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Abstract. The paper describes the multigrid acceleration technique 
to compute numerical solutions of three equations of common fluid 
mechanical interest; Laplace equation, transonic full potential equation 
and Reynolds averaged Navier-Stokes equations. Starting with the simple 
and illustrative multigrid studies on the Laplace equation, the paper 
discusses its application to the cases of full potential equation and the 
Navier-Stokes equations. The paper also discusses some elements of 
multigrid strategies like V- and W-cycles, their relative efficiencies, the effect 
of number of grid levels on the convergence rate and the large CPU time 
saving obtained from the multigrid acceleration. A few computed cases of 
transonic flows past airfoils using the full potential equations and the 
Navier-Stokes equations are presented. A comparison of these results with 
the experimental data shows good agreement of pressure distribution and 
skin friction. With the greatly accelerated multigrid convergence, the full 
potential code typically takes about 10 seconds and the Navier-Stokes 
code for turbulent flows takes about 5 to 15 min of C PU time on the Convex 
3820 computer on a mesh which resolves the flow quantities to good levels 
of accuracy. This low CPU time demand, made possible due to multigrid 
acceleration, on one hand, and the robustness and accuracy on the other, 
offers these codes as designer's tools for evaluating the characteristics of 
the airfoils. 

Keywords. Multigrid; full-potential solution; Navier-Stokes solution; 
Laplace equation. 
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1. Introduction 

Starting with the pioneering work of Federenko (1964), the theory and application of 
multigrid has come of age. The large time saving due to the multigrid acceleration has 
offered great relief to the workers in many areas of science and technology, especially in 
the developing countries where multi-megaflop computing machines are not yet 
common. Even today at many of these institutions, a typical 2-D turbulent Navier- 
Stokes solution on a grid size of, say, 385 x 65, requires 2 to 3 days of turn-around time. 
The multigrid technique has also provided an opportunity or potential to several codes 
to be used as designer's tool. The combined effect of the high speed computing 
machines and the multigrid accelerated codes has led to such realistic design computa- 
tions that a well converged 3-D Navier-Stokes flow computation past a wing-body- 
nacelle configuration can be obtained in as little as 4 min of CPU time (Jameson 1993) 
on some of the high speed computers. Historically, the first publication on multigrid 
method put to practice was brought out by Brandt (1972) followed by another 
publication (Brandt 1977) five years later with convincing results which set the pace for 
rapid progress in multigrid methods and applications (Wesseling 1990). From the same 
historical angle, it may be mentioned that Hackbusch (1976) (as mentioned in Wessel- 
ing 1990) also independently discovered the multigrid method. Today, the multigrid 
method has crossed its domain of application to elliptic systems for which basically its 
theory was developed. One can find large scale application of multigrid in solving the 
time dependent Navier-Stokes equations and several other hyperbolic problems. 
During the last few years, multigrid has also made inroads in the areas of hy- 
drodynamic stability, integral and integro-differential equations, many-body interac- 
tions, semiconductor device simulation, general relativity, theory of material defects 
and atomic physics, real time optimal control, protein folding, combinatorial optimisa- 
tion, linear programming etc. (Brandt 1988). 

In CFD, one seeks converged solution to viscous flow problems on a grid which is 
fine enough to resolve all the length scales involved. In most of the cases, the actual 
number of node points thus obtained is quite large leading to a large number of 
algebraic equations to be solved resulting from the discretization. Also, most of the 
relaxation schemes are efficient at smoothing out the high frequency errors as seen on 
the scale of the grid. The solution on a single fine grid is too expensive for two reasons, 
(i) due to the large number of algebraic equations resulting from the discretization 
process, (ii) due to the relaxation schemes taking very long time to smooth out the low 
frequency errors. Quoting a concept from Brandt (1977), the multigrid method uses 
a sequence of grids "taking advantage of the relation between different discretizations 
of the same problem. This method can be viewed in two complementary ways: one is to 
view the coarse grids as the correction grids, accelerating convergence of a relaxation 
scheme on the finest grid by efficiently liquidating smooth error components. Another 
point of view is to regard finer grids as the correction grids by correcting their forcing 
terms". The first view of Brandt (1977), which is an early and monumental work on the 
multigrid methods, refers to the definition of high frequency components with respect 
to each grid which are smoothed fastest by most relaxation schemes. The second view 
offers the possibility to "manipulate accurate solutions on coarser grids, with only 
infrequent "visits' to pieces of finer levels". 

The next section gives a brief description of the basic elements of multigrid technique, 
followed in the present work, to get accelerated convergence of (a) solution of Laplace 
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equation on Cartesian grids, (b) solution of transonic potential flow equations, and (c) 
solution of Navier-Stokes equations for 2-D transonic flow. 

2. A brief description of multigrid method 

Let G h, G 2h . . . .  G Mh be a hierarchy of grids with h indicating the finest level. Let the 
equation to be solved be given as 

L~  =f.  (1) 

The discretized form of (1) on grid level h is written as; 

Lhfy~h = fh. (2) 

If ~b is an approximate solution of • and ~, is the correction term, then 

Lh(dph + d/h) = fh, (3) 
o r  

L*(~b h + ~b h) _ L h ~ h  = fh  _ L h O h  = ~h. (4) 

~h is known as residual on grid G h. A certain number of relaxation sweeps are made 
to obtain ~h. Ideally, when the convergence slows down, the relaxation on the present 
level is stopped and the solution and the residual is injected down to the next coarser 
level 2h where one can write (4) for this grid as follows; 

L2h(j~h(~bh + ~h)) _ L2hJZhh~h = )~h~h, (5) 

where j2h  and ~2h are injection operators which need not be the same. Equation (5) is 
rewritten as; 

L 2 h 6 2 h  + 

= )2h(fh) + (Lehj2hdph __ j2h(Lhdph)) ' 

= )~h(fh) + f2h, (6) 
where 

~2h _ j2h(~bh + ~?). (7) 

f2h is the truncation error of the coarse grid relative to the fine grid. It is seen that 
without the addition of the term feb in (6), the discretized coarse grid equation has the 
same form as (2) for 'fine grid. In fact, when the solution has converged, the coarse grid 
solution will be same as the injected fine grid solution and feh will vanish. In that sense, 
the term f2h, also known as forcing function, is identified as the "fine to coarse grid 
defect correction". This term can also be seen to represent the interplay between the 
discretization and the solution process. 

