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STUDIES IN OPTICS
I. General Coordinates for Optical Systems

with Central or Axial Symmetry*

BY

M. HERZBERGER
Communication No. 960 from the Kodak Research Laboratories

In previous papers1,2 the author has proposed an approach to geometrical optics
different from that developed by Hamilton and his successors.

The purpose of the present paper is to generalize the formulas in these papers,
and to find the most general treatment of systems with central (point) symmetry and
with axial symmetry. By leaving the coordinates general, subject only to the sym-
metry conditions of the problem, we retain the symmetry in the formulas up to the
point where we desire to draw conclusions for a special problem. We can then intro-
duce special coordinates adapted to the problem in question, and find the particular
answers.

The fundamental invariants of geometrical optics show no preference for either
object or image side, nor for pbint or angle coordinates as variables. The different
approaches suggested by Hamilton, as well as the direct approach just mentioned, are
special cases of the methods developed here corresponding to special choices of co-
ordinates. Several different choices of coordinates will be given as examples.

The fundamental formulas (A, B, B', C below) are based only on symmetry con-
ditions and on the validity of the Lagrange invariant (A). They are therefore not
restricted to optical problems,3 but are also valid for problems in mechanics, hydro-
dynamics, and electron optics.

1. Ray tracing formulas, the Lagrangian invariant. Let us assume a ray travers-
ing a number of optical media with refractive indexes n, «i2, n23, •••,«'. Let a(x, y, z),
&'{x', y', z') be a vector from an arbitrary origin to a point on the object and image
rays, respectively. Let ak(xk, y*, zk) be the vector from the same origin to the inter-
section point of the ray with the &th surface. Let sktk+\($ik,k+i, Vk.k+i, £k,k+i) be a vector
along the ray in the medium between &th and (& + l)th surface, a vector of length
equal to the refractive index nk,k+i of the medium.

Let Ok be a vector perpendicular to the fcth surface at the intersection point. Its
length may remain arbitrary, for the moment. The refraction law then reads:

Sft.fc-f-l X Ok ~ &k—l,k X 0ki (1)

where the multiplication sign indicates vector multiplication. Equation (1) shows
that Sjfc,t+i— Sk-i.h has the direction of the surface normal ok, or

* Received Jan. 24, 1944.
1 M. Herzberger, Direct methods in geometrical optics, Trans. Am. Math. Soc., 53, 218-229 (1943).
1 M. Herzberger, A direct image error theory, Quarterly of Applied Mathematics, 1, 69-77 (1943).
8 For the connection of the Lagrangian invariant with different branches of mathematics and physics,

see M. Herzberger, Theory of transversal curves and the connections between the calculus of variations and the
theory of partial differential equations, Proc. Nat. Acad. Sci. U.S.A., 24, 466-473 (1938).
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Sk,k+1 ~ Sfc-1 ,k — <t>kOk- (2)

We now can describe the path of the ray through the system by means of the vector
equations

ai = a + Xs, S12 = s + <#>iOi, a» = ai + X12S12,

(3)
s' = s„_i,v + <M>*, a' = a, + X's'.

The geometrical significance of X and 0 can be seen by multiplying (3) scalarly by
Sjfc,i+i and Ok, respectively, keeping in mind that, by definition,

We then find that
slt+i - (3a)

fck-i.k = (a* — at_i) ■ Sk—i,k/ n-k-i.k, (3b)

<l>k = (Sjfc,fc+l — Sk-l,k) -ok/ol, (3c)

i.e., the X's are proportional to the distance between the two surfaces along the ray,
and the <f>'s are proportional to what might be called the power of the surface for the
individual ray.

Since Eqs. (3) are valid for every ray, we now consider a two-dimensional mani-
fold of rays, i.e., we assume the a's, o's, and s's to be vector functions of two variables
h and h- From the definition of s^jt+x and o*, we find

Sjfc,jfc+i-(ds/M+i/d*„) = 0, ok (dSLt/dt,) =0, (/X = 1, 2). (4)

We now differentiate (3) with respect to h and multiply scalarly by dSk.k+i/dk and
d&k/dk, respectively. Then we differentiate with respect to t2 and multiply scalarly
by dsk,k+i/dh and 3a*/3<i, respectively. Subtraction of the two sets of equations yields
the "Lagrangian invariant":

da 3s
dti dh
da ds
dt% dti

da! dSi

dh dh
d&i dSi,2

dh dh

da' ds'
dh dh
da' ds'

dh dh

(A)

This formula was introduced by Lagrange in his astronomical investigations. It is
known by the name of the Lagrangian bracket in the theory of partial differential
equations. Herzberger3 used it in his theory of transversal curves, as the starting
point. Let us now see what conclusions can be drawn if the system in question fulfills
certain conditions of symmetry.

