
CBE—Life Sciences Education • 17:rm2, 1–12, Fall 2018 17:rm2, 1

ABSTRACT 

Discipline-based education researchers have a natural laboratory—classrooms, programs, 

colleges, and universities. Studies that administer treatments to multiple sections, in mul-

tiple years, or at multiple institutions are particularly compelling for two reasons: first, the 

sample sizes increase, and second, the implementation of the treatments can be intention-

ally designed and carefully monitored, potentially negating the need for additional control 

variables. However, when studies are implemented in this way, the observations on students 

are not completely independent; rather, students are clustered in sections, terms, years, 

or other factors. Here, I demonstrate why this clustering can be problematic in regression 

analysis. Fortunately, nonindependence of sampling can often be accounted for with ran-

dom effects in multilevel regression models. Using several examples, including an extended 

example with R code, this paper illustrates why and how to implement random effects in 

multilevel modeling. It also provides resources to promote implementation of analyses that 

control for the nonindependence inherent in many quasi-random sampling designs.

BACKGROUND

Recent calls to continue, expand, and improve undergraduate science teaching are 
being answered (Freeman et al., 2014), and these advances in classroom teaching are 
being assessed with studies that evaluate the effectiveness of classroom interventions 
(National Research Council, 2012). The use of regression analysis in these studies to 
determine the quantitative comparative impact of classroom interventions has been 
heralded as best practice (Theobald and Freeman, 2014), but when implementing 
regression approaches, it is important to recognize that classroom interventions are 
often clustered or nested in a way that makes the observations not truly indepen-
dent—this means that simple regression is often not the best strategy.

In a truly randomized trial (often referred to as a randomized control trial), subjects 
are independent from one another. For example, medical trials are frequently 
randomized at the individual level (i.e., they are truly randomized): participants are 
randomly assigned to treatments—some individuals receive the trial drug (treatment) 
and some individuals receive a placebo (control). In education research, however, this 
type of experimental design is not always possible. Instead, a common experimental 
protocol is to measure student outcomes when an intervention is administered to 
different sections. For example, as described in the extended example presented later, 
treatment is randomized by section, not by student, resulting in multiple control sec-
tions and multiple treatment sections. When the outcome is measured on students (not 
sections), student observations are not truly independent from one another. Instead, 
students within a section share experiences that are not shared across sections.

This kind of nonindependence is common in quasi-random experimental designs 
and is important to account for: incorrectly assuming independence of observations 
can shrink standard errors in a way that overestimates the accuracy of estimates 
(Raudenbush and Bryk, 2002; Gelman and Hill, 2007; DeLeeuw and Meijer, 2008). 
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TABLE 1. Glossary of terms used throughout the paper (terms are bolded in the text at first use)

Term Definition Example/synonym/application

Complex model Used to mean a model that includes all likely 
 parameters, including parameters that explicitly 
test the hypothesis of interest

Example: Score ∼ SAT + Sex + Treatment + 
 Sex*Treatment

This model includes SAT as a likely parameter that 
explains score and an interaction between 
Sex*Treatment and tests whether the treatment 
has a disproportional effect on students of 
different sexes.

Converge The process of reaching a solution. Maximum likelihood 
estimation attempts to find the parameter values 
that maximize the likelihood function given the 
observations. If the parameter values cannot be 
found, the model will not converge.

When models do not converge, R will report a 
warning or an error message.

Estimate Verb: A model estimates the effects of the parameters.
Noun: An approximation of a parameter derived from a 

sample of individuals

The estimated coefficient in a regression estimates 
(i.e., approximates) the relationship between 
performance and SAT scores for a sample of 
college students.

Intraclass correlation (ICC) The amount of clustering, or nonindependence, within 
a variable

ρ (“rho”); the ratio of between-cluster variance to 
total variance

Overfit model A model that considers too many parameters; the 
penalty of adding an extra parameter vs. the 
additional variation explained has not been 
appropriately weighed.

A saturated model is an example of an extreme 
example of an overfit model. A model does not 
have to be saturated to be overfit. Opposite: 
underfit model.

Parameter The true value [of something] for all individuals in a 
population

The parameter is the true relationship between SAT 
scores and performance for all college students in 
the country. (A model estimates this value from 
data from a subset of the whole population; see 
“Estimate.”)

Pseudo-replication Replication when replicates are not statistically 
independent

Example: if students are nested in sections, students 
are not independent, so observations on students 
exhibit pseudo-replication.

Quasi-random When a study is randomized, but not at the level where 
observations are made

Example: observations are made on student 
outcomes, treatments are randomized at the 
section level. Results in pseudo-replication.

As opposed to randomized

Saturated model A model that includes as many parameters as data 
points

Saturated models should be avoided; see “Overfit 
model.”

Underfit model A model that does not have enough variables to explain 
the data

Example: not including prescore as a predictor when 
modeling postscore

Variance The square of the SD of a sample; describes how far 
each value in the data set is from the mean

σ2 (where σ is the SD of the sample)

Variation A general term describing the amount of variability in 
something; it is measured by various quantities, 
including variance.

Synonyms: spread, dispersion, scatter, variability

A common way to account for this type of clustering is by fitting 
multilevel models that include both fixed effects (parameters 
of interest, e.g., “treatment”) and random effects (variables 
by which students are clustered, in this example, “section”; 
Gelman and Hill, 2007; Bolker et al., 2009). Multilevel models 
are so named because they account for variation at multiple 
levels—level 1 with fixed effects (treatment) and levels 2+ with 
random effects (section, year, etc.).

This paper is intended to be a starting point, and reference, 
for discipline-based education researchers who employ nonin-
dependent sampling designs (e.g., cluster-level randomization). 
It details when multilevel models are necessary and how to 
implement multilevel models in R (R Core Team, 2017).1 There 
are several clarifying notes throughout the text, including 
a glossary (Table 1) that defines common terminology (with 

terms bolded in the text upon first use; e.g., estimate, parame-
ter, quasi-random, variation have all been introduced before 
this point), and a graphical workflow for multilevel modeling 
(Figure 1). This paper is not an exhaustive review of multilevel 
modeling and relies heavily on texts published in other fields: 
Gelman and Hill (2007), Raudenbush and Bryk (2002), Zuur 
et al. (2009), and Burnham and Anderson (2002).

