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Abstract: The state estimation problem is ubiquitous in many fields, and the common state estimation
method is the Kalman filter. However, the Kalman filter is based on the mean square error criterion,
which can only capture the second-order statistics of the noise and is sensitive to large outliers.
In many areas of engineering, the noise may be non-Gaussian and outliers may arise naturally.
Therefore, the performance of the Kalman filter may deteriorate significantly in non-Gaussian noise
environments. To improve the accuracy of the state estimation in this case, a novel filter named
Student’s t kernel-based maximum correntropy Kalman filter is proposed in this paper. In addition,
considering that the fixed-point iteration method is used to solve the optimal estimated state in
the filtering algorithm, the convergence of the algorithm is also analyzed. Finally, comparative
simulations are conducted and the results demonstrate that with the proper parameters of the kernel
function, the proposed filter outperforms the other conventional filters, such as the Kalman filter,
Huber-based filter, and maximum correntropy Kalman filter.

Keywords: Kalman filter; student’s t kernel function; maximum correntropy criterion; fixed-point
iteration method; convergence analysis

1. Introduction

The state estimation problem is ubiquitous in various applications, such as navigation [1],
target tracking [2], and so on [3,4]. The common state estimation method is the Kalman
filter (KF), which has been successfully used in many fields [5–7]. For the linear system
with additive Gaussian noise, the KF can achieve optimal state estimation. But most
systems in real world are usually nonlinear, which limits the application of KF. To solve
the state estimation problem of the nonlinear system, many novel filters, such as the
extended Kalman filter (EKF) [8], unscented Kalman filter (UKF) [9], quadrature Kalman
filter (QKF) [10], cubature Kalman filter (CKF) [11], and so forth have been proposed in
the last few decades. The basic idea of EKF is to linearize the nonlinear system by the
Taylor expansion technique and truncate the Taylor series at the first-order term. As a
result, EKF requires the system model to be differentiable and the Jacobian matrices need
to be calculated, resulting in high computational complexity. Besides, for strong nonlinear
systems, the first-order linearization will inevitably introduce non-negligible linearization
errors, which may lead to the degradation of state estimate performance. The UKF utilizes
the unscented transformation (UT) technique to achieve the nonlinear propagation of the
mean and covariance of the system state, which avoids the derivation of the Jacobian
matrices. Compared with EKF, it has better performance, especially for the strong nonlinear
system. To further improve the estimation accuracy, various numerical integration methods
are introduced into the filter, such as cubature rule-based filters and quadrature rule-
based filters. These methods improve the numerical approximation accuracy of intractable
integrals, which leads to more accurate characterization of original probability density
functions, correspondingly resulting in an enhanced estimation accuracy [12].
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Most of the above filters are based on the mean square error (MSE) criterion and can
achieve satisfying state estimation accuracy when the system noises are Gaussian. However,
the MSE can only capture the second-order statistics of the noise and is sensitive to large
outliers. In many areas of engineering, such as the power system state estimation [13,14],
maneuvering target estimation [15] and INS/GNSS integrated navigation [16], the noise
may be non-Gaussian and outliers may arise naturally. As a result, the performance
of the filters based on MSE may deteriorate significantly. To address these problems,
many filters based on non-MSE criteria have been proposed. The Huber-based Kalman
filter (HKF) [17] relies on Huber’s generalized maximum likelihood methodology which
minimizes the combined minimum l1 and l2 norm. The residual is bounded by using
Huber’s function, which suppresses the influence of outliers on state estimation and
exhibits strong robustness with respect to deviations from the Gaussian noise. Maximum
correntropy Kalman filter (MCKF) [18] is based on the maximum correntropy criterion
(MCC) of information-theoretic learning (ITL) [19,20]. Since the correntropy can capture
high-order statistics of the noise rather than the common second-order statistics, the state
estimation accuracy of MCKF is better than that of KF in the presence of the non-Gaussian
noise. To copy with more complicated non-Gaussian noises, minimum error entropy
Kalman filter (MEEKF) [21] based on another important learning criterion, minimum error
entropy criterion [22,23], was also proposed. The experiment results show the excellent
performance of the MEEKF when the underlying system is disturbed by some complicated
non-Gaussian noises. Later, various nonlinear filters based on these information-theoretic
learning criteria were proposed, such as the maximum correntropy unscented filter [24],
minimum error entropy unscented Kalman filter [25], and so forth [26–28].

The performance of the filters based on the information learning criterion heavily
depends on the kernel function and its parameters. Currently, most of these filters are
based on the Gaussian kernel function. However, in some real applications such as agile
targets tracking [29], multipath estimation [30] and measurement outliers from unreliable
sensors [31], the systems may be disturbed by heavy-tailed non-Gaussian noises. The
Gaussian kernel function may not be the best choice. For the heavy-tailed noises, the
Gaussian kernel-based filters may overlook the heavy-tailed properties, which leads to a
decrease in the estimation accuracy. Therefore, a novel Cauchy kernel-based maximum
correntropy Kalman filter (CKKF) was proposed in the Ref. [32]. Compared with MCKF in
which the Gaussian kernel function is used, the performance of CKKF is better for multi-
dimensional non-Gaussian noise. Meanwhile, the behavior of the CKKF is consistently
stable when a different Cauchy kernel bandwidth is selected.

