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Abstract In this paper we discuss the peridynamic

analysis of dynamic crack branching in brittle materials

and show results of convergence studies under uniform

grid refinement (m-convergence) and under decreas-

ing the peridynamic horizon (δ-convergence). Com-

parisons with experimentally obtained values are made

for the crack-tip propagation speed with three different

peridynamic horizons. We also analyze the influence of

the particular shape of the micro-modulus function and

of different materials (Duran 50 glass and soda-lime

glass) on the crack propagation behavior. We show that

the peridynamic solution for this problem captures all

the main features, observed experimentally, of dynamic

crack propagation and branching, as well as it obtains

crack propagation speeds that compare well, quali-

tatively and quantitatively, with experimental results

published in the literature. The branching patterns also

correlate remarkably well with tests published in the

literature that show several branching levels at higher

stress levels reached when the initial notch starts prop-

agating. We notice the strong influence reflecting stress

waves from the boundaries have on the shape and

structure of the crack paths in dynamic fracture. All

these computational solutions are obtained by using

the minimum amount of input information: density,

elastic stiffness, and constant fracture energy. No spe-

cial criteria for crack propagation, crack curving, or
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crack branching are used: dynamic crack propagation

is obtained here as part of the solution. We conclude

that peridynamics is a reliable formulation for model-

ing dynamic crack propagation.
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1 Introduction

1.1 Literature review of dynamic crack propagation

In a brittle material, a propagating crack can depart

from its original straight trajectory and curve or split

into two or more branches. Under very high states of

stress, the propagating crack will divide into a river-

delta crack pattern (Bowden et al. 1967; Ramulu and

Kobayashi 1985). This fragmentation of highly loaded,

brittle materials is often a succession of multiple

branching of what was initially a single crack. Increases

in the roughness of the fracture surface prior to branch-

ing were consistently observed in all reported inves-

tigations (Ramulu and Kobayashi 1985; Döll 1975).

In crack branching of edge notch specimens of brit-

tle materials it has also been observed that the crack tip

velocity drops by no more than 5–10% in the branching

region (Döll 1975).

In atomistic models, under conditions that lead to

instability of the crack path, cracks can branch without
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a specific criterion (see Zhou et al. 1996). Particle-type

models (see Bolander and Saito 1998) are also capa-

ble of simulating crack branching. However, none of

these methods is able to capture the crack propaga-

tion speed or the angle of crack branching correctly.

For instance, MD simulations show instabilities that

lead, shortly after the bifurcation of a crack, to the

propagation of only one of the two branches, the other

being arrested. Moreover, the branching angle com-

puted with MD (see Zhou et al. 1996) is greater than

90◦, whereas experiments show much smaller crack

branching angles (Ramulu and Kobayashi 1985). One

may ask whether quantum mechanical calculations are

needed to predict the phenomenon of dynamic frac-

ture in brittle materials (see Cox et al. 2005) which

is one of the great challenges in dynamic fracture.

One likely reason for MD simulations’ failure to cor-

rectly predict dynamic fracture is that, for example,

crack branching events are controlled by the interac-

tion and wave reflections from the boundaries (Ravi-

Chandar 1998). Because of this, one would have to

either model the entire structure with MD (not a via-

ble option) or use a multiscale model that is capable

of transferring the waves between the scales correctly

(still an open problem). Numerical simulations based

on continuum methods of dynamic crack propagation

behavior have been very difficult to develop and, to

this date, a reliable method for simulating this complex

problem has not been found in spite of considerable

efforts in this direction (e.g. Xu and Needleman 1994;

Camacho and Ortiz 1996; Ortiz and Pandolfi 1999;

Belytschko et al. 2003; Rabczuk and Belytschko 2004;

Song et al. 2006). All these methods use some version

of cohesive-zone models. As such, they all modify the

local continuum mechanics equations and introduce a

nonlocal effect given by the parameters and length-

scales in the cohesive-zone model. To reduce mesh

dependency when the grids are refined special meth-

odologies have to be used (Zhou and Molinari 2004).

For the existing approaches, the difficulties in mod-

eling dynamic fracture processes like crack branch-

ing are many. For example, continuum-type methods

using the cohesive FEM or the XFEM require a dam-

age criterion and a tracking of the stresses around the

crack tip to decide when to branch the crack. Decisions

also have to be taken in terms of the angle of propa-

gation of the branches and about how many branches

will be allowed to form. In methods in which the crack

advances along the element sides by separating

elements from one another, the crack path becomes

non-smooth (see Xu and Needleman 1994; Camacho

and Ortiz 1996; Ortiz and Pandolfi 1999). Since the

correct path (which minimizes the strain energy) of

the crack propagation is not computed correctly, there

are significant departures from the true energy released

during the crack propagation event. In such cases, reli-

able prediction of strength of brittle ceramics under

impact, for example, becomes difficult. Mesh depen-

dency is an additional problem in cohesive-zone FEM-

based methods. Important progress has been recently

made by using the XFEM method which allows cracks

to pass through the finite elements (see e.g. Belytschko

et al. 2003). Subdivision of the cut elements for numer-

ical integration purposes increases the complexity and

the cost of the method. This method requires phenom-

enological damage models and branching criteria, as

well as tracking of the crack path using level sets, for

example. It is not yet clear if the method is applicable

to problems that involve fragmentation and/or multi-

ple crack interactions, branching, and coalescence. The

method does not predict the experimentally observed

crack propagation speeds (see Song et al. 2008). Cohe-

sive-zone based models need to modify the experi-

mental values of the fracture energy by several factors

in order to get propagation velocities in the range of

measured ones (Song et al. 2008).

In the present contribution we try to answer whether

quantum, atomistic, or multiscale models are needed

in dynamic fracture in order to correctly simulate the

observed crack propagation velocities and crack paths

(Cox et al. 2005; Song et al. 2008). We will show that

peridynamics is able to correctly model and simulate

dynamic fracture, in particular crack branching in brit-

tle materials. Peridynamics, which is a reformulation

of continuum mechanics (Silling 2000; Silling et al.

