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Student’s t-Filters for Noise Scale Estimation
Filip Tronarp, Student Member, IEEE, Toni Karvonen, and Simo Särkkä, Senior Member, IEEE

Abstract—We analyse certain Student’s t-filters for linear
Gaussian systems with misspecified noise covariances. It is shown
that the under appropriate conditions the filter both estimates the
state and re-scales the noise covariance matrices in a Kullback–
Leibler optimal fashion. If the noise covariances are misscaled
by a common scalar, then the re-scaling is asymptotically exact.
We also compare the Student’s t-filter scale estimates to the
maximum likelihood estimates. Simulations demonstrating the
results on the Wiener velocity model are provided.

Index Terms—Kalman filtering, Student’s t-filtering, model
misspecification, noise covariance estimation

I. INTRODUCTION

R
ECENTLY, Student’s t-filters, that assume the latent state
and system noises have a joint Student’s t-distribution,

for discrete-time systems have become popular in the signal
processing community [1]–[10]. These filters were originally
developed in the early 1990s [11] (see also [12], [13]) and later
modified and popularised by Roth et al. [1]. The difference
between the filters in [11], called here Student’s t-filter (ST;
Alg. 2), and in [1, Sec. 3.1] (ST2; Rmk. 3) is that in the former
a joint probability model for complete state and measurement
sequences is used while in the latter each time-step gets its
own probability model that neglects some of the dependencies
present in the model of [11] (see Sec. II-C). This article studies
Student’s t-filter [11] for linear Gaussian discrete-time systems
with misspecified noise covariances.

We (i) establish a relationship (Props. 4 and 5) between Stu-
dent’s t-filter and classical misspecified Kalman filter (MKF);
(ii) prove that, under certain assumptions on asymptotics of
the scale estimator, Student’s t-filter estimates scaling of the
noise covariance matrices in a Kullback–Leibler optimal way
(Thm. 6); and (iii) show that in the special case of covariance
matrices being misspecified by a common scalar factor the
re-scaling due to Student’s t-filter is asymptotically correct
(Cor. 7; in this setting, the scaling provided by the filter is
compared to the maximum likelihood estimate in Thm. 8).

The state estimates of the Student’s t-filter coincide with
those of the misspecified Kalman filter. However, estimating
uncertainty matters in applications such as measurement
gating [14, Sec. 2.3] and uncertainty quantification for ODE
solvers [15]–[17]. For such purposes, Student’s t-filter provides
computationally attractive tuning of the filter noise covariance
matrices. For other, computationally more involved, estimators,
see for example [18]–[23].

This work was supported by the Aalto ELEC Doctoral School and the
Academy of Finland under grants #266940, #304087, and #313708.

The authors are with the Department of Electrical Engineering and
Automation, Aalto University, Espoo, Finland.

II. FILTERING FOR LINEAR SYSTEMS

We begin by introducing the classical Kalman filter [24], [25,
Ch. 4] and Student’s t-filter as it appears in [11], [12]. The
difference between ST and ST2 is discussed in Rmk. 3.

A. The System Description

We assume that the latent state xn ∈ R
dx and partial and

corrupted measurements yn ∈ R
dy of it are, for n ∈ N,

generated by the linear Gaussian time-varying system

X0 ∼ N (µµµ0,P0), (1a)

Xn | Xn−1 ∼ N (AnXn−1,Q), (1b)

Yn | Xn ∼ N (CnXn,R), (1c)

where An ∈ R
dx×dx and Cn ∈ R

dy×dx are model matrices, Q
and R are the noise covariances, and N (µµµ,ΣΣΣ) is the Gaussian
distribution with mean µµµ and variance ΣΣΣ.

B. The (Misspecified) Kalman Filter

The classical Kalman filter [24], [25, Ch. 4] computes the
conditional mean E[Xn | Y1, . . . ,Yn] = E[Xn | Y1:n] and
variance V[Xn | Y1:n] using simple linear algebraic recursion
equations. However, the true noise covariances Q and R and the
initial error covariance P0 are often not available, forcing one
to employ some other positive-definite matrices Q0, R0, and
P0

0 in the filter. The resulting MKF computes the state estimates
XMKF

n|n and associated error covariances PMKF
n|n as follows.

