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Abstract In this study we analyze students’ understanding of two-variable function; in
particular we consider their understanding of domain, possible arbitrary nature of function
assignment, uniqueness of function image, and range. We use APOS theory and semiotic
representation theory as a theoretical framework to analyze data obtained from interviews
with thirteen students who had taken a multivariable calculus course. Results show that few
students were able to construct an object conception of function of two variables. Most
students showed difficulties finding domains of functions, in particular, when they were
restricted to a specific region in the xy plane. They also showed that they had not fully
coordinated their R3, set, and function of one variable schemata. We conclude from the analysis
that many of the interviewed students’ notion of function can be considered as pre-Bourbaki.

Keywords APOS . Schema . Two-variable function . Representations . Semiotic
representation theory

1 Introduction

The notion of a multivariable function is of fundamental importance in advanced mathe-
matics and its applications. Our review of the literature found several published articles
presenting classroom material for multivariable calculus topics, but few papers investigate
student understanding of this type of function. In one of the few articles we found that
explicitly treats function of two variables, Yerushalmy (1997) considered linear function of
two variables in a modeling context with precollege students. Referring to the generalization
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involved in the transition from function of one variable to function of two variables, she
insisted on the importance of the interplay between different representations to generalize
key aspects of these functions and to identify changes in what seemed to be fixed properties
of each type of function or representation. Representations in the case of functions have
interested mathematics education research for a long time (for example, Artigue, 1992;
Dufour-Janvier, Bednarz & Belanger, 1987; Hitt, 1998). More recently, and relating to
multivariable functions, Kabael (2009) studied the effect that using the “function machine”
might have on student understanding of function of two variables, and concluded that it had
a positive impact in their learning. In other related work, Montiel, Wilhelmi, Vidakovic
and Elstak (2009) considered student understanding of the relationship between rectan-
gular, cylindrical, and spherical coordinates in a multivariable calculus course. They
found that focusing on conversion among representation registers and on individual
processes of objectification, conceptualization and meaning contributes to a coherent
view of mathematical knowledge.

This study is a continuation of that by Trigueros and Martínez-Planell (2010) in which
student understanding of the graphical representation of two-variable functions was ana-
lyzed. In that study we concluded that the generalization of the concept of one-variable
function to two-variable function, in particular in the case of graphical representation, is not
direct. We also found that students who had constructed a schema for R3, which included
strong relationships between different subsets of points, had a better understanding of the
graphs of two-variable functions.

The present study focuses on student understanding of formal aspects of the function
concept. In particular, we are interested in studying students’ understanding of the
notions of domain, range, uniqueness of function value, and possible arbitrary nature
of a functional relation.

There is a vast literature discussing the parallels and limitations in comparing historical
development of a concept, and development of the concept in an individual (Furinghetti &
Radford, 2008; Radford, 1997). One point of view is summarized by Sfard (1995, pp. 15–
16) when she stated “difficulties experienced by an individual learner at different stages of
knowledge formation may be quite close to those that once challenged generations of
mathematicians.” Somewhat more cautiously, Piaget and García (1983) stated “We mustn’t
exaggerate the parallel between historical and individual development, but in broad outline,
there certainly are stages that are the same” (as cited in Furinghetti & Radford, 2008, p. 630).
Hence, in order to gain insights on the possible constructions needed to understand these
functions we reviewed the historical development of the concept as summarized by Kleiner
(1989) and Sfard (1992): The development of the concept can be divided in stages: The first
formal definition of function was given by Johann Bernoulli in 1718: “one calls here
function of a variable a quantity composed in any manner whatever of this variable and
constants.” Spurred by the debate on the vibrating string problem, Euler in 1748 admitted
functions defined by several analytic expressions on different intervals and even curves
drawn free-hand. This was a definite step towards admitting the possible arbitrary nature of a
functional relation. Developments in the early 1800’s, motivated by the need to make
Fourier’s results on heat conduction mathematically acceptable, required a redefinition of
the function concept: Dirichlet (see Kleiner, 1989, p. 291) formulated his definition in 1829
as “y is a function of the variable x defined on the interval a<x<b, if to every value of the
variable x in this interval there corresponds a definite value of the variable y. Also, it is
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irrelevant in what way this correspondence is established.” This definition stresses the
arbitrary nature of the functional correspondence, and extends the notion by allowing
functions that are not given by one, or even several, analytic expressions, or by a curve
drawn free-hand. This was also one of the first definitions to explicitly restrict the domain of
a function to an interval. Further developments resulting from the great growth experienced
in all fields of mathematics in the late 19th and early 20th centuries, led further abstraction in
the function concept as new types of objects were admitted on the domain of functions:
vectors in the linear transformations of vector spaces, functions in linear functionals, group
homeomorphisms in abstract algebra, and so on. All this required extending the function
concept to its prevalent view as a mapping between arbitrary sets and Bourbaki’s definition
of 1939 (Kleiner, 1989, p. 299): Let E and F be two sets, which may or may not be distinct.
A relation between a variable element x of E and a variable element y of F is called a
functional relation in y if, for all x in E, there exists a unique y in F which is in the
given relation with x. Bourbaki went on to give the definition of function as a certain
subset of E×F, which is the modern definition of a function as a set of ordered pairs
(Kleiner, 1989).