2007b), does not require criteria for crack propagation

or crack branching: these happen spontaneously in this

method and are autonomously generated by a simple

bond-failure criterion that is correlated to the material’s

energy release rate. The name “peridynamics” comes

from the Greek “peri” which means “nearby”, and

dynamics. Peridynamics is a nonlocal method in which

material points interact not only with their nearest

neighbors but also with points nearby, inside a horizon.

This is what physically happens at the atomic scale, for

example, but peridynamics extends this idea to the con-

tinuum scale. We will show convergence in terms of the

crack path and the crack propagation speed under grid
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refinement (the so-called m-convergence, Bobaru et al.

2009) and under decreasing peridynamic horizon (the

so-called δ-convergence, Bobaru et al. 2009). The crack

branching patterns obtained using peridynamics follow

remarkably close the experimental results which show

secondary branching taking place when higher stress

levels are reached at the tip of the pre-notch prior to

crack propagation. Moreover, the only input parame-

ters in the model are the Young’s modulus, the density,

and the fracture energy (which is kept constant, and not

a function of the propagation velocity or of the incurred

damage, in this first study).

The paper is organized as follows: in the next sec-

tion we describe the sample problem setup. In Sect. 2

we briefly review the peridynamic formulation and the

connections between the parameters in the formula-

tion and the material properties like the energy release

rate. In Sect. 3 we present the numerical results for the

convergence studies. We look at both the crack path

and the propagation speed of the crack, as measures of

convergence. In Sect. 4 we analyze the influence of the

micro-modulus function on crack branching results as

well as the solutions for two different brittle materials

under higher loading conditions that lead to cascading

branching. We also comment on the roughening zones

that take place in the branching regions and on the effect

of the reflection waves on the propagation paths of the

dynamic cracks. The conclusions are given in Sect. 5.

1.2 Problem setup

We consider the following setup as a benchmark prob-

lem for analyzing crack branching phenomena: a pre-

notched thin rectangular plate with 0.1 m by 0.04 m as

shown in Fig. 1. All simulations in this paper are 2D

simulations. For some 3D results we refer the read-

ers to Ha et al. (2010). The materials chosen for this

study are selected because for these materials there are

experimental results published on the crack propaga-

tion velocity in the region of branching or the maximum

propagation velocity measured. The two materials used

here are a Duran 50 glass (taken form Döll 1975) and a

soda-lime glass (taken from Bowden et al. 1967). The

material properties are summarized in Table 1. Please

note that in the bond-based peridynamic implementa-

tion used here, the numerical models will be limited to

using a fixed Poisson ratio of 1/3 (for 2D plane stress

problems). If other Poisson ratios are desired, then the

Fig. 1 Description of the problem setup for the crack branching

study

state-based peridynamics formulation should be used

(see Silling et al. 2007b). For dynamic fracture prob-

lems, the Poisson ratio value does not have a significant

influence on the propagation speed or the crack path

shapes (Silling et al. 2007a).

In the experimental settings the loading of the sam-

ple may take tens of seconds or more. In explicit

dynamic simulations that would be too expensive to

compute. Instead, we choose to apply, along the upper

and lower edges (see Fig. 1), traction loadings σ sud-

denly at the initial time step and maintain this load-

ing constant after that. The theoretical background for

the peridynamics analysis is based on Silling’s origi-

nal peridynamics paper (Silling 2000), the imposition

of the traction boundary conditions is as in Ha and

Bobaru (2009), and the numerical implementation of

failure is like in Silling and Askari (2005). The same

geometrical setup for studying crack branching simu-

lations has been used in other studies (Belytschko et

al. 2003; Rabczuk and Belytschko 2004; Song et al.

2006).

While there is no analytical solution for the crack

branching problem, we can compare our simulation

results with experiments. Unfortunately, the experi-

mental papers we found do not provide a complete

description of the conducted experiment on crack

branching: some papers show the crack paths but do

not provide crack propagation speed data, others give

the propagation speed but do not show the crack paths,

and most do not describe in detail the loading condi-

tions. We decided to perform the peridynamic simula-

tions using a setup similar to that used in a few recent

simulation papers (Belytschko et al. 2003; Rabczuk

and Belytschko 2004; Song et al. 2006). The material

parameters, however, are like those used in the exper-

iments (Bowden et al. 1967; Döll 1975). The maxi-

mum crack propagation speed, or the crack propagation
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Table 1 Material properties for Duran 50 and soda-lime glasses

Density (ρ) (kg/m3) Young’s modulus (E) (GPa) Poisson ratio (υ) Fracture energy (G0) (J/m2)

Duran 50 glass 2,235 65 0.2 204

Soda-lime glass 2,440 72 0.22 135

speed in the region of branching, is data that is fairly

reproducible in experiments and this is reported in

Bowden et al. (1967) and Döll (1975), for example.

We are not aware of any numerical method that can

reproduce the experimentally measured dynamic crack

propagation velocity. Note that in previous studies, for

certain methods, the fracture energy has to be signif-

icantly modified (by several factors) in order to bring

the dynamic crack propagation speed closer to the mea-

sured values (see, e.g. Belytschko et al. 2003; Rabczuk

and Belytschko 2004).

2 The peridynamic formulation

The peridynamic formulation (Silling 2000) relies on

integration of forces acting on a material point and thus

it does not face any of the mathematical inconsistencies

seen in the classical continuum mechanics equations.

The integration takes place over a “horizon” (which,

in principle, extends to infinity but, for convenience

is finite) within which the material points are inter-

acting with each other. In certain problems, the size

of the horizon can be correlated to an intrinsic material

length-scale. However, in many cases a material length-

scale is not “visible” either because the micro-structure

and the specific loading and boundary conditions do

not lead to a measurable effect of the length-scale. In

such cases, the horizon is selected by the user accord-

ing to convenience (see Bobaru et al. 2009). Allowing a

variable horizon (with a correspondingly scaled micro-

modulus parameter) defines a way of introducing adap-

tive refinement for this nonlocal method. It is important

to notice that peridynamics is a continuum theory, not

a particle-type method. This allows the convergence

results of the peridynamic solution to the classical elas-

ticity solutions in the limit of the horizon going to zero

(Bobaru et al. 2009; Silling and Lehoucq 2008).