While using an extended example to motivate the need 
for multilevel modeling (Figure 2 graphically represents the 

1Conflating learning R with learning statistics is a common misunderstanding for 

beginners. There are several useful and free R tutorials available, such as Try R 

(http://tryr.codeschool.com) or STAT 545 (http://stat545.com). Additionally, 

several great resources teach statistics and provide examples in R, such as Gelman 

and Hill’s book (2007) Data Analysis Using Regression and Multilevel/Hierarchical 

Models, and Field, Miles, and Field’s book Discovering Statistics Using R (2012).
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experimental design in the extended 
example), this essay has several 
stages. First it builds a case for multi-
level modeling: it uses examples to 
describe two common cases for ran-
dom effects (Figure 3) and provides 
reasoning behind random effects. 
Second, it details the how to select 
the appropriate random effect struc-
ture: which variables work best as 
random or fixed effects (Figure 4), 
what is the difference between the 
two types of random effects (Figure 
5), and how to use model selection 
to determine the best random effect 
structure (Figure 6). Finally, the 
essay, concludes by using R to analyze 
the data and interpret the results from 
the extended example (Figure 7).

A Note about Terminology: Differ-
ent resources (and statisticians) refer 
to multilevel models with varying ter-
minology. The three most common 
terms are 1) “multilevel models,” 
because the fixed and random effects 
in the models account for variation 
coming from multiple levels (e.g., 
grade point average and section); 
2) “mixed models,” because the mod-
els include a mix of fixed effects and 
random effects; and 3) “hierarchical 
models,” for two reasons, first because 
there is sometimes a hierarchy to the 
data (e.g., when students are clus-
tered in sections, courses, and univer-
sities) and second because the model 
itself has hierarchy (e.g., within- 
section regressions at the bottom, 

controlled for by the random effects at the upper-level model). 
For the purposes of this paper, these models will be referred to 
as multilevel models, as in Gelman and Hill (2007). While 
ostensibly interchangeable with the term “multilevel modeling,” 
the other two terms can lead to confusion: simply because of 
terminology, mixed models are sometimes erroneously confused 
with mixture models (which are entirely different), and the data 
in multilevel models are not always hierarchical. For example, it 
is unclear which level is “higher,” universities or years and 
a hierarchy need not be explicitly assigned. Thus, the flexibility 
and clarity of the term “multilevel models” makes it the obvious 
choice. Additionally, in this paper, “random effects” or “random 
factors” are used interchangeably. Note that the typical abbrevi-
ation for random effect is “RF,” short for random factor.

EXTENDED EXAMPLE: EXPERIMENTAL DESIGN

The extended example presented here will be the motivating 
and illustrative example for the remainder of the paper. The 
data come from a real class in a real experiment. The specifics 
of the experiment have been removed for illustrative purposes.

Imagine that a group of researchers at a large university 
wanted to know whether a classroom intervention improved 

FIGURE 1. Workflow for multilevel modeling and a guide to using this paper. Each “decision 

point” in this figure represents a critical step in multilevel modeling and corresponds to a 

section in the paper and a figure and is illustrated with the extended example. R code for 

analyzing the data from the extended example can be found in Appendix 3 in the Supplemental 

Material (data are in Appendix 4). The code details calculating the ICC (helpful in determining 

whether random effects are needed), using model selection to select the appropriate random 

effect structure, and using model selection to select the appropriate fixed effects.

FIGURE 2. Experimental design in the extended example. Squares 

represent class days (note that there were more class days in the 

course and the spacing between interventions is not to scale). 

Experimental treatment and control are color coded as yellow and 

blue, respectively. Unique topic is indicated with the letters “Q,” 

“R,” and “S.” The pre- and posttests (black triangles) on each day 

were identical. The fact that students took a posttest three times 

made the students “repeated measure” and warranted students 

being treated as random effects. Additionally, students were 

clustered in sections (and section was not synonymous with 

intervention), so section was tested as a possible random effect. 

The experimental design was unbalanced, such that section 

A received the control twice and the treatment once, whereas 

section B received the treatment twice and the control once.
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FIGURE 3. Random effects are important to include when modeling data from (A) nested 

design studies and (B) repeated-measures studies. In both nested designs and repeated 

measures, the outcome is quantified on the student level. (Note that this is not always the case 

in DEBR studies; e.g., a researcher may be interested in which courses have the highest 

proportion of women, in which case the outcome is likely measured on the section level.) In the 

nested design illustration (A), students are nested in sections, which are nested in courses, 

which are nested in years, which are nested in universities. Each of these nested levels, or 

clusters, is important to account for with random effects. Similarly, in the repeated-measures 

study (B), the outcome (students’ survey responses) is quantified on the student level, and 

students take the survey four times. In this case, it is important to account for the fact that 

students are repeated, so student 1 on survey 1 is not independent from student 1 on survey 2. 

Including a student random effect accounts for this nonindependence within a student.

student performance. They implemented an experiment on three 
different days in two sections of a single course; on each day, one 
section was assigned the “control” and the other the “treatment.” 
Students from each section experienced both the treatment and 
the control, but for logistical reasons, one got the control twice 
(and the treatment once) and the other section got the treatment 
twice (and the control once). The three instances of the experi-
ment occurred on three separate days when class material cov-
ered three unique topics. The researchers wanted to know 
whether the treatment helped students learn more, as measured 
by their scores on a posttest. There were three pre- and posttests 
(one for each topic) for each student, because the experiment 
was implemented on three separate days.

A CASE FOR MULTILEVEL MODELING

Understanding the Research Question and Data Structure

First, we need to determine whether our study is appropriate 
for multilevel modeling, which requires understanding the 
hypothesis being tested and the process by which the data were 
collected (Figure 1). In other words, what is the research ques-
tion and what is the structure of the data that are being used to 
answer the question? It is worth emphasizing that primers, 
flowcharts, and step-by-step instructions in statistics are not an 
excuse or replacement for thinking critically about the experi-
mental design, data, or analysis decisions. Each analytical deci-
sion should be based on sound rationale about whether it is the 
most appropriate decision given the goals of the analysis and 
the circumstances of the study.

