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MOLLIE MACGREGOR and KAYE STACEY 

STUDENTS' UNDERSTANDING OF ALGEBRAIC NOTATION: 

11-15 

ABSTRACT. Research studies have found that the majority of students up to age 15 seem 

unable to interpret algebraic letters as generalised numbers or even as specific unknowns. 

Instead, they ignore the letters, replace them with numerical values, or regard them as 

shorthand names. The principal explanation given in the literature has been a general link 

to levels of cognitive development. In this paper we present evidence for specific origins 

of misinterpretation that have been overlooked in the literature, and which may or may not 

be associated with cognitive level. These origins are: intuitive assumptions and pragmatic 

reasoning about a new notation, analogies with familiar symbol systems, interference from 

new learning in mathematics, and the effects of misleading teaching materials. Recognition 

of these origins of misunderstanding is necessary for improving the teaching of algebra. 

The Concepts in Secondary Mathematics and Science [CSMS] research 

project (Hart, 1981) provided evidence linking students' levels of under- 

standing of algebraic letters to Piagetian stages of cognitive development 

and to IQ scores. It was concluded that most of the 13 to 15-year-olds 

tested were unable to cope with items that required interpreting letters as 

generalised numbers or even as specific unknowns. In the many years since 

the CSMS project, it has been widely accepted that cognitive level is a suf- 

ficient explanatiorn for the way in which algebraic notation is interpreted. If 

cognitive level is viewed as a barrier to the construction of certain concepts, 
it explains why students cannot do certain algebraic tasks. However, it does 

not explain why they misinterpret the notation in different ways and why 

they make certain errors. In this paper we take this next step. We show that 
some common misinterpretations can be explained by considering factors 
more accessible than cognitive level to diagnosis and possible remediation. 
We present evidence that difficulties in learning to use algebraic notation 
have several origins, including: 

. intuitive assumptions and sensible, pragmatic reasoning about an unfa- 
miliar notation system; 

* analogies with symbol systems used in everyday life, in other parts of 

mathematics or in other school subjects; 

* interference from new learning in mathematics; 

* poorly-designed and misleading teaching materials. 

Educational Studies in Mathematics 33: 1-19, 1997. 
? 1997 Kluwer Academic Publishers. Printed in The Netherlands. 
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2 MOLLIE MACGREGOR AND KAYE STACEY 

The research reported in this paper is part of a larger project investigating 

the cognitive and linguistic demands of learning algebra in secondary 

school. In this project, data were obtained from pencil-and-paper tests 

given to a large representative sample of approximately 2000 students in 

Years 7-10 (ages 11-15) in 24 Australian secondary schools. Some schools 

used the same test across two, three or four year levels, thus providing 

us with comparative data for these year levels. Other schools tested the 

same cohort of pupils on two or three occasions, thus providing us with 

longitudinal data on the progress of individual students. When individuals 

were re-tested, parallel versions of the original items were used. At one 

school we interviewed 14 students while they worked on selected items, 

audio-taping the discussions for later analysis. 

The schools involved were not randomly selected. They took part in 

the tests because their teachers were keen to participate in the project and 

find out about the effectiveness of their teaching. However, because of the 

sample size, the number of schools, and the range of school types (State, 

Catholic and private, in working-class and middle-class suburbs), there 

can be little doubt that those findings which are common to all schools 

in the sample apply to the general population of students. Results which 

are not uniform across schools point to the influence of factors specific to 

particular schools. 

BACKGROUND 

Students' interpretations of algebraic letters 

In Australian schools, students begin algebra in Year 7 or Year 8 when 

they are I 1-13 years old. In the first year, they are taught to use letters 

to stand for unknown or generalised numbers, frequently in the context 

of writing formulas for number patterns. They are given the opportunity 

to learn how to write simple expressions and equations containing letters, 

numerals, operation signs and brackets. Difficulties in learning these funda- 

mental aspects of algebraic notation are well documented (see, for example, 

Assessment of Performance Unit, 1985; Booth, 1984; Cambridge Institute 

of Education, 1985; Herscovics, 1989; Kuichemann, 1981; Robitaille and 

Garden, 1989). 

Kiichemann (1981) classified students' interpretations of algebraic let- 

ters into two major divisions: 

1. The letter is ignored, given an arbitrary value, or used as the name of 

an object. 