This procedure is carried on till the coarsest grid is reached. The corrected coarse 
grid solution thus obtained needs to be transferred to the fine grid to obtain the 
updated fine grid solution. This step is written as; 

= + - (8)  

where ) is a suitable interpolation operator. Note that if the coarse grid solution was 
simply prolongated to the fine grid without adding correction term as above, it would 
be devoid of all the high frequency components of the solution and also it would 
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contain interpolation error. In this sense, the process has taken the best advantage of 
the high frequency smoothing property of the chosen relaxation scheme on each level 
and a lot of CPU time is saved by working on coarser grid levels. 

3. Application to Laplace equation 

The Laplace and Poisson equations [differing only by the absence or the presence of the 
nonhomogeneous terml are of fundamental importance to fluid dynamics. The Laplace 
equation occurs as the main governing equation for the incompressible, inviscid and 
irrotational fluid flow, and the Poisson equation occurs as a component equation in 
case of incompressible Navier-Stokes flows. Also, the simplicity of this equation makes 
it a very illustrative platform. 

Since the Laplace equation is linear, the operator L in (3) can be linearly distributed 
over 4, and ip and one can proceed to solve directly for correction ~b using what is called 
the "'Correction Scheme". But in this work, a more general method called Full 
Approximation Storage (FAS) scheme, as applicable to the nonlinear equations, is 
used. 

Here the interest is to solve the Laplace equation using multigrid acceleration. In this 
section, the work of Singh (1989) for multigrid strategy will be followed. The Laplace 
equation is written as: 

V205 = 0. (9) 

The boundary conditions are taken to be as follows; at (i) y = 0, 05 = 0, (ii) y = ~z, 
05 = 0, (iii) x = 0, 05 = sin(),), and (iv) x = 1, 05 = e.sinly). The problem is discretized over 
a domain given by 0 <~ x ~< 1 and 0 ~< y ~< n using the Cartesian grid, 

The problem being purely elliptic, the equation is discretized by writing the second 
derivatives using the central difference scheme. The resulting difference equations are 
solved by successive line relaxation technique. A V-cycle FAS multigrid strategy with 
independently selected number of sweeps at various grid levels will be used. The results 
are presented for grid levels up to six. 

Figure 1 shows several convergence histories of the solution procedure as a function 
of number of grid levels used. In each case the solution is sought on the finest grid level 
of size 65 x 129. The figure shows the effect of number of grid levels on the multigrid 
convergence. The gain in terms of speed of convergence rapidly increases as the number 
of grid levels is increased from 1 to 4. The gain slows down when 5 grid levels are 
used. Beyond this, one can see that there is just about no gain in the rate of convergence 
at all as the number of grid levels is increased from 5 to 6. The results of this study are 
summarised in table 1 below, 

Table 1 shows the level of error obtained using one-level computation and multilevel 
computations using 2 to 6 grid levels after 100 work units. L2 (norm) stands for the 
absolute value of the L2-norm of the residual. The drastic gain in the solution 
convergence is clear. One can see that after 100 work units, the 5-grid level solution has 
converged to an accuracy of about 14 orders lower than the corresponding conver- 
gence on a single level. Of course, it is a different matter that, in practical applications, 
one never needs to drive convergence to more than, say, 3 to 4 orders of magnitude 
which is obtained here in far too fewer work units. The basic nature of this observation 
is true in general for all systems, i.e., the law of diminishing return applies as the number 
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Figure 1. Multigrid conver- 
gence and effect of number of 
grid levels. 

of coarser meshes beyond optimum number is increased. Often four to five grid levels 
are optimum. Of course, as far as the level to which the solution converges after certain 
number of work units is concerned, it depends on the system being solved (nonlinearity, 
constraints, presence of discontinuities etc. tend to degrade the multigrid performance). 
The next two examples of full potential equation and Navier-Stokes solution will 
elucidate this point. 

3.1 Effect of boundary condition "defect" on multigrid convergence 

In the above, the Laplace equation has been solved with the exact boundary condition. 
This does not involve any approximation of the boundary values. However, when 
a problem is solved which involves approximation (and hence error) in the boundary 
values, that we call "boundary condition defect" here, the performance of the same 
multigrid accelerated iterative procedure is impaired significantly. To study this, we 
consider a computationally similar problem (Singh 1992) that involves extrapolation to 
compute boundary condition and hence, introduces error or "boundary condition 
defect". To see this, we present the results of the following demonstration computa- 
tions, Study-1: The solution of Laplace equation with rectangular boundary and exact 
boundary conditions for comparison of convergence history, Study-2: the problem in 
study-1 is recomputed using the difference form of the Neumann boundary condition 
adp/3y = exp(x)cos(y) as the boundary condition on the bottom edge. The truncation 

Table 1. Efficiency of multigrid scheme with respect to the number of'grid levels used. 

l-level 2-level 3-level 4-level 5-level 6-level 

Abs. valueofL2 8"28 4"7x10 -2 2"5x10 -3 6"3x10 -8 2"8x10 -14 2 "8x10-1* 
(norm) after 100 
work units 
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Figure 2. Computational do- 
main for Studies 3 and -4. 

error of the difference scheme introduces some error, Study-3: The problem in Study-1 
is solved with the following modification; the bottom edge is cut slant as shown in 
figure 2. The boundary condition implementation at this edge requires values of ~b at 
the dummy points for which the exact values are provided. The boundary conditions 
on the left, right and top edges remain the same, Study-4: all features identical to 
Study-3 except that the values at the bottom boundary point were obtained using 
Taylor series expansion as described below. This adds further to the errors. 

