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STUDENTS’ UNDERSTANDING OF ALGEBRAIC NOTATION:
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ABSTRACT. Research studies have found that the majority of students up to age 15 seem
unable to interpret algebraic letters as generalised numbers or even as specific unknowns.
Instead, they ignore the letters, replace them with numerical values, or regard them as
shorthand names. The principal explanation given in the literature has been a general link
to levels of cognitive development. In this paper we present evidence for specific origins
of misinterpretation that have been overlooked in the literature, and which may or may not
be associated with cognitive level. These origins are: intuitive assumptions and pragmatic
reasoning about a new notation, analogies with familiar symbol systems, interference from
new learning in mathematics, and the effects of misleading teaching materials. Recognition
of these origins of misunderstanding is necessary for improving the teaching of algebra.

The Concepts in Secondary Mathematics and Science [CSMS] research
project (Hart, 1981) provided evidence linking students’ levels of under-
standing of algebraic letters to Piagetian stages of cognitive development
and to IQ scores. It was concluded that most of the 13 to 15-year-olds
tested were unable to cope with items that required interpreting letters as
generalised numbers or even as specific unknowns. In the many years since
the CSMS project, it has been widely accepted that cognitive level is a suf-
ficient explanation for the way in which algebraic notation is interpreted. If
cognitive level is viewed as a barrier to the construction of certain concepts,
it explains why students cannot do certain algebraic tasks. However, it does
not explain why they misinterpret the notation in different ways and why
they make certain errors. In this paper we take this next step. We show that
some common misinterpretations can be explained by considering factors
more accessible than cognitive level to diagnosis and possible remediation.
We present evidence that difficulties in learning to use algebraic notation
have several origins, including:

� intuitive assumptions and sensible, pragmatic reasoning about an unfa-
miliar notation system;

� analogies with symbol systems used in everyday life, in other parts of
mathematics or in other school subjects;

� interference from new learning in mathematics;
� poorly-designed and misleading teaching materials.
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The research reported in this paper is part of a larger project investigating
the cognitive and linguistic demands of learning algebra in secondary
school. In this project, data were obtained from pencil-and-paper tests
given to a large representative sample of approximately 2000 students in
Years 7–10 (ages 11–15) in 24 Australian secondary schools. Some schools
used the same test across two, three or four year levels, thus providing
us with comparative data for these year levels. Other schools tested the
same cohort of pupils on two or three occasions, thus providing us with
longitudinal data on the progress of individual students. When individuals
were re-tested, parallel versions of the original items were used. At one
school we interviewed 14 students while they worked on selected items,
audio-taping the discussions for later analysis.

The schools involved were not randomly selected. They took part in
the tests because their teachers were keen to participate in the project and
find out about the effectiveness of their teaching. However, because of the
sample size, the number of schools, and the range of school types (State,
Catholic and private, in working-class and middle-class suburbs), there
can be little doubt that those findings which are common to all schools
in the sample apply to the general population of students. Results which
are not uniform across schools point to the influence of factors specific to
particular schools.

BACKGROUND

Students’ interpretations of algebraic letters

In Australian schools, students begin algebra in Year 7 or Year 8 when
they are 11–13 years old. In the first year, they are taught to use letters
to stand for unknown or generalised numbers, frequently in the context
of writing formulas for number patterns. They are given the opportunity
to learn how to write simple expressions and equations containing letters,
numerals, operation signs and brackets. Difficulties in learning these funda-
mental aspects of algebraic notation are well documented (see, for example,
Assessment of Performance Unit, 1985; Booth, 1984; Cambridge Institute
of Education, 1985; Herscovics, 1989; Küchemann, 1981; Robitaille and
Garden, 1989).

Küchemann (1981) classified students’ interpretations of algebraic let-
ters into two major divisions:

1. The letter is ignored, given an arbitrary value, or used as the name of
an object.

2. The letter is used as a specific unknown number or generalised number.
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Each of these divisions is further divided into two categories to account
for the cognitive demands of item complexity, thus giving four levels.
Küchemann suggested that these four levels correspond to the Piagetian
stages of below late concrete, late concrete, early formal and late formal.
Longitudinal testing in the CSMS project showed that students with higher
IQ scores tended to demonstrate higher cognitive levels and made faster
progress through algebra levels than students with lower IQ scores. Never-
theless the fact that a few students with below-average IQ scores reached
the third or fourth algebra levels by age 15 (see Hart, 1981, p. 185, Fig-
ure 12.4) suggests that other factors need to be taken into account when
explaining students’ growth of understanding of algebra. In the present
paper we indicate what some of these other factors might be.