2. The letter is used as a specific unknown number or generalised number. 
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UNDERSTANDING ALGEBRAIC NOTATION 3 

Each of these divisions is further divided into two categories to account 
for the cognitive demands of item complexity, thus giving four levels. 
Kuchemann suggested that these four levels correspond to the Piagetian 
stages of below late concrete, late concrete, earlyformal and lateformal. 
Longitudinal testing in the CSMS project showed that students with higher 
IQ scores tended to demonstrate higher cognitive levels and made faster 

progress through algebra levels than students with lower IQ scores. Never- 

theless the fact that a few students with below-average IQ scores reached 

the third or fourth algebra levels by age 15 (see Hart, 1981, p. 185, Fig- 
ure 12.4) suggests that other factors need to be taken into account when 

explaining students' growth of understanding of algebra. In the present 

paper we indicate what some of these other factors might be. 
If a relatively unchangeable cognitive level is indeed a determinant of 

the way in which students can interpret letters and use algebra notation, 
then a successful introduction to algebra needs to take this fact into account. 
The pattern approach to algebra, currently presented in curriculum advice 
to schools (Stacey and MacGregor, in press), depends on students' ability 
to grasp the concepts of generalised number and unclosed expression. In 
this approach, students' first use of algebraic notation is for expressing rela- 
tionships in patterns and sequences, where there are two variables related 

by a rule (e.g., y = 2x + 1). The fact that this approach is widely recom- 
mended by mathematics educators as a gateway to algebra stands counter 
to the argument that the concepts involved and the notation for expressing 
them are beyond the cognitive capacity of ordinary students. Additionally, 
capacities should not be considered outside a context for their expression. 
The success of students in experimental computer environments (Cohors- 
Fresenborg, 1993; Sutherland, 1991; Tall and Thomas, 1991) is evidence 
that at least some of the difficulties and errors in traditional algebra learn- 
ing are caused by the nature of students' learning experiences and do not 
reflect their cognitive capacities. 

Kiichemann (1981) concluded that the majority of 13 to 1 5-year-olds are 
unable to cope with algebraic letters as unknowns or generalised numbers. 
If this is the case, then current approaches to algebra as a language for 
expressing relationships between two variables, whether via computer or 
with pencil and paper, are not appropriate. In the current climate of new 
approaches to algebra instruction, it is important to reassess students' 
capabilities and to identify sources of difficulty. 
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4 MOLLIE MACGREGOR AND KAYE STACEY 

RESEARCH QUESTIONS 

In the testing programme, we assessed students' capabilities in several 
areas of algebra, including the recognition of operations and structures, the 

understanding of simple functions, and the ability to construct and solve 
equations. In this paper we report results for only a few items in the tests - 
those concerned with the interpretation of algebraic letters and the writing 
of a simple unclosed expression. We discuss the following questions: 

1. How do students who have not learned any algebra interpret letters and 
try to write expressions? Do they come to algebra with preconceptions 
about the use of letters? 

2. How do students' interpretations of letters and simple algebraic expres- 
sions change over three years of school algebra learning? 

3. What are the roots of specific errors and misunderstandings? 

TESTING AND RESULTS 

We discuss the testing and results in three sections. First we look at the 
ways in which algebraic letters were interpreted by 11 to 12-year-olds 
who had not been taught any algebra. We then comment on the progress 
made by these children in an eight-week algebra unit that formed part of 
their normal Year 7 curriculum. Next we report the results of tests used 
for several hundreds of students in Years 7 to 10 in 22 schools. Interviews 
with individual students at another school provided important insights into 
the causes of certain errors not previously reported in the literature. Finally 
we trace the progress of 156 individual students in three schools who were 
tested three times: twice in one year and once the following year. 

Year 7 Students' Progress in 8 Weeks 

Pre- and post-test items 

Items containing algebraic letters were included in a pre-test for two mixed- 
ability classes (n = 42) of Year 7 students (age approx. 1-1 2 years) who 
had not been taught any algebra at school. The same two classes were 
tested again eight weeks later after they had completed an introductory 
algebra unit. We discuss two of the test items, shown in Figure 1, that were 
used to assess students' ability to use an algebraic letter to represent an 
unknown quantity. Superficial differences were made to both items for the 
post-test, so that students would not be able to use remembered answers. 
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UNDERSTANDING ALGEBRAIC NOTATION 5 

Pre-test Post-test 

I. David is 10 cm taller than Con. 1. Con is 8 cm taller than Kim. 

Con is h cm tall. What can you write Kim is y cm tall. What can you write 

for David's height? .......... fo r Con's height? . 

2. Sue weighs 1 kg less than Chris. 2. Sam is x cm shorter than Eva. 

Chris weighs y kg. What can you Eva is 95 cm tall. What can you 
write for Sue's weight? .......... write for Sam's height? . 

Figure 1. Pre- and post-test versions of Items 1 and 2. 