The value of~b at the slant bottom boundary is written as follows by opening a Taylor 
series around ( i , j -  1); 

where 

and 

(4,),,, = (4,),, . . . .  + (yb  - y ~ . j -  ~ ) ( 4 ' ) . ,  . . . .  , 

(~b)y .... = ( - 3 (qS),d_ ~ + 4(~b),j - (~b),.j +, )/2ky 

(lO) 

( 1 1 )  

(~b)vy. ,_, = ((~b),.j_ 1 - 2(cb), d + (~b), d + 1 )/AY 2. (12) 

The subscript 'b' indicates values on the slant boundary. The values of (~b)y b are 
provided exactly to compute (~b)i d_ 1. The higher level of truncation error introduced 
artificially is obvious. Figure 3 shows the comparison of the convergence histories of 
the above studies. The study illustrates the level of stagnation residues in various 
studies. The residue level (~. 10-v in 32-bit arithmetics, m 10-15 in 64-bit arithmetics) 
is the lowest in Studj1-1 where no "defect" is involved in the boundary condition 
implementation. Study-2 has relatively higher level of stagnation residue (~  10-6 in 
32-bit arithmetics) where there is a relatively smaller amount of boundary condition 
"defect". Even though we have considered a slant bottom edge in Study-3, which requires 
use of the dummy point, the stagnation residue level is the same as that in Study-1 
because the value there is provided exactly. Study-4, which has the highest level of 
"defect", leads to the highest level of stagnation residue (~  10-* in 64-bit arithmetics). 

The effect of the boundary condition "defect" can also be seen by explicitly adding 
a perturbation term to the exact boundary condition in Study-1. Let the perturbation 
term to the boundary condition be chosen as A.sin(ngx) where n =  1,2,3 . . . .  with 
0 <~ x < 1. The term is explicitly added to the boundary condition on the bottom edge in 
Study- 1. One can infer from figure 4 that as the amplitude A increases, the magnitude of 
the boundary condition "defect" increases, which leads to convergence process stagnating 
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Figure 3. Comparison of convergence rates for studies 1 to 4. 

at higher levels. The above study illustrates the sensitivity of the convergence history in 
the multigrid process as it is affected by the boundary condition "defect". 

4. Application to full potential transonic flow computation 

Even today, most of the CFD codes that are used in the preliminary aircraft aerody- 
namic design are based on simpler methods like panel method and full potential 
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equations. Thus, it is useful to have these codes accelerated using techniques like 
multigrid. In this section, the implementation of multigrid acceleration in a full 
potential transonic flow solver due to Garabedian & Korn (1971) is described. 
Historically, the first successful application of the multigrid acceleration to potential 
function based formulation for the transonic flow was due to South & Brandt (19771. In 
their work, they presented the accelerated solution of small perturbation equatioh for 
non-lifting flow past airfoil. Singh (1989) used the multigrid acceleration to get 
solutions for flow past airfoils using the code of Garabedian & Korn (1971) modified 
and adapted by him at NAL. An acceleration of about 5 to 7 times (in terms of work 
units) was obtained using the multigrid strategy described. The basic method of 
Garabedian & Korn (1971)is described below. 

The 2-D full potential flow equation in Cartesian coordinates is; 

(c 2 - uej~bxx - 2uvc~x~ + (c 2 - r')~brr = 0, (13) 

where ~ is the velocity potential, u, r the velocity components in x and y directions, and 
c the local speed of sound given by the Bernoulli's law 

(u z + v2)/2 + c"/(Z - 1) = (1/2) + M2/() , - 1). (14) 

Using Sell's conformal mapping, the entire infinite flow field is mapped on to the 
inner circle of unit radius such that the perimeter of the circle corresponds to the airfoil 
contour and the centre corresponds to infinity. In this plane, using (r, 0) coordinates, 
the full potential equation, (13), is written as; 

(C 2 -- r2 f - 2 dp2)C~oo -- 2ra f -  2 dpodp, ¢~o, -I- r2(c 2 - r4 f -  2 q~2)q~,~ 

+ r(c 2 -- r 2 f  -2  ~)~ -- 2r4f-2~b2)qS, + f-3(r2002 + r'~b 2) 

tfo¢o + r~ L 4),)=o, t15) 

where f = r2lF'(rei°)l and F is the mapping function defined as x + iy = F(rei°). The 
boundary conditions for the problems are (a) the flow tangency condition on the 
surface, i.e., 

?49/?n = 0, (16) 

and (b) outer boundary condition written as; 

= (F/2n)tan- 1((I - MZ~)l/Ztan(0 + x)), (17) 

where O is the full potential, :~ is the angle of attack, 0 is the coordinate in the (r, 0) plane 
and Mr~ is the free stream Mach number. Equation (15) is discretized using the mixed 
finite difference scheme due to Murman & Cole (1971). 

4.1 Mul t igr id  acceleration o f  ful l  potential  equation 

The nonlinearity of the full potential transonic flow equation with shock sitting on the 
airfoil surface poses special problems in the multigrid process by making the solution 
very sensitive. It turns out that the high frequency errors introduced during the coarse 
grid correction interpolation, especially in the vicinity of the shock, keep offsetting the 
smoothness obtained on the finer levels. This impairs the rate of convergence. 
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Figure 5. Comparison of 
pressure distribution with and 
without multigrid, NACA 0012, 
M = 0 . 7 , ~ = l  °. 

The multigrid strategy selected here also is the FAS scheme starting at the finest of 
the 3-level grid hierarchy with V-cycle. The finest grid is 160 x 32. The next two coarser 
grids are obtained by omitting the alternate points in both r and 0 directions. The 
coarse grid correction is interpolated using simple algebraic averaging of the values at 
the two coarse grid nodes. The relaxation sweep strategy adopted for the results 
presented here consists of a constant number of sweeps at all levels in both restriction as 
well as in the prolongation phases (though a choice exists to select any number of sweeps 
at any level). The boundary conditions are updated at all the grid levels. The computa- 
tions are terminated when the L2-norm of the residuals becomes less than 10 -4. 

