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Abstract

The hadronic final states observed with the ALEPH detector at LEP in eTe™
annihilation are analysed using 730 pb~! of data collected between 91 and 209 GeV
in the framework of QCD. In particular event-shape variables and inclusive charged
particle spectra are measured. The energy evolution of quantities derived from these
measurements is compared to analytic QCD predictions. The mean charged particle
multiplicity, the charged particle momentum spectrum and its peak position are
compared to predictions of the modified-leading-logarithmic approximation. The
strong coupling constant «; is determined from a fit of the QCD prediction to
distributions of six event-shape variables at eight centre-of-mass energies. A study
of non-perturbative power law corrections is presented.
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1 Introduction

A study of the structure of hadronic events registered by the ALEPH detector at LEP
at centre-of-mass energies E.;, between 91 and 209 GeV is presented. The measurements
include event-shape variables, jet rates and inclusive charged particle distributions. The
primary objective of these measurements is to compare their energy evolution with the
prediction of QCD. The data are analysed in a global manner to ease the study of the
systematic uncertainties and their correlation. The data presented in [1] at 91.2 GeV
and in [2] at 133 GeV have been re-processed using an improved selection and correction
procedure. The higher energy data at average centre-of-mass energies of 161, 172, 183,
189, 200 and 206 GeV are published here for the first time. The numerical results of the
numerous measurements performed for this publication are archived on the ALEPH QCD
web site [3].

A large part of this paper is devoted to measurements of a, from event-shape
variables. The prescription for the theoretical predictions and the assessment of theoretical
uncertainties related to missing higher orders are applied in this analysis, as recommended
in [4]. Non-perturbative aspects of the determination of «; using event-shape variables
are studied by means of power laws, which are corrections scaling with powers of 1/Q [5],
where @ is the four-momentum transfer. At leading order @ is equal to /s (or E¢y) in
ete™ annihilation so that these quantities are used interchangeably in this article.

This paper is organised as follows. In Section 2, brief descriptions of the ALEPH
detector, of the overall event-selection method and of the correction procedure are given.
Distributions of inclusive observables are presented in Section 3 and jet rates in Section 4,
followed by event-shape variables in Section 5. These measurements are analysed in
Section 6 to determine ;. Systematic uncertainties of the measurements of o are given
in Section 7. Results using different variables and different energies are combined in
Section 8. A study of power law corrections is described in Section 9. Section 10 gives
the summary and conclusions. The most relevant theoretical predictions for this paper
are compiled in the Appendix.

2 Experimental Procedure

2.1 The ALEPH Detector

The ALEPH detector is described in detail in [6] and its performance in [7]. The central
part of the detector is dedicated to the reconstruction of the trajectories of charged
particles. The path of these particles is measured by a two-layer silicon strip vertex
detector (VDET), a cylindrical drift chamber (ITC) and a large time projection chamber
(TPC). The three tracking detectors are immersed in a 1.5 T axial magnetic field provided
by a superconducting solenoidal coil. Together they measure charged particle transverse
momenta with a resolution of dp;/p; = 6 x 10 4p, ®0.005 (p; in GeV/c). In the following,
good tracks are defined as charged particle tracks reconstructed with at least four hits in
the TPC, originating from within a cylinder of length 20 cm and radius 2 cm coaxial with
the beam and centred at the nominal collision point.

Electrons and photons are identified in the electromagnetic calorimeter (ECAL),
situated between the TPC and the coil. The ECAL is a sampling calorimeter sandwich



of lead plates and proportional wire chambers segmented in 0.9° x 0.9° projective towers
and read out in three sections in depth. It has a total thickness of 22 radiation lengths
and yields a relative energy resolution of 0.18/vE + 0.009, with E in GeV, for isolated
photons. The iron return yoke, instrumented with 23 layers of streamer tubes, forms
the hadron calorimeter (HCAL) and provides a relative energy resolution for charged and
neutral hadrons of 0.85/v/F. Muons are distinguished from hadrons by their characteristic
pattern in HCAL and by the muon chambers, composed of two double-layers of streamer
tubes outside HCAL.

The information from the tracking detectors and the calorimeters is combined in
an energy-flow algorithm [7]. For each event, the algorithm provides a set of charged
and neutral reconstructed particles, called energy-flow objects, with measured momentum
vectors and information on particle type. The energy-flow objects used in this analysis
are required to have a polar angle # with respect to the beam such that | cosf| < 0.95
and a minimum transverse momentum of 200 MeV/c.

2.2 Event Selection

The selection of hadronic events collected at the Z resonance is described in [1]. Events
are accepted with at least five good tracks and with a total charged energy in excess of
15 GeV. Energy-flow objects are used to determine the sphericity axis and its polar angle
Ospn is required to be such that | cos Ogpn| < 0.9 to ensure that the event is well contained
within the detector.