The modern concept of function plays a very important role in today’s mathematics.
There is plenty of literature dealing with the many complexities involved in its teaching and
learning (see for example: Harel & Dubinsky, 1992; Leinhardt, Zaslovsky & Stein, 1990). In
this study we focus on some aspects related to students’ understanding of functions when
they need to extend the definition for one-variable function to include that of two-variable
function. Our research questions are: What are the constructions that students need in order
to understand two-variable function? Which of those constructions can be associated with
the understanding of the notions of domain, range, uniqueness of functional value, and the
possible arbitrary nature of a functional relation?

2 Theoretical framework

This study is based in two complementary theoretical frameworks. APOS theory (Asiala et
al., 1996; Dubinsky, 1991, 1994) is used to describe constructions needed and observed in
the development of the concept of two-variable function. Semiotic representation theory
(Duval, 1999, 2006) is used in the analysis of the use of different representational registers
and how flexibility in this use impacts the evolution of the mathematical ideas under
consideration. Since this theoretical framework, including the relationship between APOS
and semiotic representation theory is discussed in the paper by Trigueros and Martínez-
Planell (2010) we will only complement the presentation given there.

To apply APOS theory to do research on students’ construction of specific mathematical
knowledge and in the design of teaching materials, a genetic decomposition needs to be
developed. A genetic decomposition is a model that describes specific mental constructions
students may make to construct specific mathematical knowledge. This is used in the
methodology of the theory to design activities that may enable researchers to “observe”
indirectly, through the work of students, the constructions they have made. Research instru-
ments are intended to probe the model. If constructions described are observed, the model is
considered as valid. If it is found that most students construct the concept in a different way
than the one described, the model is discarded and a new one is designed. Results of research
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can also be used to refine a genetic decomposition so that it better reflects students’
constructions. Once a genetic decomposition is validated in terms of observation of the
predicted constructions, it can be used to design activities to teach the concept. Students’
work on those activities and reflection on their work is supposed to contribute to construc-
tion of the concept. As with other models, a genetic decomposition is not unique, different
researchers can propose different genetic decompositions for the same concept; what is
important is that the constructions modeled by the genetic decomposition can be found in
research with students.

We used a genetic decomposition for the two-variable function concept that refines
that presented in the paper by Trigueros and Martínez-Planell (2010): The schemata that
we consider students should have developed previously to be able to understand the
concept of two-variable function are as follows: A schema of intuitive three-dimensional
space, which consists of a construction of the external material world; a schema of
Cartesian plane which includes the concept of points as objects and relations between
variables, such as curves, functions, and regions as processes resulting from the
generalization of the action of representing their component points; a schema for real
numbers which includes the concept of number as an object, and arithmetic and
algebraic transformations as processes, a schema for sets; a schema for real function
of one real variable including function as process, operations with functions, and
coordination of their different representations.

The Cartesian plane, real numbers, and the intuitive notion of space schemata must be
coordinated in order to construct the Cartesian space of dimension three, R3, through the
action of assigning real numbers to points in R2, and the actions of representing the results of
those actions as 3-tuples, or as points in space. These actions are interiorized into processes
that make it possible to consider different subsets, in particular fundamental planes (planes
of the form x 0 c, y 0 c, or z 0 c, where c is constant), in each representation register. These
processes can be encapsulated into objects on which further treatment actions or processes
can be performed. These treatment actions or processes include intersecting fundamental
planes with other surfaces to form transversal sections, contour curves and projections,
and processes of conversion (Duval, 2006) of those sets and subsets among representa-
tions in a schema which evolves and that can be thematized as a schema for three-
dimensional space, R3.

The R3 schema is coordinated with the schemata for one-variable function and set
through actions of assigning one and only one specific height to each point in a given subset
of R2, given in a particular representation register. These actions are interiorized into the
process of assigning a height to each point on a subset of R2 to construct a two-variable
function, and are also interiorized in the processes of conversion needed to relate its
different representations. These processes are generalized to consider any possible
function of two variables, as a specific relation between subsets of R2 and R and can
be encapsulated into an object.

Students’ conceptions can be described in terms of the type of constructions they
consistently use when working in related mathematical tasks, and it has been observed that
these conceptions often appear as a dialectical progression where there can be partial
developments, passages and returns from one conception to the other (Czarnocha, Dubinsky,
Prabhu & Vidakovic, 1999). What the theory states is that the way an individual works with
diverse mathematical tasks related to the concept is different depending on his or her
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conception. The notion of conception is used to differentiate among students’ construc-
tions and identify the mechanisms they need to develop in order construct a deeper
understanding of a concept. When a student’s responses involve mainly actions, it is
said that he or she shows an action conception of the concept. This is intended to stress
that he or she may need more opportunities to interiorize those actions into processes.
Students may show different difficulties, all related to an action conception; the same
can be said of difficulties related to processes. Students in these two groups also
struggle with the encapsulation of different processes. Students show an object concep-
tion of the concept when they demonstrate, through their responses, that they can work
with the concept as a whole, and that they can de-encapsulate the object into the
processes needed in its construction. APOS theory helps researchers identify students’
differences in terms of their conceptions which are related, in turn, with needs in the
evolution of those constructions.