An important advantage of peridynamics is the way

damage is introduced: material points are connected

within the horizon via elastic (linear or nonlinear)

bonds that have a critical relative elongation, s0, at

which they break (Silling 2000). The critical relative

elongation for brittle materials is computed from the

experimentally measured value of the fracture energy

for a specific material (Silling and Askari 2005). Dam-

age is implemented as the fraction between the number

of broken bonds and the number of initial bonds (Silling

and Askari 2005). Cracks in peridynamics form as sur-

faces between material points form, as a consequence

of sequential breaking of bonds. Thus, there is no need

to track the cracks like in other continuum methods,

or to impose criteria for when cracks should branch,

change direction, turn, coalesce, etc. Moreover, peri-

dynamics allows for spontaneous generation of cracks

where no flaws were present before. This is shown, for

example, in Silling et al. (2009) for the crack nucleation

and in simulation of spallation (see Xie 2005) where

spallation is treated as real fracture and not modeled

by void-growth formulations as in existing literature

results.

We now briefly review the peridynamic formulation

based on Silling’s original peridynamics paper (Silling

2000). Also, we consider the summary of the numeri-

cal implementation of the traction boundary conditions

in peridynamics (Ha and Bobaru 2009) and the formu-

lation for the damage model in peridynamics (Silling

and Askari 2005).

The peridynamic equations of motion are given by:

ρü (x, t) =

∫

H

f
(

u
(

x̂, t
)

− u (x, t) , x̂ − x
)

dx̂

+b (x, t) (1)

where f is the pairwise force function in the peridy-

namic bond that connects node x̂ to x and u is the dis-

placement vector field. ρ is the density and b (x, t) is

the body force. The integral is defined over a region H

called the ‘horizon’, which is the compact supported

domain of the pairwise force function around point x.

A micro-elastic material (Silling 2000) is defined as

one for which the pairwise force derives from a poten-

tial ω:

f (η, ξ) =
∂ω (η, ξ)

∂η
(2)
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where ξ = x̂−x is the relative position in the reference

configuration and η = û − u is the relative displace-

ment. A linear micro-elastic potential is obtained if we

take

ω (η, ξ) =
c (ξ) s2ξ

2
(3)

where ξ = ‖ξ‖ and the relative elongation of a bond is

s =
ζ − ξ

ξ
(4)

where ζ = ‖ξ + η‖. The function c (ξ) is called

micro-modulus and has the meaning of the bond elastic

stiffness. There are various formulations for the micro-

modulus function and in Sect. 4.1 we perform tests for

dynamic crack propagation to assess the influence of

the particular shape of the micro-modulus function on

the crack path structure. We will observe that the crack

propagation speed is not influenced by the shape of the

micro-modulus, once the horizon is reasonably small

compared to the dimensions of the structure analyzed.

The pairwise force corresponding to a linear micro-

elastic potential has the following form:

f (η, ξ) =

{

ξ+η
‖ξ+η‖

c (ξ) s, ξ ≤ δ

0, ξ > δ
(5)

where δ is the radius of the horizon region (which we

will also refer to as the horizon). In this paper, we use

the constant and conical 2D micro-modulus functions

(see Fig. 2). Following the same procedure performed

to calculate the micro-modulus function in 1D (Bobaru

et al. 2009), we obtain the constant micro-modulus

function in 2D, plane stress conditions:

c (ξ) = c0 =
6E

πδ3 (1 − υ)
(6)

Similarly, the conical micro-modulus function is

obtained as

c (ξ) = c1

(

1 −
ξ

δ

)

=
24E

πδ3 (1 − υ)

(

1 −
ξ

δ

)

(7)

The shapes of the constant and conical micro-mod-

ulus functions are illustrated in Fig. 2.

In the bond-based peridynamics, any particle inside

the horizon of another particle interacts only through a

central potential. This assumption results (for an isotro-

pic, linear, micro-elastic material) in an effective Pois-

son ratio of 1/3 in 2D (and 1/4 in 3D), but this limitation

is readily eliminated by using the state-based peridy-

namics (Silling et al. 2007a,b). In this paper, we utilize

Fig. 2 Constant (left) and conical (right) micro-modulus func-

tions

the bond-based peridynamics, thus, in all the reported

simulations here the effective Poisson ratio is 1/3.

In order to introduce failure into the peridynamic

model, we consider that the peridynamic bonds can

be broken when they are stretched beyond a predefined

limit. We call this limit the “critical relative elongation,

s0”. According to Silling and Askari (2005), there is no

force sustained by the bond after its failure. Also, once

a bond fails, it is failed forever; this makes the model

history dependent. To completely separate a body into

two halves across a fracture plane requires breaking all

the bonds that initially connected points in the opposite

halves (see Silling and Askari 2005). The energy per

unit fracture length (in 2D, fracture area in 3D) for com-

plete separation of the two halves of the body is called

fracture energy, G0. In 3D, Silling and Askari relate

the critical elongation, s0, with this measurable quan-

tity (G0) (Silling and Askari 2005). In 2D with plane

stress conditions, the fracture energy can be derived as

G0 = 2

δ
∫

0

δ
∫

z

cos
−1

(

z
ξ

)

∫

0

[

c (ξ) s2
0ξ

2

]

ξdθdξdz (8)

(See Fig. 3 for an explanation of this computa-

tion.) Substituting the constant micro-modulus func-

tion (Eq. 6) and rearranging for s0, we can rewrite this

equation to obtain s0

s0 =

√

4πG0

9Eδ
(9)

In similar way, the critical relative elongation for the

conical micro-modulus function (Eq. 7) is

s0 =

√

5πG0

9Eδ
(10)

The critical relative elongation depends on the mate-

rial properties and the horizon δ. Note that as the hori-

zon goes to zero, the critical relative elongation goes to

infinity, thus breaking such bonds requires larger and
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Fig. 3 Evaluation of fracture energy. For each point A along the

dashed line, 0 ≤ z ≤ δ, the work required to break the bonds

connecting A to each point B in the circular cap is given by Eq. (8)

larger forces. This agrees with the physical experience

at atomic and subatomic scales where, in order to break

apart smaller and smaller sized bonds, one needs higher

and higher forces. The values for the fracture energy

used in this paper are the ones given in Döll (1975)

for Duran 50 glass and soda-lime glass materials and

measured at the instant of crack branching of a dynami-

cally running crack. Note that there is evidence that the

fracture energy varies with the crack propagation speed

(see, e.g. Döll 1975). However, other authors point out

the fact that the apparent increase in the fracture energy

with crack speed may be due to the presence of micro-

cracks (see, e.g. Cox et al. 2005; Ravi-Chandar 1998).