Using this simple strategy, two typical results are presented for flow computations 
made for (i) NACA 0012 airfoil at Moo = 0.7 and ct = 1 ° and (ii) Garabedian-Korn  
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airfoil, M~ = 0.702 and ~ = 1.1. Figure 5 shows the pressure distribution for case (i) 
which is supercritical though without a shock. The agreement between the single grid 
computat ion and multigrid solution is just about  total. Figure 6 shows the convergence 
history for this case. The single grid computat ion took 562 work units to converge to 
the specified tolerance level while the multigrid solution took only 125 work units 
leading to an acceleration of about  4.5 times in terms of work units. Figure 7 shows the 
comparison of pressure distribution for case (ii). This is a supercritical case with shock. 
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Like the earlier case, the agreement between the single grid computation and multigrid 
solution is good except for a small difference in the vicinity of the shock. The reason for 
this is explained earlier which is associated with the interpolation of coarse grid 
correction. Figure 8 shows the convergence history for this case. The single grid solution 
took 696 work units to converge to the specified tolerance level, whereas the multigrid 
solution took only 100 work units giving nearly 7 times faster convergence speed. The 
gain in convergence speed for more difficult cases like the ones with strong shock and 
high angle of attack is higher. This is because the instability of shock which greatly 
impairs the single grid convergence is effectively handled by the smoothing capability of 
the basic scheme at multiple levels with the added advantage of the coarse grid correction 
of the multigrid process. (The simple grid sequencing technique also derives the advan- 
tage of multiple levels though without the advantage of any interaction between the 
solution process and the discretization seen in the form of coarse grid correction.) In fact, 
this speed-up can be further improved by adopting strategies like implementing conver- 
gence rate based switching criterion from fine to crude grid in the injection phase, 
working on additional coarser levels, using W-cycles and full multigrid, trying out 
a better smoothing of corrections in the prolongation phase etc. Next, in the following 
section, implementation of multigrid acceleration to obtain solution of a more complex 
system, i.e., compressible Reynolds averaged Navier-Stokes equations, is described. 

5. Multigrid acceleration of Navier-Stokes solver 

The full Navier-Stokes equations are believed to provide complete physics of the 
various fluid flow phenomena. Thanks to the developments in the area of efficient 
algorithms and acceleration techniques, particularly the multigrid technique, on one 
hand, and the faster computing machines, on the other, that it has become possible to 
compute Navier-Stokes flows around practical configurations in reasonable turn- 
around ti~ne. Still when it comes to simulating turbulence, the situation is not very 
encouraging at least as far as the computing resources are concerned. In spite of these 
diffÉculties, the solutions of Navier-Stokes equations are of great interest where o n e  
solves what is called Reynolds averaged Navier-Stokes equations which involve 
introduction of an empirical model to simulate turbulence. The details on these aspects 
are now available in the text books and only a brief description is presented here for 
ready reference. Some important aspects of discretization of these equations, the 
solution process and the implementation of multigrid will be described in the next 
sections. This will be followed by discussions of a few cases of multigrid solution of the 
transonic flow computations. The performance of the multigrid convergence of the 
present Navier-Stokes code, based on the described strategy, has been tested over 
a range of Mach numbers between 0-1 to about 4.0 (Singh et al 1993). 

Most of the progress in the multigrid solution of the Navier-Stokes equations has 
taken place during the last ten years or so. Several algorithms and methods have been 
devised to handle specific flow situations. A good number of these Navier-Stokes 
solvers use the finite volume discretization and Runge-Kutta time stepping scheme 
with addition of an explicit artificial viscosity to stabilise the solution. The solver in the 
present work is based on this method. (for details see Jameson et al (1981), Jameson 
(1985), Martinelli (1987), Kloppmann et al (1993), Singh et al (1993) and additional 
references therein). 
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5.1 T h e  N a v i e r - S t o k e s  e q u a t i o n s  

The time-dependent Navier-Stokes equations for two-dimensional flow are written as 
(Singh et al  1993a): 

f.(fwd,vol)+ ffH. dS=O, (18) 
where vector W is the cell averaged mass, momentum and total energy and is written as; 

W = (p,  pu,  pw ,  pE)  r, (19) 

and fi is the unit vector normal to the cell boundaries, u and w are the Cartesian 
velocities. The energy equation is written as; 

E = e + (u 2 + wZ)/2 ,  (20) 

where e is the mass averaged internal energy given as; 

e = P/(P(7 - 1)), (21) 

and p is the pressure. The flux tensor H is given as; 

H = pu2 - ax  p w u  - z ~  , (22) 
! p u w  - rx: p w  2 --  a _  

with 
a~ = - p +-~/~(2u x - w=) 

~r: = - p + ~ U ( ' 2 w .  - u ~ )  

r=  = r~x =/~(u., + w~) 

q~ and q: are the components of the heat flux vector. 

q ~ = - k T ~ ,  q ~ = - k T z .  

/~ is the molecular viscosity and is computed using the Sutherland law. k is the 
thermal conductivity. For  turbulent flows, the Baldwin-Lomax (1978) model for eddy 
viscosity has been used. 

5.2 S p a t i a l  d i s c r e t i z a t i o n  

The time dependent Navier-Stokes equations (18) are discretized based on the method of 
lines in which the spatial derivatives are discretized using the cell centred finite volume 
scheme. Applying these conservation equations to one of these cells, we can write 

dWi'~ + (Q~ + Q,. - D)i k = 0. (23) 
dt 

In the above, Q~ and Q,, are the convective and viscous flux vectors. This discretization 
amounts to central differencing and requires explicit addition of artificial viscosity to 
provide (a) a high order background dissipation to avoid the odd-even decoupling and 
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(b) a second component active in the vicinity of the shock to prevent shock-induced 
oscillations. This term is indicated by D in (23) and is described in the sub-section 5.3. 