APOS theory is a cognitive theory. As any other theory, it is limited to descriptions and
predictions of constructions given in terms of the elements that constitute the theory. On
some occasions these elements may appear not to give a full account of the phenomenon
under study; it is then possible to further refine the genetic decomposition by introducing
some elements from other complementary theories, taking care on maintaining the coher-
ence of the approach. It is clear that mathematical learning involves many aspects other than
the cognitive one, but approaching this aspect sheds fundamental light on the understanding
of mathematical learning. APOS theory has been used to study different complex concepts
and has proven to give important insights on students learning of mathematics. Also,
and very importantly, it has been tested in the classroom and has proven effective in
promoting students’ learning of different concepts (Dubinsky & McDonald, 2001, has
an annotated bibliography).

3 Method

The first step in a research study using APOS theory involves probing the genetic decom-
position with students who have taken a course on the concept under study, in this case,
multivariable functions. For this study thirteen students were chosen from two different
groups of undergraduate students: one group at a private university in Mexico and another at
a public university in Puerto Rico. They all had taken a multivariable calculus course the
previous semester. The material covered in their respective courses was equivalent to that of
a standard undergraduate course, as found, for example, in Stewart’s calculus text (Stewart,
2006). Both teachers introduced multivariable functions in a similar way. They introduced
the functions as a generalization of one-variable functions, then introduced graphs of
two-variable functions and explained they are surfaces, introduced planes in R3, and
used fundamental planes to show students how to graph two-variable functions. Stu-
dents were given tasks to practice, where the graphs of quadric surfaces and finding
domain and range of functions played an important role. Teachers also discussed the
fact that substituting a number for a variable in an equation with three variables
corresponds to intersecting a fundamental plane with the graph of the equation, and
explained contours and projections stressing their usefulness in understanding the
behavior of functions.
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An instrument to test students’ understanding of the different components of the proposed
genetic decomposition was designed to conduct semi-structured interviews with students.
Some questions were taken from a previous questionnaire (Trigueros & Martínez-Planell,
2010), and others were designed specifically for this study. The instructors chose what they
judged to be three good, seven average, and three weak students for the interview, and
reviewed both the genetic decomposition and the instrument questions before they were used
with the students.

The response of each question, even if it seems to be simple, is not straightforward. It
requires students to do several of the constructions described in the genetic decomposition.
We now present each of the questions of the interview instrument together with the
constructions, including treatments and conversions (Duval, 2006), that we conjecture
students would need to do in answering the questions:

1) The following table defines a function f whose domain is represented with the variables
x, y and whose range is represented with the variable z: z0 f(x,y). The values for x are in
the first column of the table, the ones corresponding to y are in the first row of the table:

x \ y 2 3 4 5

0 3 1 2 4

1 4 3 2 3

2 6 5 2 2

3 6 7 2 1

a. Find the domain of function f.
b. Represent geometrically a point on the graph of f.
c. Find the range of f.

This problem probes students’ constructions regarding domain, range, and graph of a
function given by a table. In part (a), students need to do actions on the table and a
conversion to identify the domain elements (x,y). In part (b), students need to do another
conversion in order to identify (x,y) with the point (x,y,0) on the xy plane of a three-
dimensional geometric representation, then perform the action of assigning a point in space
to the given point in the plane. In part (c), students need to do a treatment to list the range
elements from the given table.

2) A function f is defined using the formula f x; yð Þ ¼ x2 þ y2 þ 1 where the domain is
restricted to the pairs (x,y) that satisfy: � 1 � x � 1 and � 1 � y � 1 .

a. Represent the domain of f as a subset of the Cartesian plane.
b. Find the range of f.

This problem explores students’ constructions when two-variable functions are
given by a formula. Part (a) requires converting from the given algebraic representa-
tion of the domain to a geometrical representation on the Cartesian plane. It probes if
students’ constructions allow them to work with a function of two variables with a
domain restriction, and if they can coordinate the set, one-variable function, and R3

schemata to identify the set given by the restriction as the domain of the two-variable
function. Part (b) explores interiorization of the action of assigning a value to a point
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in the domain into a process for a function given by a formula and the coordination
of this action with the set schema.

3) The following is the complete graph of a function f:

0

1

2

x
0

1

2

y
0
5

10
15
20
25
30

z

0

1

2

x

a. Find the domain of f.
b. Evaluate f(0,0), f(2,0), f(2,2), f(0,2).
c. Find the range of f.

Here we consider student constructions when the function is given by a graph. Part (a)
requires a conversion from the graphical to the symbolic register. Part (b) probes if students
can do the action of assigning a height to a given point in R2. It requires a conversion to
locate the given ordered pair as a domain element in the given graph and a treatment to
graphically evaluate the function. Part (c) requires the interiorization of the actions of
assigning heights to points in R2 into a process when the given function is represented
graphically.

4) In each of the following cases state if the given rule defines a function. Justify your
answer. If it is a function, what can you say about its domain and range?

a. Input: weight in kilograms and height in centimeters
Output: name of person with that weight and height

b. In the set of RUM students, as of today;
Input: student number and complete name of the student
Output: student’s weight in kilograms

5) Define as carefully as you can the notion of a function of two variables.

The above two questions probe student formal understanding of the function
concept. One, (Question 4) examines students’ understanding of uniqueness of func-
tional image and the possible arbitrary nature of a functional relation. By not referring
to a function of two variables it gives information of the students’ general notion of
function. The other (Question 5) directly examines students’ definition of a function
of two variables.
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6) State which figure corresponds to which formula. Completely justify your answer.