For simplicity, in this work, we keep the fracture energy

constant and equal to that measured at crack branching.

Nevertheless, it is very easy to introduce the velocity-

dependent fracture energy (Döll 1975) in our model

and we plan to do so in the future. Moreover, it has

been observed that peridynamics generates fragment

size distributions closer to experimentally measured

ones if the critical relative elongation (and therefore the

fracture energy) depends on the damage index (ratio of

number of broken bonds and number of initial intact

bonds) in the following way: if the damage index is

larger than some fraction (say 0.2) then the critical rel-

ative elongation value increases with the damage index

(see Silling 2005). Such damage-dependent model is

used in Ha and Bobaru (2010) for dynamic fracture

problems. Note that other models have been used in

the past to explain dynamic instabilities (see Buehler

et al. 2003) in dynamic crack propagation using MD

models, but this does not appear to be needed in peri-

dynamics to trigger instabilities or crack branching.

Additionally, since we apply the load abruptly along

the upper and bottom boundaries, relatively high tensile

stress act along these boundaries (see the first figure (a)

in Fig. 4) at the early stages of the simulation. In order

to prevent tearing of the first few layers of nodes from

the rest of the plate we set the boundary nodes as no-

fail zones. In a no-fail zone the damage index is always

zero. The traction boundary conditions are applied to

a single layer of nodes at the surface in peridynamics,

which is similar to how one imposes these conditions in

the FEM, for example. The numerical implementation

of traction boundary conditions and the convergence

studies are shown in Ha and Bobaru (2009). These loads

are applied suddenly and a shock wave propagates. In

Fig. 4, we show a few snapshots of the strain energy and

close-ups around the tip of the pre-notch of the damage

for dynamic crack propagation in the setup shown in

Fig. 1, for Duran glass. The model has a uniform grid

spacing with �x = 0.125 mm, the horizon δ = 0.5 mm,

and a uniform tensile stress σ = 12 MPa is applied. In

Fig. 4a, the colors denote the magnitude of the elas-

tic strain energy. In Fig. 4a note the ripples behind the

wave-front caused by the wave dispersion which, in

peridynamics, is due to the size of the horizon and the

size of the discretization (see discussion of the 1D case

in Xie 2005, pp. 40–44). The colors in the right-hand

side plots of Fig. 4 represent damage levels. Right after

the shock wave reaches the center line, the crack starts

propagating (compare Fig. 4a, c at 6 and 9µs).

3 Numerical studies of convergence in dynamic

crack branching

In peridynamics, we can talk about three types of con-

vergence (see Bobaru et al. 2009 and Fig. 5):

• The δ-convergence: δ → 0 and m(= δ/�x) is fixed

or increases with decreasing δ but at a slower rate.

In this case the numerical peridynamic approxima-

tion converges to an approximation of the classi-

cal solution (if this exists), almost everywhere. The

larger m is, the closer this approximation becomes.

(The convergence is not guaranteed to be uniform

in problems with singularities.)

• The m-convergence: δ is fixed and m → ∞. The

numerical peridynamic approximation converges

to the exact nonlocal peridynamic solution for the

given δ.

• The (δm)-convergence: δ → 0 and m increases

with decreasing δ, with m increasing faster than

δ decreases. In this case numerical peridynamic
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Fig. 4 Elastic strain energy

and damage map around the

pre-crack tip, at the initial

stages of crack propagation

(δ = 0.0005 m,�x =

0.000125 m, applied load

σ = 12 MPa). a Elastic

strain energy; b Time;

c Crack-tip near-view

Fig. 5 Graphical

descriptions for the

a m-convergence and

b δ -convergence

approximation converges to the analytical peridy-

namic solution and converges uniformly to the local

classical solution (if this exists), almost everywhere.

Here we are studying the m-convergence and we

make some observations related to the δ-convergence

for dynamic crack propagation problems. The prob-

lem to be analyzed is shown in Fig. 1: an edge-notch

plate. One way to introduce a pre-crack in peridynamic

model is to break all bonds that cross the pre-crack line.

Another way is to erase nodes that are along the pre-

crack line in addition to breaking all bonds crossing the

lines. The first option, under m-convergence, will result

in the same “effective” pre-crack. The second option,

under m-convergence, can also maintain the pre-crack

but only if the total volume of the nodes removed

remains the same for any grid spacing used. Note, how-

ever, that under δ-convergence things are more delicate.

The reason is that if we change the horizon the damage

area along the pre-crack and in front of the pre-crack tip

changes independent of the way in which we introduce

the pre-crack in the peridynamic model.

In Fig. 6, the initial damage areas of two models with

different grid spacings are compared. The color-bar

represents damage levels. The thick black line denotes

the pre-notch. The triangles and the squares are nodes

of the coarse and fine models, respectively. In Fig. 6a,

the damage area of the coarse model matches with the

area of the fine model for the same horizon size of

δ = 2 mm. However, the damage area of the fine model

with δ = 1 mm is slightly smaller than the area of the

coarse model with δ = 2 mm, as shown in Fig. 6b.

3.1 The m-convergence study

For time integration we use an explicit method, the

Velocity–Verlet algorithm. The Velocity–Verlet algo-

rithm (Hairer et al. 2003) is:
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Fig. 6 Relations between the horizon, grid spacing, and the dam-

age area. (triangles nodes of the coarse model, squares nodes of

the fine model). a Damage areas on two grids with same horizon

(δ = 0.002 m for both models); b Damage areas on two grids

with different horizons (δ = 0.002 m for coarse model, 0.001 m

for fine model)

u̇n+ 1
2

= u̇n +
�t

2
ün (11a)

un+1 = un + �t u̇n+ 1
2

(11b)

u̇n+1 = u̇n+ 1
2

+
�t

2
ün+1 (11c)

where u, u̇, and ü denote the displacement, velocity,

and acceleration vectors, respectively.