Algorithm 1 (The misspecified Kalman filter; MKF). The

misspecified Kalman filter consists of the prediction

XMKF

n|n−1 = AnX
MKF

n−1|n−1,

PMKF

n|n−1 = AnP
MKF

n−1|n−1A
T

n +Q0,

where XMKF

0|0 = µµµ0 and PMKF

0|0 = P0
0, and the update

YMKF

n|n−1 = CnX
MKF

n|n−1,

SMKF

n = CnP
MKF

n|n−1C
T

n +R0,

KMKF

n = PMKF

n|n−1C
T

n[S
MKF

n ]−1,

XMKF

n|n = XMKF

n|n−1 +KMKF

n

(

Yn −YMKF

n|n−1

)

,

PMKF

n|n = PMKF

n|n−1 −KMKF

n SMKF

n [KMKF

n ]T.

Due to the use of incorrect noise covariance matrices,
XMKF

n|n 6= E[Xn | Y1:n] and PMKF
n|n 6= V[Xn | Y1:n] unless

Q0 = Q, R0 = R, and P0
0 = P0. If there is no covariance

misspecification, the above filter is the optimal Kalman filter
and we will use superscript KF instead of MKF. That is,
XKF

n|n = E[Xn | Y1:n] and PKF
n|n = V[Xn | Y1:n].

Before presenting Student’s t-filter, we note that the effect
of (partial) model misspecification as above to behaviour and
stability of the Kalman filter has been studied for discrete-time
systems in [26]–[30] and for continuous-time systems in [31].
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C. Student’s t-Filter

Let N (x;µµµ,ΣΣΣ) stand for the Gaussian density with mean
µµµ and variance ΣΣΣ and Γ−1(s; ν/2, ν/2) for the reciprocal
gamma density with shape and scale parameters ν/2. Girón
and Rojano [11] consider the Bayesian model

p(x0:N ,y1:N , s)

= N (x0;µµµ0, sP
0
0)

N
∏

n=1

N (xn;Anxn−1, sQ
0)

×
N
∏

n=1

N (yn;Cnxn, sR
0)Γ−1(s; ν0/2, ν0/2)

(2)

for the full latent state and measurement sequences and noise
scaling s. They show that by marginalising out s and using
properties of Gaussian scale mixtures [13] a Kalman filter
recursion for the conditional mean is obtained (essentially our
Props. 4 and 5).

In this article, we consider the filter of [11]. In order to relate
this filter to the one in [1] and to facilitate subsequent analysis,
we sequentially re-parametrise the scale variable according to
sn := γ−1

n sn−1 and s0 := s. This results in the filter in Alg. 2.

Algorithm 2 (Student’s t-filter; ST). Student’s t-filter consists

of the prediction

XST

n|n−1 = AnX
ST

n−1|n−1,

PST

n|n−1 = AnP
ST

n−1|n−1A
T

n +QST

n−1,

where XST

0|0 = µµµ0, PST

0|0 = P0
0, and QST

0 = Q0, and the update

YST

n|n−1 = CnX
ST

n|n−1,

SST

n = CnP
ST

n|n−1C
T

n +RST

n−1,

γn =
ν0 + (n− 1)dy + ‖Yn −YST

n|n−1‖
2

[SST
n ]−1

ν0 + ndy
,

KST

n = PST

n|n−1C
T

n[S
ST

n ]
−1,

XST

n|n = XST

n|n−1 +KST

n

(

Yn −YST

n|n−1

)

,

PST

n|n = γn
(

PST

n|n−1 −KST

nS
ST

n [K
ST

n ]
T
)

,

QST

n = γnQ
ST

n−1,

RST

n = γnR
ST

n−1,

where RST

0 = R0 and ‖x‖2
A

= xTAx when A is a positive-

definite matrix.

Remark 3. The difference between ST of Alg. 2 and ST2
proposed in [1, Sec. 3.1] under the name exact filter is that

QST2
n = QST2

n−1 = · · · = Q0 and RST2
n = RST2

n−1 = · · · = R0.

This is because ST2 is based on a sequence of probability
models pn+1(yn+1,xn+1,xn, s) of the form (2) such that
pn+1(xn | s) matches pn(xn | yn, s), the posterior from the
previous time-step. That is, future noise realisations are not
included in these models.

III. PROPERTIES OF STUDENT’S t-FILTER

In this section we prove a number of properties of Student’s
t-filter of Alg. 2.