2. Centrally symmetric systems. In this case all refracting surfaces are concentric
spheres with radii n, • • • , rn. It is therefore appropriate to consider the common
center as the coordinate origin, and to choose concentric spheres as the object sur-
face a and the image surface a'. All the surface normals pass through the common
center. We shall give them the length rk from center to surface, with a positive sign
if the surface is convex towards the incident light. In other words, we make Ojfc = a*.
Under these conditions, Eqs. (3) become
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ai = a + Xs, S12 = s +

(5)
s' = sn—i,n + <M„, a' = an + X's'.

From Eqs. (3) we can find an invariant vector, namely,

a X s = ai X s = ai X S12 = • • • = a' X s' = p. (6)

Therefore, in a concentric system, both object and image rays lie in a plane through
the center, and the optical length p of the perpendicular from the center (the length
of the invariant vector) remains constant.

Equations (4) can be combined into

a' = aa. + bs, s' = ca + ds, where ad — be = 1. (B)

The invariant relation, ad — bc = l, is found by substituting (5) in (6). It is possible to
calculate a, b, c, and d as functions of the X's and <£'s, if we use "Gaussian brackets."4
We find

= [<£i, X12, • • • , X'], b = [X, <t>i, • • • , X'],
(7)

c = [<£i> X12, • • • , </>„], d = [X, <t>i, • • • , <£„]•

In the case of central symmetry, the 4>'s and X's, and therefore a, b, c, and d, can
be considered as functions of a single variable, and p can be taken as this variable,
as shown in (9) and (10). Now

(at-Si.fc+O2 + (a* X Sjfe.jt+i)2 = atsl.t+L (8)
or

a*-SjfciM.i = Vrlnlk+i - p\ (8a)

Thus we find from (3) that

X*,*+1 = ~i—" fVr*+i«iU-H ~ P2 ~ ^«w+i ~ P21i

= —ku/l - "i/< - (—)']•
nk,k+1 L V \rk+ink,k+i/ ¥ \ rknk,h+i/ J

(9)

and that

= 2 r\ni,l+l ~P* : P*~\' (10)
Tk

Equations (B) correspond to the direct equations of our theory. A more general
representation is given by choosing two arbitrary vector functions, 1 and m, in terms
of which the object and image vectors can be expressed. Equations (B) may then be
written,

a = al + Am, a' = a' 1 + 6'm,
s = cl + dm, s' = c'l + d'm; (B')

ad — be = a'd' — b'c'.

4 Invented by L. Euler in 1776. See M. Herzberger, Gaussian optics and Gaussian brackets, J. Opt.
Soc. Amer. 33, 651-655 (1943).
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a, b, c, d, and ab', c', d' are still functions of a single variable, which can be taken as

ir = (1 X m)2 = l2m2 - (lm)2. (11)

It is obvious that under these conditions the image formation described by (11) fulfills
all the conditions mentioned, and that the last condition in (B) is equivalent to the
validity of the invariant (6).

Formulas (B) are a special case of Eqs. (B') if we choose l = a, m = s, which corre-
sponds to a=d = 1, b=c = 0.

The connection between a, b, c, d and a', b\ c', d' becomes clearer if we introduce
some auxiliary angles. Let us write

<£ (a, m) = a, <£ (1, a) = 0, •£ (s, m) = y, <£ (1, s) = 5,
* (1, m) = i, < (a, s) = a, * (a', s') = <r'.

From (B), if we write r for the absolute value of vector a, we find that

a = (rm/ir) sin a, b = (rl/w) sin j8,

c = (nm/ir) sin y, d = (nl/ir) sin 8,

with analogous expressions for the primed quantities. Moreover, we find from (12)
that

a + 0 = y + 5 = i = a' + = 7' +

a — y = h — /3 = a, a' — y' = 5' — /3' = a', (14)

where a and a', according to (9), are connected by

p = nr sin a — n'r' sin a', ir = lm sin <f>. (15)

If we write
ad - bc = a'd' - b'c' = D, (16)

we have finally
p — Dir.

Thus, for a given system of coordinates I, m, and <j>, and given object and image
spheres (radii r and r'), we can calculate all the functions a, b, c, d, a', b', c', d', if
only one of them is given on each side. For instance, let us assume 7 and 7' to be
given. We then find a and a' from (15), and obtain

(17)
a = a -f 7, /3 = ^ — a — 7, 7 = 7. 8 = \f/ — 7,

a' = a' + 7', /3' = i — a' — 7', y' = 7', 8' •= \f/ — y'.

