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ABSTRACT
I describe a new time-domain algorithm for detecting localized structures (bursts), revealing pulse

shapes, and generally characterizing intensity variations. The input is raw counting data, in any of three
forms : time-tagged photon events (TTE), binned counts, or time-to-spill (TTS) data. The output is the
most probable segmentation of the observation into time intervals during which the photon arrival rate
is perceptibly constant, i.e., has no statistically signiÐcant variations. The idea is not that the source is
deemed to have this discontinuous, piecewise constant form, rather that such an approximate and
generic model is often useful. Since the analysis is based on Bayesian statistics, I call the resulting struc-
tures Bayesian blocks. Unlike most, this method does not stipulate time binsÈinstead the data deter-
mine a piecewise constant representation. Therefore the analysis procedure itself does not impose a lower
limit to the timescale on which variability can be detected. Locations, amplitudes, and rise and decay
times of pulses within a time series can be estimated independent of any pulse-shape modelÈbut only if
they do not overlap too much, as deconvolution is not incorporated. The Bayesian blocks method is
demonstrated by analyzing pulse structure in BATSE c-ray data.2
Subject headings : gamma rays : bursts È methods : numerical È methods : data analysis È

methods : statistical

1. THE PROBLEM : STRUCTURE IN PHOTON

COUNTING DATA

Tracking a variable objectÏs brightness changes, based on
photon counting data, is a fundamental problem in
astronomy. For example, the importance of activity of
galactic and extragalactic objects on timescales at and
below the millisecond range led NASA to design its X-ray
and c-ray observatories to detect individual photons with
microsecond timing accuracy.

1.1. Difficulties
Existing methods do not fully and correctly extract the

information in photon counts. The scientiÐcally useful
information, of course, is buried in the Ñuctuations inherent
in the occurrence of discrete, independent events, i.e.,
photon detections. The shortest timescales are especially
vulnerable to information losses. There are at least three
reasons for this.

First are the binning fallacies. It is widely and incorrectly
held that (1) such data must be in order to bebinned3
analyzed at all and (2) the bins must be large enough so that
there are enough photons in each to provide a good sta-
tistical sample. The almost universal practice of binning
event data throws away a considerable amount of informa-
tion and introduces dependency of the results on the sizes
and locations of the bins.

A second reason is that many analysts routinely use
global methods, in essence averaging over the observation

1 For information concerning US Government intellectual property
issues connected with the technology contained in this paper, contact
Jeanne Stevens, Commercial Technology Office, NASA Ames Research
Center, Mail Stop, 202A-3, Mo†ett Field, CA 94035-1000, (650) 604-0065.

2 The MatLab scripts and sample data can be found on the World Wide
Web at http ://george.arc.nasa.gov/Dscargle/papers.html.

3 That is, one must divide the observation into equally spaced intervals
and count photons within these bins.

interval or subsegments of it that are sufficiently long to
provide a good statistical sample. Power spectra, autocor-
relation functions, and histograms are examples. Although
they are good for some problems, global methods dilute
short bursts or other local signals.

Incorrect error models are the third source of informa-
tion loss. It is usually assumed that observational errors are
additive and normally distributed (as in s2 methods).
Counting Ñuctuations are neither additive nor normal.
Indeed, the nearly ideal Poisson nature of photon detection
provides the rare advantage of knowing statistical proper-
ties of the noise with great conÐdence, completeness, and
precision. (Typically the major way in which the data
depart from this ideal is through lack of independence. In
particular, detectors have a dead timeÈarrival of a photon
momentarily inhibits detection of subsequent photons.)

1.2. Approach
A single, simple idea sparked this development. The

probabilities of the elementary eventsÈphoton detection or
nondetectionÈhave such a simple but exact speciÐcation

that it ought to be easy to derive an explicit(eq. [15])
statistical treatment of the total problem. This led to a new
algorithm, based on Bayesian principles, as described in ° 2
and demonstrated in It exploits the full time resolution° 3.
of the data, makes explicit use of the correct statistical dis-
tribution, avoids arbitrary binning, and operates in the time
domainÈfocusing on local structures. It converts raw
photon counts into the most probable piecewise constant
representation of brightness as a function of time. This
decomposition can provide simple estimates of the width,
location, and amplitude of pulsesÈassuming their overlap
is neglectableÈand of the background level, without invok-
ing parametric or other explicit pulse-shape models. An
excellent overview of Bayesian methods, with an astronomi-
cal Ñavor, is Readers unfamiliar with Bayes-Loredo (1992).
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ian time series analysis might consult or theSivia (1996),
overview, with speciÐc discussion of the change-point
problem, in Ruanaidh & FitzgeraldO‹ (1996).

Before proceeding, I provide a few comments on basic
approach. As is common in astronomy, the following con-
ceptual scheme underlies the data analysis. Some physical
process in the astronomical object causes brightness varia-
tions. These ÑuctuationsÈmodiÐed by radiative transfer,
viewing geometry, intervening matter, etc., are modeled as
an idealized signal, which in turn is compared with one or
more physical models of the original dynamical process.
Connection with the observed photon stream is made by
interpreting the signal as determining a time-variable
photon detection probability. Mathematical properties of
this function (e.g., smoothness or di†erentiability), corre-
spond to physical properties of the sourceÈsome of which
are known but others of which are unknown.

In describing this kind of modeling, terms like pulse,
burst, and shot have all been used, loosely, to mean more or
less the same thingÈnamely, a process that is in some sense
local, as opposed to global, in time. I know of no generally
accepted, rigorous deÐnition of any of these terms, but the
following notions may be useful. Consider a stochastic
process with a continuous power spectrum of a simple func-
tional form and extending over a broad range of timescales.
Call this the global process. Self-similar or 1/f processes are
examples (cf. et al. & FlandrinScargle 1993 ; Abry 1996 ;

& Scargle A deterministic component with aYoung 1996).
line spectrum, such as a periodic signal, may also be present
without materially changing the picture. Bursts, then, are
nonperiodic signals, localized in time, that are not part of
the global process. That is, the spectrum of the total signal is
altered by the presence of the bursts and is not of the simple
form postulated for the global signal. Bursts can occur ran-
domly, periodically, or in any other fashion. In this picture,
whether or not a statistical ensemble of signal features is
deemed to be bursts depends on the eventsÏ shapes, distribu-
tion, and relation to the global signal.

This distinction between global and local signals cannot
always be made cleanly. For example, intermittency in a
chaotic nonlinear dynamical system (e.g., isSchuster 1988)
in a sense localized, but is described by the same laws of
motion that govern the chaotic behavior of the system. Fur-
thermore it is obvious that, in the presence of noise, bursts
can be detected only statistically.

The approach adopted here, using what statisticians call
change-point determination, addresses part of this deÐni-
tional problem head-on, as it is based directly on the sta-
tistical signiÐcance of putative local structure. On the other
hand, distributions of the times, amplitudes, or shapes of
pulses are not considered here ; these would be concerns of a
follow-up study, after Bayesian block analysis of the full
time series.