A. Basic Properties of Student’s t-Filter

We begin by establishing some important connections
between Student’s t-filter, misspecified Kalman filter, and the
optimal Kalman filter. For the analysis it is useful to define

ξn :=
n
∏

i=1

γi, ξ0 := 1. (3)

Proposition 4. The misspecified Kalman filter and Student’s

t-filter of Algs. 1 and 2 admit the following relations:

XST

n|n = XMKF

n|n, PST

n|n = ξnP
MKF

n|n, SST

n = ξn−1S
MKF

n ,

QST

n = ξnQ
0, RST

n = ξnR
0.

Proof. From the definition of ξn we immediately observe that
QST

n = ξnQ
0 and RST

n = ξnR
0. Since SST

1 = SMKF
1 and KST

1 =
KMKF

1 , it follows that PST
1|1 = γ1P

MKF
1|1 = ξ1P

MKF
1|1 . The induction

assumption PST

n−1|n−1 = ξn−1P
MKF
n−1|n−1 yields

PST
n|n−1 = ξn−1

(

AnP
MKF
n−1|n−1A

T

n +Q0
)

= ξn−1P
MKF
n|n−1.

Consequently,

SST
n = ξn−1

(

CnP
MKF
n|n−1C

T

n +R0
)

= ξn−1S
MKF
n

and, due to cancellation of ξn−1, KST
n = KMKF

n . Therefore

PST

n|n = γnξn−1

(

PMKF
n|n−1 −KMKF

n SMKF
n [KMKF

n ]T
)

= ξnP
MKF
n|n.

This establishes that PST

n|n = ξnP
MKF
n|n. Because KST

n = KMKF
n ,

we also have that XST

n|n = XMKF
n|n.

Hence Student’s t-filter can be interpreted as computing
estimates ξn of the common scaling of the noise covariance
matrices while producing the same state estimates as the MKF.
More can be said when Q0, R0, and P0

0 are merely misscaled.

Proposition 5. Suppose that the model (1) takes the form

X0 ∼ N (µµµ0, λP
0
0), (4a)

Xn | Xn−1 ∼ N (AnXn−1, λQ
0), (4b)

Yn | Xn ∼ N (CnXn, λR
0) (4c)

for some λ > 0. Then, in addition to relations in Prop. 4, we

have

E[Xn | Y1:n] = XKF

n|n = XMKF

n|n = XST

n|n.

Proof. In a manner similar to the proof of Prop. 4, it can
be proved that PKF

n|n = λPMKF
n|n and SKF

n = λSMKF
n . From these

equations it follows that XKF
n|n = XMKF

n|n.

B. Asymptotic Properties Student’s t-Filter

This section adduces some asymptotic properties of Student’s
t-filter. We prove that ξn tends to a value optimal in the sense
of Kullback–Leibler divergence (Thm. 6) and that, under the
model (4), ξn converges to λ (Cor. 7). The results are based
on the recursion

ξn =
ν0 + (n− 1)dy + ‖Yn −YST

n|n−1‖
2

[SST
n ]−1

ν0 + ndy
ξn−1

=
ν0 + (n− 1)dy

ν0 + ndy
ξn−1 +

‖Yn −YST

n|n−1‖
2

[SMKF
n ]−1

ν0 + ndy
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from which it follows by induction and Prop. 4 that

ξn =
ν0 +

∑n

i=1 ‖Yi −YMKF
i|i−1‖

2

[SMKF
i

]−1

ν0 + ndy
. (5)

Under certain assumptions, ξn converges to a value that is
Kullback–Leibler optimal in the class of probability models
that (possibly incorrectly) assume the noise covariances are
merely misscaled; this is the class defined in (6). Note that it
is not necessary to assume that (4) is the true model.

Theorem 6. Let the sequence Y1:n be governed by the

model (1) and denote its joint density by pn(y1:n). Define

the density

qnη (y1:n) =
n
∏

i=1

N (yi;y
MKF

i|i−1, ηS
MKF

i ) (6)

for η > 0 and the Kullback–Leibler divergence minimiser

ηn = argmin
η>0

DKL(p
n ‖ qnη ).

Assume that limn→∞ E[ξn]
2/n2 = limn→∞ V[ξn] = 0. Then

lim
n→∞

E
[

(ξn − ηn)
2
]

= 0,

where the expectation is taken with respect to pn.