Two Common Cases for Random 

Effects. There are two common data 
structures in discipline-based educa-
tion research (DBER) that necessitate 
using multilevel models to control for 
nonindependence in sampling: 1) 
nested or clustered designs (Figure 
3A) and 2) repeated measures (Figure 
3B). In nested designs, students are 
clustered, or nested. For example, in 
the extended example, students are 
clustered in sections. Because of this 
clustering, students within each sec-
tion are not independent from one 
another. Specifically, students within 
a section often share a number of 
attributes that are not shared by 
other sections, such as instructor, 
time of day, exams, classroom envi-
ronment, number of missed classes 
because of holidays, and so on. This 
nonindependence can be illustrated, 
albeit with an extreme example, 
when thinking about students in each 
of those sections taking an exam: if 
the fire alarm were to sound when 
students in one section were taking 
the exam, but not in the other sec-
tion, it is likely that students’ scores 
in the fire alarm section would be 
impacted, but not the scores of stu-
dents in the other section.

In a statistical context, nonindependence alters the effective 
sample size (n). When observations of 50 students (i.e., 50 data 
points) are not independent, n is not considered to be 50. 
Rather, the effective sample size is a function of how correlated, 
or how dependent, the observations are with one another. 
Because standard errors are a direct function of sample size 
(when n increases, standard errors decrease), ignoring the 
nonindependent nature of observations underestimates the 
variance or overestimates the accuracy of the effect (Raudenbush 
and Bryk, 2002; Gelman and Hill, 2007). This type of cluster-
ing/nesting pertains not only to sections but can continue 
through multiple levels of clustering, because students are 
nested in courses, within terms (e.g., semesters or quarters), 
within years, within universities, and so on (Figure 3A). When 
there is clustering in an experimental design, it is important to 
account for each level of clustering (e.g., instructors, quarters, 
years, universities) with random effects.

Another common study design that necessitates multilevel 
models is a repeated-measures design wherein the same students 
take the same assessment or the same survey multiple times 
(Figure 3B). Conceptually, this is akin to an assessment being 
“nested” within students. In the extended example, each student 
took a posttest three times (once for each of three topics). It is 
important to account for the nonindependence of responses by 
the same individual student. Specifically, Student A’s responses 
on the first posttest are likely to be more similar to his or her own 
responses on the second posttest than to Student B’s responses on 
the posttests. Similarly, if researchers are interested in whether 
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FIGURE 4. Researchers can build intuition to determine whether variables should be included 

as fixed effects or random effects by asking three questions and following this decision tree.

students’ perception of group dynamics changes as time in class 
progresses, they might administer the same “group dynamics sur-
vey” three times (once early, midway, and late in the course; 
Figure 3B). Again, it is necessary to account for the nonindepen-
dence in student responses in a model that includes “time in 
course” as a predictor and survey response as the outcome. 
Including a student random effect in both of these cases accounts 
for the nonindependence of these repeated student measures.

The Reasoning behind Random Effects. The general purpose 
of regression analysis is to explain the observed variation in an 
outcome. There are three primary sources of variation that 
researchers try to explain (or reduce) when implementing 
experiments and modeling outcomes: process variance, obser-
vation error, and estimation error. Process variance is variation 
that can be accounted for with random effects. It describes the 
variation in the outcome variable that is caused by “nuisance” 
variables that might impact outcomes but are otherwise unac-
counted for. For example, there are differences between sec-
tions (and the converse: similarity within sections), and there 
are differences between individual students (e.g., an interest in 
gardening might impact student performance on a plant biol-
ogy assessment). Frequently, process variance is important to 
account for, but is not in itself of interest to researchers, and 
thus is accounted for with random effects.

Observation error comes from imprecision in measurements. 
To account for this kind of error in data sets, researchers can 
employ various methods, for example, by gathering validity and 
reliability evidence for survey use (American Educational 
Research Association et al., 2014). Furthermore, observation 
error can be exacerbated if observations (i.e., data) are missing. 

Keeping all observations in data sets instead of restricting 
the set such that some students are omitted reduces post hoc 
volunteer bias. As Brownell and colleagues (2013, p. 177) 
describe, volunteer bias is a condition wherein there are “unob-
served systematic differences between two conditions which 
will bias results.” In other words, when students volunteer to 
participate in an intervention, it is entirely possible that these 
volunteers are different from nonvolunteers. These differences 
can bias the study results. Extending that idea here, post hoc 
volunteer bias is the condition wherein the data set is limited in 
a nonrandom way, resulting in a final data set that includes data 
that do not accurately describe the whole population. This can 
lead to biased conclusions (see Rosenthal and Rosnow [1975] 
and Heckman [1979] for technical details).

Finally, estimation error comes from the precision (or impre-
cision) of the parameters included in models. Do Scholastic 
Aptitude Test (SAT) scores really control for all of the prior 
preparation a student had before entering the class? Does 
the model include enough control variables? Collecting and add-
ing more controls, or fixed effects, and including those as covari-
ates—for example, by including a student’s score on a placement 
test as well as an SAT score to account for prior preparation—
and including demographic variables in models can reduce esti-
mation error (see Theobald and Freeman [2014] for a thorough 
description). There will always be unavoidable variation that 
causes estimation error, but control variables can help limit it.

Another way to think of sources of variance is in general 
terms. There are three primary sources of variance in educa-
tion data: 1) things researchers are explicitly testing and can 
measure (e.g., whether a student received the intervention), 
2) things researchers are not testing but might want to con-

trol for and can measure (e.g., stu-
dent’s SAT scores or clustering in 
sections), and 3) things researchers 
want to control for but cannot 
explicitly measure (i.e., the noninde-
pendence between students in the 
same section).

Selecting a Random Effects 

 Structure

Variables as Random Effects or 

Fixed Effects. There are two primary 
ways to determine whether variables 
should be specified as random effects 
or fixed effects: 1) building intuition 
and 2) quantitative assessment.