We perform the m-convergence tests for two differ-

ent horizon sizes: δ = 3 mm and δ = 2 mm. Please note

that these horizon sizes are relatively large compared to

the structural dimensions. All models have the uniform

grid spacing. A uniform time step size of 25 ns is used

and this is a stable time step for the finest model among

all tests performed in this paper, with δ = 0.5 mm and

m = 4. A uniform tensile stress σ = 12 MPa is applied

(as described in the previous section) for all the tests

in this section. All computations in this section use the

constant micro-modulus function (Eq. 6) and the Duran

50 glass material parameters.

We first perform the m-convergence study for the

fixed horizon δ = 3 mm. The peridynamic models used

for this study are the ones with �x = 1 mm (4,326

nodes), �x = 0.5 mm (16,646 nodes), and �x =

0.25 mm (65,448 nodes). For this test, the model with

�x = 1 mm has maximum 29 nodes in the horizon

(m = 3), the model with �x = 0.5 mm has a maximum

of 113 nodes in the horizon (m = 6), and the one with

�x = 0.25 mm has maximum 441 nodes in the horizon

(m = 12). The crack paths for these cases at 46 µs are

compared in Fig. 7. In all damage map plots we use the

same range for the color-bar of the damage index as in

Fig. 6. The results in Fig. 7 show that m-convergence

of the crack path is obtained even for m-values as small

as 3. In all cases in Fig. 7, the crack starts propagat-

ing around 7 µs, and the crack branches around 25 µs

nearby 0.071 m measured from the left-side of the plate.

In these results we notice that a thicker damage zone

is produced before the crack branches. This may be an

indication of the fracture surface roughness prior to

branching that is observed consistently in all reported

experimental investigations of crack branching in brit-

tle materials (see, e.g. Ramulu and Kobayashi 1985 and

references therein).

For the fixed horizon δ = 2 mm, the m-convergence

study is performed using the same three numerical grids

as above. Since the horizon is smaller, the correspond-

ing m values will be smaller than previously: the coars-

est model with �x = 1 mm has maximum 13 nodes in

the horizon (m = 2), the one with �x = 0.5 mm has

maximum 49 nodes in the horizon (m = 4), and the one

with �x = 0.25 mm has maximum 197 nodes in the

horizon (m = 8). The crack branching path at 40 µs for

our peridynamic simulations are shown in Fig. 8. The

crack path given by the coarsest model with m = 2

is slightly different from the others, but the paths with

m = 4 and 8 are very similar to each other. In Fig. 8,

crack branching takes place around 24 µs and around

0.068 m from the left edge.

These peridynamic results for two different horizon

sizes indicate that m-convergence takes place for the

dynamic crack branching problem in terms of the crack

path and the crack propagation speed, the latter because

the crack tip locations at the same times are similar

among the different solutions. This is expected to hold
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Fig. 7 Crack path

computed with different

grids for δ = 0.003 m at

46 µs. a m = 3, �x =

0.001 m; b m = 6, �x =

0.0005 m; c m = 12, �x =

0.00025 m

Fig. 8 Crack path

computed with different

grids for δ = 0.002 m at

46 µs. a m = 2, �x =

0.001 m; b m = 4, �x =

0.0005 m; c m = 8, �x =

0.00025 m

for any given δ. It appears that m = 4 is a good choice

because the number of nodes inside horizon allows a

sufficiently large number of directions along which the

true crack path can develop. Using a larger value of

m requires higher computational cost, while the results

are not affected. In all remaining tests we will use this

value of m.

3.2 Crack path under changing horizon δ

The δ-convergence has to be treated carefully for prob-

lems with initial cracks or notches due to the changing

size of the initial damage area as discussed in the begin-

ning of Sect. 3 and Fig. 6. The tests in this section are

also for the Duran 50 glass material and the constant

micro-modulus function (Eq. 6).

For a fixed m = 4, the impact of a changing δ is

investigated by using the four different kinds of hori-

zons, and therefore, four different grids: the coarsest

model has δ = 4 mm with the uniform grid spacing

of �x = 1 mm (4,326 nodes), the subsequent mod-

els have half the horizon size of the previous model

and half the grid spacing. Thus, the other three models

have, respectively, δ = 2 mm and �x = 0.5 mm (16,646

nodes), δ = 1 mm and �x = 0.25 mm (65,448 nodes),

and δ = 0.5 mm and �x = 0.125 mm (258,566 nodes).

A uniform time step size of 25 ns (which is a stable

time step for the finest model) and the uniform ten-

sile stress σ = 12 MPa are applied for all peridynamic

models. In all models, the maximum number of nodes

in each horizon is 49. The critical relative elongation

s0 also changes with a decreasing horizon, see Eq. (9).

Also, the damage area becomes smaller as the horizon

deceases, and this is especially important for the area

in front of the pre-crack tip. The δ-convergence, here,

has to be understood within this context. Note that there

exists the possibility that the dynamic fracture behavior
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is connected to one or multiple length scales (see, e.g.

Livne et al. 2007). Material microstructure is likely to

influence the dynamic fracture behavior and determine

one such physical length scale. The numerical

models used in the present paper are for an ideal

homogeneous material and the crack propagation is

generated by stress waves’ interaction due to the shock

loading. Notice that crack branching can take place

without the influence of the stress wave interaction

(see Ravi-Chandar and Knauss 1984a). In the future

we also plan to run simulations with quasi-statically

applied loads. The results below indicate that, for such

homogeneous materials we have δ-convergence in the

dynamic crack branching problem. The question of

“which material length-scale controls dynamic frac-

ture?” is left for the future since the picture is com-

plicated by how energy is supplied to the region of

the crack tip (Ravi-Chandar and Knauss 1984b; Ravi-

Chandar 1998). In experiments (e.g. Bowden et al.