Expected responses 

We expected that in the pre-test most if not all the students in our sample 
would not attempt the items containing algebraic letters because they had 

not been taught any algebra. If answers were written, we expected them to 

be at Kuichemann's lower division (i.e., letter ignored, given a numerical 

value, or used as a label for an object). A possible lower-division interpre- 
tation of h in Item 1 (pre-test version, referred to as DAVID in this paper) is 
that it stands for the word 'height'. If 'height' is denoted by h, then 'David' 
should be denoted by D. We expected therefore that students might write 
Dh to mean 'David's height'. In Item 2 (SUE), the letter y is clearly not 
an abbreviation for any word in the problem, and the only possible lower- 
division response would be to ignore it or assign it a numerical value. We 
expected that many students would give no answer or a numerical answer. 

Results 

In the pre-test, two-thirds of the students did not write any answers, but 
the responses of the other 14 are useful indicators of students' intuitive 
interpretations of what algebraic letters might mean. Table I shows the 
responses to Item 1 and the likely explanations for them. 

We see in Table I nine sensible answers to what must have seemed a 
strange question. Two students used h to represent a quantity to which 10 
cm could be added, and one of them wrote the correct expression 10 + h. 
One student used letters as abbreviated words. Two students associated the 
letter h with its position in the alphabet, as they often have to do in puzzles 
and translation into codes. Two students thought that they should assume a 
value for Con's height, since it was not given. Two students reasoned that if 
Con's height could be represented by a letter, then so could David's height, 
one of these students regarding alphabetical order as relevant (associating 
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6 MOLLIE MACGREGOR AND KAYE STACEY 

TABLE I 

Responses to item DAVID from 14 students 

Frequency Response Assumed reasoning 

1 10 + h [correct] Add 10 to number or quantity denoted by h. 

I hIO Addl0ontoh. 

I Uh Abbreviated words 'Unknown height'. 

2 18 h is the 8th letter of alphabet, therefore 1 0 more 
is the 18th. 

2 110 Think of a reasonable height for Con, add 10 

2 t, 9 Choose another letter or adjacent letter for 
David's height. 

5 10, 20, 'half' No comprehension of the question; use of the 
given value 10 and operations 'double' or 'half'. 

TABLE II 

Responses to items DAVID and SUE from 14 students 

Frequency DAVID SUE (assumed reasoning) 

I1 10+ h y - 1 (Subtract I from number or quantity denoted 
by y) 

I hlO x (Although 10 can be 'joined' to h, as lOh, 
1 cannot be 'removed' from y. To denote I 

less than y, write x) 

I Uh Uw (to mean 'Unknown weight') 

2 18 24 (y is the 25th letter, therefore 1 less is 24) 

2 110 [no response] 

2 t, 9 o, x (Choose another letter or adjacent letter) 

4 10, 20 1 (No comprehension of the question; use of 
the given value 1) 

I 'half' [no response] 

g with h). The remaining five students, not knowing what to do, had tried to 
write something related to the numbers in the question, ignoring the letter. 
Responses to Item 2 by the same students showed that they were almost all 
reasoning consistently across both items. Table II shows the responses of 
these 14 individuals to the two items, and explanations for their responses 
to Item 2 (SUE). 

Interpretations of algebraic letters by these Year 7 students can be divid- 
ed into six categories, listed below. The first three in the list correspond 
to Kuichemann's lower division of interpretation. The last in the list cor- 
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UNDERSTANDING ALGEBRAIC NOTATION 7 

TABLE III 

Percentage of Year 7 students' responses to Item 1 in each of six categories 
before and after instruction 

Percentage of sample 

Category Pre-test (n = 42) Post-test (n = 38) 

Unknzown quantity [correct] 2% 37% 

U. [incorrect] 2% 26% 

Abbreviated word 2% 0 

Alphabetical value 5% 0 

Numerical value 5% 8% 

Use of different letter 5% 8% 

Letter ignored 12% 10% 

[no response] 67% 11% 

responds to Kiichemann's higher division of interpretation (i.e., specific 
unknown or generalised number). Kuichemann's hierarchy does not explic- 
itly include the other two interpretations. 

* letter ignored 

* numerical value 

* abbreviated word 

* alphabetical value 

* use different letter for each unknown 

* unkniown quantity 

As described below, not all these categories were evident in the post-test. 
The post-test was given eight weeks later, after the class had been taught 

their first algebra unit lasting about 20 lessons. In this test, given to 38 of 
the original sample, 34 students responded and many were correct. As in 
the pre-test, almost all students reasoned consistently over both items. 