If a relatively unchangeable cognitive level is indeed a determinant of
the way in which students can interpret letters and use algebra notation,
then a successful introduction to algebra needs to take this fact into account.
The pattern approach to algebra, currently presented in curriculum advice
to schools (Stacey and MacGregor, in press), depends on students’ ability
to grasp the concepts of generalised number and unclosed expression. In
this approach, students’ first use of algebraic notation is for expressing rela-
tionships in patterns and sequences, where there are two variables related
by a rule (e.g., y = 2x+ 1). The fact that this approach is widely recom-
mended by mathematics educators as a gateway to algebra stands counter
to the argument that the concepts involved and the notation for expressing
them are beyond the cognitive capacity of ordinary students. Additionally,
capacities should not be considered outside a context for their expression.
The success of students in experimental computer environments (Cohors-
Fresenborg, 1993; Sutherland, 1991; Tall and Thomas, 1991) is evidence
that at least some of the difficulties and errors in traditional algebra learn-
ing are caused by the nature of students’ learning experiences and do not
reflect their cognitive capacities.

Küchemann (1981) concluded that the majority of 13 to 15-year-olds are
unable to cope with algebraic letters as unknowns or generalised numbers.
If this is the case, then current approaches to algebra as a language for
expressing relationships between two variables, whether via computer or
with pencil and paper, are not appropriate. In the current climate of new
approaches to algebra instruction, it is important to reassess students’
capabilities and to identify sources of difficulty.
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RESEARCH QUESTIONS

In the testing programme, we assessed students’ capabilities in several
areas of algebra, including the recognition of operations and structures, the
understanding of simple functions, and the ability to construct and solve
equations. In this paper we report results for only a few items in the tests –
those concerned with the interpretation of algebraic letters and the writing
of a simple unclosed expression. We discuss the following questions:

1. How do students who have not learned any algebra interpret letters and
try to write expressions? Do they come to algebra with preconceptions
about the use of letters?

2. How do students’ interpretations of letters and simple algebraic expres-
sions change over three years of school algebra learning?

3. What are the roots of specific errors and misunderstandings?

TESTING AND RESULTS

We discuss the testing and results in three sections. First we look at the
ways in which algebraic letters were interpreted by 11 to 12-year-olds
who had not been taught any algebra. We then comment on the progress
made by these children in an eight-week algebra unit that formed part of
their normal Year 7 curriculum. Next we report the results of tests used
for several hundreds of students in Years 7 to 10 in 22 schools. Interviews
with individual students at another school provided important insights into
the causes of certain errors not previously reported in the literature. Finally
we trace the progress of 156 individual students in three schools who were
tested three times: twice in one year and once the following year.

Year 7 Students’ Progress in 8 Weeks

Pre- and post-test items
Items containing algebraic letters were included in a pre-test for two mixed-
ability classes (n = 42) of Year 7 students (age approx. 11–12 years) who
had not been taught any algebra at school. The same two classes were
tested again eight weeks later after they had completed an introductory
algebra unit. We discuss two of the test items, shown in Figure 1, that were
used to assess students’ ability to use an algebraic letter to represent an
unknown quantity. Superficial differences were made to both items for the
post-test, so that students would not be able to use remembered answers.
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Pre-test Post-test

1. David is 10 cm taller than Con. 1. Con is 8 cm taller than Kim.

Con ish cm tall. What can you write
for David’s height? ..........

Kim is y cm tall. What can you write
for Con’s height? ..........

2. Sue weighs 1 kg less than Chris. 2. Sam is x cm shorter than Eva.

Chris weighs y kg. What can you
write for Sue’s weight? ..........

Eva is 95 cm tall. What can you
write for Sam’s height? ..........

Figure 1. Pre- and post-test versions of Items 1 and 2.

Expected responses
We expected that in the pre-test most if not all the students in our sample
would not attempt the items containing algebraic letters because they had
not been taught any algebra. If answers were written, we expected them to
be at Küchemann’s lower division (i.e., letter ignored, given a numerical
value, or used as a label for an object). A possible lower-division interpre-
tation of h in Item 1 (pre-test version, referred to as DAVID in this paper) is
that it stands for the word ‘height’. If ‘height’ is denoted byh, then ‘David’
should be denoted by D. We expected therefore that students might write
Dh to mean ‘David’s height’. In Item 2 (SUE), the letter y is clearly not
an abbreviation for any word in the problem, and the only possible lower-
division response would be to ignore it or assign it a numerical value. We
expected that many students would give no answer or a numerical answer.