1967) it is delivered via quasi-static loading, while in

the computations here it is delivered by the stress waves

induced through the shock loading.

The crack path at 46 µs for peridynamic simulations

using four uniform grids are shown in Fig. 9. Notice

that there is a slightly asymmetric path obtained for

the case shown in Fig. 9c. This is due to the coordi-

nate system used, the (0, 0) being at the left bottom

corner. When the origin of the coordinate system is

moved to the center of the plate, then the symmetry

of the solution is recovered. For all horizons the shape

of the crack path looks almost identical to one another

(see the results in Fig. 9). We notice, from monitoring

strain energy plots, that the direction of the crack paths

after branching is strongly influenced by the reflection

elastic waves from the boundaries. Experimental evi-

dence of the influence of the stress wave on the crack

path shape is presented in Ravi-Chandar and Knauss

(1984b). The effect is that the branching angle of the

initial cusp-like shape increases as the branches propa-

gate. We will see that this effect of the elastic waves on

the crack path propagation after branching is different

for the soda-lime glass material. The reason is that elas-

tic waves propagate faster (due to higher stiffness) and

cracks propagate slower in the soda-lime glass com-

pared to the Duran glass.

We look now in more detail at the branching events in

the finest model in Fig. 9d. Determining where branch-

ing occurs can be done in several ways. One way is to

consider the time when the right-most nodes with

non-zero damage are no longer along the middle line

(the direction of the initial crack) but become distrib-

uted symmetrically about the mid-line, or the crack

direction just before branching. In Fig. 10, we show

the details of the branching event for the finest model.

The branching moment appears to take place between

22.5 and 23 µs.

3.3 Comparison of peridynamic crack propagation

speed with experimental values

In this section we compare the crack propagation speed

from the peridynamic simulations with those from the

experiments in Bowden et al. (1967). We examine the

soda-lime glass material with three peridynamic mod-

els: a small horizon model with δ = 0.5 mm (258,566

nodes), a medium horizon model with δ = 1 mm (65,448

nodes), and a large horizon model with δ = 2 mm

(16,646 nodes). A uniform tensile stress σ = 14 MPa

is applied suddenly along the long sides of the plate

(see Fig. 1). The Velocity–Verlet method is used with

a uniform time step size of 25 ns. The constant micro-

modulus function is used.

The crack paths are very similar for all three models

as shown in Fig. 11a–c. We compare the crack propaga-

tion speeds in Fig. 11d. Each point on the crack prop-

agation speed profiles (blue triangles, green squares,

and orange circles in Fig. 11d) is computed by esti-

mating the location of the crack-tip (after branching

we only follow the upper branch) at the time when the

data-dumps are performed. The data-dumps are done

every 2 µs (or every 80 time-steps) starting from the

initial time-step. This implicitly introduces a difference

compared to the actual instantaneous crack propagation

speed. The crack-tip is determined to be the right-most

node which has the damage index larger than 0.35. In

the other words, peridynamic bonds related to this node

are broken over 35% compared to the initial, undam-

aged state of the node. The crack propagation speed at

tl is computed by

Vℓ =
‖xℓ − xℓ−1‖

tℓ − tℓ−1
(12)

where xℓ and xℓ−1 denote the crack-tip positions at the

current time tℓ and at the previous data-dump time tℓ−1.

Here, ℓ = 1, . . . , 81 corresponding to the total simu-

lation time of 40 µs. The dotted line shows the maxi-

mum fracture speed 1580 m/s for the soda-lime glass

measured in experiments (Bowden et al. 1967) where
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Fig. 9 Crack branching

path with various δ (m = 4)

using peridynamic analysis

at 46 µs. a δ = 0.004 m, �x

= 0.001 m; b δ = 0.002 m,

�x = 0.0005 m; c

δ = 0.001 m, �x =

0.00025 m; d δ = 0.0005 m,

�x = 0.000125 m

Fig. 10 Damage map at

46 µs and the crack

branching evolution around

23 µs (δ = 0.0005 m)

the loading is, however, quasistatic, in contrast to our

dynamically–induced crack propagation. The trends of

the peridynamic crack propagation speed results for all

models are very similar to one another. This indicates

δ convergence behavior for the crack speed, since the

horizon was reduced by half, and the computed crack-

tip propagation speeds did not change by much. As

observed in Fig. 11d, the fluctuations for the coarsest

model (blue triangles in Fig. 11d) are larger than in

other fine models (green squares and orange circles in

Fig. 11d). The main reason for the larger fluctuation is

that, for the coarsest model, the crack advances by only

a few nodes between the data dumps, while in the finer

models the resolution is improved and the number of

achievable speed levels is increased.

We next compare the ratios of the numerical and the

experimental maximum crack propagation speeds to

the Rayleigh wave speed. An approximate expression

for the Rayleigh wave speed cR (Graff 1975) is

cR

c2
=

0.87 + 1.12ν

1 + ν
(13)

where ν is the Poisson ratio and the shear wave speed c2

is given by c2 =
√

µ
ρ

. We select the maximum com-

puted crack speed value at 24 µs from the numerical

result with the smallest horizon model (see Fig. 11d).

In Table 2, the ratio of this numerical maximum prop-

agation speed to the Rayleigh wave speed cR is com-

pared with the ratio of the experimentally measured

maximum fracture speed (Bowden et al. 1967) for the

soda-lime glass material.

The observation in Sect. 4.2 about how wave reflec-

tions from the boundaries affect the crack propagation

path also explains why the branching angles seen in

Bowden et al. (1967) are different from the ones we

obtained here (for the soda-lime glass). The geometry

used here is different from the one used in Bowden et al.

(1967), where the notch is a short one, running parallel

to the short side of the plate, the side boundaries are

farther away than in our case where the notch is long

and parallel to the long side of the plate. The different

geometry will strongly influence the propagation speed

in the dynamic loading case since the stress waves are

supplying energy in the fracture region and that has

been observed to influence both the shape of the crack

path and the crack propagation speed (Ravi-Chandar

and Knauss 1984b).