5.3 Arti f icial  dissipation 

In the present work, the Jameson-Schmidt-Turke| (Jameson et al 1981) scheme for the 
numerical dissipation has been used which contains a blend of second and fourth 
differences of the flow variables. The second difference term damps oscillations in the 
vicinity of the shock sensed by a pressure based sensor. The fourth difference term helps 
to avoid the odd-even decoupling and provides the background dissipation in the 
smooth regions of the flow. This scheme is described below. The Jameson-Schmidt- 
Turkel numerical dissipation scheme (Jameson et al 1981; Martinelli 1987) is given as; 

Di,k = di + 1/2,k -- d i -  1/2.k + di.k + 1/2 - d i , k -  1/2,  (24) 
where 

di+ l/2.k = 2 i+  (21 - _ ~14) ,.~3 d l/2.k[ei+ l/2,kOxdi,k °i+ l/2,kVx--i -1.k]" (25) 

fix is the forward difference operator. The coefficients d z) and e (4) are written as; 

~2) _ (2) (26) ei+ 1/2.k - k max(v~÷ 1, v~), 

e(4) (4) (2) (27) i+ 1/2,k = max(0,k ei+ l/2.k)" 

The pressure sensor v is given as; 

v = I Pi + l,k -- 2pi,k + Pi -  1,k I/( I Pi + l,kl + t 2Pi.k I + t Pi - 1,k)" (28) 

The Navier-Stokes grids are highly stretched. The grid spacing near the wall in the 
direction normal to it is typically of the order of 10-5c (c being the airfoil chord) to 
resolve the boundary layer leading to streamwise aspect ratio of the cells very much 
larger than unity in the vicinity of the airfoil. This leads to a large value for artificial 
dissipation leading, in turn, to a large drag. In the far field, the situation is reversed as 
a result of which the cell aspect ratio defined as before is less than and often much less 
than unity. This disparity leads to very different high frequency modes in the two 
directions, and cause difficulty for both the convergence and accuracy of the steady- 
state flow computation as well as adversely affecting the multigrid procedure. To 
surmount this difficulty, the variable scaling factor (Martinelli 1987; Swanson & Turkel 
1987) A has been used instead of ,;. in (25). For this, 2 is written as 

'~i + 1/2 ,k = 0"5 [ (A x)i.~ + (Ax) i  + 1.k ] ,  (29) 
where 

,~ and 2~ are the scaled spectral radii of the Jacobian matrices of the convective fluxes, 
tr is a constant. With this, it has been possible to handle highly stretched grids with 
significantly improved damping properties. 

5.4 R u n # e - K u t t a  t ime s tepping 

The semi-discrete equation (23) may be written as; 

( d W i , k / d t )  -t- . ~ ( W i . k )  = 0 .  ~3o) 
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.~' is the discretized flux term and is known as residual. A hybrid 5-stage Runge-Kutta 
scheme has been used to advance the solution of(30) in time. Following Jameson (1985), 
this is written as 

WlO~ = Wl,~, 

W~,,~ = W~O~ _ :%At [Qc(Wt,, - 1~) + Q~,(w~o~) _ Dim-1~], (31) 

W (n+l)  = W (5}, 

m is the Runge-Kutta  stage number (1 to 5 for 5-stage), n the time index, W ~°~ the 
starting solution or the solution at previous time step. The convective fluxes are 
computed at every stage. For time economy, the viscous fluxes, considered in full, are 
computed only at the first stage and the numerical fluxes are computed at alternate 
stages employing a combination of present and previous values as follows 

D~O) = D~ll = D(W~°~), 

D tz)-- D ~3)= flD(W ~2J) + (1 - fl)D tin, (32) 

D (4)= ,'D(W (4)) + (1 - 7)D ~21. 

The weighting factors used above are fl = 0-56 and 7 =  0.44. The coefficients :% are 
taken as ~ = 1/4, ~2 = 1/6, x3 = 3/8, :q = 1/2, ~5 = 1. It has been shown by Martinelli 
(1987) that this scheme has a large parabolic stability limit. Since only the steady state 
solution is of interest here, a local time stepping scheme is used to accelerate the 
solution process wherein the time steps for each cell are taken to be the maximum 
permitted by the local CFL criterion. 

5.5 Implicit residual smoothing 

A second technique that is used to accelerate the solution procedure is that of implicit 
residual smoothing which enlarges the stability range of the basic time stepping scheme 
enabling larger time steps to be taken. Also, the implicit residual smoothing is known to 
significantly enhance the smoothing characteristics of the time marching scheme for 
use with multigrids (Wigton & Swanson 1990). In two dimensions, the residual 
smoothing operation is defined as follows; 

(1 - ~xfxx)(1 - ~x6==)~ * = ~ (33) 

where ~*  is the smoothed residual. The smoothing parameters e's are different for each 
cell because of different aspect ratios. The coefficients e developed by Martinelli (1987) 
are quite effective for highly stretched meshes and have been used in the present scheme. 
These locally varying coefficients are given as; 

ex = max 0, L \C-FLo':'~ + ~ 4~' - 1 . (34) 

CFL o is the natural Courant-Friedrich-Lewis (CFL) number of the basic scheme. The 
expressions for e. can be written in a similar way. While this variable coefficient implicit 
procedure requires additional CPU time to compute e,'s for each cell. this is more than 
compensated for by the fact that it allows CFL numbers two to three times larger than 
the original scheme. The highest CFL number tried in the present computations is 
about 7.5. 
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5.6 Boundary conditions 

The airfoil surface is treated as an adiabatic wall on which no-slip boundary condition 
is applied and zero normal pressure gradient is assumed. The formulation being cell 
centred, the variables are not specified on the surface. This requires considering 
a dummy cell adjacent to the boundary. To apply the wall boundary condition, simple 
extrapolation of pressure to the dummy cell is done and the density is found by 
symmetry. The velocity components are set antisymmetric. 

The farfield boundary condition is based on the use of Riemann invariants for 
one-dimensional flow normal to the boundary. The boundary conditions for normal 
velocity component and speed of sound are constructed by adding and subtracting the 
invariants (for details see Kroll & Jain 1987). For subsonic free streams, the tangential 
velocity components and entropy are extrapolated from the interior at an outflow 
boundary and are equated to freestream values at the inflow boundary. With this, the 
flow variables in farfield are computed. 

5.7 Multigrid strategy 

The basic features of the multigrid scheme used here are along the lines developed by 
Jameson (1985). The specific features of the present method can be seen in Singh et al 

(1993) and Kloppmann et al (1993). The Runge-Kutta time marching procedure 
quickly smoothes out the high frequency errors (short waves) on the fine meshes where 
further smoothing operations would become progressively slower. Note here that in 
the context of multigrid, the schemes like Gauss-Seidel, predictor-corrector, Runge- 
Kutta and so on are seen as smoothers rather than solvers. This is because one intends 
to get a good coarse grid approximation from the fine grid solution by having the fine 
grid starting approximation smoothed, i.e., high frequency errors diminished. The 
solution with the remaining error components are passed on to the next coarser mesh 
until that coarsest mesh is reached where the low frequency errors (long waves) of the 
finer meshes are seen as high frequency errors. The basic Runge-Kutta smoother is 
again used to remove these long wave (with respect to the finest mesh level on which the 
solution is sought) errors. 