( , ) sin( )g x y x y ( , ) sin( )h x y xy= + =
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This question probes students’ use of sections in identifying graphs. Its answer requires
coordination of the schema for function of one variable, and the schemas for R2 and R3.
Consider, for example, the mental transformations that might take place when identifying the
graph of one of these functions, say g(x,y)0sin(x)+y. There are different strategies a student
may use in this problem. One possible way of doing the problem is to start with the action of
substituting a number, for example 0, for x to obtain z0y. Do the action or process of
conversion from the algebraic to the graphical register to obtain the corresponding graph in
R2. Coordinate the R2 and R3 schemas to position the graph in the corresponding
fundamental plane in R3. Do the treatment of comparing the resulting curve with the
graphical options given in the problem.

All interviews lasted 45–60 min, were audio-recorded, transcribed, and all students’ work
on paper was kept as part of the data. All the data were independently analyzed by two
researchers, and the conclusions negotiated.

4 Results

Analysis of the data is divided in two parts. First, we use questions 1, 2, 3, and 6 to describe
differences in responses given by students who showed different conceptions of two-variable
function. We grouped their responses in order to describe typical arguments given by
students who demonstrated, throughout the interview, what we considered to be action,
process, or object conceptions. Then, we analyzed differences in students’ general concep-
tion of function, as gathered from their response to questions 4 and 5 of the interview, to find
out possible relationships between action, process, or object conceptions that they showed
for the two-variable case and their general notion of function. Student schema development
is not analyzed in this paper.

4.1 Action, process, and object conceptions of function of two variables

4.1.1 Students showing an action conception of function of two variables:

In APOS, an action is a transformation of a mathematical object which is perceived as
external; it may be a manipulation of objects or using memorized facts. Four students
showed an action conception of function of two variables. They demonstrated that they
had not constructed a schema for R3 because they had not coordinated the schemata for R2,
for R and for an intuitive idea of space. They all were able to carry out actions on points in
R2 as objects, including treatments and conversions, but had difficulties generalizing them to
sets of points in the plane. They thus had difficulties considering sets of points, or regions of
the plane as domains of functions of two variables, describing the range of these functions;
they also had difficulties with the processes involved in treatments and conversions among
different representations (Duval, 2006). These students demonstrated difficulties associated
with different actions (Table 1), as well as a tendency to use memorized facts in their responses.

For example, when working with the domain of the function in question 1, Isaac stated:

I: 4 of x and 4 of y, are in the domain.

Int.: what would be an example of an element of the domain?

I: if the domain is defined with x comma y, then 1…

Int.: the number 1?…the domain consists of numbers?

I: yes.
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Throughout the interview Isaac generalized his notion of domain of a one-variable
function, to construct a notion of the domain of a function of two variables consisting of
two sets of real numbers, numbers for the x and y coordinates as separate sets.

Patricia, showed similar constructions. She directly imported from one-variable function
an action conception of “domain” and “range”. Referring to question 1:

P: part c…, so 1, 2, 3, 4, it goes from 0 to 3, the domain always came from the x

Int.: …can you give me an example of an element of the domain?

P: number 1

Int.: the y doesn’t play any role?

P: …no, because y is in the range, it is the image.

All four students demonstrated an action conception in the sense that they seem to be
constrained to the memorized application of a series of facts to functions which are
represented analytically. Rodrigo, for example, when discussing the range of f ðx; yÞ ¼
x2 þ y2 þ 1 with domain restricted, as in problem 2, responded:

R: …an element in the range of f?, would be…1 (writing f(0,0)01).

Int.: could you tell me which are going to be all the elements of the range?

R:…they’d be the results of the equation but with the values that satisfy the condition
of the domain.

Even after further insistence by the interviewer, Rodrigo could not give a specific interval
for the range. He seemed to be unable to imagine the result of taking all pairs (x,y) that
satisfy the domain restriction and plugging them into x2 þ y2 þ 1 , which is evidence of not
having interiorized the action of function evaluation into a process. Rodrigo also exemplified
difficulties of how students who showed an action conception of two-variable function
worked with problems asking to obtain domain and range information from a graph. Even
though he was able to represent points in three-dimensional space by doing a conversion

Table 1 Students’ difficulties and their relation to students’ conception of function

Observed difficulty Number of
students
according to
conception

Action Process

Incomplete Cartesian space R3 construction. 4

Difficulty with the action of assigning a number to a point in R2. 1

Recognizing domain set of points in the plane. 4

Domain as x axis and range as y axis. 2

Difficulties with restricted domains. 4 4

Lack of coordination between the process for intersecting the graph of the function with the
fundamental plane z00, and the process of projecting the graph onto the xy plane.

4 3

Difficulties in describing and finding the range of functions. 4 2

Difficulties with conversions among different representations. 4 2

Difficulty to use sections in graphical analysis of functions. 4 5
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from a tabular representation to a physical representation of a function, he could not carry
out conversions from a graphical representation to an algebraic one. This difficulty with
conversion between registers can be explained from the point of view of APOS theory,
which asserts that students would need a process conception in order to be able to reverse a
process or to coordinate a process with other processes. While working in problem 3:

Int.: Can you identify a point on the graph of f?

R: it would be 1,0,5

Int.: …Can you obtain an element of the domain given that this point is on the graph?

R: …I don’t know.

Indeed, he required an equation to be able to respond when asked to evaluate f(2,0):

R: well, first they’d have to give me the equation, isn’t it? To be able to evaluate.