Results
In the pre-test, two-thirds of the students did not write any answers, but
the responses of the other 14 are useful indicators of students’ intuitive
interpretations of what algebraic letters might mean. Table I shows the
responses to Item 1 and the likely explanations for them.

We see in Table I nine sensible answers to what must have seemed a
strange question. Two students used h to represent a quantity to which 10
cm could be added, and one of them wrote the correct expression 10+ h.
One student used letters as abbreviated words. Two students associated the
letter h with its position in the alphabet, as they often have to do in puzzles
and translation into codes. Two students thought that they should assume a
value for Con’s height, since it was not given. Two students reasoned that if
Con’s height could be represented by a letter, then so could David’s height,
one of these students regarding alphabetical order as relevant (associating
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TABLE I

Responses to item DAVID from 14 students

Frequency Response Assumed reasoning

1 10+ h [correct] Add 10 to number or quantity denoted by h.

1 h10 Add 10 onto h.

1 Uh Abbreviated words ‘Unknown height’.

2 18 h is the 8th letter of alphabet, therefore 10 more
is the 18th.

2 110 Think of a reasonable height for Con, add 10

2 t; g Choose another letter or adjacent letter for
David’s height.

5 10, 20, ‘half’ No comprehension of the question; use of the
given value 10 and operations ‘double’ or ‘half’.

TABLE II

Responses to items DAVID and SUE from 14 students

Frequency DAVID SUE (assumed reasoning)

1 10+ h y � 1 (Subtract 1 from number or quantity denoted
by y)

1 h10 x (Although 10 can be ‘joined’ to h, as 10h,
1 cannot be ‘removed’ from y. To denote 1
less than y, write x)

1 Uh Uw (to mean ‘Unknown weight’)

2 18 24 (y is the 25th letter, therefore 1 less is 24)

2 110 [no response]

2 t; g o; x (Choose another letter or adjacent letter)

4 10, 20 1 (No comprehension of the question; use of
the given value 1)

1 ‘half’ [no response]

g with h). The remaining five students, not knowing what to do, had tried to
write something related to the numbers in the question, ignoring the letter.
Responses to Item 2 by the same students showed that they were almost all
reasoning consistently across both items. Table II shows the responses of
these 14 individuals to the two items, and explanations for their responses
to Item 2 (SUE).

Interpretations of algebraic letters by these Year 7 students can be divid-
ed into six categories, listed below. The first three in the list correspond
to Küchemann’s lower division of interpretation. The last in the list cor-
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TABLE III

Percentage of Year 7 students’ responses to Item 1 in each of six categories
before and after instruction

Percentage of sample

Category Pre-test (n = 42) Post-test (n = 38)

Unknown quantity

�
[correct]

[incorrect]

2%

2%

37%

26%

Abbreviated word 2% 0

Alphabetical value 5% 0

Numerical value 5% 8%

Use of different letter 5% 8%

Letter ignored 12% 10%

[no response] 67% 11%

responds to Küchemann’s higher division of interpretation (i.e., specific
unknown or generalised number). Küchemann’s hierarchy does not explic-
itly include the other two interpretations.

� letter ignored
� numerical value
� abbreviated word
� alphabetical value
� use different letter for each unknown
� unknown quantity

As described below, not all these categories were evident in the post-test.
The post-test was given eight weeks later, after the class had been taught

their first algebra unit lasting about 20 lessons. In this test, given to 38 of
the original sample, 34 students responded and many were correct. As in
the pre-test, almost all students reasoned consistently over both items.

As shown in Table III, one-third of the class (14 students) were correct,
compared with only one student correct in the pre-test. For the Con’s
height item (see Figure 1) 10 students wrote the terms 8y, y8, 8 � y or
y � 8, in which they have made an attempt to denote a combination of
the given number 8 and the unknown number y, their errors being due to
conjoining terms for addition or writing the wrong operation. Combining
these responses with the 14 correct ones, we see that 24 responses were
not restricted to the lower division of interpretation. These 24 students
have accepted that an algebraic letter does not stand for a word or need
to be replaced by a number, and can be used along with a numeral to
express an ‘answer’. They understood the significance of algebraic letters
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Figure 2. Items 3 and 4, referred to as DISTANCE and TWO OPS in this paper.

well enough to write an expression containing the symbols y and 8. The
percentage with this level of understanding had increased since the pre-
test from 4% to 63%. The percentage of lower-division interpretations and
omissions (29%) is much less than in the pre-test, and no student used a
letter as an abbreviated word or person’s name or assigned an alphabetical
value. Only three students chose numerical values. Three chose other letters
(x or N), these being letters they had seen used for unknown numbers in
their lessons. There were still a few students who had apparently not
understood the question and wrote ‘8’ (the numeral given in the item) or
did not respond. Similar results were obtained for Item 2, with 16 correct
responses (42%) and seven students (18%) using letters as unknowns but
making syntax or operation errors (e.g., x� 95, �x95, or x+ 95).