Building Intuition. There are three 
questions an analyst should ask while 
building intuition to determine 
whether a variable should be mod-
eled as a random effect or a fixed 
effect (Figure 4): 1) Is the variable 
continuous or categorical? 2) Are the 
observations within the levels (i.e., 
groups) of the variable independent? 
3) Does the research question hinge 
on comparing the means between the 
levels (i.e., groups) of the variable?
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Is the variable continuous or categorical? Random effects can 
only handle data that are categorical. This is logical, because a 
random effect accounts for the nonindependence between 
observations within a group. Thus, random effects are grouping 
(or clustering) variables, and groups are, by definition, catego-
ries. If a continuous variable is specified as a random effect, each 
value will be considered a category. For example, in the extended 
example, prescore (on a test that was identical to postscore) was 
collected. If prescore is specified as a random effect, all students 
who have a prescore of 52% will be in a group and all students 
who have a prescore of 55% will be in another group. This, of 
course, is not the appropriate way to handle prescore.

Are the observations within the levels (i.e., groups) of the 
variable independent? Observations that are independent 
should be specified as fixed effects, not random effects: random 
effects are grouping variables, and the underlying definition of 
a grouping variable is that the observations within the groups 
are not independent. For example, there is not likely to be a 
strong grouping of women within a course. In other words, stu-
dents within a section are not independent, but there is not 
likely to be additional grouping by sex in a course; thus, sex is 
most often a fixed effect, not a random effect.

On the other hand, observations that are not independent 
need to be in the model but can be specified as either fixed or 
random effects. For example, in the extended example, obser-
vations within a topic are not independent; thus, topic needs to 
be in the model. Topic can be specified as a fixed effect or a 
random effect. The drawback of including group (e.g., topic) as 
a fixed effect is that this can reduce power and weaken statisti-
cal inference when there are a large number of groups (Bolker, 
2008). When there are a large number of groups, including 
group as a random effect is advantageous.

Does the research question hinge on comparing the means 
between the levels (i.e., groups) of the variable? If a variable has 
two levels (e.g., although gender can include multiple catego-
ries, sex is frequently treated as having two levels: male and 
female), and the research question asks whether the levels of the 
variable are different (e.g., whether males respond differently 
from females) then the variable (sex, with male and female as 
levels) needs to be specified as a fixed effect. Random effects in 
multilevel modeling estimate the variance between the groups, 
not the mean of each group, so statistical comparisons of means 
generally come from fitting variables as fixed effects.

In summary, some variables are better suited as fixed effects 
than random effects, and some variables could be either, 
depending on the research question. Assuming the research 
question does not hinge on comparisons between levels in these 
groups, the variables that are most commonly specified as 
random effects in DBER studies include: section, year (categor-
ical), course, instructor, and student (in repeated-measures 
studies). Variables that are most commonly specified as fixed 
effects in DBER studies include: treatment, proxies for student 
ability (SAT, ACT, placement exam, prescore, etc.), and student 
demographics (ethnicity, gender, etc.).

In the extended example, a student random effect should be 
necessary, because students took part in each day of the exper-
iment and thus have multiple posttests. Therefore, students are 
designated as “repeated measures” in this design (Figure 3B). 
In addition, a section random effect would account for the 
nonindependence of sections, because students are clustered in 

sections; thus, a section random effect should be necessary 
(Figure 3A).

Quantitative Assessment. There are two quantitative ways to 
determine whether a variable should be treated as a random 
effect: 1) with model selection (which is described at length 
later) and 2) with the intraclass correlation (ICC). The ICC is 
a measure of the clustering in a variable. Specifically, it is ρ 
(“rho”), the ratio of between-cluster variance to total variance:

B
2

B
2

W
2

ρ =
σ

σ + σ

where B
2

σ  is the variance between the clusters and W
2

σ  is the 
within-cluster variance. When ρ = 0, there is no clustering, and 
when ρ = 1, there is complete clustering. There are no hard-and-
fast rules about ρ values that dictate random effects; however, 
the rule of thumb states that random effects are most effective 
when ρ > 0.05 (Gelman and Hill, 2007; Hedges and Hedberg, 
2007). In other words, when ρ is well into single-digit percen-
tiles (ρ < 0.05), a random effect may not be necessary.

The ICC is calculated from null models that include only the 
random effect of interest: outcome ∼ 1 + (RF). Although lme4 
in R does not automatically calculate ρ, the values that are used 
to calculate it are part of the standard R output from the sum-
mary(mod) command. R code that accompanies the extended 
example (Appendix 3 in the Supplemental Material) includes a 
calculation of the ICC for student repeated measures and sec-
tion in the example data.

Three Types of Random Effects Models. There are many 
kinds of and ways to specify random effects in R (see Bates, 
2010; Bates et al., 2015, 2018 for details). For simplicity, we will 
focus on three of the most common types. The random effects 
models discussed to this point are models with random inter-
cepts; additionally, there are models with random slopes and 
models with both random intercepts and random slopes. Figure 
5 illustrates a model without fixed effects (Figure 5A) and the 
three main types of random effects models. Random intercepts 
models allow each grouping variable (e.g., section in nested 
designs and students in repeated measures, as in the extended 
example) to have its own intercept but keeps the slope equiva-
lent for each group (Figure 5B). The interpretation of these 
models is that the average for each group is different, but the 
relationship with the predictors is the same.

In the extended example, when modeling postscore (as an 
outcome) and section as a random effect, a random intercepts 
model allows each section to have a different mean postscore but 
dictates that the treatment has the same relationship with post-
score in each section (Figure 5B). Conversely, a random slopes 
model (Figure 5C) allows the relationships between the predic-
tors and outcome to vary by grouping variable but forces the 
starting place to be the same. For example, a random slopes 
model allows the relationship between treatment and postscore 
to be different for each section, but assumes that the mean post-
score is the same for each section. Finally, random slopes and 
intercepts models (Figure 5D) dictate that each section is allowed 
a unique mean (intercept) and a unique relationship/impact of 
treatment. The mathematical mechanics of these models can be 
found in Appendix 1 in the Supplemental Material.
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In the extended example, it is most likely that there is not 
anything about section that would suggest that the treatment, 
or any other variable, would differentially impact students’ 
postscores—both were taught by the same instructor only 1 
hour apart. This means that the slope of treatment (or any other 
variable) should not vary by section, thus dictating that the 
slope of the random effect should be fixed. At the same time, it 
is definitely possible that each section will have a different 
mean postscore, implying that the intercepts are likely to be 
different. Testing section as a random effect with a fixed slope 
and random intercept is the most intuitive approach for this 
study design (i.e., a model that corresponds to Figure 5B).