As shown in Table III, one-third of the class (14 students) were correct, 
compared with only one student correct in the pre-test. For the Con's 
height item (see Figure 1) 10 students wrote the terms 8y, y8, 8 - y or 
y - 8, in which they have made an attempt to denote a combination of 
the given number 8 and the unknown number y, their errors being due to 
conjoining terms for addition or writing the wrong operation. Combining 
these responses with the 14 correct ones, we see that 24 responses were 
not restricted to the lower division of interpretation. These 24 students 
have accepted that an algebraic letter does not stand for a word or need 
to be replaced by a number, and can be used along with a numeral to 
express an 'answer'. They understood the significance of algebraic letters 
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8 MOLLIE MACGREGOR AND KAYE STACEY 

3. What is the distance around these shapes? 

5 Scm 5 cm 

x cm cm 

(i) . (ii). 

4. n stands for an unknown number. 

Write the following in mathematical symbols: 

'Add 5 to n, then multiply by 3' .............. 

Figure 2. Items 3 and 4, referred to as DISTANCE and TWO OPS in this paper. 

well enough to write an expression containing the symbols y and 8. The 
percentage with this level of understanding had increased since the pre- 
test from 4% to 63%. The percentage of lower-division interpretations and 
omissions (29%) is much less than in the pre-test, and no student used a 
letter as an abbreviated word or person's name or assigned an alphabetical 
value. Only three students chose numerical values. Three chose other letters 
(x or N), these being letters they had seen used for unknown numbers in 
their lessons. There were still a few students who had apparently not 
understood the question and wrote '8' (the numeral given in the item) or 
did not respond. Similar results were obtained for Item 2, with 16 correct 
responses (42%) and seven students (18%) using letters as unknowns but 
making syntax or operation errors (e.g., x - 95, -x95, or x + 95). 

The performance of this class was better than expected, given the low 
success rates in published reports for similar items, and may indicate the 
effectiveness of the teaching program that had been used. As we will see in 
the next section, older and more experienced students often misinterpreted 
algebraic letters in other ways and many were not able to provide unclosed 
answers. 

Results from Large Sample of Students in Years 7 to 10 

The items DAVID and SUE that had been used for the small Year 7 
sample were included in a test used by 22 schools for Years 7 to 10. All 
students in this large sample had been taught some algebra. We assume that 
students at all levels would have seen or written expressions coordinating 
two operations as required in Item 4 (referred to below as TWO OPS) in 
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UNDERSTANDING ALGEBRAIC NOTATION 9 

TABLE IV 

Percentages of students in Years 7-10 correct for Items 1-4 (N = 1463) 

Item [answer] Year 7 Year 8 Year 9 Year 10 

(n = 307) (n = 511) (n = 338) (n = 307) 

1. DAVID [h + 10] 39% 52% 63% 73% 

2. SUE [y - 1] 36% 46% 60% 64% 

3 (i) DISTANCE [3x] 42% 44% 65% 61% 

(ii) DISTANCE [2x + 18] 27% 35% 55% 53% 

4. TWOOPS [3(n +5)] 14% 17% 25% 47% 

their early algebra experiences with number patterns, function machines, 
and 'guess my number' rules, as well as in purely symbolic translation 

exercises. The older students in the sample would have seen algebraic 

letters used in a geometrical context, as in Item 3 (referred to below as 

DISTANCE). The results for the four items are shown in Table IV. 

The Year 10 students were more successful than the Year 7 students, 

but there was not the great improvement that we had expected. As Table 

IV shows, even on the easiest item fewer than three-quarters of the Year- 

10 students were successful. Despite gains from one year to the next, the 

success rate for the hardest item (Item 4) did not reach 50%. Errors due 

to several causes arise as students move from Year 7 to Year 10. In the 

following sections we describe the main errors and misunderstandings for 
each item and we discuss their causes. 

Success rates on DAVID and SUE at Year 7 for this large representative 
sample were approximately the same as the rates for the previous small 

Year-7 sample on their post-test. Approximately half the Year-8 students 

and two-thirds of older students were correct for these very simple items. 
The six categories of interpretations previously identified were seen at all 

year levels. Three misinterpretations not seen in Year-7 responses appeared 
in the work of students in Years 8 to 10. They were: 

* letter is a label associated with the name of an object (e.g., C to mean 

'Con's height' and D to mean 'David's height' in C + 10 = D) 
* letter equals ] unless otherwise specified (e.g., 10 + h = 11) 
* letter has a general referent that includes various specifics (h means 

'height', so it means both 'David's height' and 'Con's height' in the 
statement h = h + 10). 