Int.: Can’t you get it from the graph?

R: Yes, one can, they’d be…0, 5…I’m trying to get the equation of the plane but…gee
whiz…I couldn’t find it without the equation of the graph.

These results demonstrate that the schema for R3 constructed by all the students who
showed an action conception of two-variable function consists of isolated actions which are
also constrained to specific representation registers and to very simple tasks. The use of this
schema constrains them to repeat memorized facts or to perform some simple algorithms
relaying only on the analytic representation of two-variable functions.

4.1.2 Students showing a process conception of function of two variables:

A process in APOS theory is the internal transformation of an action. Students with a process
conception are able to describe or reflect upon a series of function evaluations without
actually performing them. Five students were considered as using a process conception of
two-variable function throughout the interview. Their work showed they had interiorized the
actions described in the genetic decomposition. Again, there were differences among these
students depending on the coordination of processes they seemed to have constructed
(Table 1).

For example, María showed confusion between having real numbers or pair of numbers
in the domain of a function, but she was able to demonstrate she had interiorized the actions
of finding elements in the domain into the process of finding all the elements in the domain.
In question 1 she reconsidered:

M: An element in the domain is (0,2).

Int.: And, in total, how many will there be?

M: 4…a list? ok (0,2), (0,3),…ahh no,…there’s more…(1,2), (1,3)…because x and y
are the domain…

Int.: Do you have an idea of how many will there be?

M: …do I count them as pairs or separate?…they are pairs…16.

She also showed that she had constructed the processes involved in conversions (Duval,
2006), and in the consideration of limited domains for functions as that required in problem 3:

M:…then the domain…goes from…x from 0 to 2 and y from 0 a 2…Find the range of
f…it is of z, from 0 to 30.
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Students who showed a process conception of function of two variables were able to do,
in general, conversions between different representations, but they struggled with some
coordination of processes which seem to be important in the construction of an object
conception. For example, 4 of the 5 students considered to have a process conception
showed they could not coordinate the process of considering a given set for the domain of
a function with that of finding its range when the domain was restricted and functions were
defined algebraically. Particularly, their difficulties involved conversions of restrictions
given in an analytic representation register to the geometric one, or coordination of the
schemata for set, function, and R3. Most of these difficulties could be traced back to an
underdeveloped R3 schema. However, in spite of the difficulties encountered, all these
students attempted strategies to solve the problems. One of the observed strategies, used
by 2 of the 5 students, was trying to obtain the domain of the function by drawing its graph
(a conversion) and projecting onto the xy plane (a treatment), without taking the restriction
into account, as shown in Gracielle’s explanation when drawing the domain of the function
in problem 2:

G: …x goes from −1 to 1, y goes from −1 to 1, a circle.

Int.: why is it a circle?

G: Because the graph is a paraboloid…

Int.: is the point (1,1) in the domain of the function?

G: Yes, it satisfies that they are less than or equal to1 and less than or equal to 1 in both
cases.

Int.: then, is it in the domain?

G: …yes, because a paraboloid would go up one, one up, that is, that it would be in
(1,1) and the bowl would open like this…from here to here and this would be thus in
(1,1) [pointing to her drawing].

Gracielle knows the point (1,1) satisfies the conditions defining the domain. She is able to
convert the function from the analytical to the graphical representation, but still needs to
decide this issue by making reference to the graph. She shows some coordination of
processes for function of one variable, where the strategy of projecting a graph onto an axis
to find a domain (a reversal process) is likely to have been used in other courses. However,
she does not seem to be able to coordinate these processes with the process of considering
the elements in the set that defines the restriction, as a separate entity, the defined domain of
the function. Nor is she able to coordinate this process with that involved in finding the range
of the function.

As concluded by Trigueros and Martínez-Planell (2010), most students only achieve an
intra-R3, or at most inter-R3, stage of development1 for the schema of subsets of R3, and this
makes the graphical analysis of functions of two variables very difficult. This is evident in
students who, not recognizing the domain restriction, tried to obtain the domain by attempt-
ing to graph the section f ðx; yÞ ¼ 0 (a conversion). These students did not show coordina-
tion between the process for intersecting the graph of the function with the fundamental
plane z00 (a treatment), and the process of projecting the graph onto the xy plane (a
treatment), as can be seen in Paola’s strategy for problem 2:

1 In APOS theory, the evolution of a schema may be described by the intra, inter, trans level of the “triad” of
Piaget and García (1983). These stages are defined by the relations, groupings, interactions and structures
utilized by the learner at particular points in time.
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Int.: … you drew a circle of radius 1, why did you draw it?

Pa: …I don’t know…so thinking that…this is the formula…and because if z is 0 then
it is a circle of radius1.

Int.: …but if you make z equal to 0…

Pa: ah, then no…

Then the interviewer drew her attention to the restriction:

Int.: …what are they telling you with that?

Pa: that that is the domain…well, this region here,…a square.

Then, when asked about the range of the function she said:

Pa: …I’m not sure what it means that it is restricted to the pairs…in terms of the
range…

To define the domain of a function through a restriction requires further coordination with
the schema for sets. A multivariable calculus student might have a notion of function that
allows each input to be assigned a unique output, but she might not be able to coordinate it
with the set schema to recognize the given restriction as defining a domain object which is
independent of the function formula. When guided, Paola was able to draw the unit square
and even said that it was the domain; however she could not coordinate the domain with her
notion of range of a two-variable function.