Similarly, it is most likely that students’ postscores will be 
affected by the intervention in the same way but that each stu-
dent’s postscore will be different. This is an argument to include 
student as a random effect with a fixed slope and random inter-
cept. In other words, the impact of the treatment (or any other 
variable in the model) on the postscore (slope) is likely to be the 
same, regardless of student, whereas each student may well 
have a different score overall (intercept).

Just as specifying variables as fixed effects or random effects 
comes from a combination of understanding and strategy, 
knowing whether to model random effects as random inter-
cepts, random slopes, or both comes from a combination of 
understanding and strategy. Specifically, determining which 
structure (random intercepts and/or slopes) to use comes from 
understanding the question the model is trying to answer and 
the structure of the data (often as a result of the way in which 
the data were collected). Is it likely that the relationship 
between the variable of interest and the outcome is different for 
each grouping variable? If so, test with model selection (see 
next section) whether a random slope fits best. Is it likely that 
the relationship between the variable of interest and the out-
come is the same but that the mean for each grouping variable 
may be different? If so, test whether a random intercept fits 

best. If, after building understanding of the question and the 
data, there is still uncertainty about whether to include random 
effects as random slopes or random intercepts, model selection 
can help inform that decision and is a useful next step.

Model Selection Using Akaike’s Information Criterion (AIC).  
After understanding which random effects could be included in 
the model, model selection (or ICC) can be used to formally test 
which random effects should be included in the model. The pri-
mary goal when modeling is to interpret a model that fits the 
data well (Figure 1; Burnham and Anderson, 2002). If a model 
with poor fit is interpreted, then inference, including presence, 
direction, or magnitude of the effect, can be inaccurate or mis-
leading. Determining the best-fitting model, thus the appropri-
ate model to interpret, takes a combination of selecting the best 
random effects structure then selecting the best fixed effects. 
Before selecting fixed effects, one must first select the random 
effects structure (Zuur et al., 2009).

One commonly used strategy to determine model fit and the 
most appropriate random effect structure, given a study ques-
tion, is derived from model selection. Zuur et al. (2009) and 
Burnham and Anderson (2002) describe model selection at 
length (primarily with examples from ecology, wherein individ-
uals are frequently clustered in blocks or plots as a way of sub-
sampling populations). Here, best practices from these two 
authorities are combined and summarized to become recom-
mendations in DBER practice.

Selecting the best random effect structure for your data 
requires three steps:

1. Build a fixed effects–only model that explicitly tests the 
hypothesis. In the extended example, the hypothesis is that 
the treatment will be correlated with an increased postscore, 
controlling for prescore and topic. (Note: If the hypothesis 
were that women will disproportionally benefit from the 

FIGURE 5. Depending on the structure of the data, a fixed effects–only model (A) may not be the best model. There are three main ways to 

specify random effects in multilevel models: (B) as random intercepts, in which the slope is the same for all groups, but the intercepts vary 

for each group; (C) as random slopes, in which the intercept is the same for all groups, but the slopes vary for each group; and (D) as 

random intercepts and random slopes, in which all groups are allowed to have different slopes and different intercepts. Illustrated here, 

students (points) are nested in six sections (illustrated by the six combinations of filled/unfilled symbols in different shapes). There are two 

treatments, illustrated by filled and unfilled symbols. The lines show how each approach models the relationship between PreScore and 

PostScore. In a fixed effects–only model (A), a single regression line is fit for the treatment (filled) and control (unfilled symbol), ignoring 

sections; in a random effects model (B–D), separate regression lines are fit for each section. In the random intercepts model (B), the 

intercepts are allowed to vary by section but not the slopes (thus, the lines are parallel); in the random slopes model (C), the slopes are 

allowed to vary for each section, but not the intercepts (thus, all the lines start at the same place); and in the random intercepts and 

random slopes model (D), both the intercepts and the slopes are allowed to vary for each section. The overall model fit in B–D is essentially 

the weighted average of the regression lines for each group and is not shown.
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intervention, then the model needs to include the gender by 
treatment [sex*treatment in R] interaction.)

2. Build models with all the fixed effects from step 1 and all 
likely combinations of random effects (including a model 
with no random effects) by removing random effects singu-
larly and in combination.

3. Compare all of the models from steps 1 and 2 using AIC (or 
AICc, which is AIC with a correction for small sample size; 
i.e., when the ratio of the sample size to number of esti-
mated parameters is less than 40; for details, see Burnham 
and Anderson, 2002).

Information criterion (e.g., AIC and AICc) provide a relative 
measure of “goodness of fit” for models explaining the same 
data. There are many types of information criterion an analyst 
can use while conducting model selection (e.g., Bayesian infor-
mation criterion [i.e., BIC], Hannan-Quinn information crite-
rion [i.e., HQIC]). The performance of each criterion in model 
selection depends on the data, the model assumptions, and the 
modeling circumstances (Gurka, 2006; Whittaker and Furlow, 
2009). For simplicity, AIC is primarily discussed and is employed 
in the extended example.

As with all information criterion calculation, AIC weighs 
how well the model fits and how complex the model is. In 
short, the more parameters included in a model, the better the 
model will describe the data. However, at some point, the mar-
ginal gain of including another parameter or the added benefit 
compared with the penalty of additional parameters is negligi-
ble, so the additional parameters only add unnecessary com-
plexity. AIC formally calculates this trade-off by considering the 
maximum likelihood of a model and including a “penalty” for 
the number of parameters. The simplest models with the lowest 
AIC values are considered the best-fitting models, with the 
important caveat that models within ∆AIC of 2 are considered 
to have equivalent fit (Burnham and Anderson, 2002). With 
this caveat in mind, the true goal of model selection is parsi-
mony: balancing the trade-off between maximum likelihood 
and number of parameters, thus threading the needle between 
underfit and overfit models (Burnham and Anderson, 2002).