Recently, a new kernel called Student’s t kernel function was proposed based on
Student’s t distribution and the Mercer theorem [33]. Compared with the Gaussian kernel
function, Student’s t kernel function can better capture the heavy-tailed features of the
noise. The experimental results showed the superiority of the Student’s t kernel function.
Considering the advantages of Student’s t kernel function, Student’s t kernel function-based
maximum correntropy criteria are applied to the KF algorithm, and a novel Student’s t
kernel-based maximum correntropy Kalman filter algorithm (STKKF) is proposed in this
paper. Compared with the Gaussian kernel function, Student’s t kernel function has two
parameters, which can be used to control the shape and the kernel bandwidth of the kernel
function, respectively. Thus, it can characterize the distribution of heavy-tailed noise more
effectively. The comparative simulations show that with the proper parameters of the kernel
function, the accuracy of state estimation of the STKKF outperforms that of conventional
algorithms when the noises are heavy-tailed non-Gaussian.

The main contributions of this paper are summarized as follows:

• A novel maximum correntropy Kalman filter is developed in which the Student’s t
kernel function is used to replace the conventional Gaussian kernel function.

• Considering the fixed-point iteration method is used to update the posterior estimates
of the state in STKKF, the convergence analysis under a certain condition is given.
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• The comparative simulations with other filters are conducted to demonstrate the
superiority of STKKF.

The rest of the paper is organized as follows. In Section 2, basic knowledge about
the correntropy and Kalman filter are introduced briefly. In Section 3, The STKKF based
on Student’s t kernel maximum correntropy criterion is derived. The convergence of the
filter is analyzed in Section 4. To evaluate the performance of STKKF, the comparative
simulations are conducted in Section 5. Finally, a discussion is given in Section 6.

2. Preliminaries
2.1. Correntropy

The correntropy was proposed to measure similarity across lags as the autocorrelation
of random processes [34], and then was extended to measure the localized similarity
of arbitrary two random variables [35]. Let X and Y represent two random variables
respectively; then, the correntropy between them can be defined as

V(X, Y) = E(κ(X, Y)) =
∫∫

κ(x, y)pX,Y(x, y)dxdy, (1)

where E(·) is the expectation function, κ(X, Y) is the kernel function, and pX,Y(x, y) repre-
sents the joint probability density function (PDF) of X and Y.

The most widely used Gaussian kernel function is defined as

Gσ(e) = κ(X, Y) = exp−
(
‖X−Y‖2

2σ2

)
(e = X−Y), (2)

where σ represents the Gaussian kernel bandwidth.
To better capture the heavy-tailed features in the noise, Student’s t kernel function [33]

is used in this paper to replace the Gaussian kernel function, defined as

Sv,σ(e) = κv,σ(X, Y) =
(

1 +
‖X−Y‖2

vσ2

)−( v+2
2 )

(e = X−Y), (3)

where v is used to control the shape of Student’s t kernel function, and σ is the kernel
bandwidth.

In real applications, it is difficult to obtain the joint PDF of random variables. Therefore,
the sample mean estimator of correntropy is often used, as shown in the following equation

V̂(X, Y) =
1
N

N

∑
i=1

κ(ei), (4)

where ei = xi − yi, with (xi, yi), i = 1, . . . , N being N samples obtained from pX,Y(x, y).

2.2. Kalman Filter

Consider the following linear stochastic system represented by the state-space model

xk = Fkxk−1 + qk−1
yk = Hkxk + rk,

(5)

where k is the discrete time index, xk ∈ Rn is the state vector, yk ∈ Rm is the measurement
vector, Fk and Hk are known as state transition matrix and the measurement matrix. qk−1 ∈
Rn and rk ∈ Rm are the mutually independent process and measurement noise, respectively,
and satisfy

E(qk−1) = 0, E(rk) = 0,

E
(

qk−1qT
k−1

)
= Qk−1, E

(
rkrT

k

)
= Rk.

(6)
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In general, the KF includes the following two steps:

1. One-step state prediction: The priori state estimate x̂k|k−1 and the corresponding error
covariance matrix Pk|k−1 can be given by

x̂k|k−1 = Fk x̂k−1|k−1

Pk|k−1 = FkPk−1|k−1FT
k + Qk−1.

(7)

2. Measurement update: The posteriori state estimate x̂k|k and the corresponding error
covariance matrix Pk|k can be given by

x̂k|k = x̂k|k−1 + Kk

(
yk −Hk x̂k|k−1

)
Pk|k = (I−KkHk)Pk|k−1(I−KkHk)

T + KkRkKk
T

Kk = Pk|k−1Hk
T
(

HkPk|k−1Hk
T + Rk

)−1
,

(8)

where Kk is the KF gain matrix.

3. Student’s t Kernel-Based Maximum Correntropy Kalman Filter

The traditional KF is based on the minimum mean square error (MMSE) criterion
and performs well under Gaussian noises. However, when the noises are non-Gaussian or
large outliers arise in the measurement, the performance of KF may degrade significantly.
Correntropy contains second- and higher order moments of the error and is inherently
insensitive to outliers. Therefore, the filters based on the maximum correntropy criterion
outperform traditional filters in non-Gaussian noise environments. Meanwhile, these filters
are more robust to abnormal measurements. However, the performance of these filters is
mainly affected by the kernel function and its parameters. The common Gaussian kernel
function may overlook the heavy-tailed properties of heavy-tailed noises, which results in a
decrease of the estimation accuracy. To better utilize the heavy-tailed features and improve
the estimation accuracy of the system state, Student’s t kernel function is used to replace
the Gaussian kernel function to model and process the heavy-tailed noise.