1.3. Other W ork
It has long been recognized that Bayesian methods are

well suited to Ðnding change points (Smith 1975 ; Worsley
A Bayesian analysis of Poisson data similar in spirit1986).

to the present work is & Akman see alsoRaftery (1986) ;
Appendix C of & Loredo & OgdenGregory (1992). West

use methods similar to those described here to Ðnd(1997)
change points in binned data, to an accuracy better than the
bin size. (Their solutions are simultaneous maximum likeli-
hood in the rates and change-point location ; the rate mar-

ginalization carried out here is probably preferable.)
& Ogden discuss detection of gradual, linearSugiura (1997)

trends, rather than sudden changes.
Localized basis functions, such as wavelets, provide a

partial solution to this problem Goncalves, & Flan-(Abry,
drin And the pro-1995 ; Scargle 1997 ; Brillinger 1977).
cedure described in is somewhat related toKolaczyk (1997)
the present approach ; his segmentations are the standard
dyadic intervals of wavelets, whereas here the intervals
adapt themselves to the data and are therefore not generally
evenly spaced. studied edge location in, andDonoho (1994)
multisegmented analysis of, time series. His methods, seg-
mentation pursuit and minimum entropy segmentation, cir-
cumvent the Ðxed location of conventional wavelet
methods, for a more general statistical model than that used
here. Translation invariant wavelet transforms &(Coifman
Donoho also have potential for accurate location of1995)
change points.

& Flandrin discuss the other side of the coinAbry (1996)
from the topic of this paper, namely, long-range dependence
in point processes (the statistical term for event data, such
as photon counting), using wavelet methods. Recent work
has applied wavelets and wavelet denoising to the change-
point problem, see and Ogden & ParzenOgden (1996)
(1996a, 1996b).

I have recently become aware of the following work,
closely related to this problem: Fitzgerald, & HladkyStark,

Gustafsson(1997), (1998a, 1998b).

2. THE ANALYSIS METHOD : BAYESIAN BLOCKS

This section details a new algorithm implementing a
Bayesian approach to the problem of detecting variability
in photon counting data. A sketch of standard Bayesian
model Ðtting will set notation and the context. We have
some data D, and a model M containing a parameter h. If
there are several parameters, simply interpret h as a vector.
We want to estimate how probable it is that the model is
correct, and we want to learn something about likely values
of the parameterÈall based on the data and any prior infor-
mation that we might have.

The basic relation quantifying parameter inference is
BayesÏs theorem, one form of which is

P(h oD, M)P(D oM)\ P(D o h, M)P(h oM) . (1)

In order, the conventional names of the factors are the pos-
terior probability density of h, given the data, and the prior
predictive probability for the data, on the left side ; and the
likelihood for the parameter, and the prior probability of
the parameter, on the right side. These factors have other
names to connote di†erent emphasis ; e.g., P(D oM) is some-
times called the global or marginal likelihood for the model.
Also, as described by P(D o h, M) is termedJaynes (1997),
the likelihood when emphasizing its dependence on h, but
as the sampling distribution when emphasizing its depen-
dence on D. All of the terms are to be interpreted given the
model ; this is the meaning of M behind the vertical bar. The
two sides of this equation are simply di†erent ways of reck-
oning the probability of the same compound event, i.e., the
model parameter having a speciÐc value and the data being
as observed. Standard practice is to write P(D oM) as a
divisor on the right-hand side, as this is the way BayesÏs
theorem is actually used : P(h oD, M) is the probability dis-
tribution of the parameter and serves the role of quantifying
the modelÏs ““ goodness of Ðt ÏÏ to the data.
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2.1. Comparison of Alternative Models
A key tool is a procedure to decide which of two (or

more) alternative models of a given chunk of data is more
probable. This selection is based on those data plus any
prior information on the relative likelihood of the models.
For example, we might want to choose between the follow-
ing two models of an astronomical light curve, based on
observations over a time interval T :4

constant intensity over T .1. M1 :
possibly di†erent constant intensities in two sub-2. M2 :

intervals, T1] T2\T .

As will become apparent, this example is at the heart of the
method proposed here.

Consider a set of K models, say . . . ,M1, M2, M3, M
K
.

(By we mean the model without speciÐcation of anyM
kparameter values, so the terms model class or structure are

better.) That we are limiting consideration to this set, plus
all other relevant knowledge or assumptions, together com-
prise a background of information, conventionally denoted
I. BayesÏs theorem for model selectionÈas opposed to
parameter estimation as in for the pos-equation (1)Ègives
terior probability of each model, given the data D and the
background information I,

P(M
k
oD, I) \P(D oM

k
, I)P(M

k
o I)

P(D o I)
. (2)

Since I does not change, and is therefore irrelevant in com-
parisons of the kind considered here, we often omit the
symbol ; its presence should be assumed in all equations
derived from BayesÏs theorem, including equation (1).

immediately gives a comparison of how wellEquation (2)
two models represent the data, in terms of the odds ratio

P(M
k
oD)

P(M
j
oD)

\ P(D oM
k
)P(M

k
)

P(D oM
j
)P(M

j
)
. (3)

Note that P(D o I)Èthe probability of observing the data
without regard to the modelÈis irrelevant to comparison of
model classes and accordingly cancels out.

The quantity the probability of the data givenP(D oM
k
),

the model, can be found by integrating over h,equation (1)
making use of the fact that is normalized :P(h

k
oD, M

k
)

P(D oM
k
) \
P

P(D o h
k
, M

k
)P(h

k
oM

k
)dh

k
. (4)

The number and signiÐcance of the parameters may be dif-
ferent from model to modelÈhence the subscript on h

k
.

Thus becomesequation (3)

P(M
k
oD)

P(M
j
oD)

\ / P(D o h
k
, M

k
)P(h

k
oM

k
)dh

k
/ P(D o h

j
, M

j
)P(h

j
oM

j
)dh

j

P(M
k
)

P(M
j
)
. (5)

From this equation it is clear that

J(M
k
, D) 4 P(M

k
)
P

P(D o h
k
, M

k
)P(h

k
oM

k
)dh

k
(6)

is the fundamental quantity to be used in comparing models
(J for joint probability for the model and the data). This
factor includes prior information and is independent of the

4 In what follows we use this symbol for both a time interval and its
length ; this should not cause confusion.

number of, or values of, any model parameters. The model
with the largest J value is the most likely to be correct. The
integral on the right side of equations and(4) (6),

L(M
k
, D)\

P
P(D o h

k
, M

k
)P(h

k
oM

k
)dh

k
(7)

is often called the global likelihood, or sometimes the mar-
ginal likelihood or the evidence for the model. It is the
essence of the problems considered here that we are igno-
rant about the di†erent model structures prior to analyzing
the data. Accordingly the model priors (not to beP(M

k
)

confused with priors for the parameter) could all be taken as
equal and omitted from expressions for the global likeli-
hood. However, for practical reasons it is useful to retain
the prior odds ratio

o \ P(M
k
)

P(M
j
)

(8)

as a scalar parameter of the computations. In the sample
applications described in this quantity is used to° 3
suppress spurious blocks due to the statistical Ñuctuations.