“The mathematical abstraction is drawn not from the object which is acted upon, but from
the action itself” Piaget said (as cited by Sfard, 1991, p.17). Hence, the difficulty exhibited
by students in dealing with domain restrictions and ranges is a reminder that they need
further experience applying the action of restricting domains and that of finding ranges, and
considering different types of functions before the act of reflective abstraction can result in
an encapsulated notion of function which is in accordance with modern practice. As stated
by Kleiner (1989, p. 283), “Why define an abstract notion of function unless one had many
examples from which to abstract?”

Similarly, when some students were asked to represent the domain of the function as a
subset of the Cartesian plane (a conversion), they considered bringing together the plane z00
and the formula for the function. They coordinate these treatment processes through the
action of computing a section of the graph of the function. They didn’t seem to recognize
that substituting a number for a variable in z ¼ f ðx; yÞ corresponds to intersecting a
fundamental plane with the graph of the function.

Most of these students tried to identify the graph of a function using other properties and
characteristics of functions, such as examining the possible range of the functions through
evaluation at some points, rather than using sections. They needed some help to be able to
use sections to identify graphs, and, even when they succeeded to identify one function
using sections when guided, they quickly reverted to other strategies for other functions.
Paola’s work exemplifies this difficulty:

Int.: (for the function gðx; yÞ ¼ sinðxÞ þ y …if I tell you to give a value to x, say x03,
how can you use that?

Pa: in no way because I don’t know what is sin(3).

Int.: but…it’s a number.

Pa: …this graph [points to the correct graph].

Int.: …and how did you decide that is the correct one?
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Pa: because if the sine of x were 0, z is equal to y and then one is left with, one gets a
line [pointing to a section of the graph].

We see that when assisted, she could coordinate the process of conversion needed to draw
the graph of a function of one variable with the treatment process of positioning the resulting
curve in its appropriate fundamental plane in R3, a coordination which is beyond the scope
of students with an action conception. However, when asked to identify the graph of function h,
she was unable to use a similar strategy on her own. Hence we conclude that she showed
difficulties coordinating the one-variable function schema with that for subsets of R3.

These results show that processes of conversion involved in the use of sections for the
graphical analysis of functions include recognition that substituting a number for a variable in
z ¼ f ðx; yÞ corresponds to intersecting a fundamental plane with the graph of the function. It
also includes recognizing transformations on one-variable function or families of plane
curves that may be obtained by substituting values for one variable in z ¼ f ðx; yÞ .

As we can see, coordination of a schema for R3 as described in the genetic decomposi-
tion, seems to play an important role in enabling students to encapsulate the process
conception of two-variable function. All students who showed a process conception of this
concept found it difficult to use sections when doing graphical analysis of functions.

4.1.3 Students showing an object conception of two-variable function

In APOS theory an object is constructed when the student becomes aware of a process as a
totality and realizes that transformations can act on it. Only four students demonstrated an
object conception of two-variable function. Daniel is an example. He was able to consider
functions with restricted domains independently of the representation register (Duval, 2006)
in which they were given:

D: Problem 2…(function given by formula) we have here that x goes from −1 to 1 and
y…here [he draws the domain correctly].

Int.: Does the domain include the points inside the square?

D: Yes…and the range goes from 1 to 3…

D: Number 3…(function given graphically) the domain here is x, it goes from 0 to 2,
and y from 0 to 2 as well.

Daniel correctly identified graphs corresponding to different analytic representation of
functions by performing treatment and conversion actions or processes of intersection of
graphs with selected fundamental planes, as in problem 6:

Int.: You can start with gðx; yÞ ¼ sinðxÞ þ y .

D: ok, it is this one.

Int.: you are pointing to the graph in the third row and second column, why that one?

D: let’s see,…because if we take the xz plane it looks like the graph of sine…but this
one also…

Int.: but why you did not choose the graph in the second row and first column?

D: Oh! Yes…these graphs are confusing, there are several with that form, several that
look like a sine graph, then what you have are transformations…they are transforma-
tions, for example, this one is the graph of sine in the xz plane, then it…, when it…
grows it is supposed to get up…to get up in z…
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Int.: and if you use one value for x, say, x00, does that tell you something?
D: it tells me that z0y, so it would be on the zy plane and it would be a line z0y, and
would be this one [choosing the correct one].

Daniel seemed to look at the function given by sinðxÞ þ y and concentrate on the term
sin(x). His first choice, like several of the possible options, shows a sine-like oscillation on
the plane y00. Daniel went on to describe the process he used to find the section
corresponding to x00. Given a surface, he starts looking for x00 as a point on the line
segment labeled from x0−3 to x03. He then moves under the surface in the y direction (actually
on the plane z0−3) and tries to figure out the changes in z values. This procedure helps him
identify the graph of the function. Daniel repeated this strategy when presented with other
functions such as hðx; yÞ ¼ sinðxyÞ . It can be observed that Daniel uses fundamental planes in a
dynamic way, using treatments and conversions (Duval, 2006) to describe a family of curves
resulting from those intersections and, at the same time, to reconstruct the surface. He clearly
demonstrates he has constructed a well-structured R3 schema.

In general, all students who demonstrated an object conception of two-variable function
showed a well-structured R3 schema. They were able to carry out treatments and conversions
on sets or functions presented in different representation registers; in particular they could
consider functions and fundamental planes as objects and were able to visualize the result of
the process of intersecting them without having to do the actual intersection. They were also
able to consider functions with different domains and how restrictions in the domain of the
function are reflected in its graph and range.