For the linear system represented by Equation (5), the following equation can be
obtained [

x̂k|k−1
yk

]
=

[
In×n
Hk

]
xk + vk, (9)

where vk =

[
−
(

xk − x̂k|k−1

)T
rT

k

]T
and the corresponding covariance matrix can be

given as

E
[
vkvT

k

]
=

[
Pk|k−1 0

0 Rk

]
=

[
BpBT

p 0
0 BrBT

r

]
, (10)

where Bp and Br can be obtained from the Cholesky decomposition of Pk|k−1 and Rk,
respectively.

When Student’s t kernel function is employed, the cost function based on the maximum
correntropy criterion can be given as

J =
1

n + m

[
n

∑
i=1

Sv,σ(ex,i) +
m

∑
j=1

Sv,σ
(
ey,j
)]

, (11)



Sensors 2022, 22, 1683 5 of 18

where Sv,σ(·) is Student’s t kernel function, and ex,i and ey,j represent the ith and jth element
of ex and ey, respectively. The ex and ey are given by

ex = B−1
p

(
xk − x̂k|k−1

)
ey = B−1

r (yk −Hkxk).
(12)

According to the maximum correntropy criterion, to obtain the optimal state estimation
x̂k|k, the following equation should be solved

∂J
∂xk

= 0. (13)

Substituting Equations (11) and (12) into Equation (13), the following equation can be
obtained:

n

∑
i=1

vσ2

vσ2 + e2
x,i

Sv,σ(ex,i)B−T
p,i B−1

p,i

(
xk − x̂k|k−1

)
−

m

∑
j=1

vσ2

vσ2 + e2
y,j

Sv,σ
(
ey,j
)
HT

k B−T
r,j B−1

r,j (yk −Hkxk) = 0,
(14)

where Bp,i and Br,j represent the ith and the jth row of Bp and Br, respectively.
The matrix form of Equation (14) can be expressed as

B−T
p ΛxB−1

p

(
xk − x̂k|k−1

)
−HT

k B−T
r ΛyB−1

r (yk −Hkxk) = 0, (15)

where

Λx = diag

(
vσ2Sv,σ(ex,1)

vσ2 + e2
x,1

, . . . ,
vσ2Sv,σ(ex,n)

vσ2 + e2
x,n

)

Λy = diag

(
vσ2Sv,σ

(
ey,1
)

vσ2 + e2
y,1

, . . . ,
vσ2Sv,σ

(
ey,m

)
vσ2 + e2

y,m

)
.

(16)

Let
P̃k|k−1 = BpΛ−1

x BT
p

R̃k = BrΛ−1
y BT

r .
(17)

Then, Equation (15) can be rewritten as(
P̃−1

k|k−1 + HT
k R̃−1

k Hk

)
xk = P̃−1

k|k−1x̂k|k−1 + HT
k R̃−1

k yk. (18)

Add and subtract HT
k R̃−1

k Hk x̂k|k−1 at the right side of Equation (18), where the follow-
ing equation can be obtained:(

P̃−1
k|k−1 + HT

k R̃−1
k Hk

)
xk =

(
P̃−1

k|k−1 + HT
k R̃−1

k Hk

)
x̂k|k−1 + HT

k R̃−1
k

(
yk −Hk x̂k|k−1

)
. (19)

Then multiplying
(

P̃−1
k|k−1 + HT

k R̃−1
k Hk

)−1
at both sides of Equation (19), we have

xk = x̂k|k−1 + K̃k

(
yk −Hk x̂k|k−1

)
, (20)

where

K̃k =
(

P̃−1
k|k−1 + HT

k R̃−1
k Hk

)−1
HT

k R̃−1
k = P̃k|k−1HT

k

(
HkP̃k|k−1HT

k + R̃k

)−1
. (21)

Accordingly, the posteriori error covariance matrix Pk|k can be given by
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Pk|k =
(

I− K̃kHk

)
Pk|k−1

(
I− K̃kHk

)T
+ K̃kRkK̃T

k . (22)

It can be seen from Equations (16) and (17) that K̃k is nonlinear with respect to xk.
Then the fixed-point iterative method is used to solve Equation (20).

In general, the STKKF algorithm can be given as follows:

1. Initialization: The parameters v and σ in the Student’s t kernel function are chosen
appropriately, and a small number ε ∈ R+ used as an iterative iteration termination
condition is given. The initial state x̂0 and error covariance matrix P̂0 are set.

2. State prediction: The one-step state prediction x̂k|k−1 and the corresponding error
covariance matrix Pk|k−1 are the same as those in KF, which can be obtained by
Equation (7).

3. Posterior state estimate:

(a) Calculate the matrix Bp and Br by the Cholesky decomposition of Pk|k−1 and
Rk, respectively.

(b) Let x̂k(l) represent the state estimate of the lth fixed-point iteration. At the first
iteration, x̂k(l) = x̂k(0) = x̂k|k−1.