Thus, according to (13), we determine a, b, c, d, a', b', c', and d'.
Let us now consider some special cases.
a) The direct method. We choose l = a, m = s. This means that

yp = a, 0 = 7 = 0, a = 8 = a,

a = d = 1, b = c = 0, (18)

a' — a' + 7'. 0' = c — <r' ~ 7'. 7' = 7'. 5' = <7 — 7',

where nr sin <j = n'r' sin <7'.
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b) Hamilton's point coordinates. We choose l = a, m = a', or a = l, 6 = 0, a' = 0,
b' = 1. This means that

a = \p, B = 0, 7 = \I/ — <r, 5 = cr,

a' = 0, = xp, 7' = - ^

or, since 1 = r, m = r',

a = 1, 6 = 0, c — \nr' sin (\p - <r)]/ir, d =

a' = 0, 6' = 1, c' = />/ir, d' = [»V sin + cr')]/-jr,

where

nr sin <r = «V sin a' = p, rr' sin \p = tt. (18')

We note especially that c'—d =0.
c) Hamilton's angle characteristic. We choose l = s, m = s', or c = 1, d = 0, c'= 0,

</ = 1. We find from (B') that

ad — be = a'rf' — b'c' (19)

or —b=a'=D—p/ir. For the auxiliary angles, we obtain

a = a + \p, 0 = - <r, y = i, 5 = cr,

a' = cr', f}' = i - cr', 7' = 0, 6' =
or

a = (mV/it) sin (^ + cr), 6 = — a' = — />/x, 6' = («2/x) sin W" ~~ ff')> (21)

where

7r = ««' sin p = nr sin cr = n'r' sin cr'.

d) We take as coordinates the intersection points of the ray with two spheres in
the object space: the object sphere (radius r), and a second sphere (radius R, and A,
the vector to the intersection point on this sphere). We define

1 = a, m = A,
and

a = a, a' = a' a + b' A,
s = — ca + dA, s' — c'& + d' A, (22)

where a'd' — b'c' =c and

c = [«i? sin (^ — <r)]/ir = — [«r sin o\/ir = — />/ir. (23)

We find that

sin cr' = [nr sin a]/n'r', sin (\f/ — cr) = [» sin cr]/«i?,

and, finally that

a' = [r'i? sin (cr' + 7')]/""> c' = [w'i? sin y'\/ir,

b' = [rr' sin (^ — cr' — y')]/*, d' = [n'r sin (\p — y')]/*■

These are the equations for the image formation.

(24)
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3. Systems with rotational symmetry. Let us now assume that the system has sym-
metry only around an axis, the unit vector along which we shall designate by k.
In this case, all the surface normals intersect the axis, and we shall give to the vector
ok in (3) the length r*, which is the distance along the normal between its inter-
section points with the axis and the surface.

We now project all the vectors on a plane perpendicular to the axis, and define
the projected vectors b* and ti,t+i by the equations

a* = hi + z*k, Sk,k+i = tfc,fc+i + ffc.it+ik, 0* = b* + (zt — z.y*)k, (25)

where Zs is the quantity known in geometry as the subnormal, and

1 — £*,*+1 Vk,k+1!

is the (optical) cosine of the angle between the ray and the axis.
Let us now assume that object and image origins lie on two planes perpendicular

to the axis. We can then replace all the vectors in (3) and (A) by their projections
in these planes, and find, instead of (A), for a two-dimensional manifold of rays
(parameters h, h),

ab at
Sti dti
db at
dtz a/2

ab' at'
eti a/,
ab' at'
a/2 a/2

(26)

and instead of (B),

b' = a'b + b% t' = c'b + d't, (27)

where b'Xt' = bXt and therefore a'd' —b'c' = 1. The functions a', b', c', d' are given
by formula (7), where <f> and X have the same meaning as before.

Moreover, a', b', c', d' are no longer functions of a single variable, but are func-
tions of the three symmetric functions and b and t, namely,

« = b2, t = bt, w — t2. (28)

Equation (27) corresponds to the formulas of the direct image error theory. The
most general choice of coordinates might be described as follows (t and m, as well
as the other vectors, lie in a plane perpendicular to the axis): let

b = al + bm, b' = a'l + b'm,
t = cl + dm, t' = c'l + d'm, ^ ^

where
bXt-b'Xf,

or
ad — be = a'd' — b'c'. (30)

Let us assume that a, b, c, and d are functions of the symmetric functions of
1 and m; that is,

u = l2, v = lm, w = m2. (31)

b, t, b', t' must fulfill Eq. (26), if we set h and /2 alternatively equal to u, v, and w.
Thus, we find the following equations for a, b, c, and d. Let us write
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A = au -f- bv, C = cm + dv,
(32)B = av + bw, D — cv + dw,

and introduce the abbreviation A for the difference of an expression in the object and
image spaces. An easy computation then gives

dA dA
dti dt2

dc dc

dti dti

+

dB dB
dh dt2
dd dd
dh dt2

+

da da

dti dt2

dC dC
dti dtz

+

db db
dti dt%
dD dD
dh dt2

= 0, (C)

A(ad — be) = 0.