The same criteria are applied to the selection of qq(v) events at LEP2. Hadronic events
in which a Z is accompanied by initial state photon radiation (ISR) are then removed in
a procedure with several steps. First, ISR photons observed in the detector are identified
as follows. The particles in the event are clustered into jets using the Durham algorithm
[8] with a resolution parameter y.,; of 0.002. Jets where the fraction of the jet energy
carried by charged hadrons is less than 10% are identified as dominantly electromagnetic
if either less than half of the neutral energy is hadronic or there are no charged hadrons.
From these ‘electromagnetic jets’, the v and ete™ candidates are removed, assuming that
they originate from an ISR process. These electrons and positrons are often the result of
photon conversion in the material of the tracking chambers. Next, the remaining particles
are clustered into two jets. The visible invariant mass M,;s of these two jets is determined
and the reduced centre-of-mass energy s’ is evaluated from the jet directions and total
momentum conservation. The events with a large ISR energy component are rejected by
requiring M,;s/+/s to be larger than 0.7 or s'/s to exceed 0.81. According to Monte Carlo
studies, the contamination from radiative events in the selected sample is about 4% at
206 GeV.

The events passing the anti-ISR cuts still contain background from four-fermion
processes (WW, ZZ, Z~*). These are identified by first clustering the particles to exactly
four jets with the Durham algorithm. The energies of the jets are then rescaled, keeping
their directions constant, such that the total energy of the event is equal to E., and the
total momentum is zero. The quantities

(mij — Mw)? + (my — My)?

2 .
d” = min E ,
w




with Myw= 80.4 GeV/c?, and
cw = cos(smallest interjet angle) ,

are then computed. For d?, the minimum value is taken among all possible choices of jet
pairings 75 and kl. Events are accepted as qq events if d2 > 0.1 or cy > 0.9.

2.3 The Data Sample and Detector Corrections

The integrated luminosities and numbers of accepted events at higher energies are given
in Table 1. The event yields are compared to expected numbers of signal and background
events. Signal events have been simulated with the program KORALZ [9], those for the
WW background with KORALW [10] and for the ZZ and Z~* backgrounds with PYTHIA
[11]. The expected background is subtracted from the distributions. The data taken at

Table 1: Integrated luminosities and numbers of accepted and expected events. The uncertainty
in the predicted numbers of events is 2%.

Eon f Ldt Events FEvents Expected Expected
(GeV) (pb™') found expected signal  background

133 12.41 806 822 822 0

161 11.08 319 333 319 14
172 9.54 257 242 218 24
183 96.83 1319 1262 1109 153
189  174.36 3578 3578 3124 454
200  208.01 3514 3528 3005 923
206  216.19 3578 3590 3072 018

130 and 136 GeV are averaged into a single data set at a nominal energy of 133 GeV.
Weights proportional to the luminosity are applied and distributions are corrected to 133
GeV. The same procedure is followed for the data sets at 196, 200 and 202 (averaged
to /s= 200 GeV) and to the data taken in the range from 203 to 209 GeV (averaged
to 1/s=206 GeV). The data are corrected for acceptance, detector resolution, undetected
particles such as neutrinos, particle masses, final state photon radiation and the residual
effects of ISR by means of multiplicative factors. The detector corrections in this paper are
derived with KORALZ because of its more accurate description of ISR. These factors are
observed to be practically independent of the model used. For the simulation of hadronic
final states in eTe™ annihilation, PYTHIA and KORALZ are essentially equivalent.

The experimental systematic uncertainty related to the detector is estimated using
calibration data collected at the Z peak in the same year as the high-energy data. The
cuts on track parameters are changed in the simulated samples until the number of events
selected per unit luminosity is the same in simulation and data. These modified cuts are
then applied to the simulated high-energy events, and the change in the extracted values
for each event-shape variable is taken as a systematic uncertainty.



The event-shape variables are measured using energy-flow objects. To account for
imperfections in the description of neutral objects in the range from 1 to 2 GeV, these
objects are excluded from the analysis, and the change in the resulting distribution is
taken as systematic uncertainty. Systematic tests of the ISR and WW rejection and the
event selection cuts are performed via cut variations. The dominant uncertainty is found
to be related to the Monte Carlo description of ISR, which appears in the variation of
cuts in M5 and s'/s. All other cut variations lead to small uncertainties. The systematic
uncertainty due to the residual model dependence of detector corrections is estimated by
comparing with the results based on factors derived from HERWIG 6.1 [12] and from
ARIADNE 4.1 [13]. Variations in the WW cross section used for background subtraction
by +2 % lead to negligible uncertainties in the corrected distributions.