(c) Calculate the state estimate at the (l + 1)th iteration by the following equations

ex = B−1
p

(
x̂k(l)− x̂k|k−1

)
ey = B−1

r (yk −Hk x̂k(l))

Λx = diag

(
vσ2Sv,σ(ex,1)

vσ2 + e2
x,1

, . . . ,
vσ2Sv,σ(ex,n)

vσ2 + e2
x,n

)

Λy = diag

(
vσ2Sv,σ

(
ey,1
)

vσ2 + e2
y,1

, . . . ,
vσ2Sv,σ

(
ey,m

)
vσ2 + e2

y,m

)
P̃k|k−1 = BpΛ−1

x BT
p

R̃k = BrΛ−1
y BT

r

K̃k = P̃k|k−1HT
k

(
HkP̃k|k−1HT

k + R̃k

)−1

x̂k(l + 1) = x̂k|k−1 + K̃k

(
yk −Hk x̂k|k−1

)
.

(23)

(d) Check whether the state estimate in this iteration meets the iteration termina-
tion condition by Equation (24). If the termination condition is not met, set
l = l + 1, return to step (c), and continue the next iteration. Otherwise, set the
final state estimate x̂k|k = x̂k(l + 1), and go to step 4.

‖x̂k(l + 1)− x̂k(l)‖
‖x̂k(l)‖

≤ ε. (24)

4. Posterior error covariance update: calculate the corresponding posteriori error covari-
ance matrix Pk|k by Equation (22). Set k = k + 1 and return to step 2.

Theorem 1. If v is fixed, when σ→ ∞, the STKKF will tend to become the KF.

Proof. As σ→ ∞, the matrix Λx and Λy in Equation (16)→ I. Accordingly, P̃k|k−1 → Pk|k−1

and R̃k → Rk, which means that STKKF reduces to KF.

Theorem 2. If σ is fixed, when v → ∞, the STKKF will tend to become the MCKF with band-
width σ.
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Proof. As v→ ∞, the following equation holds:

lim
v→∞

(
1 +
‖X−Y‖2

vσ2

)−( v+2
2 )

= lim
v→∞

(1 +
‖X−Y‖2

vσ2

) vσ2

‖X−Y‖2

−(v+2)‖X−Y‖2

2vσ2

= exp
(
−‖X−Y‖2

2σ2

)
,

(25)

where the equation lim
x→∞

(1 + 1
x ) = e is used. Then Student’s t kernel function reduces to

the Gaussian kernel function, which means that the STKKF tends to become the MCKF.

4. Convergence Analysis of STKKF

The fixed-point iteration method is used in the STKKF to update the posterior state
estimate. To ensure the iterations converge, the convergence of the STKKF is analyzed in
this section. The method used is similar to that of the Ref. [36], where only a sufficient
condition is given.

The Equation (15) can be rewritten in the following form:[
IT HT

k
][ B−T

p
B−T

r

][
Λx

Λy

][
B−1

p
B−1

r

]([
I

Hk

]
xk −

[
x̂k|k−1

yk

])
= 0. (26)

Let

D =

[
B−1

p
B−1

r

][
x̂k|k−1

yk

]
, W =

[
B−1

p
B−1

r

][
I

Hk

]
,

Σ =

[
Λx

Λy

]
, e =

[
−ex
ey

]
= D−Wxk.

(27)

Equation (26) can be rewritten in the following form:

WTΣWxk −WTΣD = 0. (28)

Then, xk can be given as

xk =
(

WTΣW
)−1

WTΣD. (29)

Firstly, function f (xk) = xk is constructed, and by substituting Equation (16) into
Equation (29), f (xk) can be expressed as

f (xk) =

(
m+n

∑
i=1

vσ2Sv,σ(ei)

vσ2 + e2
i

WT
i Wi

)−1(m+n

∑
i=1

vσ2Sv,σ(ei)

vσ2 + e2
i

DiWT
i

)
= N−1

WWNWD, (30)

where Wi represents the ith row of matrix W, Di is the ith component of vector D, and

NWW =
m+n

∑
i=1

vσ2Sv,σ(ei)

vσ2 + e2
i

WT
i Wi, NWD =

m+n

∑
i=1

vσ2Sv,σ(ei)

vσ2 + e2
i

DiWT
i . (31)

The Jacobian matrix of f (xk) with respect to xk, ∇xk f (xk), can be expressed as

∇xk f (xk) =
[

∂
∂xk,1

f (xk) · · · ∂
∂xk,n+m

f (xk)
]
, (32)
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where
∂

∂xk,j
f (xk) =

∂

∂xk,j
N−1

WWNWD

= N−1
WW

(
∂

∂xk,j
NWD

)
N−1

WWNWD + N−1
WW

(
∂

∂xk,j
NWD

)

= N−1
WW

(
∂

∂xk,j
NWW

)
f (xk) + N−1

WW

(
∂

∂xk,j
NWD

)

= N−1
WW

m+n

∑
i=1

v + 4
vσ2 eiW

j
i

(
1 +

e2
i

vσ2

)− v+6
2

WT
i Wi

 f (xk)

+ N−1
WW

m+n

∑
i=1

v + 4
vσ2 eiW

j
i

(
1 +

e2
i

vσ2

)− v+6
2

DiWT
i

.

(33)

Then, the following theorem holds.

Theorem 3. If parameter v is fixed, β > ξ, and σ > max(σ∗, σ+), where σ∗ is the solution of
ϕ(v, σ) = β, σ+ is the solution of ψ(v, σ) = α (0 < α < 1), then for ∀xk ∈ {Rn : ‖xk‖1 < β},
Equation (34) holds. The expression of ξ, ϕ(v, σ), and ψ(v, σ) are shown in Equations (35), (36)
and (37), respectively.