AIC values can be either positive or negative, so models with 
the lowest value are best fitting, not models with the value clos-
est to zero. It is also important to emphasize that AIC is a rela-
tive comparison; comparison of models using AIC values is 
valid only when the models are describing the same data. In 
DBER, that means the same students need to be present in all 
the models. Students can be lost from a model if they do not 
have measurements for all variables. For example, students 
who did not take the SAT, do not have an SAT score; a model 
that includes SAT as a factor will omit students without an SAT 
score. This is an example of post hoc volunteer bias as described 
above. AIC is often built into R packages (including base R) and 
therefore can be easily calculated. Additionally, the R packages 
glmulti (Calcagno, 2015) and AICcmodavg (Mazerolle, 2017) 
have explicit functions to calculate AIC and AICc.

The final step of model selection is selecting the appropriate 
fixed effects. The intricacies of this step of model selection are 
beyond the scope of this paper. However, briefly, selecting fixed 
effects can be done with backward selection or forward selec-
tion. Importantly, in both strategies, all models have the same 
random effect structure, as determined by steps 1–3. When 
employing backward selection, first fit a model with all possible 

fixed effects and the best random effect structure, then remove 
the fixed effects singularly; candidate models are compared 
using AIC. In forward selection, the simplest model (with the 
selected best random effect structure) is fit and fixed effects are 
added singularly; candidate models are compared using AIC. 
There are automated functions in R to perform model selection 
with fixed effects, but not all can be applied to multilevel models 
fit in lme4. Typically, these functions compare all possible com-
binations of fixed effects and therefore may select a different 
final model than one based on selection by singularly removing 
parameters. It is worth noting that some practitioners criticize 
these automated functions for being too exploratory or too sim-
ilar to “fishing for significance” (Burnham and Anderson, 2002); 
therefore, they should be used with extreme caution or avoided.

Three points are worth making about using model selection 
when fitting multilevel models. First, fitting multilevel models 
using restricted maximum likelihood has become so common-
place that it is the default in the lme4 package (i.e., REML = T 
is the default). It is generally accepted that restricted maximum 
likelihood is best suited for accurately estimating variance 
parameters (e.g., random effects), but it is highly dependent on 
the fixed effects included in the model. For this reason, it is 
considered best practice to select random effects using restricted 
maximum likelihood (the default in lme4) but to select the 
fixed effects with maximum likelihood by adding REML = F in 
the model command. Finally, when interpreting the final model, 
it is best to refit it with REML = T to get the most precise esti-
mates. This nuance is demonstrated in the extended example.

Second, interpreting p values from multilevel model output 
is not considered best practice. Calculating the p value requires 
an accurate t statistic, which relies on an accurate measure of 
the degrees of freedom in a model; this is not straightforward in 
multilevel models (Bates, 2010). In fact, the model output from 
a multilevel model fit with lme4 will not report a p value. While 
it is possible to estimate a p value (from the reported corrected 
t statistic) or to calculate it in other ways, this is not considered 
wise (more details are provided in Appendix 2 in the Supple-
mental Material). Thus, model selection or multimodel infer-
ence is the preferred mode of hypothesis testing when fitting 
multilevel models. When performing model selection, each 
model that is fit can be considered a distinct hypothesis that is 
supported (or rejected) by determining how well the model fits 
compared with other models (i.e., other hypotheses).

Third, there is some debate in the literature about whether 
AIC is the most appropriate information criterion to use when 
fitting multilevel models (see Gurka [2006] for details). Partic-
ipating in this debate is beyond the scope of this paper, but 
there is evidence that AIC performs as well or better than other 
information criteria in selecting the correct multilevel model in 
many circumstances (Gurka, 2006; Zuur et al., 2009). Further-
more, using AIC to select the best-fitting multilevel models that 
have been fit in lme4 with the lmer and glmer function in R is 
currently supported (Zuur et al., 2009).

Additional Notes

Note 1. To account for clustering with random effects, the clus-
tering needs to be independent of the treatment. For example, 
in the extended example, two sections got both treatments. 
Another common experimental design is for two or more sec-
tions to be named as the control sections and two or more 
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different sections to be named as the treatment sections 
(as illustrated in Figure 5). In each of these cases, including a 
section random effect will account for some student clustering, 
and the overall treatment effect can still be estimated. On the 
other hand, if an experiment had just one section of the control 
and one section of the treatment, it is inappropriate to include 
a section random effect, because the treatment is synonymous 
with section. Here, the random effect will attribute the effect of 
the treatment to “nuisance” differences between sections, effec-
tively sabotaging the effect of treatment completely. The better 
experimental design is to replicate the experiment such that 
there are multiple sections of the control and multiple sections 
of the treatment, or to randomize treatment to students instead 
of sections. When the preferred experimental design is not pos-
sible, making random effects inappropriate, controlling for stu-
dent nonequivalence is paramount; this is described at length in 
Theobald and Freeman (2014).

Note 2. As a general rule of thumb, a random effect needs sev-
eral groups (levels) to be effective; however, there is no clear, 
quantitative definition of “several.” That said, there is no harm 
in testing random effects with as few as two groups; it is possible 
these models will not converge, but if they do, they will likely 
converge at equivalent estimates as models without random 
effects (Gelman and Hill, 2007). In other words, a model that 
converges reaches a solution, whereas a model that does not 
converge never reaches a solution; R will report nonconvergence 
with a warning or error. If a model has random effects with too 
few groups, the solution reached will be equivalent to a solution 
reached when random effects are not included. Conversely, not 
including a random effect when one is needed can have several 
unfortunate ramifications: first, it can falsely increase your sam-
ple size by treating all observations as independent when they 
are not; second, it can overestimate the accuracy of your esti-
mate; and ultimately, it can mask relevant effects, as illustrated 
in the extended example below. In short, testing possible ran-
dom effects is usually a good idea—there is greater harm in not 
including a random effect that is necessary than including a ran-
dom effect that is not necessary (Gelman and Hill, 2007).