In the event-shape distributions, the systematic uncertainty estimates in each bin are
dominated by the small changes in the selected events and tracks as cuts are varied, and
hence are very much limited in statistical precision. For this reason, the estimates for
neighbouring bins are combined in groups of three.

For the measurements at the Z peak, about 1.1 million events of highest quality
corresponding to 41.48 pb~! are selected from the running periods in 1994 and 1995.
Because statistics are not an issue at LEP1, very stringent quality cuts are applied and
earlier data are not considered. Event shapes and the logarithmic scaled momentum
variable (Section 3) are reanalysed here, superseding a previous measurement presented
in [1]. The distributions are corrected by means of a matrix method, as described in
[1]. The experimental systematic uncertainties are obtained in a similar way to that at
LEP2. The dominant experimental systematic uncertainties stem from the residual model
dependence of detector corrections and from the imperfections of the simulation of neutral
energy-flow objects in the range from 1 to 2 GeV.

3 Inclusive Charged Particle Distributions

Observables based on charged particles are measured for all data sets of Table 1. For
inclusive charged particle measurements, which are less sensitive to statistical fluctuations,
the data at 196 GeV (79.86 pb ') are analysed separately. Inclusive distributions are
measured for the following variables.

e The scaled particle momentum, z, = 2p/+/s.

e The logarithmic representation of the scaled momentum, £ = —Inx,, used to study
the low momentum region.

e The scaled particle energy, xp = 2E/4/s.

e The momentum projection in the event plane transverse to the sphericity axis, p'P'.
The event plane is defined by the sphericity and semi-major axes.

e The momentum transverse to the event plane, pJ*.

e The rapidity, yr = £ In(E +py)/(E — p)), measured with respect to the thrust axis.

e The rapidity, ys, measured with respect to the sphericity axis.

4



The thrust and sphericity axes used for the rapidities and the event plane used for p!
and p9** are determined using both charged and neutral particles. Inclusive distributions
of z, and ¢ are shown in Fig. 1, and of p'', p9*, y7 and ys in Fig. 2, at /s = 206 GeV
for illustration. The distributions of xg, which are very similar to those of z, except
at very low zg, are presented in Section 3.3. Numerical values in tabulated format
and figures of the distributions at all energies can be obtained through the Durham HEP
database [14] or from the ALEPH QCD web site [3]. The data are corrected for initial
and final state photon radiation, detector effects and background. Corrected distributions
are compared to the predictions of the models PYTHIA, HERWIG and ARTADNE. All
three models have been tuned to the ALEPH data at LEP1 [1]. Overall, the generator
predictions agree well with the data, except for p9**. At all energies the spectrum of pJ“*
is significantly harder and none of the generators describes the data correctly at large
values. It also is the only variable for which a sizable difference between the models is
observed.

3.1 Mean Charged Particle Multiplicity

The mean multiplicity of charged particles, (N, ), is among the observables most sensitive
to the dynamics of hadron production. A model dependence arises because of the small
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Figure 1: The measured inclusive charged particle distributions, after correction for backgrounds
and detector effects, of z;, = p/ppeam and { = —Inz, at \/s=206 GeV are shown in the central
parts of the plots. The top insets give the detector correction factors and the bottom insets the
normalised differences with respect to the predictions of PYTHIA, HERWIG and ARIADNE.
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Figure 2: The measured inclusive charged particle distributions, after correction for backgrounds
out

and detector effects, of pij_‘, "', rapidity with respect to the thrust (yr) and to the sphericity
axis (yg) at /s =206 GeV.



detection efficiency at low momenta. To alleviate this model dependence, (Ng,) is obtained
by integrating the rapidity distribution yr. The results are given in Table 2. The
experimental systematic uncertainties are obtained as outlined in Section 2. At LEP2
an average of the systematic uncertainties is calculated using weights proportional to the
luminosity in order to smooth statistical fluctuations. Integrating variables other than yr
yields consistent results for (Ng,). The differences are much smaller than the systematic
uncertainty. The multiplicities measured at various centre-of-mass energies are shown in
Fig. 3 along with measurements from other experiments [15] and with the predictions of
the Monte Carlo models PYTHIA, HERWIG and ARIADNE.

Table 2: Mean charged particle multiplicity at different centre-of-mass energies.