Note that the complexities of the models, e.g., the number
of parameters, are automatically accounted for in this com-
parison. Adding parameters to a model almost always
increases its maximum likelihood (rigorously, never
decreases it). But as is well known, the best model is not the
most complex one. Some modeling techniques introduce a
penalty factor that compensates for the added degrees of
freedom represented by a more complex model. Here, as
usual in Bayesian analysis, this trade-o† between goodness
of Ðt and model complexity is an automatic consequence of
the integration over all model parameters in equation (7).
Sometimes in Bayesian analyses such a penalty factor is
isolated and called the Occam factor. has aJaynes (1997)
nice discussion of this issue ; see also chapter 4 of Sivia
(1996).

2.2. Evidence for a Constant Poisson Rate Model
Now let us use to compute the global likeli-equation (7)

hood that a source will be of constant intensity during a
given observation interval. The Poisson process is the
mathematical model of such a source, with j º 0 denoting
the rate, here in photons per unit time, assumed to be con-
stant over some time interval T . That is, the photon events
are distributed identically, independently of each other, and
with uniform probability over T at rate j per unit time.
Think of drawing a random integer from the Poisson
counting distribution with mean jT and then throwing this
number of darts randomly and uniformly across the inter-
val. It is well known that this process has no memory or
aftere†ect in waiting times : the arrival of a photon does not
a†ect the probability of subsequent photon arrivals. This
property implies that waiting times have an exponential
distribution ° 23). The Poisson model(Billingsley 1986,
therefore has zero dead time.

We actually use the discrete-time version, the Poisson
counting process (PCP). That is, the observation interval is
divided into a number of equal, Ðxed subintervals of length
dt, and kÈthe number of counts in such an intervalÈis
Poisson distributed :

P(k oPCP, ") \"ke~"
k !

, (9)
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with parameter

"4 j dt . (10)

(Note : the count rate is expressed either per unit time, with
j [dimension is s~1], or per interval with "
[dimensionless].) Throughout, we assume that the arrival of
a photon in any interval is independent of that in any other
nonoverlapping interval ; i.e., the joint probability distribu-
tion of the random variables describing photon arrival in
the two disjoint intervals is the product of the individual
distributions. (Do not confuse the photon detection process
with the possibly random process describing the source
intensity as a function of time, which is typically correlated
from one time to the next. See p. 99 for aBrillinger (1978),
discussion of this issue, known as doubly stochastic pro-
cesses.) We make considerable use of the fact that an event
probability in an interval is the product of the probabilities
in its subintervals.

2.2.1. T ime-T agged Event (T T E) Data

The recording mode called event or time-tagged data is
common in X-ray and c-ray astronomy and is capable of
the highest time resolution. In this mode the detection times
of individual photons are recorded. In principle, the raw
data consist of a set of N photon arrival times

DTTE : Mt
n
, n \ 1, 2, 3, . . . , NN (11)

over the range of times during which the instrument was
active. See for a discussion of this kind ofBrillinger (1978)
process, consisting of discrete eventsÈcalled point pro-
cesses in the statistics literature.

In practice, of course, these times are recorded with small
but Ðnite resolutionÈthe photons are assigned to narrow
bins, as described in connection with However,equation (9).
in most data systems there are two reasons for not thinking
of these as ordinary bins : First, the time interval is very
short (for BATSE dt \ 2 ks) compared to timescales of
astrophysical interest. Second, the actual number of
photons in the interval is not recordedÈjust whether one or
more photons have These considerations justifyarrived.5
our thinking of this analysis as bin free and calling the
intervals ““ ticks,ÏÏ by analogy to a digital clock, instead of
bins.

We introduce an integer time index m through

t
m

\ m dt , (12)

where for an observation of duration T \ Mdt, m\ 1, 2, 3,
. . . , M. The data consist of a set of N indices, one for each
photon :

DTTE :Mm
n
, n \ 1, 2, 3, . . . , NN , (13)

meaning that photon n is detected at time dt.m
nA third way to represent these data, fully equivalent to

the two above, is in terms of the observable deÐned byX
m

DTTE :X
m

\
G0
1

no photons during tick m ,
otherwise .

(14)

5 On the other hand, some systems (including BATSE and RXTE) have
several detectors operating essentially independently and simultaneously,
and photons from di†erent detectors can be recorded with the same time
stamp. I ignore these complications.

The probabilities of these values are

P(X
m

\ 0 o")
P(X

m
\ 1 o")

\ p04 e~jdt\ e~" ,
\ p14 1 [ p0 .

(15)

Strictly speaking, since it is the probability of one orp1,more photons, is not proportional to the Poisson rate
parameter. However, since this parameter is smallÈ
typically B0.01 counts per tick or lessÈwe have

p1 \ 1 [ e~jdtB j dt 4 " . (16)

This approximation is useful at a few points, but the main
analysis does not depend on it. Technically the above con-
ditions deÐne a Ðnite Bernoulli lattice process (Stoyan

since X takes on one of two possible values over a1995),
Ðnite range of discrete times. Here I nevertheless follow
common usage in referring to this as a Poisson process.

By the independence assumption discussed above, the
joint probability of all the events is just the product ofX

mthe probabilities of the individual events. That is to say,
deÐning as the Poisson process over interval T ,M1(", T )
with rate " per tick, we have

P[DTTE oM1(", T )]\ <
m/1

M
P(X

m
o")

\ p1N (1 [ p1)M~N , (17)

since N ticks contain a photon and the remaining M [ N
do not. This probability is maximized at andp1 \N/M,

gives as the most probable rateequation (15)

j \ [ 1
dt

log
A
1 [ N

M
B

, (18)

which in the approximation of reduces toequation (16)

j \ 1
dt

N
M

. (19)

In view of the form of we now switch fromequation (17)
" to as the model parameter, to simplify the analysis.p1Furthermore, this change motivates selection of the follow-
ing prior distribution :

P(p1 oM1) \
G1
0

for 0¹ p1¹ 1 ,
otherwise .

(20)

This normalized prior assigns prob-[/ P(p1 oM1)dp1\ 1]
ability uniformly to all physically realizable values. It is
therefore less arbitrary than some priors adopted in Bayes-
ian statistics, and we adopt it here in preference to alterna-
tives, such as uniform in " or with cuto†s corresponding to
some sort of a priori upper or lower limits on counting
rates.