These are the necessary and sufficient conditions that (29) describe an axially sym-
metric image formation. We repeat that Eqs. (29) and (C) demand only the validity
of Lagrange's invariant (26), and axial symmetry. Their application is therefore not
restricted to optical problems.

Let us now again investigate what forms the fundamental formulas assume for
special choices of coordinates.

a) Hamilton's (Bruns') point characteristic. Hamilton (Bruns) chose as variables
the coordinates of a point in the object and image spaces. That corresponds to taking
l = b, m = b'. Equations (29) become

b = b, b' = b',
(33)t = cb + db', t' = c'b + d'b',

or
a = b' = 1, b = a' = 0.

These are conditions for the coefficients. Equations (32) now become

A = u, C = cu + dv, A' = v, C' = c'u + d'v,
(34)

B = v, D = cv + dw, B' = w, D' = c'v + d'w,

and we find instead of (C) that

du du

dh dt}
dc dc

dti dti

+

dv dv
dti dt2

dd dd
dti dti

d — — c', (35a)

= 0. (35b)+

dc' dc'

dti dti
dv dv
dti dti

+

dd' dd'
dti dti
dw dw
dti dti

Equation (35b) stands for three equations, which we can obtain by replacing t\
and tt in (35) by « and v, u and w, v and w, respectively. This yields

dc dd dc' dc dd' dd dc' dd' ^ ^
dv du du dw du dw dw dv

Equations (35a) and (C), when integrated, lead to a function V{u, v, w) such that

dV dV dV dV
c = 2 , c' = , d = , d' = - 2  (36)

du dv dv dw
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V is the characteristic function of Hamilton, the "eiconal" of Bruns. Formulas
(36) agree with Hamilton's formulas, except that he used Is/2 and m2/2 as variables.
Our choice of variables simplifies the form of the general formulas (C).

b) The angle characteristic. Hamilton chose as coordinates the direction cosines
of the object and image rays. This means that l = t, m = t, or

b = at + bt, b' = a't + b't',
t = t, t' = t', (37)

or
c = 1, d = 0, c' = 0, d' = 1. (38)

Equations (29) now give

C — u, C' = v, D = v, D' = w, (39)

and (C) becomes
b + a' = 0,

db da da' da db' db da' ^ db' ^
du dv du dw du dw dw dv

Equation (4) is solved if we introduce the angle characteristic T(u, v, w), and set

1 dT dT dT 1 dT
a = > a' = > b =  » b' =   (41)

2 du dv dv 2 dw

We see that this also agrees with Hamilton's theory.
c) The direct method. In the papers mentioned,1,2 we took as variables the object

point and the direction of the object ray, i.e., we chose l = b and m = t. This gives

(42)
b = b, b' = o'b + i't,
t = t, t' = c'b + d't.

That is, we put
a = d = 1, b = c = 0. (43)

Equations (27) then give

A = «, C = v, B = v, D = w, (44)

and Eqs. (C) give

a'd' — b'c' = 1,
dA' dA'
dt\ dt%
dc' dc'

dti dti

+

dB' dB'
dti dt2

dd' dd'
dti dt%

+

da' da'

dti dt%
dC' dC'
dti dt^

+

db' db'
dti dt%
dD' dD'
dti dt2

= 0. (45)

If we denote the sum of the four determinants in (45) by I' when h = u, k = v, by
II' when h = u, h = w, and by III' when h=v, t2 =w, we can write (45) in the form

a'd' - b'c' =1, /' = //' = III' = 0. (46)
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Again, if we disregard the fact that the variables u and w differ by a factor of
two from those used previously1'2 we find Eqs. (46) to be identical with those given
before.

d) Object and stop coordinates. To analyze image errors, we investigate the manner
in which the image ray changes with the position of the object point and the position
of the intersection with the diaphragm plane, for which we frequently substitute the
entrance pupil of the system. If we choose these as the coordinates of the ray, assum-
ing that the distance between object and entrance pupils is equal to k, we find that

b = b, b' = a'b + b'bpt
t = 7(b - b„), t' = c'b + d'bp<

where

\/ k2 + (b — b„)2 \/ k2 + « — 2v + w

From (48) we conclude that

V^2 + « — 2v +
1 n/' = - //' = in' = —

w

2 (k2 + u — 2v + w) 3/2

(47)

(48)

1 In
yu — 7» = 7u> = . — • (49)

2 2 \/(£2 + m — 2v + w)3

Thus Eq. (29) gives

A — u, B = v, C = 7(m — v), D = y(v — w). (SO)

The fundamental equations (C) become
n

a'd' —b'c' =
(51)