The scheme may use any number of levels of mesh refinement which is read as input 
in the code. In all the results presented here, the Full Approximation Storage scheme is 
used in which one starts with an initial solution on the finest mesh. In the present 
computations, three or four mesh levels have been used with V or W-cycles. The scheme 
for the residual transfer and correction interpolation are important steps for a good 
multigrid performance. The scheme should be such that the coarse grid correction 
improves the finer grid solution in smooth regions as well as correcting the discontinu- 
ity location. Towards this requirement, the flow variables are transferred from fine to 
coarse grid as follows (in the following, the subscript will indicate the grid level 
identifier). 

°' = vh wh/v h, (35) 

where V is the cell volume and h and 2h refer to the finer and coarser meshes levels, 
respectively. The summation is performed over the four fine cells constituting one 
coarse cell. This volume weighted averaging preserves mass, momentum and energy 
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conservation. The residuals are transferred as simple sums of the residuals in the four 
constituent fine cells. The eddy viscosity is computed only on the finest mesh and is 
carried on to the coarser mesh by simple averaging. To update the solution on the 
coarse mesh, the residual is modified by adding the forcing function defined as; 

f2h _ ~, ,o, = R h ( W  h ) -t- R 2 h ( W 2 h  ). (36) 

The summation is performed as before. With this, the multistage scheme on the coarser 
mesh is written as; 

° ,  = 

W(21h , = W(20) - -  :~1 A t ( R i  °' - f 2 h ) ,  

W ~  ) = W{2 °) - ~%At(Rt2~h - ') - f2h), (37) 

W ~  1~ _ wlm~ 
- -  ' ' 2 h  ~ 

where n is time level and m is the number of stages. Note that in the first stage above, the 
entire corrected residual reduces to ERh(W)h implying that the evolution on the coarse 
mesh is influenced by the residuals on the finer mesh. This procedure is followed until 
the coarsest mesh is reached. Only a single fine grid boundary condition update offers 
computation time economy without sacrificing the accuracy of the solution. The 
corrections computed on the coarse mesh are prolongated to the finer mesh by simple 
linear interpolation. This step introduces high frequency errors causing degradation of 
the convergence which is more pronounced if the grids are highly stretched. To improve 
the situation, the corrections are smoothed before update. An effective way to take into 
account the effect of high grid stretching is to use the implicit residual smoothing. The 
coarse grid correction is transferred to the finer mesh by 

Wh = Wh~oJd) + JT~h(W2h -- ~¢h2h Wh~old)) ' (38) 

where J ~,nd J are suitable interpolation operators. 

5.8 Resul ts  f r o m  N a v i e r - S t o k e s  computat ions  

The multigrid accelerated Navier-Stokes code developed and based on the above 
strategy has been extensively used to compute several flow conditions on a variety of 
airfoils. Table 2 lists the four typical cases of airfoils and the corresponding flow 
conditions for which the computed results will be presented. 

For the cases presented, a 257 x 41 size C-grid with a total of 64 points in the wake or 
321 x 65 size C-grid with a total of 128 points in the wake has been used. The farthest 
grid points are placed at about 12 to 18 chords away from the airfoil and the grid line 
just above the airfoil is about 10 -5 chords away to enable a good resolution of 
the boundary layer. The computations have been performed on the Convex 3820 
computer at the CSIR Centre for Mathematical Modelling and Computer Simulation, 
Bangalore. Depending on the mesh size and the flow conditions, the solutions, 
converged to the level of acceptable tolerance, take just about 5 to 15 min of CPU time. 
The corresponding single grid solution takes about 2-3 hours of CPU time for similar 
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Table 2. Cases selected for Navier-Stokes computations. 
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Case Airfoil Grid M~ ~(deg) Re(106) Xtr 

1. CAST-7 257 x 41 0.70 2.00 4.0 7% 
0.70 2.64 6.0 8% 
0-70 3-60 6-0 8% 

2. RAE 2822 321 x 65 0-73 2-79 6"5 3% 
3. NACA66,2-215 257 x 41 0.601 2-0 1-5 64% up 

73% low 
4. NACA 0012 257 x 41 0-6 8.437 9.0 5% 

0.6 9.0 9-0 5% 

xt r -  transition location as % of chord 

and, in most cases, higher levels of residuals. This feature of the code, along with its 
robustness and accurate prediction capabilities, offers itself as a designer's tool for 
evaluating the characteristics of the airfoils. 

5.8a CAST-7 airfoil: This is 11.8% thick supercritical airfoil with moderate rear 
loading, designed by the Dornier Company. This airfoil has been extensively studied by 
this author during the early phase of the work with this code without multigrid (Singh 
1990). Table 3 shows the details of the studies made on this airfoil and presented in this 
report. 

The single level computation and 3-level grid sequencing computations at serial 
numbers 1 and 2 are included from the point of view of illustrating the effect of factors 
other than multigrid as will be explained. The single grid computation (no. 1) refers to 

Table 3. Comparison of performance of Navier-Stokes code with and without multigrid 
(Cast-7 airfoil). 