The results obtained with the finest horizon (and

grid spacing) give a maximum crack propagation speed

value that is about 6% larger than the experimen-

tally measured maximum crack speed for soda-lime

glass of 1580 m/s (see Bowden et al. 1967). These

123



240 Y. D. Ha, F. Bobaru

Fig. 11 Crack paths and

crack propagation speeds

for soda-lime glass (for

δ-convergence with m = 4).

a Crack path at 40 µs

(δ = 0.002 m); b Crack path

at 40 µs (δ = 0.001 m);

c Crack path at 40 µs

(δ = 0.0005 m); d Crack

propagation speed for three

different horizons;

e Close-up at 20.5 µs for the

finest horizon; f Close-up at

21.5 µs for the finest

horizon

Table 2 The ratios of

numerically computed and

experimental maximum

fracture speeds to the

Rayleigh wave speed

Fracture speed, V (m/s) V/cR

Peridynamics 1679 0.53

Experiment (Bowden et al. 1967) 1580 0.50

encouraging results, however, have to be understood

in context of the different type of loading conditions

used in the computations compared with the setup in

Bowden et al. (1967). Further comments and analysis

on this subject are given in Ha et al. (2010). We also

note that here we use a constant fracture energy model.

This may not be the case in reality where the critical

fracture energy can change with, for example, the speed

of crack propagation. In Döll (1975), for instance, the

fracture energy is measured to depend on the propaga-

tion velocity. This issue of the dependence of the frac-

ture energy on the crack propagation speed and/or the

local damage is also discussed, from the point of view

of experiments, in the more recent review article (Ravi-

Chandar 1998). In Ha and Bobaru (2010), we report on

results that also use a modified critical relative elon-

gation for damaged nodes so that nodes with damage

levels over a certain value have a larger critical relative
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elongation. This, in effect, implements a change in

the critical fracture energy depending on the damage

level at a particular point in the material. The influence

of using a damage-dependent critical relative elonga-

tion on the crack propagation speed is discussed in

Ha and Bobaru (2010). This modification has been

observed (Silling 2005) to give better results in frag-

mentation problems. Without the damage-dependent

critical elongation model, peridynamics would create a

lot of smaller fragments, while using this modification,

the number and size distribution of fragments match

experimental observations.

We also note that the crack speed profiles have a

very similar pattern with the experimental speed pro-

file shown in Fig. 11 in reference (Field 1971). We now

quote from page 19 in Field 1971 which describes the

experimental observations of crack branching: “…The

transition region and branch occur when the crack has

reached a high proportion of its maximum velocity. The

first serious roughening of the fracture surface gave a

slight, but detectable, slowing of the crack. Following

crack bifurcation the surfaces of the two new cracks

normally appear mirror smooth, indicating a somewhat

lower velocity than in the transition region. However,

the branching does not cause the fracture front veloc-

ity to drop to zero or even near it. This is demonstrated

by the fracture of toughened glass where the velocity

of the front progresses at a relatively uniform veloc-

ity of nearly 1,500m/s…” The peridynamic results in

Fig. 11 match surprisingly well with each and every

observation in the quoted text above. Small fluctua-

tions of the speed profile, and a slowing of the crack,

appear around 14–16 µs (see Fig. 11d), which is simi-

lar to what happens during the “initial roughening” in

Fig. 11 in Field (1971). Please note that our model it too

coarse to capture actual roughening of the crack sur-

faces. Indirect evidence of roughness, however, may be

observed from our computations, and this is discussed

next. The more severe roughening discussed in Field

(1971) is seen in Fig. 11e,f, as a wider damage zone.

This happens just before branching of the crack, the

same as in the experiments. At that stage, the crack

has been moving at a high proportion of its maximum

velocity. After branching, we observe a small drop in

the propagation velocity, and the damage region along

the crack paths is indicative of smooth crack surfaces

of each branch (see Fig. 11f).

It is interesting to note the correlation between the

stress waves that continue to propagate and reflect from

the boundaries and the crack propagation speed. The

more recent experimental evidence points towards this

interaction as one main cause of crack branching (see

Ravi-Chandar 1998; Ravi-Chandar and Knauss 1984b).

Our peridynamic simulations confirm this point of view.

It appears that the speeding, slowing down, speeding,

and then slowing slightly in the region of branching, of

the crack tip during the time interval from 5 to 20 µs is

directly caused by the way the elastic strain energy con-

centrates towards (which results in speedingof thecrack

tip) or disperses away (which results in slowing down of

thecrack tip) fromthe frontof thecrackpath.This is eas-

ier to see in a movie of the dynamic crack propagation

process (Ha et al. 2010).

4 Numerical results for different micro-modulus

functions and different materials at higher

stress levels

4.1 Constant versus conical micro-modulus

functions

In the following we compare the results for two differ-

ent micro-modulus functions. The tests are performed

using the soda-lime glass material properties, and the

numerical model is the same except for the type of

micro-modulus functions: the constant micro-modulus

(Eq. 6) and the conical micro-modulus function (Eq. 7).

The peridynamic models have δ = 1 mm and grid

spacing �x = 0.25 mm (65,448 nodes). The Veloc-

ity–Verlet algorithm is used for the time integration

with a uniform time step size of 25 ns. The uniform

tensile stress σ = 10 MPa is applied for the model in

Fig. 1. In Fig. 12 we compare the crack branching paths

at 50 µs for the constant and conical micro-modulus

functions. We observe very similar branching paths

up to a point when, due to the different reflections

waves produced, the branches in the conical micro-

modulus case splay out more than in the constant

micro-modulus case. Thus, the particular shape of the

micro-modulus function influences the crack propa-

gation path, but to a small extent. In Xie (2005), it

was shown that a flux-corrected transport (FCT) algo-

rithm can eliminate the ripples behind a shock wave in

a peridynamics simulation. The FCT algorithm is not

used in this paper and thus the ripples behind the shock

waves are not eliminated. Since a different micro-mod-

ulus function creates different dispersion curves (see
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Fig. 12 Crack paths for different micro-modulus functions at 50 µs (δ = 0.001 m, �x = 0.00025 m) for soda-lime glass. a Solution

with conical micro-modulus; b Solution with constant micro-modulus

Fig. 13 Crack paths for two different materials under higher loading conditions (δ = 0.001 m, �x = 0.00025 m). a Damage map for

soda-lime glass at 28 µs; b Damage map for Duran 50 glass at 32 µs

Silling 2000), the oscillations behind the shock wave in

our computations (see Fig. 4) interfere with the crack

path and create differences in the propagation direc-

tions between the two models. Note, however, that the

crack propagation speeds for the two different cases are

very close to one another.