To evaluate the global likelihood in multiplyequation (7),
the likelihood in by the above prior and inte-equation (17)
grate

P
P[DTTE oM1(p1)]P(p1 oM1)dp1

\
P
0

1
p1N(1 [ p1)M~Ndp1\ B(N ] 1, M [ N ] 1) , (21)

where the beta function B can be written in terms of the
gamma function ° 11.1.7) :(Je†rey 1995,

B(x, y) \ !(x)!(y)
!(x ] y)

. (22)
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In summary, the global likelihood for the single-rate model
is this simple function :

L(M1 oDTTE) \
!(N ] 1)!(M[N ] 1)

!(M ] 2)

\N !(M[N) !
(M ] 1) !

. (23)

It may seem peculiar that this likelihood for a constant rate
depends not at all on the distribution of the photon times
within the interval, but on only the length of the interval
and the number of photons in it. This quantity measures the
likelihood of a single-rate model only when compared with
the analogous quantity for another model class. This
relationship is detailed in where a single-rate, unseg-° 2.4,
mented model is compared with a two-rate, segmented
model for the same data.

Note that had we used the probabilities from the trun-
cated Poisson distribution, e~" and "e~" for zero and one
photon, respectively, we would have arrived at

L(M1 oDTTE) \
!(N ] 1)

(M ] 1)N`1 , (24)

a result obtained by & Akman appliedRaftery (1986)Èand
to a study of the intervals between coal-mining disastersÈ
but with a prior somewhat di†erent from ours. In fact, equa-
tions and give very similar values, which may be(23) (24)
taken as evidence that details of the prior do not matter
very much. will be used here.Equation (23)

2.2.2. Binned Data

Sometimes the data are prebinned into M evenly spaced
intervals

DBIN :MX
m
, m\ 1, 2, . . . , MN , (25)

where the integer is the number of photons detectedX
mduring the mth such time interval. Taking the rate per bin to

be constant, say ", the counts in a given bin obey Poisson
statistics for this rate :

P(X
m

o") \ "Xme~"
X

m
!

. (26)

Independence of the counts yields for the likelihoodX
m

P[DBIN oM1(")]\ <
m/1

M "Xme~"
X

m
!

\ "Ne~M"
<

m/1M X
m
!
, (27)

where is the total number of photons. TheN \;
m/1M X

mmaximum of this probability occurs at the same value given
in equation (19).

Note that the denominator in has the pro-equation (27)
perty that its value for an interval is just the product of its
value for two or more subintervals. Hence this factor
cancels out in a comparison of segmented versus unseg-
mented versions of a given model, and we omit it. With " as
the parameter, we adopt the nonuniform but normalized
prior

P(" oM1) \
G(1 [ e~C)e~"
0

0 ¹ "¹ C ,
"\ 0 or "[ C .

(28)

This prior, although nonuniform in ", corresponds to the
same uniform distribution used in the TTE case. It is ap0special case of the gamma distribution (power law times

exponential) commonly used in Bayesian inference with the
Poisson distribution This partic-(OÏHagan 1994 ; Lee 1997).
ular form reÑects the prior belief that the rate is unlikely to
exceed a speciÐc, if approximate, value set by instrumental
considerations (which in turn may be guided in the instru-
ment design phase by the maximum expected source
brightness). For example, C might be reckoned as roughly
the bin interval divided by the instrument dead time.

Integrating the above likelihood times this prior, andÈ
absent a preferred value of CÈtaking the limit C] O (i.e.,
allowing bin counts to have any positive value) gives

L(M1 oDBIN) \
P
0

=
"Ne~(M`1)" d"\ !(N ] 1)

(M ] 1)N`1 , (29)

curiously identical to equation (24).

2.2.3. T ime-to-Spill Data

The last data mode considered is called time to spill
(TTS). To reduce the telemetry data rate, only every Sth
photon is recorded, where S is an (typically 64 forinteger6
the BATSE TTS mode) :

DTTS :Mqn, n \ 1, 2, . . . , N [ 1N , (30)

where is the interval between the nth and the (n ] 1)thq
nspill events. It is well known that the distribution of such

intervals is given by the gamma, or Erlang, distribution
(Billingsley 1986 ; Haight 1967) :

P(q
n
o")\ "S

!(S)
q
n
S~1 e~"qn . (31)

The usual independence assumption yields

P[DTTS oM1(")]\
C "S

!(S)
DN~1A

<
n/1

N~1
q
n

BS~1
e~"M , (32)

where is the total length of the interval. AsM \ ;
n/1N~1 q

nexpected, this probability is maximum at

"\SN
M

. (33)

integrated with the same prior inEquation (32), equation
and again taking the limit C] O, gives(28),

L(M1 oDTTS) \
(<

n/1N~1 q
n
)S~1

!(S)N~1
![S(N [ 1) ] 1]
(M ] 1)S(N~1)`1 . (34)

Note that the interpretation of q in terms of the true photon
rate involves the same issue raised in the TTE case : because
of detector dead time, accumulation of S detector counts
occurs at a slightly lower rate than does arrival of S
photons. In practice the corresponding corrections can
usually be ignored (cf. eqs. and[18] [19]).

2.3. Evidence for a Segmented Poisson Rate Model
The previous section yielded estimates of the relative

probabilities of the simplest model, namely, the single
constant-rate Poisson for TTE, binned, and TTSM1("),
data in equations and respectively. These(23), (29), (34),
global likelihoods depend on only N and M, so we denote

6 The data-descriptive constant S is not to be confused with a model
parameter.
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them as

L(M1 oD) \ /
D
(N, M) , (35)

where D denotes the data type and where

/TTE(N, M) \ !(N ] 1)!(M[N ] 1)
!(M ] 2)

, (36)

/BIN(N, M)\ !(N ] 1)
(M ] 1)N`1 , (37)

and

/TTS(N, M) \ (<
n/1N~1 q

n
)S~1

!(S)N~1
![S(N [ 1) ] 1]

MS(N~1)`1 . (38)

These results will now be used to estimate the model in
which the observation interval is broken into two subinter-
vals over which the rates are assumed to be constant but
di†erent. (Cf. the example at the beginning of In the° 2.1.)
statistics literature, the point separating such segments is
called a change point in the time series because the under-
lying process changes abruptly there. Denote the two-
segment model with constant Poisson rates M2("1, "2, tcp),where denotes the change point, i.e., the time at whichtcpthe rate switches from to In the notation of the"1 "2. ° 2.1,
full interval T is partitioned into two intervals, andT1 T2,containing the times less than and greater than respec-tcp,tively.

The probability of the compound model is, by the same
independence assumption discussed above, just the product
of the probabilities of the two segments considered separa-
tely :

P[D(T ) oM2("1, "2, tcp)]\ P[D1oM1("1, T1)]
] P[D2oM1("2, T2)] , (39)

where is the data in interval 1, etc. Thus the globalD1likelihood for the two-rate model is

L(M2 oD)\
P

dtcp
P

d"1
P

d"2Pcp(tcp)

] P[D1 oM1("1, T1)]P"("1)
] P[D2 oM1("2, T2)]P"("2) , (40)

where is the rate prior appropriate to the data type andP"is the change-point time prior. Note that the variablesPcp and which are essentially nuisance parameters"1, "2, tcp,here, are integrated out, and the likelihood is therefore inde-
pendent of them.