‖ f (xk)‖1 ≤ β (β > ξ)∥∥∥ ∂
∂xk

f (xk)
∥∥∥

1
≤ α (0 < α < 1) (34)

ξ =

√
n ∑m+n

i=1 |Di|
∥∥WT

i

∥∥
1

λmin
(
∑m+n

i=1 WT
i Wi

) (35)

ϕ(v, σ) =

√
n ∑m+n

i=1 |Di|
∥∥WT

i

∥∥
1

λmin

(
∑m+n

i=1

(
1 + (|Di |+β‖Wi‖1)

2

vσ2

)−( v+4
2 )

WT
i Wi

)
(36)

ψ(v, σ) =
(v + 4)

√
n ∑m+n

i=1

[
(|Di|+ β‖Wi‖1)‖Wi‖1

(
β
∥∥WT

i Wi
∥∥

1 +
∥∥DiWT

i

∥∥
1

)]
vσ2λmin

(
∑m+n

i=1

(
1 + (|Di |+β‖Wi‖1)

2

vσ2

)−( v+4
2 )

WT
i Wi

)
(37)

Proof.
‖ f (xk)‖1 =

∥∥∥N−1
WWNWD

∥∥∥
1
≤(a)

∥∥∥N−1
WW

∥∥∥
1
‖NWD‖1, (38)

where || · ||p is the lp-norm of a vector or induced matrix norm defined by ‖A‖p =

max‖x‖p 6=0
‖Ax‖p
‖x‖p

, and (a) comes from the compatibility of the matrix norm and vector
norm.

According to the matrix theory, the following equation holds:∥∥∥N−1
WW

∥∥∥
1
≤
√

n
∥∥∥N−1

WW

∥∥∥
2
=
√

nλmax

(
N−1

WW

)
, (39)
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where λmax(·) represents the maximum eigenvalue of the matrix.

λmax

(
N−1

WWW

)
=

1
λmin(NWW)

=
1

λmin

(
∑m+n

i=1
vσ2

vσ2+e2
i
Sv,σ(ei)WT

i Wi

)
=

1

λmin

(
∑m+n

i=1

(
1 + e2

i
vσ2

)−( v+4
2 )

WT
i Wi

)

=
1

λmin

(
∑m+n

i=1

(
1 + (Di−Wixk)

2

vσ2

)−( v+4
2 )

WT
i Wi

)

≤(b) 1

λmin

(
∑m+n

i=1

(
1 + (|Di |+β‖Wi‖1)

2

vσ2

)−( v+4
2 )

WT
i Wi

) ,

(40)

where (b) comes from ‖xk‖1 < β.
Similarly,

‖NWD‖1 =

∥∥∥∥∥m+n

∑
i=1

vσ2

vσ2 + e2
i

Sv,σ(ei)DiWT
i

∥∥∥∥∥
1

=

∥∥∥∥∥∥
m+n

∑
i=1

(
1 +

e2
i

vσ2

)−( v+4
2 )

DiWT
i

∥∥∥∥∥∥
1

≤(c)
m+n

∑
i=1

∥∥∥DiWT
i

∥∥∥
1

≤
m+n

∑
i=1
| Di |

∥∥∥WT
i

∥∥∥
1
,

(41)

where (c) is because
(

1 + e2
i

vσ2

)−( v+4
2 )

< 1 for ∀ei and the convexity of the l1 norm.

According to Equations (38), (39) and (41), the following equation holds:

‖ f (xk)‖1 ≤ ϕ(v, σ) =

√
n ∑m+n

i=1 | Di |
∥∥WT

i

∥∥
1

λmin

(
∑m+n

i=1

(
1 + (|Di |+β‖Wi‖1)

2

vσ2

)−( v+4
2 )

WT
i Wi

) .
(42)

If the parameter v is fixed, then ϕ(v, σ) is the monotonically decreasing function of σ, and
then we have

lim
σ→0+

ϕ(v, σ) = ∞

lim
σ→∞

ϕ(v, σ) =

√
n ∑m+n

i=1 |Di|
∥∥WT

i

∥∥
1

λmin
(
∑m+n

i=1 WT
i Wi

) = ξ.
(43)

Therefore, for ∀β > ξ, ∃, the unique σ∗ ∈ (0, ∞), s.t. ϕ(v, σ∗) = β. When σ > σ∗,
ϕ(v, σ) ≤ β, that is,

‖ f (xk)‖1 ≤ β. (44)



Sensors 2022, 22, 1683 10 of 18

According to the matrix theory, to prove
∥∥∇xk f (xk)

∥∥
1 ≤ α, we just need to prove∥∥∥ ∂

∂xk,j
f (xk)

∥∥∥
1
≤ α for ∀j. The Equation (33) is rewritten here:

∂

∂xk,j
f (xk) = N−1

WW

m+n

∑
i=1

v + 4
vσ2 eiW

j
i

(
1 +

e2
i

vσ2

)− v+6
2

WT
i Wi

 f (xk)

+ N−1
WW

m+n

∑
i=1

v + 4
vσ2 eiW

j
i

(
1 +

e2
i

vσ2

)− v+6
2

DiWT
i

.