Furthermore, certain responses from older students showed evidence of 
interference from a variety of sources. These include new learning in 
mathematics and analogies with other symbol systems. 
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10 MOLLIE MACGREGOR AND KAYE STACEY 

Interference from new learning 

As we had observed in the first small Year 7 sample, younger students 
often ignored the algebraic letter and gave a numerical answer. For DAVID 
and SUE they chose an arbitrary number. For DISTANCE many of them 
measured the lengths marked 'x cm' with their rulers. They probably 
thought this was what the teacher wanted. On the other hand, older students 
gave numerical responses that were not due to these causes but reflected 
interference from new learning that had been misunderstood. Some errors 
were due to the letter = I belief (explained below), and others were the 
results of attempts to use algebraic manipulation to 'solve an equation' 
without understanding. An example is the following, written by a student 
in Year 10 and producing the answer 5 for DAVID. 

10+h h 
10? h hx- 

2h 10 

2 2 

h = 5 

This student has written the correct expression 10 + h but has then tried 
to use routine manipulation techniques. It is likely that recent learning 
of procedures for simplifying algebraic fractions or solving equations has 
caused the retrieval of schemas related to that learning. It is possible that, 
in research studies reported in the literature, numerical responses of this 
type have been misclassified as letter ignored or arbitrary numeral. Our 
analysis shows that complex (but incorrect) reasoning processes are likely 
to be involved. I 

Older students' belief that any letter stands for 1 was strongly evident 
in two of the 22 schools in our sample, and possibly present in others. For 
DISTANCE (ii), for example, we had seen the answer 20 cm in several 
written responses, in one instance with the added note 'because x = 1 '. The 
prevalence of this belief was confirmed in the interviews. A Year 10 student 
said, 'x is just like 1, like having one number'. Another said 'By itself it is 
1, the x'. A student working on the DISTANCE item explained that 8 plus 
two 5's is 18, then '1 more for each x makes 20'. Explanations such as these 
enabled us to understand the reasons for many numerical answers to items 
in the test. Answers that we had first classified as arbitrary numerical value 
(e.g., David's height = 1 1) or attributed to inaccurate measurement (e.g., 
20 cm for DISTANCE (ii)), could in many cases be now attributed to the 
letter equals 1 belief. One likely cause of this belief is a misunderstanding 
of what teachers mean when they say 'x without a coefficient means I x''. 
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UNDERSTANDING ALGEBRAIC NOTATION 11 

The student gets a vague message that the letter x by itself is something 
to do with 1. Another source of confusion for older students is learning 
that the power of x is 1 if no index is written and that x with zero as 
the index equals 1 (i.e., x = xl and xo = 1). Like numerical responses 
caused by misguided attempts to simplify or solve (see above), numerical 
responses caused by the letter equals 1 belief may have been misclassified 
in previous studies as letter ignored or arbitrary numeral. We now know 
that at least some of them are due to the belief that a letter has the value 1. 
The concentration of this belief in particular schools points to a teaching 
effect. 

Interference from new learning was also evident in the widespread 
misuse of exponential notation (e.g., x3 instead of 3x). This misunder- 
standing, seen in responses to DISTANCE as well as in other items in the 
test, increased steadily over the four year levels, from 5% at Year 7 to 
18% at Year 10. Our evidence, supported by interview data, suggests that 
one major cause is lack of clear concepts for repeated addition, multipli- 
cation and repeated multiplication. (See Stacey and MacGregor, 1994, for 
evidence of students' confusion about these concepts and their notation.) 
Teachers may wrongly assume that students have a firm understanding of 
these concepts when exponential notation is taught and used. 

Other reasons why older students had more opportunities for making 
mistakes than younger ones was because of interference from new schemas 
only partly learned or because of their expectation of being able to use more 
advanced knowledge. When students were interviewed on the DISTANCE 
(ii) item, some of them mnade comments such as 'Do I have to figure out the 
numbers?' and 'That's the hypotenuse', and others began to draw lines in 
the figure to form two right-angled triangles. Their questions and methods 
indicated that they were searching for remembered schemas or learned 
procedures from geometry, and did not recognise that the task simply 
required a sum of measures. It was interesting to see that several Year 10 
students wrote x2 + 52 + 8. Their uncertainty about how to write 'twice x' 
(strongly evident in other items in the test) may have contaminated their 
knowledge of how to write 'twice five'. Alternatively, they may have tried 
to use knowledge about right-angled triangles and Pythagoras's theorem 
which they remembered concerns a sum of squares. 

In TWO OPS, which required students to coordinate two operations 
using an unclosed expression, most students at all year levels were not cor- 
rect (see Table V). The low success rate is in accordance with the findings 
of Ursini (1990) for a similar item used for students in Mexican schools, but 
considerably better than the success rates reported by Kiichemann (1981, 
p. 108). In Table V the category 'Omit brackets' includes all responses that 

This content downloaded  on Sun, 3 Feb 2013 12:41:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


12 MOLLIE MACGREGOR AND KAYE STACEY 

TABLE V 

Results for TWO OPERATIONS (N = 1806) 

Year n Correct Omit Use of 15n Sn x 3 Other Omit 

brackets exponent 

7 368 14% 14% 2% 8% 6% 20% 36% 

8 594 19% 22% 1% 6% 2% 26% 24% 

9 386 26% 21% 2% 10% 4% 22% 15% 

10 458 47% 11% 1% 8% 4% 9% 20% 

would have been correct if brackets had been inserted, for example nr+5 x 3. 