Proof. The Kullback–Leibler divergence is given by

DKL(p
n ‖ qnη )

= E[log pn(Y1:n)] +
ndy
2

log(2πη) +
1

2

n
∑

i=1

log |SMKF
i |

+
1

2η

n
∑

i=1

E

[

‖Yi −YMKF
i|i−1‖

2

[SMKF
i

]−1

]

.

Differentiation gives

dDKL(p
n ‖ qnη )

dη

=
ndy
2η

−
1

2η2

n
∑

i=1

E

[

‖Yi −YMKF
i|i−1‖

2

[SMKF
i

]−1

]

.

Therefore,

ηn =
1

ndy

n
∑

i=1

E

[

‖Yi −YMKF
i|i−1‖

2

[SMKF
i

]−1

]

,

and from (5) it follows that

ηn =
ν0 + ndy

ndy
E[ξn]−

ν0
ndy

=

(

1 +
ν0
ndy

)

E[ξn]−
ν0
ndy

,

and

E
[

(ξn − ηn)
2
]

= V[ξn] +

(

ν0
ndy

)2

(E[ξn] + 1)2,

which vanishes as n → ∞ by assumption.

If the true model is (4), it is a straightforward consequence
of Thm. 6 that ξn asymptotically attains the correct scaling
since, in this case, the true model belongs to the class (6) of
approximating models.

0 50 100 150 200 250

10
−3

10
−2

10
−1

Variance and squared bias of ξn

λ = 0.5 λ = 1 λ = 1.5

0 50 100 150 200 250

10
−4

10
−2

10
0

n

Figure 1. Variance (above) and squared bias (below) of ξn for different λ.
Note that the bias does not depend on λ. The value ν0 = 10 was used.

Corollary 7. Under the model (4), ηn = λ and

lim
n→∞

E
[

(ξn − λ)2
]

= 0.

Proof. By assumptions of model (4), pn = qnλ . Consequently,
DKL(p

n ‖ qnλ) = 0 and thus ηn = λ is the global KL minimiser.
Furthermore, from Prop. 4 it follows that

‖Yi −YMKF
i|i−1‖

2

[SMKF
i

]−1
= λ ‖Yi −YKF

i|i−1‖
2

[SKF
i
]−1

,

and ‖Yi −YKF
i|i−1‖

2

[SKF
i
]−1

are i.i.d. with a χ2(dy) distribution

(see, e.g., [32]). From this it follows that

ξn =
ν0

ν0 + ndy
+

λ

ν0 + ndy

n
∑

i=1

‖Yi −YKF
i|i−1‖

2

[SKF
i
]−1

,

and

E[ξn] =
ν0 + λndy
ν0 + ndy

, V[ξn] =

(

λ

ν0 + ndy

)2

2ndy. (7)

The assumptions of Thm. 6 are thus satisfied and hence

lim
n→∞

E
[

(ξn − ηn)
2
]

= lim
n→∞

E
[

(ξn − λ)2
]

= 0. (8)

Fig. 1 depicts variance and squared bias of ξn under the
model (4).

C. Comparison to Maximal Likelihood

Here, ξn as an estimator of λ in (4) is compared to the
maximum likelihood (ML) estimate. The derivative of the
log-likelihood

ℓ(λ) =
n
∑

i=1

log p(Yi | Y1:i−1),

is given by

dℓ

dλ
=

1

2λ2

n
∑

i=1

‖Yi −YST

i|i−1‖
2

[SMKF
i

]−1
−

ndy
2λ

, (9)

the ML estimate λML
n is given by

λML
n =

λ

ndy

n
∑

i=1

‖Yi −YST
i|i−1‖

2

[SKF
i
]−1

. (10)
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Misscaled covariances

ξn

λML

n

E[ξn]

Figure 2. Student’s t-filter covariance scale estimates ξn and their theoretical
mean E[ξn] and maximum likelihood estimates λML

n
given in (10) for five

trajectories of the Wiener velocity model.

By Prop. 4 λML
n is thus a scaled sum of i.i.d. χ2(dy) random

variables. Therefore E[λML
n ] = λ and V[λML

n ] = 2λ/(ndy). The
relationship between ξn and λML

n is elucidated in Thm. 8.

Theorem 8. Under the model (4), ξn → λML

n as ν0 → 0.