Ecm [GeV] | (Nan) stat. error syst. error
91.2 20.73 + 0.01 + 0.21
133 24.34 + 0.38 + 0.22
161 26.91 + 0.58 + 0.22
172 26.72 + 0.62 + 0.22
183 26.80 + 0.35 + 0.22
189 27.35 + 0.22 + 0.22
196 27.41 + 0.33 + 0.22
200 27.53 + 0.29 + 0.22
206 27.95 + 0.22 + 0.22

Also shown in Fig. 3 is a QCD prediction for the evolution of (N,). Basic properties of
particle production by multi-gluon emission emerge at leading order already, as given by
the double logarithmic approximation (DLA). Colour coherence and gluon interference
phenomena are better described in the modified leading logarithmic approximation
(MLLA) [16] which incorporates single logarithmic corrections to the DLA. For the
most inclusive variable (Ng,) a next-to-next-to-next-to-leading order (3NLO) prediction
exists [17] which takes recoil effects and conservation laws into account. The expansion
parameter of these perturbation series is Y = In /2@y where @ = /s and @) is a cut-off
scale limiting the perturbative shower evolution. In the case of the limiting spectrum [16]
the cut-off scale is set equal to the effective QCD scale, Qo = A. The effective scale in
this scheme is not the same as in the MS scheme. The concept of local parton-hadron
duality (LPHD) allows the calculated parton multiplicities to be rescaled by a global
normalisation factor, K1 pyp, to obtain the observable hadron multiplicities.

Three different predictions are fit to the data. Expressions for the fit functions are
given in Appendix A1l which contains the equations cited in the following paragraph. The
simplest MLLA prediction is the asymptotic high-energy approximation Eq.(A1.1), valid
only for large Y. The full MLLA prediction is obtained in the context of the limiting
spectrum, Eq.(A1.2). The third prediction is the 3NLO calculation, Eq.(A1.3). In all
cases two free parameters are fit, the QCD scale A and the normalisation Kippp. The
predictions depend on the number of flavours ny for which two different scenarios are
assumed: first, a pure light-quark assumption with ny=3, and second, a more realistic
frame with n;=>5 with a correction function for heavy quark decay dynamics applied to
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the perturbative predictions. The heavy quark correction is the multiplicity ratio for
all flavours to uds quarks only and is obtained from Monte Carlo simulation at several
centre-of-mass energies. The correction takes the energy-dependent flavour composition
into account. The results of the various fits are listed in Table 3. The 3NLO curve shown
in Fig. 3 corresponds to the best fit with ny = 3. The other predictions and the inclusion
of flavour correction yield an equally good description of the data. The corresponding
curves cannot be distinguished from that for 3NLO. The data are also well described by
the Monte Carlo models.

3.2 Distribution and Peak Position of &

The equations cited in this section are those in Appendix A2. The variable £ is particularly
sensitive to coherence phenomena in multiple gluon radiation. The suppression of hadron
production at very small x (large &) is a consequence of the destructive interference of
soft gluons.

3.2.1 Distributions

The distribution of ¢ can be approximated by a Gaussian shape at asymptotically high
energies. The MLLA corrections to the spectrum, which include the resummation of single
and double logarithmic terms, have been calculated in [16]. Two predictions are used in



Table 3: Fits of different theoretical predictions to the mean charged particle multiplicity.

The data points used are those in Fig. 3, which include statistical and experimental systematic

uncertainties.
n¢=3, no flavour correction ng=>5, with flavour correction
A Kipup XQ/NDOF A Kipun X2/NDOF
asymptotic | 557 +58 0.2724+0.011 26.1/29 | 178 =22 0.081 +0.004 30.2/29
Eq.(A1.1)
lim. spect. 57+7 0.587+0.031 25.3/29 47+6  0.4814+0.027 30.4/29
Eq.(A1.2)
3NLO 207+29 0.2374+0.013 25.1/29 |202+31 0.188+0.012 30.8/29
Eq.(A1.3)

this paper in addition to the normal Gaussian (Appendix A2). First, the prediction of
the limiting spectrum, Eq.(A2.1), which depends on Kppup, A and ny as is the case
for (Ng) in Section 3.1. The second prediction is the distorted Gaussian, Eq.(A2.2),
which includes higher-moment corrections to the Gaussian form. The distorted Gaussian
prediction, introduced by Fong and Webber [18], depends on three parameters: an overall
normalisation Ny, the scale A and an additive correction of order unity (O(1)) to the mean
value of £. As an example, fits at 189 GeV are shown in Fig. 4. In general the data are best
described by the distorted Gaussian, in particular at large &, while the limiting spectrum
reproduces the low & region better. All predictions provide a reasonable description of
the peak region.