According to Kuichemann, success on this item requires interpreting the 
letter as a specific unknown or generalised number. 

We had expected conjoining to be a common error, particularly for 

younger students. It would cause Sn to be written for 5 + n, and finally 1 5n 
when the 5n was multiplied by 3. However, no more than 14% of students 
at any level wrote a conjoined answer. This figure is in accord with the 
relatively low incidence of conjoining in other items. A few students clearly 
needed an extra symbol for the result of the first operation (i.e., adding 5 
to n) and they used another variable name or left a space for the 'answer' 
(e.g., n + 5 = x x 3 or n + 5 = - x 3). There were instances of exponential 

notation (e.g., (n+5)3) and evidence of the 'unknown letter equals 1' belief 
which gives the answer 18 when the student adds 1 to 5 and then multiplies 
by 3. We have as yet no explanations for students' reasoning behind the 
many other forms of incorrect responses and the reluctance of so many 
students to write anything at all. We believe that the large percentage of 
unclassified responses and omissions points to students' lack of experience 
in using algebraic notation to express simple information or communicate 
their understanding. 

Analogies with other symbol systems 

The incidence of conjoining for addition (e.g. lOh to represent 10 plus 
h) was far lower than expected at all levels, being well below 10% after 
Year 7. However, a few of these 'conjoiners' appeared to believe that if a 
coefficient is on the left of the letter it indicates subtraction and if it is on 
the right it indicates addition. They wrote hO to mean 'add 10 to h' and I y 
to mean 'take 1 from y'. We assume that this notion may come from their 
experience with adding and subtracting along the number line or from their 
knowledge of the Roman numeration system in which VI means '1 more 
than 5' and IV means '1 less than 5', or that it may be based on deeper 
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UNDERSTANDING ALGEBRAIC NOTATION 13 

TABLE VI 

Percentages correct in three school groups each tested three times (n = 156) 

School A, Year 8-9 School B, Year 8-9 School C, Year 9-10 

(n = 70) (n = 60) (n = 26) 

Item 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

DAVID 70 86 96 70 90 90 50 69 65 

SUE 57 90 93 75 95 90 38 65 46 

TWO OPS 20 41 74 35 35 55 31 81 62 

intuitive metaphorical concepts associated with addition and subtraction 

(Lakoff and Johnson, 1980). 

The alphabetical interpretation of letters, seen in data from several 

schools as well as in the first small sample of beginners, may come from 

prior experience with codes and puzzles, but it is interesting that this think- 

ing also gave rise to historical mathematical sign systems. For example, 

the interpretation of a as 1, b as 2, etc., has its parallel in the early Greek 

numeration system (o = 1, 3 = 2, etc.). Furthermore, students continually 

see letters used this way in textbook exercises labelled 1 (a), 1 (b), 1 (c), etc., 

reinforcing their belief in a fixed value and order for each letter. 

It is possible that students who gave the answer h = h + 10 had 

learned this symbolism from a computer language. There are many sign 

systems, formal and informal, from which students may draw analogies 

with algebra. These sources of interference or support have not yet been 

fully investigated. 

Trends in Three Schools over 13 Months 

The effect of inappropriate teaching materials on students' interpretation of 

letters, particularly evident in certain schools, is discussed in this section. 

Teachers at three schools tested their students three times to assess 

progress and locate persistent errors. At two of these schools students were 

tested twice in Year 8 and once the following year, Year 9. At the other 

school, students were tested twice in Year 9 and once the following year, 
Year 10. The items DAVID, SUE and TWO OPS were included in each of 
the tests, with superficial changes between tests (e.g., as shown in Figure 1). 
Table VI shows results for the 156 students who did all three tests. 

No teaching strategies or learning materials were suggested to the teach- 
ers at the three schools, except in the case of School C for TWO OPS as 
discussed below. Trends in success rates on the other table entries are 
therefore due to the normal teaching that took place. As Table VI shows, 
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14 MOLLIE MACGREGOR AND KAYE STACEY 

students at Schools A and B made good progress in coping with algebraic 
letters and unclosed expressions (DAVID and SUE). On the other hand, 
at School C improvement on these two items was small; the cause of this 

poor performance is discussed below. Success on TWO OPS improved at 

all schools, with a dramatic rise in the performance at School C after the 

teaching intervention. 