The performance of this class was better than expected, given the low
success rates in published reports for similar items, and may indicate the
effectiveness of the teaching program that had been used. As we will see in
the next section, older and more experienced students often misinterpreted
algebraic letters in other ways and many were not able to provide unclosed
answers.

Results from Large Sample of Students in Years 7 to 10

The items DAVID and SUE that had been used for the small Year 7
sample were included in a test used by 22 schools for Years 7 to 10. All
students in this large sample had been taught some algebra. We assume that
students at all levels would have seen or written expressions coordinating
two operations as required in Item 4 (referred to below as TWO OPS) in
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TABLE IV

Percentages of students in Years 7–10 correct for Items 1–4 (N = 1463)

Item [answer] Year 7 Year 8 Year 9 Year 10

(n = 307) (n = 511) (n = 338) (n = 307)

1. DAVID [h+ 10] 39% 52% 63% 73%

2. SUE [y � 1] 36% 46% 60% 64%

3 (i) DISTANCE [3x] 42% 44% 65% 61%

(ii) DISTANCE [2x+ 18] 27% 35% 55% 53%

4. TWO OPS [3(n+ 5)] 14% 17% 25% 47%

their early algebra experiences with number patterns, function machines,
and ‘guess my number’ rules, as well as in purely symbolic translation
exercises. The older students in the sample would have seen algebraic
letters used in a geometrical context, as in Item 3 (referred to below as
DISTANCE). The results for the four items are shown in Table IV.

The Year 10 students were more successful than the Year 7 students,
but there was not the great improvement that we had expected. As Table
IV shows, even on the easiest item fewer than three-quarters of the Year-
10 students were successful. Despite gains from one year to the next, the
success rate for the hardest item (Item 4) did not reach 50%. Errors due
to several causes arise as students move from Year 7 to Year 10. In the
following sections we describe the main errors and misunderstandings for
each item and we discuss their causes.

Success rates on DAVID and SUE at Year 7 for this large representative
sample were approximately the same as the rates for the previous small
Year-7 sample on their post-test. Approximately half the Year-8 students
and two-thirds of older students were correct for these very simple items.
The six categories of interpretations previously identified were seen at all
year levels. Three misinterpretations not seen in Year-7 responses appeared
in the work of students in Years 8 to 10. They were:

� letter is a label associated with the name of an object (e.g., C to mean
‘Con’s height’ and D to mean ‘David’s height’ in C+ 10 = D)

� letter equals 1 unless otherwise specified (e.g., 10+ h = 11)
� letter has a general referent that includes various specifics (h means

‘height’, so it means both ‘David’s height’ and ‘Con’s height’ in the
statement h = h+ 10).

Furthermore, certain responses from older students showed evidence of
interference from a variety of sources. These include new learning in
mathematics and analogies with other symbol systems.
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Interference from new learning
As we had observed in the first small Year 7 sample, younger students
often ignored the algebraic letter and gave a numerical answer. For DAVID
and SUE they chose an arbitrary number. For DISTANCE many of them
measured the lengths marked ‘x cm’ with their rulers. They probably
thought this was what the teacher wanted. On the other hand, older students
gave numerical responses that were not due to these causes but reflected
interference from new learning that had been misunderstood. Some errors
were due to the letter = 1 belief (explained below), and others were the
results of attempts to use algebraic manipulation to ‘solve an equation’
without understanding. An example is the following, written by a student
in Year 10 and producing the answer 5 for DAVID.

10+ h
10+ h

h
�

h

h

=
2h
2
+

10
2

h = 5

This student has written the correct expression 10+ h but has then tried
to use routine manipulation techniques. It is likely that recent learning
of procedures for simplifying algebraic fractions or solving equations has
caused the retrieval of schemas related to that learning. It is possible that,
in research studies reported in the literature, numerical responses of this
type have been misclassified as letter ignored or arbitrary numeral. Our
analysis shows that complex (but incorrect) reasoning processes are likely
to be involved.