Computational Work Convergence 
strategy c~ c~ units level CFL Remarks 

1. Single grid 0-8197 0-01905 6500 ~ 1-97 × 10-1 0.6 4-stg RK, No IRS 
std JST 

2. 3-Level grid 0-8175 0-01899 3437 - -  0.6 4-stg RK, No IRS 
sequencing std JST 

3. Single grid 0-8117 0.01898 3000 ~, 10 -s 1-6 5-stg hybrid RK, 
VC-JST, VC-IRS 

4. 3-Level MG 0.8174 0.01926 147 2-06 x 10 -4 for 1-6 5-stg hybrid RK, 
V-cycle stabilised CI VC-JST, VC-IRS 

5. 3-Level MG 0-8172 1>01921 496 9.51 x 10 -s 1"6 5-stg hybrid RK, 
V-cycle for convergence VC-JST, VC-IRS 

tolerance of 10 -7 

4- and 5-stg RK - 4- and 5-stage standard Runge-Kutta scheme 
IRS - implicit residual smoothing 
VC - variable coefficient (eigenvalue weighted) 
JST - Jameson-Schmidt-Turkel artificial dissipation 
CFL - normalised CFL number defined as CFL/CFL o (see (34)) 
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the original status of the code when the work on the development of the accelerated 
Navier-Stokes code was started under the NAL-DLR (G6ttingen) collaboration. 
Computation no. 2 refers to the first stage of the acceleration work using grid 
sequencing (Singh 1990). Both these computations use a standard 4-stage Runge- 
Kutta scheme with the Jameson-Schmidt-Turkel dissipation (Jameson et al 1981). 
Also, to stabilise the solution properly, a normalised CFL number of 0.6 has been used 
which gives slow convergence rates in these two cases. The single grid version at serial 
number 3 and the multigrid version have additional features like eigenvalue scaled 
dissipation coefficients, hybrid 5-stage Runge-Kutta time integration and variable 
coefficient implicit residual smoothing whose effects are described in § § 5.3 to 5.5. These 
elements offer the multigrid version of the code not just the weighted dissipation but 
higher CFL too. The normalised CFL used in the presented multigrid example is 1-6. 
These points should be borne in mind while making comparisons based on the data in 
table 3. 

Figure 9 shows the comparison of the pressure distributions obtained using single 
grid (dashed line), 3-level grid sequencing results (shown by *) and 3-level multigrid 
V-cycle results (full line). This study presents the validation test to check the faithful 
reproduction of earlier verified and well-studied single mesh and 3-level grid se- 
quencing computations (Singh 1990) by the present multigrid computations. Under 
these flow conditions, the airfoil develops a shock of moderate strength on the upper 
surface at around 35-37% of chord. The agreement of Cp-distributions obtained from 
the three computations is almost total. Figure 10 shows a similar comparison of the 
skin friction (normalised with respect to free stream quantities) obtained from the single 
grid version (dashed line), the grid sequencing version (no. 2 with *) and the multigrid 
version (no. 4, full line). As in the case of Cp, the agreement of skin friction obtained 
from these versions is also nearly total. The skin friction is a more sensitive quantity 
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Figure 9. Comparison of pressure distribution with and without multigrid, N-S 
solution, Cast-7, M = 0'7, ~ = 2". 
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Figure 10. Comparison of 
skin-friction, N-S MG sol- 
ution, Cast-7 airfoil, M =0.7, 
0t=2 °. 

than C~ and these agreements confirm the general reliability of the codes as well as that 
of the multigrid implementation. Figure 11 shows the comparison of convergence rates 
of the single grid computation (case 3) and multigrid computations. This figure shows 
that to achieve a drop of five orders in the normalised maximum residual, the multigrid 
requires approximately 280 work units, whereas the single grid computation requires 
approximately 2800 work units. Figure 12 shows the comparison of evolution of the 
lift. It is seen that while the single grid computation takes about 1200-1300 work units 
to reach stabilised lift level (but with higher residue level), the multigrid computation 
shows a rapid and smooth evolution stabilising in about 200 work units with one order 
smaller residue level. This rapid stabilisation of lift coefficient, which is sustained 
without any oscillation, indicates a reliable, robust and stable computation. 
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Before proceeding further to discuss a few computations and their comparisons with 
experimental data, it would be of interest to discuss here the effects of V and 
W multigrid cycles and the number of smoothings at each level on the performance of 
multigrid technique• Figure 13 shows the effect of V and W-cycles on the convergence 
history of flow past RAE 2822 airfoil. The two computations have all other inputs 
identical. A marginal gain in convergence rate is seen with W-cycle (Kloppmann et al 

1993). Figure 14 shows the effect of number ofsmoothings performed at each grid level 
and also the effect of V and W-multigrid cycle strategies for flow past NACA 0012 
airfoil. The numbers in the legend indicate the strategy used. For example,"case 1:3-1vl 
V-cycle 8/4/2 & 0/0/0" indicates that the computation in case 1 uses 3 level V-cycle with 
8 smoothings at the coarsest level, 4 at the medium level and 2 at the finest level in the 
injection phase and no smoothing during the prolongation phase. This experiment 
showed that most computations, especially the ones using W-cycle, failed to converge if 
no smoothing was performed during the prolongation phase. The figure also indicates 
faster drop of residual with larger number of smoothings performed on the coarser 
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levels. The fastest convergence is obtained with the combination used in case 5 whereas 
the residual is driven to the lowest level in case 1. 

Next, the results of some computations for transonic flow past airfoils will be 
presented and compared with the experimental data to demonstrate the robustness and 
accuracy of the code and the efficiency obtained due to multigrid technique. 

Figure 15 and 16 show the comparisons of the predicted pressure distributions with 
experimental data (Stanewski et a11979) for flow past Cast-7 airfoil at M = 0-7 at angles 
of attack of.(i) 2.64 ° and (ii) 3-6 °. The Reynolds number for both cases is about 6 x 10 6 

with transition forced at 8% chord. The agreement for the case (i) is good everywhere 
including the shock location and its intensity. The agreement for the case (ii) is also 
good but the computed shock intensity is somewhat stronger. The grid for this case is 
a 257 x 41 C-grid with 64 points in the wake and 193 points on the airfoil. The lateral 
separation of the grid is such that there are nearly 25 grid lines inside the boundary 
layer and the grid lines in the outer flow are sparsely located. This indicates that 
if the flow inside the boundary layer is well resolved, the outer mesh density plays 
a secondary role. This fact is well borne out not just by the good pressure prediction but 
also by the well predicted drag. Table 4 summarises the quantitative comparison for 
these two cases. 