4.2 General notion of a function: uniqueness and arbitrary nature of functional relation

Consistent with Bernoulli’s 1718 definition of function, eight of the thirteen interviewed
students have a conception of function as a relationship between variables; they seem to
need a formula to consider it as such. For example, Patricia explains:

P: (problem 4)…if one gives the student number…and supposing that the name is
here…student number and name should give you the weight, the weight in kilograms
of the student,… it is not very logical…

Int.: …why do you find it illogical?

P: …because, no! [Laughs] how are the name of a student and the student number
going to give you the weight, the weight…no!, it is not valid!

Int.: what would you need?

P: …a formula?…yes.

These students show a conception of function related to algebraic processes with numb-
ers, or function as a formula. In history, mathematicians started from a notion of function
which grew from algebraic processes with numbers, and had to work for a long time with the
idea of a function as a formula before developing a notion of function which does not depend
on the idea of variable. Likewise, an individual may start from an idea of function as a
process of algebraic evaluation, before the need to make transformations on this idea
requires encapsulating it into an object, thus emancipating his/her notion of function from
the idea of numerical evaluation and algebraic manipulation. Problems are what provide the
stimulus for reflective abstraction, as was seen historically with the vibrating string problem,
and Fourier’s work on heat conduction. Most likely these students have not had the need to
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consider functions other than those given by formulas. They even consider functions given
by a table or graph as coming from a formula.

Student’s difficulties with domain restrictions (eight of thirteen students) are also sug-
gested by history. Domain restrictions were explicitly considered around 1829 when Dirichlet
defined function. Student difficulties persist even though they have met instances where
domain restrictions have been used, as when defining inverse trigonometric functions, or
considering extrema of two-variable functions in closed and bounded subsets of R2. It
seems that problem situations met by interviewed students did not require most of them
to change their working definition.

We found that three of thirteen students did not recognize uniqueness of function image
as a requirement for a functional relation. For example, Gaddis, who was considered as
having an object conception of two-variable function, responded in problem 4a to a question
asking if it was a function:

Gd: …yes, I think so.

Int.: So if I give you the weight, say 60 kg and height 2 m, what could be the output?

Gd: It would be the name of a person with that data.

Int.: and, if there were more than one person with that data?

Gd: …the output would be the name of the person.

Gaddis seems undisturbed by the lack of uniqueness in the value being assigned by the
correspondence. This fact is further corroborated when the interviewer presented the equa-
tion x2 þ y2 ¼ 1 to him, and asked again if it was a function of x. He responded:

Gd: …it could be, if we solve for y.

Int.: …I solve for y and get �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

, then y, is it a function of x?…

Gd: I think it is.

When discussing part b of the same problem:

Gd: …here I am doubting, one can put the name of a student as if it were a number,
since with a name the function does not tell you the weight in kilograms of a student

Int.: are you saying that one would have to put the name as if it were a number?

Gd: exactly.

Int.: that is, that it couldn’t be a function if the inputs are not numbers?

Gd: well, in order to be able to evaluate a function there must always be numbers.

Indeed, he goes on to define function in terms of algebraic expressions and variable
dependence.

What is interesting about Gaddis is that he did everything else in the interview correctly
and without hesitation, even the use of sections in graphical analysis. As mathematicians in
the 18th and 19th centuries, who were able to perform a wide variety of transformations on
functions manipulating a mathematical “object” which, from the modern perspective, was an
incomplete construction, Gaddis constructed an object which can be flexibly used in the
activities of an undergraduate calculus course, but which does not reflect all the construc-
tions required in a genetic decomposition of the modern function concept.

Students completing a multivariable course have studied real valued functions of one and
two variables. They also have studied other types of functions, such as curves in space, that
is, functions from R or an interval in R to R3. It could be expected that through these
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experiences they would be able to develop a schema which includes relationships among
different processes or objects that can be considered as functions.

However, it seems that in spite of all this, few students can be considered to be on their
way to constructing a modern notion of function.

5 Discussion

According to results of this study, the refined genetic decomposition proposed can be a good
model of students’ constructions. Comparison among students who demonstrate differences
in their understanding of the notion of two-variable function enables us to recognize which
of those constructions need to be taken into account to help students overcome the obstacles
encountered even by those who successfully finished a multivariable calculus course, and
which are needed for developing a deeper understanding of this concept.

The data also show that the coordination of one-variable function, set, and R3 schemata
may be at the heart of students’ potential to develop a deeper understanding of the notions of
domain and range of two-variable function. Evidence of this is found in the tendency of
some students to generalize their knowledge of functions of one variable to find domains of
two-variable functions, as when they identify subsets of R as domain of functions of two
variables. Evidence is also found in some students’ need to draw the graph in order to find its
domain as the projection in the xy plane, and their attempt to find domains by using the
section f ðx; yÞ ¼ 0 . We hypothesize that the encapsulation of functions of two variables as
objects is needed in order to recognize the set describing a domain restriction as the domain
of a two-variable function.

From our point of view, a well developed schema of subsets of R3 can also explain the
success of students in the graphical analysis of functions of two variables, and in particular
in the use of sections to draw and identify graphs.