The limiting spectrum is highly predictive, and spectra at different energies can be fit
simultaneously with two energy-independent parameters. A global fit to all energies yields
A = 247+3 MeV and Kppup = 0.71440.003, with a poor fit quality x*/Npor = 1204/102.
About half of the contribution to the x? stems from the very precise Z peak data. At the
individual energy points, the parameters range from 220 to 250 MeV for A and from 0.64
to 0.72 for KLPHD-

For the distorted Gaussian prediction, each energy point has to be analysed separately,
since the normalisation and the correction to the mean are energy dependent. The values
for A range from 80 to 150 MeV and for the O(1) correction from —1.8 to —1.1.

3.2.2 Peak Position

The analytic fits to the spectra are used to determine the position of the peak of the
distribution, denoted by £*. Results are given in Table 4 using the distorted Gaussian
which describes the data best.

The weighted average is calculated for the experimental systematic uncertainties above
91.2 GeV, as is done for (Ny,). The nominal fit range used is the full width at a fraction

9
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f = 70% of the maximum. An additional uncertainty not included in Table 4 arises
from the choice of the fit range and is determined by varying the fraction f from 50%
to 90%. This entails a coherent shift at all energies of the peak position of +0.020 for
f =50% to —0.016 for f = 90%, so that a correlated symmetric systematic uncertainty
of + 0.018 is assigned. Another systematic uncertainty is related to the choice of the fit
function. Fitting the ¢ distribution with a normal Gaussian results in a large correlated
shift of +0.064 [1]. The peak position determined with the limiting spectrum is in better
agreement, with the distorted Gaussian and has a correlated shift of +0.014 relative to it.
The total correlated systematic uncertainty for £* is +0.023, which is the quadratic sum
of the components just discussed related to the fit range and to the fit function.

Within the framework of MLLA the energy evolution of £* is predicted [16]. The
formula Eq.(A2.4) depends only on A and is fit to the present data and measurements at
lower energy [19] which have been determined using the same method [1] as here. The
result is shown together with the data in Fig. 5. The evolution analysis is performed for
a light quark assumption with n;=3 and for a five-flavour case with ny=5, as is done
in Section 3.1 for (Ng). The peak position for events with b and ¢ quarks is slightly
shifted compared to light quark events. Therefore, the method of energy dependent
flavour corrections derived from Monte Carlo simulation, as for (IVy,), is applied to the fit
procedure. The smallest x?/Npor is obtained for ny=3 and is presented in Fig. 5. The
quality of the fit is good, x*/Npor = 8.7/12, and A = 207 + 8 MeV. With n;=5 and
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Table 4: Peak position £* obtained with the distorted Gaussian fit to the ¢ distribution at
different centre-of-mass energies. The symbols A&g,; and AL, indicate the statistical and
experimental systematic uncertainties.

Energy (GeV) | Fit range | &£+ A&y, + A&, | Number of points | x*/Npor
91.2 [2.2,4.8] | 3.660 + 0.001 + 0.016 13 4.2
133 [2.4,5.2] | 3.941 + 0.028 £ 0.021 14 1.5
161 [2.6,5.4] | 4.050 + 0.036 + 0.021 14 2.1
172 [2.6,5.4] | 4.035 &+ 0.049 £ 0.021 14 1.3
183 2.6,5.6] | 4.116 + 0.024 + 0.021 15 1.7
189 2.6,5.4] | 4.071 + 0.016 + 0.021 14 0.8
196 [2.6,5.4] | 4.137 + 0.023 £+ 0.021 14 0.8
200 [2.6,5.4] | 4.155 + 0.023 £ 0.021 14 1.0
206 [2.6,5.4] | 4.127 + 0.019 £ 0.021 14 1.6

flavour corrections A = 217 4+ 8 MeV is found with a x?/Npor of 9.3/12.

3.3 Energy Evolution of g Distributions

Scaling violation in fragmentation functions is a fundamental prediction of perturbative
QCD and can be tested by measuring the inclusive distributions of xg at different centre-
of-mass energies. In the framework of the improved parton model the inclusive production
of hadrons is given by a convolution of the fragmentation function D}(x,Q?) with the
partonic cross sections. The energy dependence of the fragmentation functions is described
by the DGLAP [20] equations. In a dedicated ALEPH analysis [21] the evolution of
fragmentation functions for different flavours and the gluon was used to determine a.
Here a comparison of the data measured up to the highest energies with the results
of global parametrisations of fragmentation functions is given. Global parametrisations
have been obtained by various authors, KKP [22], BWFG [23] and K [24]. In all of these
analyses a functional form for the fragmentation functions D(z, Q%) = Nz (1 — x)° at
some initial scale (g is assumed. Then the functions are evolved at NLO to fit the data
at the Z peak and at lower energies. The high energy data are not included in the global
fits, thus a comparison of the parametrisations with the data is an important test of the
validity of their evolution.