Older students’ belief that any letter stands for 1 was strongly evident
in two of the 22 schools in our sample, and possibly present in others. For
DISTANCE (ii), for example, we had seen the answer 20 cm in several
written responses, in one instance with the added note ‘becausex = 1’. The
prevalence of this belief was confirmed in the interviews. A Year 10 student
said, ‘x is just like 1, like having one number’. Another said ‘By itself it is
1, the x’. A student working on the DISTANCE item explained that 8 plus
two 5’s is 18, then ‘1 more for eachxmakes 20’. Explanations such as these
enabled us to understand the reasons for many numerical answers to items
in the test. Answers that we had first classified as arbitrary numerical value
(e.g., David’s height = 11) or attributed to inaccurate measurement (e.g.,
20 cm for DISTANCE (ii)), could in many cases be now attributed to the
letter equals 1 belief. One likely cause of this belief is a misunderstanding
of what teachers mean when they say ‘x without a coefficient means 1x’.
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The student gets a vague message that the letter x by itself is something
to do with 1. Another source of confusion for older students is learning
that the power of x is 1 if no index is written and that x with zero as
the index equals 1 (i.e., x = x

1 and x
0 = 1). Like numerical responses

caused by misguided attempts to simplify or solve (see above), numerical
responses caused by the letter equals 1 belief may have been misclassified
in previous studies as letter ignored or arbitrary numeral. We now know
that at least some of them are due to the belief that a letter has the value 1.
The concentration of this belief in particular schools points to a teaching
effect.

Interference from new learning was also evident in the widespread
misuse of exponential notation (e.g., x3 instead of 3x). This misunder-
standing, seen in responses to DISTANCE as well as in other items in the
test, increased steadily over the four year levels, from 5% at Year 7 to
18% at Year 10. Our evidence, supported by interview data, suggests that
one major cause is lack of clear concepts for repeated addition, multipli-
cation and repeated multiplication. (See Stacey and MacGregor, 1994, for
evidence of students’ confusion about these concepts and their notation.)
Teachers may wrongly assume that students have a firm understanding of
these concepts when exponential notation is taught and used.

Other reasons why older students had more opportunities for making
mistakes than younger ones was because of interference from new schemas
only partly learned or because of their expectation of being able to use more
advanced knowledge. When students were interviewed on the DISTANCE
(ii) item, some of them made comments such as ‘Do I have to figure out the
numbers?’ and ‘That’s the hypotenuse’, and others began to draw lines in
the figure to form two right-angled triangles. Their questions and methods
indicated that they were searching for remembered schemas or learned
procedures from geometry, and did not recognise that the task simply
required a sum of measures. It was interesting to see that several Year 10
students wrote x2+ 52+ 8. Their uncertainty about how to write ‘twice x’
(strongly evident in other items in the test) may have contaminated their
knowledge of how to write ‘twice five’. Alternatively, they may have tried
to use knowledge about right-angled triangles and Pythagoras’s theorem
which they remembered concerns a sum of squares.

In TWO OPS, which required students to coordinate two operations
using an unclosed expression, most students at all year levels were not cor-
rect (see Table V). The low success rate is in accordance with the findings
of Ursini (1990) for a similar item used for students in Mexican schools, but
considerably better than the success rates reported by Küchemann (1981,
p. 108). In Table V the category ‘Omit brackets’ includes all responses that
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TABLE V

Results for TWO OPERATIONS (N = 1806)

Year n Correct Omit Use of 15n 5n� 3 Other Omit

brackets exponent

7 368 14% 14% 2% 8% 6% 20% 36%

8 594 19% 22% 1% 6% 2% 26% 24%

9 386 26% 21% 2% 10% 4% 22% 15%

10 458 47% 11% 1% 8% 4% 9% 20%

would have been correct if brackets had been inserted, for examplen+5�3.
According to Küchemann, success on this item requires interpreting the
letter as a specific unknown or generalised number.

We had expected conjoining to be a common error, particularly for
younger students. It would cause 5n to be written for 5+n, and finally 15n
when the 5n was multiplied by 3. However, no more than 14% of students
at any level wrote a conjoined answer. This figure is in accord with the
relatively low incidence of conjoining in other items. A few students clearly
needed an extra symbol for the result of the first operation (i.e., adding 5
to n) and they used another variable name or left a space for the ‘answer’
(e.g., n+5 = x�3 or n+5 = �3). There were instances of exponential
notation (e.g., (n+5)3) and evidence of the ‘unknown letter equals 1’ belief
which gives the answer 18 when the student adds 1 to 5 and then multiplies
by 3. We have as yet no explanations for students’ reasoning behind the
many other forms of incorrect responses and the reluctance of so many
students to write anything at all. We believe that the large percentage of
unclassified responses and omissions points to students’ lack of experience
in using algebraic notation to express simple information or communicate
their understanding.