5.8b RAE 2822 airfoil: For this study, the standard transonic test case number 
9 from the AGARD set of data (Stanewski et a11979) is selected. This computation has 
been carried out on a fairly fine mesh of size 321 x 65. The experimental incidence for 
this case is 3"19 °. The present computations have been made at a corrected angle of 
attack of 2-79 ° as suggested by the experimenters (Stanewski et al 1979) to accommo- 
date the effect of wind tunnel wall interference. Figure 17 shows the comparison of 
computed pressure distribution with the AGARD data (Stanewski et al 1979). The 
agreement is seen to be good almost everywhere including at the peak plateau and 
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Figure 15. Comparison of Cp-distribution, Cast-7, M =0-7, ct = 2.64 °, 
Re = 6 x 10 6. 

shock location. It may  be pointed out that  very often in the literature, a significant 
difference is seen in the peak  pla teau region. The  experimental  values of lift and drag  
coefficients (c~ = 0-803 and c d = 0-0168 respectively)agree well with the predicted values 
(c~ = 0-799 and c d = 0-019 respectively). As seen in figure 18, the compar i son  of skin 
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Table 4. Quantitative comparison with experimental data Cast-7 Airfoil. 
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ct Re c t cd 
Case Moo (deg) 106 Xtr (present) ct* (present) c~ 

(i) 0-70 2-64 .6.0 8% 0-8809 0-867  0.02548 0.01879 
(ii) 0-70 3"60 6.0 8% 1-0289 1 .027  0-0393 0.03286 

* Reference- Stanewski (1993b) 

friction (normalised with respect to the quantities at the boundary layer edge to be 
in conformity with the experimental data) is also in good agreement with the experi- 
mental data. 

5.8c NACA66,2-215 low drag airfoil: This is one of the low drag airfoils (what is 
now known as NLF  airfoils) designed at the erstwhile NACA during the 40's. Its 
characteristics are studied and reported (Graham et al 1945). The airfoil was designed 
to perform at high subsonic Mach numbers. The transition points on the upper and 
lower surfaces, as given in table 2, were fixed at locations approximately predicted using 
the Granville criterion as the related information was not available. Figure 19 shows 
the comparison of the computed pressure distribution with experimental data 
(Graham et al 1945). The agreement is seen to be good. Figure 20 shows the corre- 
sponding convergence history. The residual drops to about 3 x 10- 5 in about 400 work 
units. 
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Figure 17. Comparison of CFdistribution. N-S MG solution, RAE 2822, 
M = 0"73, ct = 2.79 °, Re = 6"5 x 10 6. 
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Figure 18. Comparison of 
skin-friction. N-S MG solu- 
tion, RAE 2822 airfoil, M = 
0.73, ~t = 2-79 °, Re = 6"5 x 10 6. 

5.8d N A C A  0012 airfoil: This airfoil was chosen to demonstrate the application of 
the multigrid Navier-Stokes code to compute flows at high angles of attack with large 
trailing edge separation. The Baldwin-Lomax model for turbulence is not adequate 
when the flow is largely separated. With the present experience, the Granville correc- 
tion to this model appears to give results in much better agreement under separated 
flow conditions (Singh et al 1993). However, under the nonequilibrium conditions of 
shock induced separation, this model does not seem to be as effective as under the 
conditions of the trailing edge flow separation at low speeds. Figure 21 shows the 
comparison of C o distribution at M~ =0"6, or(corrected)= 8.437 °, R e = 9  x 106 
and transition fixed at 5% chord. This case corresponds to the stall condition with 
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Figure 19. Comparison of pressure distribution, NACA 66, 2-215 airfoil, 
M = 0.601, ct = 2 °, Re = 1.5 x l06. 
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Figure 20. Convergence his- 
tory, NACA 66, 2-215 airfoil, 
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0~expt = 9.86 °. The results are compared with the experimental data of Harris (1981). 
The predicted pressure distribution with the Granville correction is seen to be in 
better agreement with the experimental data than that predicted using the original 
Baldwin-Lomax model. Figure 22 shows the computed skin friction (quantities nor- 
malised with respect to free stream values). A separation bubble between about 16% to 
23% of chord is seen with a brief reattachment followed by separation on the entire 
upper surface. Figure 23 shows streamline pattern around this airfoil under the same 
conditions but at slightly higher (corrected) angle of attack of 9 ° . The separation 
bubble, which was very small for the case with ~t = 8.437 ° to offer good graphic 
representation is slightly enlarged in the present case and can be seen clearly in 
figure 24. The flow reattaches briefly after the bubble and separates again over the 
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Figure 21. Comparison of 
pressure distribution, 
NACA 0012 airfoil, M =  
0"6, ~(corr)= 8-437 °, Re= 
19xlO s , xtr=5%, stall 
condition. 
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Figure 22. Computed 
skin friction NACA 0012 
airfoil, M = 0.6, a(corr) = 
8.437 =, Re = 9 x 10 6. 

entire upper surface. The skin friction inset in figure 24 clearly shows the location of the 
bubble and the separated flow on the upper surface. The flow evolution for this 
computation is wavy with lift coefficient oscillating over a couple of hundreds of work 
units with the amplitude of oscillation of lift continuously reducing and finally settling 
down. This indicates that the flow has still not become unsteady and the results are 
fairly acceptable for design estimates as indicated by the stabilised lift. The normalised 
residual could not be driven below about 10-2. 

6. Conclusions 

The multigrid technique is, perhaps, the best known acceleration technique for iterative 
solution procedures. It offers the possibility of a realistic turn-around time for many 
computations which otherwise take hours and days on most of the commonly used 

f f 

f l  

Figure 23. Streamline pattern, N-S MG solution, NACA 0012 airfoil, M = 0.6, 
ct(corr) = 9 ° (Granville correction to B-L model, stall condition). 
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Figure 24. Magnified view of the separation bubble of figure 23. The inset shows 
the skin friction. The reversed flow inside the bubble and the fully separa-ted flow 
downstream is clear from the negative skin fi'iction. 

computing machines. Its application to three common fluid dynamical problems is 
demonstrated and the quantitative gains are seen to be in the range of 3 to 10 times in 
terms of work units. The accelerated codes, which have been demonstrated to be fairly 
robust and accurate, offer themselves as designer's tools for evaluating the characteris- 
tics of the airfoils, especially when used on high speed computing machines. 
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