In Fig. 6a the data at all energies are shown along with the three theoretical
predictions. The previously published data [21] are used for /s = 91.2 GeV. At sufficiently
large g > 0.1 the parametrisations describe the data well, and all three predictions are
very similar. At small i the KKP parametrisation tends to rise more steeply than
is supported by the data. Both the BFGW and K parametrisations extrapolate well
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towards smaller zg. In general the DGLAP mechanism does not apply for small zg,
where the MLLA formalism provides a better theoretical description, and this region is
excluded from the global fits. In contrast, at very large xr the KKP parametrisation is in
better agreement with the data, while the BFGW and K parametrisations are below the
measurements. However, the data at high zg and at high energy are of limited precision.
A striking consequence of scaling violations is observed in the ratio of the distributions at
LEP2 and LEP1. The zg spectra at the four highest energy data sets from 189 GeV to 206
GeV are combined in a luminosity-weighted average with a mean centre-of-mass energy of
198 GeV. The ratio of distributions is shown in Fig. 6b. Scaling violations induce a rise of
the cross section at small zp and at a decrease at large xp with increasing /s. The data
clearly exhibit this property, and it is qualitatively reproduced by the parametrisations;
the predictions of the Monte Carlo models are in better agreement with the data.

4 Jet Rates

Jet rates are defined by means of the Durham clustering algorithm [8] in the following
way. For each pair of particles 7 and j in an event the metric y;; is computed

2min(E7, E7)(1 — cos ;)
Yij = E2 ;

vis
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Figure 6: The inclusive scaled energy distributions compared to three different global
NLO parametrisations of fragmentation functions (a). The ratio of the luminosity-weighted
distribution at LEP2 (189-206 GeV, (Ecm) =198 GeV) and 91.2 GeV, whereby the latter is
taken from [21] (b).

where E;s is the total visible energy in the event. The pair of particles with the smallest
value of y;; is replaced by a pseudo-particle (cluster). The four-momentum of the cluster
is taken to be the sum of the four momenta of particles ¢ and j, p* = p' + pj-‘ (‘E’
recombination scheme). The clustering procedure is repeated until all y;; values exceed
a given threshold y.,. The number of clusters remaining at this point is defined to be
the number of jets. Alternatively, the procedure is repeated until exactly three clusters
remain. The smallest value of y;; in this configuration is defined as y3. The distribution
of y3 is sensitive to the probability of hard gluon radiation leading to a three-jet topology.
It can therefore be used to determine o (Section 6).

The n-jet rates were measured for n = 1,2,3,4,5 and n > 6. Detector correction
factors were applied in the same manner as for the inclusive distributions, but in this
case for each value of the jet resolution parameter y.,. Figure 7 shows the measured
jet fractions as a function of y.,; at 206 GeV. Good agreement with the Monte Carlo
generator predictions is observed. However, in the region of the peak of the three-jet
fraction the generators, in particular PYTHIA, lie above the data.

5 Event Shapes

The various distributions describing the event shapes are of interest because (i) most of
the variables are predicted to second order in QCD; and (i) some resummed calculations
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to all orders in «a; exist. By fitting the theoretical predictions to these distributions the
value of the strong coupling constant may be determined. By comparing with the direct
predictions for the various Monte Carlo models, the validity of each model is tested.

The primary objective is to observe the running of a; with centre-of-mass energy.
For this reason, the analyses at each energy point have been carried out coherently and
correlated systematic uncertainties are estimated. The event-shape variables studied here
are defined as follows.

e Thrust T : The thrust [25] axis 7y maximises the quantity

T = max <7ZZ \15; ﬂﬁT‘> ,
fir > |pil

where the sum extends over all particles in the event.

e Thrust Major Tinajor : The thrust major vector, iy, is defined in the same way as
the thrust vector, but with the additional condition that 7y, must lie in the plane
perpendicular to 7ir,

2 il

Trna.jor = _nax
fiMaL7T

(Zi i - ﬁMal)
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e Thrust Minor Tiinor : The minor axis is perpendicular to both the thrust axis and
the major axis, 7iy; = 7i7 X fima. The value of thrust minor is given by

> 1D - i

Tmin r — =
° > il

e Oblateness O : The oblateness is defined as the difference between thrust major
and thrust minor,
0= Tma,jor - Tminor .

e Sphericity S : The sphericity is calculated from the ordered eigenvalues A;—; 23 of
the quadratic momentum tensor

«, B
Mop = 2iPIPL s g g

R

AMZX >, M+t A3=1;
3

?