4.2 Crack branching patterns for two different

materials under higher stress levels

We compare the crack branching patterns between the

soda-lime glass and Duran 50 glass under higher load-

ing conditions. The peridynamic models for both mate-

rials have δ = 1 mm and grid spacing �x = 0.25 mm

(65,448 nodes). The Velocity–Verlet algorithm with a

uniform time step size of 25 ns is employed, and the

uniform tensile stress σ = 24 MPa is applied suddenly

at the initial time-step. In Fig. 13, we observe that

cascading branching takes place for the soda-lime

material, while for the Duran glass, under these partic-

ular conditions, the branching events attempted after

the main one are arrested. We also note the curving of

the secondary branches for the soda-lime case. Exper-

imental confirmation of this phenomenon is given in

Ravi-Chandar and Knauss (1984b), for example. The

reason for both the arrested branches and the crack path

curving rests with the particular way the stress waves

are moving through each material and reflecting from

the boundaries.

A close examination of the strain energy maps dur-

ing the crack propagation process clearly shows how

the strain elastic energy concentrates in certain regions

and the particular incident angle at which the elastic

energy waves meet the crack tip can result in bending

the crack path for the soda-lime case (see Fig. 14a)

or in arresting the propagation of secondary branches

for the Duran glass case (see Fig. 14b). In Fig. 14,

the elastic strain energy is plotted on the top row fig-

ures for areas around the front of the crack propagation

path at two different times (21 and 22 µs for soda-lime

glass and 24 and 26 µs for Duran glass). The bottom

row of figures in Fig. 14, shows the damage index at

similar time steps and at various degrees of close-ups

around the top-most branches. For the soda-lime glass

(Fig. 14a), the reflection waves hit the crack tip of the

second branching event at an inclined angle (see strain

energy at 21 µs). This bends the top-most branch as

seen from the sequence of plots at 23, 25, and 27 µs, and

in Fig. 13a at 28 µs. For the Duran glass case (Fig. 14b),

the reflection waves meet the crack tip at an angle that

suppresses, or arrests, the top-most branch and its sym-

metrical, lower-most branch.

We remark that in the soda-lime case, the con-

ditions allow for yet another branching event from

some of the secondary crack paths. Also, the thicker
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Fig. 14 Elastic strain

energy around the crack tip

areas (top row of figures)

and damage maps (bottom

row of plots) at times

corresponding to the

secondary branching events.

Left plots are for soda-lime

glass, right plots are for

Duran glass. a Soda-lime

glass; b Duran 50 glass

damage zone following the primary branching event

for the Duran glass indicates a rough zone where con-

ditions where close to those that would produce branch-

ing. The particular interaction of the crack path with the

reflection stress waves arrested that branching event

before it happened. Later on, around 26 µs, second-

ary branching happens but some of the branches are

arrested soon after forming, while the others continue

to propagate (see Fig. 13b).

Note that here, as before, we used a constant fracture

energy that corresponds to that measured at branching

and reported in Döll (1975). A discussion about the

symmetry and the symmetry breaking in the peridy-

namic simulations is included in Ha and Bobaru (2010).

5 Conclusions

In this paper we presented some detailed studies of

modeling dynamic fracture and capturing crack branch-

ing events in brittle materials using peridynamics. The

results demonstrate that dynamic fracture phenomena

are captured by the peridynamic formulation very well.

All the details of dynamic crack branching in brittle

materials reported in the experimental literature are

recovered by our peridynamic simulations, naturally

and without having to insert various special crack prop-

agation criteria, for example, for when and how branch-

ing should take place. In both the experiments and the

peridynamic model, branching occurs in a region where

the crack propagation speed reaches a high propor-

tion of its maximum value. There is roughening before

branching in the experiments and that is captured as

a thicker damage zone ahead of the branching region

by the peridynamic simulations. There is a small, but

detectable, slowing of the crack propagation speed after

branching in both the experiments and our computa-

tional results. There is cascade branching in the experi-

ments when higher stress levels are attained before the

crack starts to propagate, and we also observed that

in our peridynamic solutions when we increased the

magnitude of the applied loads.

Convergence in terms of the number of nodes cov-

ered by the peridynamic horizon is obtained, and the

crack path and crack propagation speed stabilize, or

converge, once the horizon becomes of sub-millimeter

size, for the sample that measured in centimeters. A

small influence of the specific shape of the peridynam-

ic micro-modulus function is observed on the crack

propagation path but not on the propagation speed.

Our results for this complex physical process shed

light over the question of why Molecular Dynamics

(MD) simulations fail to correctly predict crack branch-

ing: the phenomenon involves scales of the size of the

entire structure since it is the propagation of the elastic

strain energy (stress waves) and their reflection from the

boundaries of the structure that control the crack prop-

agation process (in terms of the propagation speed and

crack path direction) in dynamic fracture. We also note

the correlation between the size of the horizon at which

the peridynamic results appear to no longer change and

the “characteristic interaction distance” talked about

in Streit and Finnie (1980), Ramulu and Kobayashi

(1985). This issue requires further investigation which

we plan for the future.

The overall trend of the crack propagation speed

from our simulations showed a remarkable resem-

blance to the experimental speed profiles reported by

others. We compared the maximum crack propaga-

tion speed obtained with peridynamics with that from

the experiments and the value, for the 0.5 mm horizon

case, was about 6% larger than the experimental value

for soda-lime glass. While the loading conditions are

different (quasi-static in experiments, dynamic in our
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simulations), the result is remarkable given that the

input in our model was a constant value of the critical

fracture energy equal to that measured at crack branch-

ing. In conclusion, peridynamics succeeds in correctly

modeling crack branching in brittle plates, one of the

main open problems in modeling dynamic fracture.
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