Analogies with other symbol systems
The incidence of conjoining for addition (e.g. 10h to represent 10 plus
h) was far lower than expected at all levels, being well below 10% after
Year 7. However, a few of these ‘conjoiners’ appeared to believe that if a
coefficient is of the left on the letter it indicates subtraction and if it is on
the right it indicates addition. They wrote h10 to mean ‘add 10 to h’ and 1y
to mean ‘take 1 from y’. We assume that this notion may come from their
experience with adding and subtracting along the number line or from their
knowledge of the Roman numeration system in which VI means ‘1 more
than 5’ and IV means ‘1 less than 5’, or that it may be based on deeper
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TABLE VI

Percentages correct in three school groups each tested three times (n = 156)

School A, Year 8–9 School B, Year 8–9 School C, Year 9–10

(n = 70) (n = 60) (n = 26)

Item 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

DAVID 70 86 96 70 90 90 50 69 65

SUE 57 90 93 75 95 90 38 65 46

TWO OPS 20 41 74 35 35 55 31 81 62

intuitive metaphorical concepts associated with addition and subtraction
(Lakoff and Johnson, 1980).

The alphabetical interpretation of letters, seen in data from several
schools as well as in the first small sample of beginners, may come from
prior experience with codes and puzzles, but it is interesting that this think-
ing also gave rise to historical mathematical sign systems. For example,
the interpretation of a as 1, b as 2, etc., has its parallel in the early Greek
numeration system (� = 1, � = 2, etc.). Furthermore, students continually
see letters used this way in textbook exercises labelled 1(a), 1(b), 1(c), etc.,
reinforcing their belief in a fixed value and order for each letter.

It is possible that students who gave the answer h = h + 10 had
learned this symbolism from a computer language. There are many sign
systems, formal and informal, from which students may draw analogies
with algebra. These sources of interference or support have not yet been
fully investigated.

Trends in Three Schools over 13 Months

The effect of inappropriate teaching materials on students’ interpretation of
letters, particularly evident in certain schools, is discussed in this section.

Teachers at three schools tested their students three times to assess
progress and locate persistent errors. At two of these schools students were
tested twice in Year 8 and once the following year, Year 9. At the other
school, students were tested twice in Year 9 and once the following year,
Year 10. The items DAVID, SUE and TWO OPS were included in each of
the tests, with superficial changes between tests (e.g., as shown in Figure 1).
Table VI shows results for the 156 students who did all three tests.

No teaching strategies or learning materials were suggested to the teach-
ers at the three schools, except in the case of School C for TWO OPS as
discussed below. Trends in success rates on the other table entries are
therefore due to the normal teaching that took place. As Table VI shows,
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students at Schools A and B made good progress in coping with algebraic
letters and unclosed expressions (DAVID and SUE). On the other hand,
at School C improvement on these two items was small; the cause of this
poor performance is discussed below. Success on TWO OPS improved at
all schools, with a dramatic rise in the performance at School C after the
teaching intervention.

Interpretation of letters
Misinterpretation of algebraic letters as abbreviated words or labels for
objects was a persistent difficulty at School C over all year levels. Discus-
sion with the teachers revealed that teaching materials that had been used
in Years 8 and 9 for these students explicitly present letters as abbreviated
words (e.g., c could stand for ‘cat’, so 5c could mean ‘five cats’). In con-
trast, teaching materials used at Schools A and B present letters as standing
for unknown numbers. In the data from Schools A and B, there were only
two instances of letters used as abbreviated words in the first test and none
thereafter. This observation suggests that the ‘letter as abbreviated word’
is not an inevitable naive misinterpretation that must be corrected but is
caused by certain teaching materials or teachers’ explanations. It seems
probable that widespread and persistent misinterpretation by the School
C students can be attributed to the misguided teaching approach that had
been used.

The alphabetical interpretation of letters was also relatively common
at School C. At Year 9, several students wrote R (i.e., ten letters after H)
for DAVID and X (i.e., one letter before Y) for SUE. The teachers were
unaware of this misunderstanding. When it was brought to their notice after
the first test, it was easily corrected. In contrast, the ‘letter as abbreviated
word’ belief was far more resilient and continued as a source of difficulty
for students at this school.