The sphericity axis 7ig is defined along the direction of the eigenvector associated
to A1, the semi-major axis 7ig\, is along the eigenvector associated to .

e Aplanarity A : The aplanarity is calculated from the third eigenvalue of the
quadratic momentum tensor,

3
A—§A3 .

e Planarity P : The planarity is a linear combination of the second and third
eigenvalue of the quadratic momentum tensor

P=X-);,
which is equivalent to the combination P = 2(S — 24).

e Heavy Jet Mass p : A plane through the origin and perpendicular to 7ir divides the
event into two hemispheres, H; and Hy, from which the corresponding normalised
hemisphere invariant masses are obtained,

2
1 .
MZQZE—2<ZPIC> ,121,2 .
vis keH;

The larger of the two hemisphere masses is called the heavy jet mass [26],
p = max(M}, M)
and the smaller is the light jet mass M,

My, = min(M?, M2) .
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e Jet Mass Difference Mp : The difference between p and My, is called the jet mass
difference,
MD =p— ML .

e Wide Jet Broadening Bw : A measure of the broadening [27] of particles in
transverse momentum with respect to the thrust axis can be calculated for each
hemisphere H; using the relation

e, [Pk X i

B; = i=1,2

235 1ml o
where j runs over all of the particles in the event. The wide jet broadening is the
larger of the two hemisphere broadenings,

BW = maX(Bl, BQ) s

and the smaller is called the narrow jet broadening By,
BN = min(Bl, BQ) .
e Total Jet Broadening Bt : The total jet broadening is the sum of the wide and the

narrow jet broadenings,
BT = BW + BN .

e C-parameter C' : The C-parameter [28] is derived from the eigenvalues of the
linearised momentum tensor ©%#,

1 pepy
@uﬂ: = z_,z :aaﬁ:152,3 .
Zi |7 Z il

The three eigenvalues A; of this tensor define C' with
C=3-(MA2+ X3+ A3\1) .

14

e Jet resolution parameter y, : The jet resolution parameters y, are defined as the
particular values of y.,; at which an event changes from a (n — 1)-jet configuration
to a n-jet configuration. The same clustering algorithm as for jet rates is applied.

Examples of observed data distributions for the selected events at 206 GeV, after
correction for backgrounds and for detector effects, are shown in Fig. 8 and Fig. 9. On
each plot detector correction factors and hadronisation corrections are displayed. The
hadronisation corrections are defined as the ratio of the simulated distribution at hadron
level to that at parton level. This correction is relevant for the comparison with analytic
QCD calculations and the determination of a;. The data distributions are compared with
those predicted by PYTHIA, HERWIG and ARIADNE, at hadron level. The residuals of
the model predictions with respect to the data are shown at the bottom of the plots. In
the central part of the distributions the Monte Carlo predictions are in good agreement
with the measurements and with each other. For some variables deviations are visible
in the very two-jet region or in the multi-jet tail. Observables which are used for the
determination of a; are shown in Figs. 10 and 11. The measurements of all the event-
shape distributions and mean values, including a large variety of additional variables
measured at LEP1, are accessible at the ALEPH QCD web site [3].
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6 Measurements of o

Distributions of event-shape variables are used to determine the strength of strong
interactions. The coupling constant o is determined from a fit of the perturbative QCD
prediction to measured event-shape distributions. The six event-shape variables used are
T, p, Br, By, C and — Inys. Predictions for the distributions are calculated to the same
order of perturbation theory for all of these variables. The size of missing higher orders,
which are inherently difficult to assess, can be different for different variables. Therefore,
a combination of measurements using several variables yields a better estimator of ay
than using a single variable. Furthermore the spread of values of a; is an independent
estimation of the theoretical uncertainty.

The experimental situation at energies above My is different from that at Mz.
Statistical uncertainties are larger and background conditions are more difficult. In general
theoretical uncertainties limit the precision of the measurements, except for the very small
data sets at 161 and 172 GeV, where statistical errors dominate. At these energies it is
particularly important to combine measurements from different variables.

A study using simulated distributions reveals that the fit procedure is systematically
biased towards lower values of o, in the case of small event statistics, as encountered at
161 and 172 GeV. This bias originates from larger weights of downward fluctuating bins
in the distributions compared to upward fluctuations. It is overcome by replacing the
measured statistical uncertainties of a distribution by the expected statistical errors. The
expected uncertainties are obtained from a large number of simulated experiments, each
of the same sample size as the real data. The root mean square in each bin of the Monte
Carlo distributions is used in the fit procedure as statistical error. This is done for all
variables at all energy points above M.