(45)

The following equation can be derived:∥∥∥∥∥∥N−1
WW

m+n

∑
i=1

v + 4
vσ2 eiW

j
i

(
1 +

e2
i

vσ2

)− v+6
2

WT
i Wi

 f (xk)

∥∥∥∥∥∥
1

≤ v + 4
vσ2

∥∥∥N−1
WW

∥∥∥
1

∥∥∥∥∥∥
m+n

∑
i=1

eiW
j
i

(
1 +

e2
i

vσ2

)− v+6
2

WT
i Wi

∥∥∥∥∥∥
1

‖ f (xk)‖1

≤(d) (v + 4)β

vσ2

∥∥∥N−1
WW

∥∥∥
1

∥∥∥∥∥∥
m+n

∑
i=1

eiW
j
i

(
1 +

e2
i

vσ2

)− v+6
2

WT
i Wi

∥∥∥∥∥∥
1

≤(e) (v + 4)β

vσ2

∥∥∥N−1
WW

∥∥∥
1

[
m+n

∑
i=1

(|Di|+ β‖Wi‖1)‖Wi‖1

∥∥∥WT
i Wi

∥∥∥
1

]
,

(46)

where (d) comes from that when σ > σ∗, ‖ f (xk)‖1 ≤ β, (e) is because of the convexity of

the l1 norm, and
∣∣∣eiW

j
i

∣∣∣ = ∣∣∣(Di −Wixk)W
j
i

∣∣∣ ≤ (|Di|+ β‖Wi‖1)‖Wi‖1.
Similarly,∥∥∥∥∥∥N−1

WW

m+n

∑
i=1

v + 4
vσ2 eiW

j
i

(
1 +

e2
i

vσ2

)− v+6
2

DiWT
i

∥∥∥∥∥∥
1

≤ v + 4
vσ2

∥∥∥N−1
WW

∥∥∥
1

∥∥∥∥∥∥
m+n

∑
i=1

eiW
j
i

(
1 +

e2
i

vσ2

)− v+6
2

DiWT
i

∥∥∥∥∥∥
1

≤ v + 4
vσ2

∥∥∥N−1
WW

∥∥∥
1

[
m+n

∑
i=1

(|Di|+ β‖Wi‖1)‖Wi‖1

∥∥∥DiWT
i

∥∥∥
1

]
.

(47)

According to Equations (40), (46) and (47), the following equation can be obtained:∥∥∥∥∥ ∂

∂xk,j
f (xk)

∥∥∥∥∥
1

≤ ψ(v, σ)

=
(v + 4)

√
n ∑m+n

i=1

[
(|Di|+ β‖Wi‖1)‖Wi‖1

(
β
∥∥WT

i Wi
∥∥

1 +
∥∥DiWT

i

∥∥
1

)]
vσ2λmin

(
∑m+n

i=1

(
1 + (|Di |+β‖Wi‖1)

2

vσ2

)−( v+4
2 )

WT
i Wi

) .
(48)

Additionally, if the parameter v is fixed, then ψ(v, σ) is the monotonically decreasing
function of σ; then, we have

lim
σ→0+

ψ(v, σ) = ∞

lim
σ→∞

ψ(v, σ) = 0.
(49)
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Therefore, for ∀ α ∈ (0, 1), ∃ the unique σ+, s.t. ϕ(v, σ+) = α. When σ > σ+, the following
equation holds: ∥∥∥∥∥ ∂

∂xk,j
f (xk)

∥∥∥∥∥
1

≤ α. (50)

Based on the above derivation, we conclude that when the parameter v is fixed,
σ > max(σ∗, σ+), and xk ∈ {Rn : ‖xk‖1 < β}, the following equations hold:

‖ f (xk)‖1 ≤ β (β > ξ)∥∥∥ ∂
∂xk

f (xk)
∥∥∥

1
≤ α (0 < α < 1). (51)

The theorem is proved completely.

By Theorem 3 and the Banach Fixed-Point Theorem [37], if the l1-norm of the initial
iteration point ‖x̂k(0)‖1 ≤ β, then STKKF will surely converge to the unique point in range
xk ∈ {Rn : ‖xk‖1 ≤ β}, provided that the kernel bandwidth σ is larger than a certain value.

The implementation pseudocode of the STKKF is shown in Algorithm 1.

Algorithm 1: The implementation pseudocode for one time-step of the STKKF.
Inputs: x̂k−1|k−1, Pk−1|k−1, Qk−1, Rk, v, σ, ε.
Time update:
1. x̂k|k−1 = Fk x̂k−1|k−1.
2. Pk|k−1 = FkPk−1|k−1FT

k + Qk−1.
Measurement update:
1. Bp = Chol(Pk|k−1), Br = Chol(Rk), x̂k(l = 0) = x̂k|k−1.

2. ex = B−1
p

(
x̂k(l)− x̂k|k−1

)
, ey = B−1

r (yk −Hk x̂k(l)).

3. Λx = diag
(

vσ2Sv,σ(ex,1)

vσ2+e2
x,1

, . . . , vσ2Sv,σ(ex,n)

vσ2+e2
x,n

)
,

Λy = diag
(

vσ2Sv,σ(ey,1)
vσ2+e2

y,1
, . . . ,

vσ2Sv,σ(ey,m)
vσ2+e2

y,m

)
.

4. P̃k|k−1 = BpΛ−1
x BT

p , R̃k = BrΛ−1
y BT

r .

5. K̃k = P̃k|k−1HT
k

(
HkP̃k|k−1HT

k + R̃k

)−1
.