Note 3. Many different types of outcome data (e.g., binomial, 
Poisson) can be accommodated in multilevel models with stan-
dard R packages. Table 2 includes a list of outcome data types 
(continuous, binary, etc.) that are common in DBER studies. 
The corresponding name of fixed effects–only models and mul-
tilevel models, the R package in which the multilevel models 
are implemented, and example syntax for building the models 
in R are also included in the table. In addition, several DBER 
papers have implemented random effects well and have 
detailed their justification and implementation. These papers 
include studies that use random effects to account for repeated 
measures, typically students (Eddy et al., 2014; Linton et al., 
2014; Wright et al., 2016; Theobald et al., 2017; Wiggins et al., 
2017), and studies that use random effects to account for 
clustering, either by class, quarter, or instructor (Freeman et al., 
2011; Eddy et al., 2014; Wright et al., 2016).

EXTENDED EXAMPLE ANALYSIS

In summary, the extended example describes an experiment 
wherein researchers test the hypothesis that the postscore is 
correlated with treatment, controlling for prescore and topic. 
Controlling for pretest in a linear regression (as opposed to 
using gains or change scores) should be considered best prac-
tice, as it is the best way to determine that observed differ-
ences are a result of the true treatment effect (i.e., the effect of 
the intervention) and not student characteristics (Theobald 
and Freeman, 2014). Given that student mastery is often vari-
able by topic (i.e., because different topics are harder than 
others or different assessments are better than others), the 
analyst controls for topic with a fixed effect (topic in the 
extended example has three levels: Q, R, S). Furthermore, the 
experimental design dictates that the analyst tests random 
effects for section (as a nested design, section has two levels: 
A and B; Figure 3A) and students (as repeated measures; 
Figure 3B).

The code and data used in this analysis can be found in 
Appendices 3 and 4, respectively, and also in the online 
github repository: https://github.com/ejtheobald/Multilevel 
_Modeling.

TABLE 2. Random effects can be implemented in regression models that model various types of outcome variablesa

Outcome data type Example in DBER

Regression type  

(R function)

With random effect  

(R function)

Implementation in R

R package R syntax

Continuous Exam points Linear model (lm) Linear mixed effects 
model (lmer)

lme4b Mod ← lmer(outcome ∼ predictor, 
data = data)

Binary (0/1; yes/no) Pass/fail Binomial (glm) Generalized linear mixed 
effects model (glmer)

lme4b Mod ← glmer(outcome ∼ predictor, 
family = binomial, data = data)

Proportion Proportion of classes 
attended

Binomial (glm, family 
= binomial)

Generalized linear mixed 
effects model (glmer)

lme4b Mod ← glmer(cbind(numerator, 
denominator) ∼ predictor, 
family = binomial, data = data)

Count Number of hand-
raises

Poisson (glm, family 
= Poisson)

Generalized linear mixed 
effects model (glmer)

lme4b Mod ← glmer(outcome ∼ predictor, 
family = Poisson, data = data)

Likert; categorical 
ordinal

Agree–neutral– 
disagree

Proportional odds or 
ordered logit (polr)

Cumulative link mixed 
model (clmm)

ordinalc Mod ← clmm(as.factor(outcome) ∼ 
predictor, data = data)

aSome of the most common types of discipline-based education research (DBER) outcome variables can be categorized as continuous, binary, proportion, count, or on a 

Likert scale. This table shows the most common types of data in DBER and the corresponding implementation of multilevel models in R, including a recommended R 

package and corresponding syntax for model specification.
bBates et al., 2018.
cChristensen, 2018.

https://github.com/ejtheobald/Multilevel_Modeling
https://github.com/ejtheobald/Multilevel_Modeling
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FIGURE 6. Steps in random effect model selection, as recommended by Zuur et al. (2009) and 

Burnham and Anderson (2002). This example was implemented in R.

Specifying Variables

When building models with factor variables in R (i.e., variables 
with discrete levels or categories), the analyst can choose the 
reference group for each comparison. Here, treatment is coded 
as 1 and control as 0, so control is the reference: the output will 
show the effect of the treatment relative to the effect of the 
control. Similarly, topic is coded as Q, R, and S. Q is (arbitrarily) 
the reference (because it comes first in the alphabet), so the 
output will show the effect of Topic R relative to Q and the 
effect of Topic S relative to Q. If the analyst desires other com-
parisons (e.g., Topic S relative to Topic R), the function relevel 
in base R enables this comparison (R Core Team, 2017).

The R syntax for coding random effects in the package lme4 
(Bates et al., 2018) follows the structure (x

1
|x

2
). The term to 

the left of the | indicates a random slope (e.g., x
1
), while the 

term to the right of the | indicates a random intercept (e.g., x
2
). 

When one or the other of those terms is not needed, replace the 
term with a 1. Here, the analyst tests two random effects: stu-
dents as a random intercept (1|StudentID) and section as a 
random intercept (1|Section).

Note: If it were likely that the relationship between treatment 
and outcome varies by section, a random effect with section as a 
random slope (and fixed intercept) would take the form (0+Treat-
ment|Section), and section with a random slope and random 
intercept would take the form (Treatment|Section) (Bates et al., 
2015). There are many ways to specify other random effects in 
lme4, and these are explained at length in the package documen-
tation (e.g., Bates, 2010; Bates et al., 2015, 2018). Here, intu-
ition does not support testing random slopes, because there is no 
a priori reason to suspect that treatment will have a differential 
effect on the postscores of students in the two sections.

An important note about data structure: when modeling 
data that are nested (e.g., section within course within year), it 
is important to consider how levels are indicated in the raw 
data. For example, if there are five sections in the same course 
in 3 years, the data can either be indicated as Year 1, Section 

1–5; Year 2, Section 1–5; and Year 3, Section 1–5; or Year 1, 
Section 1–5; Year 2, Section 6–10; and Year 3, Section 11–15. 
Note the section numbers either start over in each year (option 
1) or are continuous (option 2). Either strategy will yield the 
same result, but the R syntax for specifying models with these 
two different data structures is different. For the purposes of 
this paper, data are structured such that sections are continuous 
(i.e., no two sections have the same number and every section 
has a globally unique identifier). For details on how to specify 
models with data where sections start over, see Bates (2010) 
and Bates et al. (2015).