Consider now the TTE case. For actual data, time is
discrete (cf. so the integral in is a sum° 2.2.1), equation (40)
and we denote the change-point location by the integer mcp.One could consider jumps at arbitrary clock times, m, but it
simpliÐes the procedure to test for possible change points
only at the arrival of an actual photon. Thus we para-
metrize the change point as

mcp\ m
ncp

(41)

for some photon index This simpliÐcation merelyncp.ignores the di†erence between points that identically divide
the photons. Further, after carrying out the two " integrals,
we can write the integrand (or rather the correspondingtcpdiscrete-time summand) in as a simple func-equation (40)
tion of only the change-point index through the rela-ncp,

tions

N1\ ncp , (42)

N2\ N [ N1\ N [ ncp , (43)

M1\ m
ncp

, (44)

and

M2\ M [ M1 \ M [ m
ncp

. (45)

From the expressions above, and with the deÐnition

t(ncp) \ /(N1, M1)/(N2, M2) , (46)

we have

L(M2 oD)\ ;
ncp

t(ncp)*t
ncp

, (47)

where the factor which is deÐned as the time interval*t
ncp

,
between successive photons, corresponds to a prior uniform
in m, even though the sum in this equation is over notncp,m. In fact, the code in omits this factor becauseAppendix A
it appears to be a small correction in all the cases studied so
far. The change-point parameterization is slightly di†erent
for the other data modes ; details are omitted.

2.4. Deciding between Segmented and Unsegmented Model
The idea now is simple : compare the valuesJ(M

k
, D)

from of the unsegmented, single-rate modelequation (6) M1and the segmented, two-rate model in terms of theM2,odds ratio

O21 \J(M2, D)
J(M1, D)

. (48)

This ratio, with the prior odds ratio equal to one, is often
called the Bayes factor. If this ratio favors a segmented
model, it is straightforward to compute from equation (46)
the most probable change-point location from among all
possible change points. Finally and almost trivially,

or determines the correspondingequation (18) equation (19)
rates. The appendices contain computer code for all the
necessary computations, and the procedure is demonstrated
on real data in ° 3.

2.5. Multiple Change Points
As discussed earlier, the overall goal is to Ðnd the

optimum block decomposition of the data, i.e., into a
piecewise constant representation. The rigorously correct
way to do this would be as follows. Let an arbitrary
number, say of change points divide the observationNcp,interval into subintervals. Compute the globalNcp] 1
likelihood, of this multiple change-point decompo-L(Ncp)sition ; the value of that maximizes this quantity is theNcpmost probable number of change points. It is then a simple
matter to Ðnd the most probable locations of the change
points themselves and the most probable values of the rates
for each of the corresponding segments.

The case is relatively easy. In fact, the corre-Ncp \ 2
sponding global likelihoodÈa function of the two change-
point location indicesÈcan be computed with matrix
operations that are quite efficient in MatLab. Some thin-
ning of the data is necessary for the cases in which the
number of photons is so large that the corresponding
N ] N matrix is too big. However, for more than two
change points direct computation quickly becomes imprac-
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tical. Therefore a simple iterative procedure was adopted as
an attempt to approximate multiple change-point determi-
nation. Start with the whole observation interval. Use the
above method to decide between not segmenting this inter-
val and segmenting it, with one change point, into two sub-
intervals. If the latter is favored by the Bayes factor, apply
the same procedure to both of the resulting subintervals.
Continue in the same vein, applying the procedure to all
new subintervals created at the previous step. That this
method works approximately, but not exactly, is indicated
by the fact that an algorithm that handles two simultaneous
change points (i.e., gave results similar, but notNcp \ 2)
identical, to those obtained with iterative application of the
single change-point algorithm.

What stops this iteration? The obvious halting condition
is that the odds ratios favor unsegmented models for all
subintervals. Unfortunately this is too simple in practice. In
the analysis of large data sets there are typically many com-
puted odds ratios that are greater than 1 by only a small
amount. Decisions based on these ““ coin Ñips ÏÏ are wrong
about half the time, subdividing many intervals that
shouldnÏt be.

Since these cases tend to be short intervals containing
only a few photons, much of the problem can be swept
under the rug by imposing a minimum number of photons
allowed in subintervals. A second approach is to impose a
prior odds ratio that disfavors segmenting, i.e., is biased
toward keeping intervals unsegmented unless the odds ratio
is strongly in favor of segmenting. (There is a simple argu-
ment in support of this second idea : an overall statistical
assessment should take into account the number of roughly
independent experiments carried out. This is on the order of
the largest reasonable number of segmentation points,
which in turn is determined by the resolution of the obser-
vation interval. This leads to a prior ratio in ofeq. [8]

o B length of data interval/desired time resolution. It also
has the advantage that it avoids the other ideaÏs bias against
short intervals. Unfortunately, this argument probably
cannot be justiÐed within the Bayesian formalism. Never-
theless, numerical experiments support the use of one or the
other of these ideas.) The best approach may be to combine
both, as was done by Roma� n-Rolda� n, &Bernaola-Galva� n,
Oliver in a similar segmentation algorithm, based on(1996)
the Jensen-Shannon divergence measure in place of the
likelihood, and applied to automatic detection of structure
in DNA sequences. uses a stopping ruleGustafsson (1998b)
based on somewhat di†erent considerations. The code in

shows one way to carry out iterative segmen-Appendix B
tation and such a composite halting logic.

3. BATSE GAMMA-RAY BURST DATA

This section demonstrates the method just described by
applying it to c-ray data from BATSE. The basic algorithm
is employed to determine the detailed structure of pulses,
such as are known to make up the time proÐles of many
c-ray bursts et al. Norris, & Bonnell(Norris 1996 ; Scargle,
1998).

depicts the logarithms of the odds ratios as aFigure 1
function of the position of the change point for BATSE data
from the burst denoted Trigger 0551. The top panel shows
for comparison the binned counts as a function of time (in
microseconds). The raw data comprise about 29,000
photons. On the same time axis, the other panels show the
logarithms of the odds ratio in for TTE,equation (48),
binned, and TTS data, in order, as a function of the location
of the change point. The binned and TTS data are derived
directly from the TTE data. The spill data were constructed
simply by sampling every 64th photon from the TTE data.