Coordinating two operations
At School C, between the first and second tests teachers used a lesson
designed to address difficulties in coordinating two operations as required
in the item TWO OPS. This lesson used examples of English text as well
as mathematics to make students aware of the potential for ambiguity in
certain expressions and the support of context in English that is not present
in mathematics. For example, in the phrase ‘French men and women’
the word ‘French’ modifies both ‘men’ and ‘women’. However, in the
phrase ‘French fries and Coke’ the word ‘French’ is not a modifier of the
word ‘Coke’. In the phrase ‘Twice five plus three’ it is not clear whether
‘twice’ modifies 5 only, or both 5 and 3. Students were given practice at
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generating expressions of this type, inserting brackets to resolve ambiguity,
and evaluating them.

The teachers’ efforts to teach the use of brackets for grouping and
distributivity were clearly very effective. As shown in Table VI, the success
rate rose sharply from 31% correct in the first test to 81% correct in the
second test. In the third test, given the following year, 62% were correct.
In this third test, several students omitted brackets from otherwise correct
expressions, suggesting that their knowledge of the purpose of brackets
had not been used and was consequently forgotten. There were however
no other types of error, in contrast with the great variety of errors seen in
the first test and in other schools. We conclude that the lesson on brackets
and ambiguity had been effective for the majority of students. We are not
sure why it also seems to have been effective in eliminating the other types
of error. The reason may be that students had learned to focus more clearly
on what an algebraic expression means and to see how a slight change in
notation affects this meaning.

DISCUSSION AND CONCLUSIONS

We have shown that students frequently base their interpretations of let-
ters and algebraic expressions on intuition and guessing, on analogies
with other symbol systems they know, or on a false foundation created
by misleading teaching materials. They are often unaware of the general
consistency of mathematical notation and the power that this provides.
Their misinterpretations lead to difficulties in making sense of algebra and
may persist for several years if not recognised and corrected. We suggest
that younger students’ misinterpretations are not indicators of low levels
of cognitive development; they are thoughtful attempts to make sense of a
new notation or are caused by transfer of meanings from other contexts. In
more experienced students, however, they indicate failure to consolidate
learning, a condition which has many causes.

The success of the Year 7 students in our sample indicates that many of
them appear to have moved beyond or by-passed the lower-division inter-
pretations. However, we do not know how far they had progressed along
the route to understanding the significance of letters. At all year-levels
there were some students who seemed to be unable to deal with the precise
distinctions between letters and their referents that is necessary for alge-
bra. Many years ago, Paige and Simon (1966) described this as perhaps
one of the most difficult aspects of using algebra to solve problems. Paige
and Simon give an example of a problem about the value of a collection
of dimes, for which students used x to stand for anything associated with
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dimes, e.g., ‘a dime’, ‘the dimes’, ‘the number of dimes’ or ‘the value
of the dimes’. Similarly, in our items, some students in all age groups
had difficulty distinguishing the name of an object (e.g., the person Con)
from the name of an attribute (e.g., Con’s height) and from a quantity or
measure (h units). In everyday communication, such precise distinctions
when referring to objects, attributes or measures are usually not important.
However, wrongly interpreting an algebraic letter as the name of an object
(e.g., interpreting r to mean ‘red pencils’, so 6r means ‘six red pencils’) is
a well-known and serious obstacle to writing expressions and equations in
certain contexts (see, for example, Clement, 1982; Kaput, 1987; for a deep-
er analysis of this difficulty and some new explanations see Lopez-Real,
1995; MacGregor and Stacey, 1993; Thomas, 1994). Moreover, students
notice that concepts in applied mathematics are usually denoted by the
initial letters of their names (A for area, m for mass, t for time, etc.). It is
likely that this use of letters reinforces the belief that letters in mathemat-
ical expressions and formulas stand for words or objects rather than for
numbers.

There are many sign systems used in school and in everyday activities
as diverse as electronics and knitting from which students may be drawing
helpful and unhelpful analogies with algebra. The symbol system of chem-
istry, for example, resembles the notation of algebra in its use of brackets
to refer to grouping and equations to represent the combining of quantities.
Students have to learn the different meanings of conjoined letters in the
two systems (addition in the sense of chemical combination in chemistry,
but multiplication in algebra) and the different positions of numerals to
indicate multiples of quantities. Some characteristics of sign systems are
intuitive and easily learned, others are not. Even sign systems such as the
way in which items are numbered in a textbook may influence students’
ideas.

