hypotheses (Langley & Ohlsson, 1984, Kowalski & VanLehn, 1988).

    The authors wish to thank the anonymous reviewers for assistance with an earlier draft of this
paper. The research reported in this paper was sponsored by the Cognitive Science division of the
Office of Naval Research under grant number, N00014-91-J-1532.
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