Model Selection Using AIC

The first step in model selection (Figure 1) is to fit a fixed 
effects–only model that tests the hypothesis; this step is illus-
trated here as well as in Figure 6 (step 1, lines 1–9):

mod1: PostScore ∼ Treatment + PreScore + Topic

This model models PostScore as a function of (noted with 
the “∼”) Treatment, controlling for PreScore and Topic. This 
model explicitly tests the hypothesis that treatment impacts 
the PostScore. Model 1 was fit using the lm function in R’s base 
package (Figure 6, step 1, lines 1–9), because lmer can fit only 
multilevel models (R Core Team, 2017; Bates et al., 2018).

The second step (Figure 1) is to fit three additional models, 
with all the possible combinations of random effects (Figure 6, 
step 2, lines 11 – 26):

mod2: PostScore ∼ PreScore + Treatment + Topic + 
(1|StudentID)

mod3: PostScore ∼ PreScore + Treatment + Topic + 
(1|Section)

mod4: PostScore ∼ PreScore + Treatment + Topic +  
(1|StudentID) + (1|Section)

Students (identified by their 
unique student ID, “StudentID”) and 
sections are included as random 
effects with random intercepts and 
fixed slopes. Models 2 through 4 were 
fit using the function lmer in the lme4 
package in R (Bates et al., 2018).

Finally, the third step (Figure 1) is 
to compare the four models using AIC 
to determine which model fits best 
(Figure 6, step 3, lines 28–32).

Interpreting Results

Recall that the goal of modeling is to 
interpret the best-fitting model 
(Figure 1), and the best-fitting model 
has the lowest AIC. Models within 
∆AIC = 2 are considered to have 
equivalent fit (Burnham and Ander-
son, 2002), so if ∆AIC ≤ 2, the model 
with the fewest number of parame-
ters (i.e., the simplest model) is 
selected (Burnham and Anderson, 
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2002). Here, mod3, containing the student random effect to 
account for repeated measures, was selected as best fitting 
(Figure 7A).

After determining the model with the most appropriate ran-
dom effect structure (mod3), the analyst selects the best fixed 
effects that explain the data (Figure 1). This procedure is iden-
tical to selecting the random effects (except for also specifying 
REML = F) and is detailed in the R code in Appendix 3 in the 
Supplemental Material.

The best-fitting model is the model that includes a student 
random effect (to account for the repeated measures) and Pre-
Score, Topic, and Treatment as fixed effects (Figure 7; Appendix 
3 in the Supplemental Material). Section was not retained as a 
random effect, which is not surprising, given its ICC is 1.9e−14—
essentially zero (Appendix 3 in the Supplemental Material).

Interpreting the best-fitting model to answer the research 
question, the researchers conclude that students who received 
the treatment performed, on average, 0.186 points better than 
students who received the control, all else being equal (Figure 
7C). This inference comes from the retention of treatment in the 
best-fitting model (i.e., the model that contains treatment has 
the lowest AIC). Note that, although it is possible to consider 
the t statistic to test the hypothesis, according to the author 
of the lme4 package, it is not wise. See Appendix 2 in the Sup-
plemental Material for details and Bates (2010) for technical 
details.

Looking at the rest of the output (Figure 7C), the student 
random effect has an estimated variance of 0.7174. Remember 
that a random effect is not estimating a slope parameter, but 
rather only a variance parameter, so there is not a “beta coeffi-
cient” in the output, only an estimate of variance. It is from this 
variance parameter that an ICC is calculated. The ICC for the 
student repeated measures is calculated in the code found in 
Appendix 3 in the Supplemental Material and is 0.455. This 
indicates that the within-student answers are highly correlated 
compared with the between-student answers, further justifying 

the inclusion of StudentID as a random effect. Finally, the other 
fixed effects in the model (PreScore and Topic R and Topic S, 
both of which are being compared with Topic Q) indicate that 
treatment is not the only factor that influences PostScore.

For illustrative purposes, Figure 7B also shows the output of 
a fixed effects–only model. Without a random effect (in the fixed 
effects–only model), the effect of treatment is masked at conven-
tional significance levels, p < 0.05 (Figure 7B, p = 0.09 for Treat-
ment). Only when controlling for the student repeated measures 
with a student random effect does the treatment effect become 
apparent (Figure 7C). In other words, getting the random effect 
structure right is not only a matter of protecting against spurious 
conclusions driven by pseudo-replication and lower-than-cor-
rect standard errors, but it actually helps detect effects that can 
be concealed by confounding structure in the data.

In this case, the nonsignificance of treatment when the stu-
dent random effect is omitted and the retention of treatment 
when the student random effect is retained are likely artifacts of 
the experimental design: because the design was unbalanced 
(section B got the treatment twice), using a fixed effects–only 
model makes the treatment effect more dependent on who the 
students are in section B. Students who got the treatment more 
often might be slightly less proficient students, so without a 
random effect, it might seem as though the treatment does not 
have a substantial impact. Controlling for prescore (as well as 
other covariates that are not included in the data: course grade, 
SAT score, etc.) corrects for some of this variation but not all of 
it, because it does not account for the individual students them-
selves. A student random effect helps to better account for vari-
ation among students by accounting for the repeated measures, 
thus the unbalanced design.

CONCLUSIONS

Observations in DBER studies that employ quasi-experimental 
designs are rarely truly independent: subjects are frequently 
clustered in sections, courses, or years or are often sampled 

FIGURE 7. R output from code in Figure 3: (A) step 3 of model selection (comparing AIC values for each model that was fit); (B) model 1, 

which did not include any random effects; and (C) the best-fitting multilevel model with student as the only random effect. Note that 

treatment was retained in the final model, noting a treatment effect and supporting the hypothesis that the treatment is positively 

correlated with postscore.
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more than once. This kind of nonindependence of observa-
tions artificially inflates sample size, thus shrinking standard 
errors in a way that overestimates the accuracy of estimates. 
Therefore, statistical methods that cluster observations and 
account for this nonindependence of errors are necessary. 
Multilevel regression modeling, which includes fixed and ran-
dom effects, can account for this clustering and can lead to 
more accurate estimates of treatment effects. Random effects 
should be specified and tested within each level of clustering 
(e.g., each group in clustered studies). Random effects can be 
incorporated into many of the regression models that are most 
commonly employed in DBER.
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