Analysis of the data shows that students need more opportunities to reflect on actions
related to the construction of the domain, range and graphs of a rich diversity of functions
and to the transformations among representation registers to foster the development of a
process construction of two-variable function. According to our results, the construction of
an object conception of two-variable function depends on the coordination of specific
processes such as those that allow to predict the effect that a restriction on the definition
of the domain of a function has on its range and on its graph, and those involved when
intersecting fundamental planes and surfaces to find projections or sections needed in the
treatments and conversions involved in the graphical analysis of these functions.

Markovitz, Eylon, and Bruckheimer (1986) found that junior high school students
exhibited a general neglect of domain and range, and had difficulty with domain restrictions;
we found the same difficulties with students who have taken a multivariable calculus course,
even though they have had a broader exposition to different types of functions. Like Even
(1993) in the case of functions of one variable, we found that students, including those who
were quite successful in their multivariable calculus course, had difficulty with uniqueness
of functional values and arbitrariness of a functional relation. We also put forward evidence
that many students still exhibit difficulties with the concepts of domain and range as was
found in Tall and Bakar (1992), and Schwingendorf, Hawks and Beineke (1992). Our study,
however, goes beyond the observation of these difficulties; our results suggest specific
actions and processes that would need to be part of instructional treatments that may help
students overcome them.
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Our results indicate in particular the need to develop tools to help students build a schema
for subsets of R3, specifically the potential to use fundamental planes in obtaining sections,
contours and projections in different representation registers. Dedicating explicit attention to
having students achieve flexibility in treatments and conversions between different repre-
sentational registers throughout the multivariable calculus course seems to be needed. Also,
more work with functions defined on restricted domains and comparison of different kinds
of functions, parameterized curves for example, could help students build a general function
schema that it is closer to the modern formal definition of this concept.

It is interesting to note that students’ conceptions of two-variable function mirror those
encountered in the evolution of the function concept: dependence on symbolic representa-
tions, expectation of a single analytic expression in the definition of a function, introduction
of domain restrictions, introduction of functions defined on sets other than numbers, and a
clear notion of domain and range as separate entities.

The use of APOS theory and semiotic representation provided us with two different but
coherent lenses to analyze students’ work. The description of specific actions or processes
involved in treatments and conversions among representation registers put forward aspects
of transformations which are important in the construction of knowledge. Semiotic repre-
sentation theory provided elements to clearly identify the necessity of using or describing
transformations in each particular register and among registers to find evidence of the
cognitive importance of those processes in the construction of an object conception of
two-variable function.

6 Conclusions

This study gives evidence of the complexities regarding the generalization of the concepts
involved in the transition between understanding function of one and of two variables. One
important contribution of this research is the presentation of a refined genetic decomposition
which accurately reflects the constructions needed to learn the concept of two-variable
function.

In the previous paper (Trigueros and Martínez-Planell, 2010) we described students
conceptions and difficulties regarding the graph of two-variable functions. In this paper
we complement these results with new findings related to conceptions about these functions
in general, which have not been reported previously. When looking at differences in
students’ conceptions of two-variable functions, we found specific constructions which
can be associated with the understanding of the notions of their domain and range. In
particular our results show that even though students had already taken a course in multi-
variable calculus, there were still some students who showed difficulties considering domains
of two variable functions as sets of points and who needed a formula to be able to work with
these functions. According to our results, the development of a process conception requires
specifically the interiorization of actions related to finding domains of functions which are
restricted to specific regions of the xy plane presented in different representation registers. We
also found that in order to encapsulate this notion, students need more opportunities to work
with examples where they can carry out treatment processes in each representation register to be
able to distinguish how restrictions in the domain of the function are reflected in their range, and
examples where conversion processes can be encapsulated in a function object which relates
their tabular, algebraic and graphic representations.

Regarding the development of a general concept of function we found that most of these
students showed a concept of function strongly related with a formula and with non
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restricted domains. They had not constructed a modern notion of function. These results
had been found by other researchers with students who had only been exposed to one
variable functions. This study shows that exposure to other types of functions does not
guarantee that students will develop a modern conception of function and that explicit
actions are needed to help them reflect on the specific particularities of the accepted
definition of function.

As found in this study, the specific constructions that seem to be necessary for a thorough
understanding of two-variable function involve the coordination of the schemata of R3,
function of one variable, and sets. This is shown to play an important role in students’
potential to: (1) identify domain and range of functions given in different representational
registers; (2) carry out the necessary transformations to be able to relate information across
different representational registers; (3) use sections to analyze graphs of functions, and (4)
develop a modern notion of function as a set of ordered pairs.

While our previous study (Trigueros and Martínez-Planell, 2010) was focused on stu-
dents’ geometrical understanding, the present study contributes new information on stu-
dents’ formal understanding of functions of two variables. Existing mathematics education
literature deals mainly with functions of one variable; we know of no other study exploring
students’ notion of domain, range, and uniqueness of functional values as it pertains to
functions of two variables and, as we have seen, the particularities of this type of function
require their being studied on their own. Our study adds valuable new knowledge in this
regard. Finally, we can assert that results of this study, together with those of the
previous one, show a more complete and detailed picture of students’ understanding of
two-variable function which can encourage teachers to design activities that include the
exploration of a diversity of examples of two-variable functions in a variety of repre-
sentational registers, as well as explicit comparison with one-variable functions, in order
to help students construct a deeper notion of this type of function and a more coherent
schema for function in general.
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