Furthermore, Γ−1(s; ν0/2, ν0/2) tends to Jeffrey’s prior [33].

Proof. From Prop. 4 and Eq. (5) it follows that

lim
ν0→0

ξn =
1

ndy

n
∑

i=1

‖Yi −YST

i|i−1‖
2

[SMKF
i

]−1

=
λ

ndy
‖Yi −YMKF

i|i−1‖
2

[λSMKF
i

]−1

= λML
n .

Furthermore, the log-likelihood derivative (9) is

dℓ

dλ
= −

ndy
2λ

+
1

2λ

n
∑

i=1

‖Yi −YMKF
i|i−1‖

2

[SKF
i
]−1

,

and hence the Fisher information is

I(λ) = V

[

dℓ

dλ

]

=

(

1

2λ

)2 n
∑

i=1

2dy.

Jeffrey’s prior is then pJ(λ) ∝
√

I(λ) ∝ λ−1 which is
proportional to Γ−1(λ; ν0/2, ν0/2) as ν0 → 0.

IV. A NUMERICAL EXAMPLE

For numerical examples of the Student’s t-filter in Alg. 2
we use the Wiener velocity model with the model matrices

An =

[

I2×2 ∆tI2×2

02×2 I2×2

]

and Cn =

[

1 0 0 0
0 1 0 0

]

and true noise covariances

Q = λ

[

∆t3

3 I2×2
∆t2

2 I2×2
∆t2

2 I2×2 ∆tI2×2

]

and R = λI2×2,

where λ = 0.5 and ∆t = 0.1. The system was initialised
with P0 = λI4×4 and µµµ0 = 04×1. To contrast ξn from λML

n ,
similar when ν0 is small by Thm. 8, we set ν0 = 50.

0

0.4

0.8

1.2

Structurally incorrect covariances

ε

(

P
MKF
n|n

)

ε

(

P
ST
n|n

)

ε

(

P
ST2
n|n

)

0 200 400 600 800 1,000
0

0.4

0.8

1.2

n

ε

(

S
MKF
n

)

ε

(

S
ST
n

)

ε

(

S
ST2
n

)

Figure 3. Frobenius errors (compared to the optimal Kalman filter) of the error
covariance and measurement covariance produced by the ST, ST2, and MKF
for five trajectories of the Wiener velocity model under structurally misspecified
filter covariances (11). Note that the MKF covariances are data-independent.

First, we experiment with the scenario considered in Sec. III
(i.e, covariance matrices the filter uses are misscaled versions
of Q, R, and P0):

λQ0 = Q, λR0 = R, and λP0
0 = P0.

Fig. 2 depicts the scale estimate ξn produced by the Student’s
t-filter and the maximum likelihood estimate λML

n of λ for five
independent state trajectories. Also depicted is the mean of ξn,
as given in (7). We see that the scale estimates converge to
the the true value of λ as n increases.

In the second example we have a structural covariance
misspecification:

Q0 = 0.1 I4×4, R0 = I2×2, and P0
0 = P0. (11)

In this case it can only be expected that ξn converge to a value
minimising some sort of joint distance between QST

n , RST
n , and

PST

n|n and Q, R, and PKF
n|n. Results appear in Fig. 3 for ST,

ST2, and MKF in terms of the Frobenius errors

ε(Pn|n) :=
∥

∥Pn|n −PKF
n|n

∥

∥

Fro
and ε(Sn) :=

∥

∥Sn − SKF
n

∥

∥

Fro
,

latter of which is relevant in measurement gating [14, Sec.
2.3]. It is clear that Student’s t-filter of Alg. 2 is superior in
accuracy.

V. CONCLUSIONS

We analysed some properties of the Student’s t-filter based
on the joint model (2). Relations between the filter and
misspecified Kalman filters were studied. Student’s t-filter
was shown to converge to a certain Kullback–Leibler optimal
Kalman filter under some assumption as well as recover the
correct scale when the noise covariance matrices are misscaled.
The scale estimator was compared to the maximum likelihood
estimator. Simulations involving the Wiener velocity model
demonstrated the theoretical results.

An interesting future research direction would be to see if
any analysis is possible for ST2 (recall Rmk. 3). However,
as the formulation of this filter does not correspond to a
joint probability model for the entire state and measurement
sequence, different approaches and results ought to be sought.
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