Note the following : (1) The actual odds ratios are all
astronomically large in favor of segmentation. (2) The most

FIG. 1.ÈChange-point location in BATSE data for Burst Trigger 0551. (a) Binned counts for comparison : 100 time bins, of width 9.42 ms. (b) For TTE
data : of the odds ratio in favor of segmentation, as a function of the change-point location. (c) Same for binned data. (d) Same for TTS data. Verticallog10lines in all panels are at the maximum odds ratio ; in (a) those for TTE and TTS modes are indistinguishable and appear as a solid line.
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probable change-point location is indicated with vertical
dotted, dashed, and dot-dashed lines. If the actual odds
ratios were plotted, this would be an extremely sharp
maximum, indicating that there is very little uncertainty in
the change-point location. (3) The TTE and TTS change
points are very nearly equal, suggesting that this method is
rather efficient at extracting information from TTS data,
and also that little information is lost in this mode. The fact
that the value for the binned data is slightly di†erent is
consistent with the expected loss of time-resolution entailed
by binning.

shows the result of iterating the segmentationFigure 2
procedure on the same TTE data. The Bayesian blocks are
indicated with solid lines. The vertical dotted lines are the
locations of pulses determined by a simple pulse Ðnding
routine that basically selects statistically signiÐcant local
maxima; this algorithm will be described in et al.Scargle
(1998).

One can derive properties of the pulses from this block
representation. In a separate paper et al. this(Scargle 1998),
method will be used to determine peak times, amplitudes,
and rise and fall times for c-ray bursts. SpeciÐcally, we use
the Bayesian blocks technique to make crude estimates of
the locations, amplitudes, and widths of the pulse structures
within a burst, without a parametric pulse model and
dealing with pulse overlap in a trivial way. The peak time
and amplitude are taken as the center and height of the
highest block in the pulse, and exponential rise and decay
times are estimated by means of a simple quadrature of the
corresponding halves of the burst proÐle. Then these crude
pulses are used as initial guesses for a numerical routine

that truly deconvolves overlapping pulses by Ðtting a para-
metric model. The initial guess is very important for the
convergence of this Ðtting procedure to the (hopefully)
global optimum; results with the Bayesian blocks have
proven very satisfactory. The lowest block provides a good
estimate of the constant postburst background and will do
so as long as the burst ends before the observation termin-
ates.

4. CONCLUSIONS

The method developed here is applicable to all the
photon event data modes common in high-energy astro-
physics : time-tagged events, binned counts, and time-to-
spill data. The fundamental element of the method is a way
to decide whether a single Poisson rate or two di†erent
rates is the better model for an interval. This decision is
applied iteratively to build up a piecewise constant model of
the data. This analysis method imposes no lower limit on
the timescale ; any such limits are set by the data themselves.

The Bayesian blocks method is designed to extract local-
ized signals from counting data where statistical Ñuctua-
tions are important. It is probably not useful in situations
that require lots of time averaging to extract coherent,
global signals such as periodic or quasi-periodic variations.

Future work will include investigation of ways to deter-
mine multiple change points more rigorously. The prin-
ciples behind a maximum likelihood determination of the
number and location of change points is straightforward
and can surely be made computationally feasible. I have
recently become aware of work by developing aChib (1998)
Markov chain Monte Carlo procedure for Bayesian estima-

FIG. 2.ÈBayesian blocks for the same data as determined as explained in the text. (a) TTE data ; (b) TTS data ; (c) binned data.Fig. 1,
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tion of multiple change-point models that may be applic-
able to this problem. & Smith may also be ofPhillips (1996)
relevance.

In addition, it will be useful to extend the methods given
here to include variable rates across the blocks, or other
departures from the constant-rate model. I have explored
both linear and exponentially varying rates. The approach
in & Ogden may be useful for this problem. ISugiura (1997)
am pursuing extensions of the basic idea underlying Bayes-
ian blocks to higher dimensions ; in particular spatial struc-
ture can be elucidated, and backgrounds removed, from
two-dimensional photon counting data with gener-
alizations of the one-dimensional algorithms given here.

It is also relatively easy to extend this methodology to a
multivariate contextÈdetermination of block structure in
pairs of time series in which it is assumed that the segmen-
tation points occur at the same times in the two data series ;
of course, the rates are not in general the same. This will be
particularly useful for BATSE c-ray burst data that consists
of simultaneous photon counting in four broad energy
channels. In this context, it will be useful to allow for, e.g.,
the known fact that there are time delays in the burst struc-
tures as a function of photon energy. Similarly, known gaps
during which the instrument is not sensitive can be readily
handled.

What to do with Bayesian blocks? This depends on the
context. For the pulse problem in c-ray burst work we(° 3)
have indicated the use of the blocks to determine pulse
attributes, at least in a crude way, without the need to adopt
a speciÐc model for pulse shapes. These attributes can in
turn be used as starting guesses for further, parametric, non-
linear optimization, as discussed above. It is expected that
many di†erent uses can be made of Bayesian block decom-
position.

Work is in progress in collaboration with Paul Hertz,
Elliott Bloom, Jay Norris, and Kent Wood, to use Bayesian
blocks to determine whether short-timescale structure, or
bursts, are present in Cygnus X-1. There is a long debate in
the literature about the reality and meaning of short
(millisecond) bursts in this accretion system. Almost cer-
tainly our approach will either detect or place upper limits

on bursts, and has the possibility of detecting individual
bursts at a high signiÐcance level. A di†erent approach to
this same problem, which also uses a Bayesian framework,
was presented at a recent meeting of the High Energy
Astrophysics Division of the American Astronomical
Society & Rothschild(Marsden 1997).

Note added in manuscript.ÈFor TTE data, consider the
timescale transformation dt ] (1/a) dt, M ] aM, for a any
integer greater than 1. This amounts to reÐning the clock
ticks but leaving the photon times unchanged. Under this
transformation the estimated block structure must be unal-
tered : the change-point times and photon rates will stay
Ðxed (although of course the rates per tick will decrease by a
factor of a). By considering arbitrarily large a it follows that
the asymptotic form (for M ] O) of can beequation (23)
used without appreciable error. Details of this simpliÐca-
tion will be posted on the World Wide Web site referenced
in and, together with a solution of the multipleAppendix A
change-point problem using Markov Chain Monte Carlo
methods, will be the subject of a future paper.
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Mark Showalter, plus members of the SLAC Astrogravity
groupÈElliott Bloom, Chris Chaput, Daniel Engovatov,
Gary Godfrey, Andrew Lee, and Ganya ShabadÈfor
helpful comments and assistance. I am grateful to David
Marsden and Rick Rothschild for an advance copy of their
paper and Bill Fitzgerald and Fredrik Gustafsson for
helpful comments. This work is supported by grants from
NASAÏs Astrophysics Data Program, the Compton Gamma-
Ray Observatory Guest Investigator Program, and the
NASA-Ames DirectorÏs Discretionary Fund. The NASA
data shown are from the BATSE instrument on the
Compton Gamma-Ray Observatory.

APPENDIX A

FIND A CHANGE POINT

This appendix contains code, an array-based data processing system. Much of this code is similar to that ofMatLab7 IDL8
and other similar software packages for data analysis, and can be considered as pseudocode for the procedure.

A few comments about the MatLab syntax are in order.

1. The function line at the beginning of each routine identiÐes the input and output variables. It will be seen that multiple
input and output variables are possible, and the input and output variables are arrays (matrices, vectors, or scalars) in general.