6. x̂k(l + 1) = x̂k|k−1 + K̃k

(
yk −Hk x̂k|k−1

)
.

7. Check ‖x̂k(l+1)−x̂k(l)‖
‖x̂k(l)‖

≤ ε, where if the termination condition is met, then set
x̂k|k = x̂k(l + 1) and go to Step 8; otherwise, set l = l + 1 and return to Step 2,
and continue the next iteration.

8. Pk|k =
(

I− K̃kHk

)
Pk|k−1

(
I− K̃kHk

)T
+ K̃kRkK̃T

k .
Outputs: x̂k|k, Pk|k.

5. Simulations and Results

In this section, simulations are conducted to demonstrate the performance of STKKF.
The results of KF, HKF, MCKF, and STKKF are compared when different kinds of noise
distribution exist.

The benchmark navigation problem is considered [38]. The dynamics and measure-
ment model are given as follows:
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xk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

xk−1 + qk

yk =

[
1 0 0 0
0 1 0 0

]
xk + rk,

(52)

where ∆t is the sample period, and qk and rk represent the process noise and measurement
noise respectively. The first two components of state vector xk ∈ R4 represent the north and
east position of a land vehicle, and the last two components are the corresponding north
velocity and east velocity. The position of the vehicle is measured directly by a device.

In the simulation, the sample period ∆t is 1 s, and the initial values of the true state x0,
estimated state x̂0|0, and error covariance matrix P0|0 are assumed to be

x0 = [1, 1, 1, 1]

x̂0|0 = [1, 1, 1, 1] + N
(

0, P0|0

)
P0|0 = diag(0.1, 0.1, 0.1, 0.1).

(53)

Two different cases with different kinds of processes and measurement noises are
considered in this simulation as follows:

1. The process noise and measurement noise are both Gaussian noises.

qk ∼ N
(

0, diag
(

0.12, 0.12, 0.12, 0.12
))

rk ∼ N(0, diag(1, 1)).
(54)

2. The process noise is a Gaussian distribution and the measurement noise is a Gaussian
mixture noise.

qk ∼ N
(

0, diag
(

0.12, 0.12, 0.12, 0.12
))

rk ∼ 0.9N(0, diag(1, 1)) + 0.1N
(

0, diag
(

102, 102
))

.
(55)

The proposed STKKF and the other filters are coded with MATLAB, and the simu-
lations are run on a computer with Intel Core i7-3540M CPU at 3.0 GHz. The time steps
in the simulation is 200. For each case, 100 Monte Carlo simulations are implemented
to quantify estimation performance. The performance of the filters is evaluated by the
root mean square error (RMSE) and average RMSE (ARMSE). The RMSE and ARMSE in
position are defined as:

RMSEpos(i) =

√√√√ 1
M

M

∑
j=1

((
xj

i,1 − x̂j
i,1

)2
+
(

xj
i,2 − x̂j

i,2

)2
)

ARMSEpos =
1
K

K

∑
i=1

RMSEpos(i),

(56)

where M is the number of Monte Carlo simulations and K is the time steps in every Monte
Carlo simulation. (xj

i,1, xj
i,2) and (x̂j

i,1, x̂j
i,2) are the true position and estimated position at

the ith time step in the jth simulation. The RMSE and ARMSE in velocity are similarly
defined.

In case 1, the process and measurement noise are both Gaussian noises. Theoretically,
KF should be the best estimator. To demonstrate the relationship between the KF and
STKKF, these two filters were studied in this case. The ARMSE of the position and velocity
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estimates are listed in Table 1. Meanwhile, the average iteration number required for the
STKKF to converge and the average implementation times of the filters for one time step
are also listed. The iteration termination condition is given by Equation (24). Here, ε is
set as 10−4. In addition, the RMSEs of the position and velocity of KF and STKKF with
different kernel parameters are also plotted in Figure 1a and Figure 1b, respectively.

Table 1. ARMSEs of position and velocity, average iteration numbers, and average implementation
times for one time step of the proposed STKKF and KF when both the process noise and measurement
noise are Gaussian noises.

Filters ARMSEpos (m) ARMSEvel (m/s) Average Iteration Number Time (ms)

KF 0.8459 0.3037 0 0.0140
STKKF(v = 3, σ = 3) 0.8585 0.3091 3.5356 0.1386
STKKF(v = 3, σ = 10) 0.8461 0.3073 2.3422 0.1008
STKKF(v = 3, σ = 50) 0.8459 0.3073 2.0124 0.0887
STKKF(v = 5, σ = 3) 0.8528 0.3083 2.3100 0.1314
STKKF(v = 5, σ = 10) 0.8460 0.3073 2.2833 0.0954
STKKF(v = 5, σ = 50) 0.8459 0.3073 2.0083 0.0877
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Figure 1. RMSE results of KF and STKKF in case 1 where RMSE is taken over 100 Monte Carlo
simulations: (a) position. (b) velocity.
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In case 2, the process noises are still Gaussian but the measurement noise is a heavy-
tailed (impulsive) non-Gaussian noise, with a mixed-Gaussian distribution. The ARMSEs
of the position and velocity estimate of different filters, average iteration numbers for
MCKF and STKKF, and the average implementation times of the filters for one time step
are listed in Table 2. In MCKF, the iteration termination parameter is set to be the same as
that of STKKF, that is, 10−4. The RMSEs of the position and velocity of different algorithms
are also plotted in Figure 2a and Figure 2b, respectively. It should be noted that for the
MCKF and STKKF with different kernel parameters listed in Table 2, only partial models
of them are plotted in the figures to maintain the clarity of the plot. It should be pointed
out that the noise parameters of KF in the Table 2 are set with the true noise covariance of
mixture distribution in Equation (55), and hence, KF is the best linear estimator in the MSE
sense. The parameter used in the HKF is set to ensure that the best estimation accuracy is
obtained.
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Figure 2. RMSE results of different filters in case 2 where RMSE is taken over 100 Monte Carlo
simulations: (a) position. (b) velocity.
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Table 2. ARMSEs of position and velocity, average iteration numbers, and average implementation
times for one time step of different algorithms when the measurement noise is mixed Gaussian noise.