Interpretation of letters 

Misinterpretation of algebraic letters as abbreviated words or labels for 

objects was a persistent difficulty at School C over all year levels. Discus- 
sion with the teachers revealed that teaching materials that had been used 
in Years 8 and 9 for these students explicitly present letters as abbreviated 

words (e.g., c could stand for 'cat', so 5c could mean 'five cats'). In con- 

trast, teaching materials used at Schools A and B present letters as standing 
for unknown numbers. In the data from Schools A and B, there were only 
two instances of letters used as abbreviated words in the first test and none 

thereafter. This observation suggests that the 'letter as abbreviated word' 

is not an inevitable naive misinterpretation that must be corrected but is 

caused by certain teaching materials or teachers' explanations. It seems 

probable that widespread and persistent misinterpretation by the School 
C students can be attributed to the misguided teaching approach that had 
been used. 

The alphabetical interpretation of letters was also relatively common 
at School C. At Year 9, several students wrote R (i.e., ten letters after H) 
for DAVID and X (i.e., one letter before Y) for SUE. The teachers were 

unaware of this misunderstanding. When it was brought to their notice after 
the first test, it was easily corrected. In contrast, the 'letter as abbreviated 
word' belief was far more resilient and continued as a source of difficulty 
for students at this school. 

Coordinating two operations 
At School C, between the first and second tests teachers used a lesson 
designed to address difficulties in coordinating two operations as required 
in the item TWO OPS. This lesson used examples of English text as well 
as mathematics to make students aware of the potential for ambiguity in 
certain expressions and the support of context in English that is not present 
in mathematics. For example, in the phrase 'French men and women' 
the word 'French' modifies both 'men' and 'women'. However, in the 
phrase 'French fries and Coke' the word 'French' is not a modifier of the 
word 'Coke'. In the phrase 'Twice five plus three' it is not clear whether 
'twice' modifies 5 only, or both 5 and 3. Students were given practice at 
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generating expressions of this type, inserting brackets to resolve ambiguity, 

and evaluating them. 

The teachers' efforts to teach the use of brackets for grouping and 

distributivity were clearly very effective. As shown in Table VI, the success 

rate rose sharply from 31% correct in the first test to 81 % correct in the 

second test. In the third test, given the following year, 62% were correct. 

In this third test, several students omitted brackets from otherwise correct 

expressions, suggesting that their knowledge of the purpose of brackets 

had not been used and was consequently forgotten. There were however 

no other types of error, in contrast with the great variety of errors seen in 

the first test and in other schools. We conclude that the lesson on brackets 

and ambiguity had been effective for the majority of students. We are not 

sure why it also seems to have been effective in eliminating the other types 

of error. The reason may be that students had learned to focus more clearly 

on what an algebraic expression means and to see how a slight change in 

notation affects this meaning. 

DISCUSSION AND CONCLUSIONS 

We have shown that students frequently base their interpretations of let- 

ters and algebraic expressions on intuition and guessing, on analogies 

with other symbol systems they know, or on a false foundation created 

by misleading teaching materials. They are often unaware of the general 

consistency of mathematical notation and the power that this provides. 

Their misinterpretations lead to difficulties in making sense of algebra and 

may persist for several years if not recognised and corrected. We suggest 

that younger students' misinterpretations are not indicators of low levels 

of cognitive development; they are thoughtful attempts to make sense of a 

new notation or are caused by transfer of meanings from other contexts. In 

more experienced students, however, they indicate failure to consolidate 

learning, a condition which has many causes. 

The success of the Year 7 students in our sample indicates that many of 

them appear to have moved beyond or by-passed the lower-division inter- 

pretations. However, we do not know how far they had progressed along 

the route to understanding the significance of letters. At all year-levels 
there were some students who seemed to be unable to deal with the precise 
distinctions between letters and their referents that is necessary for alge- 
bra. Many years ago, Paige and Simon (1966) described this as perhaps 
one of the most difficult aspects of using algebra to solve problems. Paige 
and Simon give an example of a problem about the value of a collection 
of dimes, for which students used x to stand for anything associated with 
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16 MOLLIE MACGREGOR AND KAYE STACEY 

dimes, e.g., 'a dime', 'the dimes', 'the number of dimes' or 'the value 

of the dimes'. Similarly, in our items, some students in all age groups 

had difficulty distinguishing the name of an object (e.g., the person Con) 

from the name of an attribute (e.g., Con's height) and from a quantity or 

measure (h units). In everyday communication, such precise distinctions 

when referring to objects, attributes or measures are usually not important. 