2. The asterisk (*) and forward slash (/) specify matrix multiplication and division, respectively. Overriding the matrix
operation in favor of the simple term-by-term operation is indicated by a dot before the asterisk or forward slash. The
statement [ a–max, i–max ]=max( x ), where x is a vector, returns both the value of the maximum of the array, and the
index, i–max at which this maximum is achieved. The function gammaln is a built-in function that evaluates the natural
logarithm of the gamma function of the argument array.

3. On any line, everything following the percent symbol (%) is treated as a comment and not processed. Three dots (. . .) at
the end of a line indicates continuation onto the next line.

Mathworks, Inc. These MatLab scripts and sample data allowing the reader to reproduce of this paper, can be found on the World Wide7 (The Fig. 2
Web at (See & Donoho for a description of the philosophy of publishing scientiÐc researchhttp ://george.arc.nasa.gov/Dscargle/papers.html. Buckheit 1995
in such a way the reader can reproduce all results.)

Systems, Inc.8 (Research
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4. The command find returns the indices of its argument that satisfy the condition speciÐed in the argument ; isempty is
a logical function to determine whether the argument has been deÐned yet ; reverse simply reÑects an array ; and ceil and
floor are rounding of a real number to the next highest and lowest integer, respectively.

5. The expression a’ means the matrix transpose of a.
This appendix gives MatLab code for the procedure to Ðnd a single change point, as described in of the text. The° 2.4

computation is particularly efficient because the evaluation of the global likelihoods can be carried out completely in terms of
array operations on the vector containing all the candidate change points.

function [ change–point, odds–21, log–prob, log–prob–noseg ]=...
find–change( photon–times, t–0, t–n )

%
% Find most probable two-rate model for Poisson arrival time data,
% based on Bayesian analysis.
%
% photon–times -- photon arrival timesInput:
% (Note: These must be microseconds, not seconds,
% because the time values correspond to the
% clock rate at which the data are sampled.)
% t–0 -- time just previous to photon–times(1)
% t–n -- time just after last time in photon–times
%
% change–point -- index of which provides the maximumOutput: ‘‘photon–times’’
% likelihood segmented model (that is, with one
% Poisson rate to the left of
% photon–times(change–point)
% and another to the right
% odds–21 -- odds ratio: 2 unequal rates / 1 rate
% log–prob -- log probability of segmented model, as a
% function of changepoint
% log–prob–noseg -- log prob of nonsegmented model
%—————————————————————————

dt–half=0.5 * diff( photon–times );
n–ph=length( photon–times % Number of photons);

min–time=photon–times( 1 );
max–time=photon–times( n–ph );

t–left=0.5 * ( t–0+min–time );
t–right=0.5 * ( max–time+t–n );

% Number of microsecond in the whole (extended)‘‘ticks’’ interval:
n–ticks=t–right-t–left+1;

%——————————————————————
% Evaluate log-probability of the unsegmented model:
%——————————————————————

log–prob–noseg=gammaln( n–ph+1 )+...
gammaln( n–ticks-n–ph+1 )-...
gammaln( n–ticks+ 2);

%——————————————————————
% Evaluate the log-probability of the segmented model as a
% function of changepoint; find optimum changepoint.
%——————————————————————

% Array of trial changepoints:
n–1=(1: n–ph-1)’;
n–2=n–ph-n–1;

m–1=photon–times( n–1 )+dt–half( n–1 )-t–left;
m–2=n–ticks- m–1;
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log–prob=-1.e55 * ones( n–ph, 1 ); % mark all points as invalid
arg–1=m–1-n–1+1;
arg–2=m–2-n–2+1;
ii=find( arg–1>0 & arg–2>0 % indices of valid points);
log–prob(ii)=gammaln( n–1(ii)+1 )+gammaln( arg–1(ii) )-gammaln( m–1(ii)+2 );
log–prob(ii)=log–prob(ii)+gammaln( n–2(ii)+1 )+gammaln( arg–2(ii) )-...

gammaln( m–2(ii)+2 );
[ max–log, change–point ]=max( log–prob(ii) );

%——————————————————————
% Compute odds ratio: prob(seg) / prob(no–seg)
%——————————————————————
odds–21=sum[ exp( log–prob-log–prob–noseg )];

if~isfinite( odds–21 )
odds–21=1000000;

end

APPENDIX B

MAKE BAYESIAN BLOCKS

This appendix includes MatLab code for the iterative procedure to Ðnd a multiple change point, as described in of the° 2.5
text.

function [ n–seg–vec, xx–vec ]=make–segments( photon–times )
% function [ n–seg–vec, xx–vec ]=make–segments( photon–times )
%
% Input: photon–times -- photon arrival times, in microseconds
%
% Output: n–seg–vec -- array of changepoint times
% xx–vec -- count rates (c/usec) in the corresponding segments
%
% Note: t–seg=photon–times( n–seg–vec ) generates the changepoint times
%
%————————————————————————

global prior–ratio min–photons

n–times=length( photon–times );
min–time=photon–times( 1 );
max–time=photon–times( n–times );
delta–t=( max–time-min–time ) / ( n–times-1 );
min–tick=floor( min–time-0.5 * delta–t );
max–tick=ceil( max–time+0.5 * delta–t );
n–ticks=max–tick-min–tick+1; % Number of microsecond ‘‘ticks’’

nseg–1–vec=[ 1 ];
nseg–2–vec=[ n–times ];
nosubs–vec=[ 0 ];
xx–vec=[ n–times / n–ticks ];
no–seg–flag=0;

while no–seg–flag== 0

num–segments=length( nseg–1–vec );
no–seg–flag=1; % set escape unless do a subsegmentation

nseg–1–work=[];
nseg–2–work=[];
nosubs–work= [];
xx–work=[];
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for num–segmentsseg–id=1:

% do this one, unless ...do–it=1;

% ... this one has been done before!
if nosubs–vec( seg–id )== 1
do–it=0;

end

nseg–1=nseg–1–vec( seg–id );
nseg–2=nseg–2–vec( seg–id );
x–seg=xx–vec( seg–id );

times–this=photon–times( nseg–1: nseg–2 );
nt–this=length( times–this );

if do–it>0

% Determine previous time
time–this–1=times–this(1);

if time–this–1==photon–times(1);

% Special handling for first point in full array,
% or if it is the second point, but the first two
% (or more) times are equal:
ii=find( times–this>time–this–1 );
if isempty(ii)
delt–t=2; % Token value

else
delt–t=times–this[ii(1)]-time–this–1;

end
t–0=time–this–1-delt–t;

else

% t–0 is the time just previous to the subarray
t–0=photon–times( nseg–1-1 );

end

% Determine subsequent time
time–this–n=times–this(nt–this);

if time–this–n==photon–times(n–times);

% Special handling for last point in full array,
% or if it is the second-to-last point, but the
% last two (or more) times are equal:
ii=find( times–this<time–this–n );
if isempty(ii)