Filters ARMSEpos (m) ARMSEvel (m/s) Average Iteration Number Time(ms)

KF 2.1938 0.4118 0 0.0138
HKF 1.4792 0.3784 0 0.0214

MCKF (σ = 2) 1.4662 0.3777 2.5260 0.0820
STKKF (v = 3, σ = 2) 1.3965 0.3768 2.7070 0.1094
STKKF (v = 10, σ = 2) 1.4314 0.3769 2.5898 0.1031
STKKF (v = 50, σ = 2) 1.4575 0.3775 2.5390 0.1013

MCKF (σ = 3) 1.6357 0.3838 2.4094 0.0797
STKKF (v = 3, σ = 3) 1.4837 0.3783 2.5420 0.1011
STKKF (v = 10, σ = 3) 1.5697 0.3812 2.4602 0.0994
STKKF (v = 50, σ = 3) 1.6201 0.3832 2.4211 0.0946

MCKF (σ = 5) 1.9051 0.3963 2.2782 0.0745
STKKF (v = 3, σ = 5) 1.7110 0.3871 2.3907 0.0980
STKKF (v = 10, σ = 5) 1.8318 0.3927 2.3236 0.0964
STKKF (v = 50, σ = 5) 1.8890 0.3955 2.2883 0.0937

6. Discussion

In this paper, the Student’s t kernel function is employed to replace the traditional
Gaussian kernel function in the definition of correntropy to better utilize the heavy-tailed
features of noises when the underlying system is disturbed by heavy-tailed non-Gaussian
noise. Then the maximum correntropy criterion based on Student’s t kernel function is
applied to the Kalman filter as the optimality criterion. Based on the criterion, a novel
Kalman-type filtering algorithm, named STKKF, is derived. Meanwhile, since the fixed-
point iteration method is used to update the posterior state estimate, the convergence of
the STKKF is also analyzed.

The performance of the proposed filter is verified through comparative simulations
with KF, HKF, and MCKF. When both the process noise and measurement noise are Gaus-
sian noises, it can be seen from Table 1 and Figure 1 that the performance of the KF is
the best, since both the noises are Gaussian. When the kernel bandwidth is too small, the
STKKF may achieve worse performance. However, one can also see that with the increase
of the kernel bandwidth, the performance of the STKKF becomes better and approaches
that of the KF. This phenomenon can be explained by Theorem 1, that is, when the filter
kernel bandwidth σ → ∞, the STKKF will tend to become the KF algorithm. In general,
with appropriate parameters, the STKKF performance is at least as good as KF. In addition,
the average fixed-point iteration numbers required for STKKF to converge and the average
implementation times of the filters for one time step are also calculated in Table 1. It is obvi-
ous that the average iteration numbers decrease as the kernel bandwidth σ increases, that
is, the convergence speed becomes faster. Correspondingly, the average implementation
time of STKKF also decreases. In practical real-time applications, the kernel bandwidth
should be set appropriately to ensure the algorithm can run in real time.

When the measurement noise is a heavy-tailed (impulsive) non-Gaussian noise, the
results shown by Table 2 and Figure 2 demonstrate that with appropriate parameters, the
state estimate accuracy of filters based on the maximum correntropy criterion (MCKF and
STKKF) outperform that of the other algorithms. However, the implementation times of
these maximum correntropy filters are much longer than that of KF and HKF due to their
computational complexity. Furthermore, it can be seen that the implementation times of
STKKF are consistently longer than MCKF when they have the same kernel bandwidth.
This is because the shape of Student’s t kernel function has a heavier tail than the Gaussian
kernel function. In addition, one can also see that when the kernel bandwidth is set as
the same, the performance of the STKKF with different v is consistently better than MCKF.
Additionally, with the increase of the v, the performance of the STKKF approaches that of
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the MCKF. This phenomenon can be explained by Theorem 2, that is, when v → ∞, the
STKKF will tend to become the MCKF with bandwidth σ.

In summary, with proper parameters, the STKKF can outperform the other filtering
algorithms, especially for the heavy-tailed non-Gaussian noises. However, like other
filters based on the maximum correntropy criterion, the choice of parameters of the kernel
function is critical. When the parameters are not appropriate, the filter’s performance may
degrade, which should be given much attention in practical applications. At present, the
Student’s t kernel function-based maximum correntropy criterion is only being applied
to the linear system. In the future, an extension to the nonlinear system model can be
investigated.
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UKF Unscented Kalman filter
QKF Quadrature Kalman filter
CKF Cubature Kalman filter
HKF Huber-based Kalman filter
MCKF Maximum correntropy Kalman filter
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