The relative success achieved by some classes in the schools we tested
and the poor performance by others suggest that factors such as different
approaches to beginning algebra, teaching materials, teaching styles or the
learning environment have a powerful effect. We have identified particular
approaches and teaching materials that lead to misunderstanding and failure
to learn. The alphabetical interpretation was found to be common in one
school where it had been reinforced by the use of puzzles and codes in
mathematics lessons. The use of letters as abbreviated words and labels
was traced to the use of textbooks that explicitly state, in the first algebra
unit, that letters can be used this way. There can be little doubt that the
persistent misinterpretation of letters as abbreviated words, evident in data
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from schools using those books, was partly or wholly due to this misguided
initial presentation.

Our data show that after Year 7 a variety of misuse of algebraic notation
arises as a result of interference from new learning. Exponential notation
was used by many students to represent multiplication, and this incorrect
use increased steadily over the four year levels. In a geometrical context,
half-remembered area formulas and new learning about Pythagoras’s the-
orem combined with uncertainty about the use of exponential notation to
cause many errors. We suggest that in a typical curriculum students do
not get enough experience at using algebraic notation. In the schools we
worked with, students learn algebra in one or two short modules per year.
These modules are usually not connected with other work and have no
useful purpose from the students’ point of view. When algebraic concepts
and methods are not used in other parts of the mathematics curriculum,
students forget them and forget the notation for expressing them. They may
remember certain surface features and spatial displays without the associ-
ated meaning and context. Consequently, when new concepts and notation
are introduced, students are unable to link these with, or differentiate them
from, what they have previously been taught.

One of the general conclusions of the CSMS project was that any
demand for abstraction in mathematics is beyond the capability of a large
proportion of the secondary school population. It was suggested that, since
the majority of students cannot cope with tasks where letters have to be
interpreted as numbers, algebra teaching should be based initially at the
level of concrete operations despite the fact that ‘the use of letters as objects
totally conflicts with the eventual aim of using letters to represent numbers
of objects’ (Küchemann, 1981, p. 119). We suggest that this is a short-
sighted approach, leading to ‘correct answers’ to simple problems for the
wrong reasons and reinforcing students’ intuitive but unhelpful beliefs. As
we have shown, the use of misleading teaching materials in early lessons,
intended to make initial algebra learning easy, can seriously disadvantage
students.

In this paper we have identified several factors which we believe need
to be considered in a comprehensive explanation of the particular ways in
which students interpret algebraic letters and write algebraic expressions.
Attributing their errors to cognitive level alone accounts for failure to write
correct answers but does not explain the wide variety of misinterpretations
that we observed in our data. We have shown that some common misun-
derstandings are the results of particular teaching approaches, and can be
avoided; others are developed by the students themselves. Certain misin-
terpretations can be reduced or overcome easily by appropriate teaching;
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others are known to be very resilient. Teachers need to be aware of the
beliefs about the meanings of letters and mathematical notation that stu-
dents bring with them to algebra learning, and take account of these beliefs
in their teaching. They have a responsibility to ensure that students’ first
experiences of using letters in algebra lay the foundation for a coherent
structure of algebraic knowledge.

REFERENCES

Assessment of Performance Unit [APU]: 1985, A Review of Monitoring in Mathematics
1978 to 1982, HMSO, London.

Booth, L.: 1984, Algebra: Children’s Strategies and Errors. A Report of the Strategies and
Errors in Secondary Mathematics Project, NFER-Nelson, Windsor.

Cambridge Institute of Education: 1985, New Perspectives on the Mathematics Curriculum.
An Independent Appraisal of the Outcomes of the APU Mathematics Testing 1978–82,
HMSO, London.

Clement, J.: 1982, ‘Algebra word problem solutions: thought processes underlying a com-
mon misconception’, Journal for Research in Mathematics Education 13(1), 16–30.

Cohors-Fresenborg, E.: 1993, ‘Integrating algorithmic and axiomatic ways of thinking in
mathematics lessons in secondary schools’, in Proceedings of South East Asia Confer-
ence on Mathematics Education (SEACME-6) and the Seventh National Conference on
Mathematics, Kampus Sukolilo, Surabaya, pp. 74–81.

Hart, K.: 1981, Children’s Understanding of Mathematics: 11-16, Murray, London.
Herscovics, N.: 1989, ‘Cognitive obstacles encountered in the learning of algebra’, in S.

Wagner and C. Kieran (eds.), Research Issues in the Learning and Teaching of Algebra,
NCTM, Reston, pp. 60–86.

Kaput, J.: 1987, ‘Towards a theory of symbol use in mathematics’, in C. Janvier (ed.),
Problems of Representation in the Teaching and Learning of Mathematics, Erlbaum,
Hillsdale, pp. 159–195.
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