% Token valuedelt–t=2;
else
delt–t=time–this–n-times–this{ii[length(ii)]};

end
t–n=time–this–n+ delt–t;

else

% t–n is the time just after the subarray
t–n=photon–times( nseg–2+1 );

end
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[ n–seg, odds–ratio, log–prob ]=find–change( times–this, t–0, t–n );

% ... one of the proposed subsegments is too short:
n–seg–right=nt–this- n–seg;
if (n–seg<=min–photons)|(n–seg–right<=min–photons)

do–it=0;
end

% ... the significance criterion not met:
if odds–ratio<prior–ratio
do–it=0;

end

end

if do–it>0

% Subsegment this do not escape yetone;
no–seg–flag=0;

ntimes–1–left=nseg–1;
ntimes–1–right= nseg–1+n–seg-1;

ntimes–2–left=nseg–1+ n–seg;
ntimes–2–right= nseg–2;

n–ticks–left=times–this( n–seg )-times–this( 1 )+1;
n–ticks–right=times–this( nt–this )-times–this( n–seg )+1;

nn–left=n–seg;
nn–right=nt–this- n–seg;

x–seg–left=nn–left / n–ticks–left;
x–seg–right=nn–right / n–ticks–right;

nseg–1–work=[ nseg–1–work ntimes–1–left ntimes–1–right ];
nseg–2–work=[ nseg–2–work ntimes–2–left ntimes–2–right ];
xx–work=[ xx–work x–seg–left x–seg–right ];
nosubs–work=[ nosubs–work 0 0 ];

else

% No subsegmenting of this segment;
% so just stuff in the beginning, end, mark
% as so that it will not be done again‘‘nosubs’’
nseg–1–work=[ nseg–1–work nseg–1 ];
nseg–2–work=[ nseg–2–work nseg–2 ];
xx–work=[ xx–work x–seg ];
nosubs–work=[ nosubs–work 1 ];

end

end

% Post the segmentations just done:
nseg–1–vec=nseg–1–work;
nseg–2–vec=nseg–2–work;
xx–vec=xx–work;
nosubs–vec=nosubs–work;

end

n–seg–vec=nseg–2–vec;



418 SCARGLE

REFERENCES
P., & Flandrin, P. 1996, in Wavelets in Medicine and Biology, ed.Abry,

A. Aldroubi & M. Unser (Boca Raton : CRC), 413
P., Goncalves, P., & Flandrin, P. 1995, in Lect. Notes in StatisticsAbry,

103, Wavelets and Statistics, ed. A. Antoniadis & G. Oppenheim (New
York : Springer), 15

P., Roma� n-Rolda� n, R., & Oliver, J. L. 1996, Phys. Rev.Bernaola-Galva� n,
E, 53, 5181

P. 1986, Probability and Measure (New York :Billingsley, Wiley)
D. R. 1997, in Proc. 31st Asilomar Conference on Signals,Brillinger,

Systems and Computers, http ://stat-www.berkeley.edu/users/brill/
papers.html

D. R. 1978, Developments in Statistics, Vol. 1 (New York :Brillinger,
Academic), 33

J., & Donoho, D. 1995, in Lect. Notes in Statistics 103, WaveletsBuckheit,
and Statistics, ed. A. Antoniadis & G. Oppenheim (New York : Springer),
55 see also andhttp ://stat.Stanford.EDU/reports/donoho/ http ://
sepwww.stanford.edu/research/redoc/

S. 1998, Journal of Econometrics, inChib, press
R. R., & Donoho, D. L. 1995, in Lect. Notes in Statistics 103,Coifman,

Wavelets and Statistics, ed. A. Antoniadis & G. Oppenheim (New York :
Springer), 125

D. L. 1994, Wavelets : Theory, Algorithms, and Applications, ed.Donoho,
C. K. Chui, L. Montefusco, & L. Pucciio (New York : Academic), 233

P. C., & Loredo, T. J. 1992, ApJ, 398,Gregory, 146
F. 1998a, IEEE Trans. Signal Proc.,Gustafsson, accepted
F. 1998b, Linko� ping University Technical Report LiTH-Gustafsson,

ISY-R-1669 http ://www.control.isy.liu.se/cgi-bin/reports?authorD
Gustafsson

F. A. 1967, Handbook of the Poisson Distribution (New York :Haight,
Wiley)

E. T. 1997, Probability Theory : The Logic of Science,Jaynes,
http ://bayes.wustl.edu

A. 1995, Handbook of Mathematical Formulas and Integrals (NewJe†rey,
York : Academic)

E. D. 1997, ApJ, 483,Kolaczyk, 34
P. 1997, Bayesian Statistics : An Introduction (New York :Lee, Wiley)

T. J. 1992, in Statistical Challenges in Modern Astronomy, ed.Loredo,
E. D. Feigelson & G. J. Babu (New York : Springer), 275

D., & Rothschild, R. E. 1998, ApJ,Marsden, submitted
J. P., Nemiro†, R. J., Bonnell, J. T., Scargle, J. D., Kouveliotou, C.,Norris,

Paciesas, W. S., Meegan, C. A., & Fishman, G. J. 1996, ApJ, 459, 393
R. T. 1997,Ogden, preprint
R. T., & Parzen, E. 1997a,Ogden, preprint
1997b,ÈÈÈ. preprint

A. 1994, KendallÏs Advanced Theory of Statistics : BayesianOÏHagan,
Inference, Volume 2B (New York : Wiley)
Ruanaidh, J. J., & Fitzgerald, W. J. 1996, Numerical Bayesian MethodsO‹
Applied to Signal Processing (New York : Springer)

D. B., & Smith, A. 1996, in Markov Chain Monte Carlo in Prac-Phillips,
tice, ed. W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (London:
Chapman & Hall), 215

A. E., & Akman, V. E. 1986, Biometrika, 73,Raftery, 85
J. 1997, in Applications of Time Series Analysis in Astronomy andScargle,

Metrology (London: Chapman & Hall), 226
J. D., Norris, J., & Bonnell, J. T. 1998, inScargle, preparation
J., Steiman-Cameron, T., Young, K., Donoho, D., CrutchÐeld, J.,Scargle,

& Imamura, J. 1993, ApJ, 411, L91
H. 1988, Deterministic Chaos (New York :Schuster, VCH)

D. S. 1996, Data Analysis : A Bayesian Tutorial (Oxford : Clarendon)Sivia,
A. F. M. 1975, Biometrika, 62,Smith, 407
J., Fitzgerald, W., & Hladky, S. 1997, Technical Report CUED/F-Stark,

INFENG/TR. 302, http ://www2.eng.cam.ac.uk/Djas/pubs.html
D., Kendall, W., & Mecke, J. 1995, Stochastic Geometry and ItsStoyan,

Applications (2d ed. ; New York : Wiley)
N., & Ogden, R. T. 1997,Sugiura, preprint

R. W., & Ogden, R. T. 1997,West, preprint
K. J. 1986, Biometrika, 73,Worsley, 91

K., & Scargle, J. D. 1996, ApJ, 468,Young, 617