However, wrongly interpreting an algebraic letter as the name of an object 

(e.g., interpreting r to mean 'red pencils', so 6r means 'six red pencils') is 

a well-known and serious obstacle to writing expressions and equations in 

certain contexts (see, for example, Clement, 1982; Kaput, 1987; for a deep- 

er analysis of this difficulty and some new explanations see Lopez-Real, 

1995; MacGregor and Stacey, 1993; Thomas, 1994). Moreover, students 

notice that concepts in applied mathematics are usually denoted by the 

initial letters of their names (A for area, m for mass, t for time, etc.). It is 

likely that this use of letters reinforces the belief that letters in mathemat- 

ical expressions and formulas stand for words or objects rather than for 

numbers. 

There are many sign systems used in school and in everyday activities 

as diverse as electronics and knitting from which students may be drawing 

helpful and unhelpful analogies with algebra. The symbol system of chem- 

istry, for example, resembles the notation of algebra in its use of brackets 

to refer to grouping and equations to represent the combining of quantities. 

Students have to learn the different meanings of conjoined letters in the 

two systems (addition in the sense of chemical combination in chemistry, 

but multiplication in algebra) and the different positions of numerals to 

indicate multiples of quantities. Some characteristics of sign systems are 

intuitive and easily learned, others are not. Even sign systems such as the 

way in which items are numbered in a textbook may influence students' 

ideas. 

The relative success achieved by some classes in the schools we tested 

and the poor performance by others suggest that factors such as different 

approaches to beginning algebra, teaching materials, teaching styles or the 

learning environment have a powerful effect. We have identified particular 

approaches and teaching materials that lead to misunderstanding and failure 

to learn. The alphabetical interpretation was found to be common in one 

school where it had been reinforced by the use of puzzles and codes in 

mathematics lessons. The use of letters as abbreviated words and labels 

was traced to the use of textbooks that explicitly state, in the first algebra 

unit, that letters can be used this way. There can be little doubt that the 

persistent misinterpretation of letters as abbreviated words, evident in data 
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from schools using those books, was partly or wholly due to this misguided 
initial presentation. 

Our data show that after Year 7 a variety of misuse of algebraic notation 
arises as a result of interference from new learning. Exponential notation 
was used by many students to represent multiplication, and this incorrect 
use increased steadily over the four year levels. In a geometrical context, 
half-remembered area formulas and new learning about Pythagoras's the- 

orem combined with uncertainty about the use of exponential notation to 
cause many errors. We suggest that in a typical curriculum students do 
not get enough experience at using algebraic notation. In the schools we 
worked with, students learn algebra in one or two short modules per year. 
These modules are usually not connected with other work and have no 
useful purpose from the students' point of view. When algebraic concepts 
and methods are not used in other parts of the mathematics curriculum, 
students forget them and forget the notation for expressing them. They may 
remember certain surface features and spatial displays without the associ- 
ated meaning and context. Consequently, when new concepts and notation 
are introduced, students are unable to link these with, or differentiate them 
from, what they have previously been taught. 

One of the general conclusions of the CSMS project was that any 
demand for abstraction in mathematics is beyond the capability of a large 
proportion of the secondary school population. It was suggested that, since 
the majority of students cannot cope with tasks where letters have to be 
interpreted as numbers, algebra teaching should be based initially at the 
level of concrete operations despite the fact that 'the use of letters as objects 
totally conflicts with the eventual aim of using letters to represent numbers 
of objects' (Kiichemann, 1981, p. 119). We suggest that this is a short- 
sighted approach, leading to 'correct answers' to simple problems for the 
wrong reasons and reinforcing students' intuitive but unhelpful beliefs. As 
we have shown, the use of misleading teaching materials in early lessons, 
intended to make initial algebra learning easy, can seriously disadvantage 
students. 

In this paper we have identified several factors which we believe need 
to be considered in a comprehensive explanation of the particular ways in 
which students interpret algebraic letters and write algebraic expressions. 
Attributing their errors to cognitive level alone accounts for failure to write 
correct answers but does not explain the wide variety of misinterpretations 
that we observed in our data. We have shown that some common misun- 
derstandings are the results of particular teaching approaches, and can be 
avoided; others are developed by the students themselves. Certain misin- 
terpretations can be reduced or overcome easily by appropriate teaching; 
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18 MOLLIE MACGREGOR AND KAYE STACEY 

others are known to be very resilient. Teachers need to be aware of the 

beliefs about the meanings of letters and mathematical notation that stu- 

dents bring with them to algebra learning, and take account of these beliefs 

in their teaching. They have a responsibility to ensure that students' first 

experiences of using letters in algebra lay the foundation for a coherent 

structure of algebraic knowledge. 
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