Event-shape distributions are fit in a central region of three-jet production, where a
good perturbative description is available. It extends from above the two-jet peak to the
phase-space boundary between three and four jets. The fit range is placed inside the region
where hadronisation and detector corrections are below 25% and the signal-to-background
ratio is above one. The correction functions can be obtained at the ALEPH QCD web site
[3]. Because of the large statistics at Q = My this range extends well into the three-jet
region. At high energies the range must be shifted into the two-jet region in order to
reduce the statistical error and backgrounds as much as possible. This generates larger
perturbative uncertainties, so that an iterative procedure is used to find the range giving
the minimal total uncertainty. The data are corrected for detector effects, for background
from four-fermion processes and for a residual ISR contribution, as outlined in Section 2.
The background from WW events increases with energy, and after subtraction the content
of some bins of the distribution becomes negative. For this reason the fit range is restricted
to a region with good signal-to-background ratio.

Distributions of infrared- and collinear-safe observables at the parton level can be
computed in perturbative QCD to second order in o, using the ERT matrix elements
[29]. In addition, the variables used in this analysis exhibit the property of exponentiation
so that leading and next-to-leading logarithms can be resummed to all orders in a;
using analytic functions [30, 31, 32, 33]. These resummed calculations are valid in
the semi-inclusive two-jet region, i.e., where the two jets are accompanied by multiple
soft gluon radiation. An improved prediction over the entire phase space is achieved by
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matching the fixed order part to the resummed calculation. For convenience, the main
formulae are given in Appendix A3. A comprehensive overview can be found in [4]. The
nominal value for the renormalisation scale =, = p/@ is unity. For this analysis modified
versions of the Log(R) and R [30] matching schemes are used (Egs.(A3.6), (A3.8), and
(A3.12)). A kinematic constraint is imposed such that the predicted distributions of
y(y=1-T,p, By, Br,ys,C) vanish at a given boundary value y,.x. Recently, improved
calculations for — Iny; have become available [34], which add previously missing single-
logarithmic terms due to multiple gluon emission. The improved calculations have been
implemented in the fit functions. It is observed that the quality of the fits to —Inys
improves and the fitted value of oy is 1.5% lower than the partial prediction [31].

All these calculations above neglect quark masses. Quark mass effects are relevant
for the b quark at /s = My, where the fraction of bb events is large, while @ is still
moderate. Calculations including a quark mass indicate that the expected change in a
is of the order of 1% at My [35]. The effect is scaling with M?/Q? and decreases to
0.2-0.3% at 200 GeV. Mass corrections were computed to second order using the matrix
elements of [36]. A pole b-quark mass M, = 5 GeV/c? was used and Standard Model
values were taken for the fraction of bb events. Since no corrections are yet available for
the resummed calculations, the full theoretical prediction can only account for the quark
mass effect in the perturbative region.

The perturbative QCD prediction is corrected for hadronisation and resonance decays
by means of a transition matrix, which is computed with Monte Carlo generators.
Corrected measurements of event-shape distributions are compared to the theoretical
calculation at particle level.

The value of «y is determined at each energy using a binned least-square fit. Only
statistical uncertainties are included in the x? of the fit for which the quality is good for
all variables at LEP2, while at LEP1 it is poor for the variables p and By,. Nominal
results are shown in Figs. 10 and 11 together with the measured distributions. The
resulting measurements of a;(Q) are given in Table 5 for 91.2 to 172 GeV and in Table 6
for 183 to 206 GeV. All individual measurements are also shown in Fig. 12 together
with combined measurements at each energy (Section 8). Systematic theoretical and
experimental uncertainties are discussed in the following section.

7 Systematic Uncertainties of o

7.1 Experimental Uncertainties

Experimental systematic uncertainties are estimated in a way similar to that for the event
shapes themselves, as described in Section 2. Changes of the distributions under variations
of cuts lead in general to small changes in a;. In the fit procedure the same expected
statistical error is assumed everywhere for all variants of the distribution, as outlined in
Section 6. This procedure reduces purely statistical components in the systematic effect,
which are potentially large at LEP2 energies. A special treatment was applied for the
dominant systematic uncertainty, i.e. arising from the variation of the combined cut in
Mis/+/s from 0.7 to 0.85 and in s'/s from 0.81 to 0.9. This cut variation entails the
largest change in the number of events. The resulting error in «a; fluctuates from one
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Table 5: Results on as(Q) as obtained from fits to distributions of event-shape variables at
Vs =912, 133, 161 and 172 GeV.

Q@ =91.2 GeV
variable T —Inys P C By Br
Qg 0.1264 | 0.1180 | 0.1187 0.1225 0.1163 0.1260

stat. error 0.0001 | 0.0002 | 0.0002 0.0001 0.0002 0.0001
exp. error 0.0008 | 0.0010 | 0.0009 0.0007 0.0006 0.0007
pert. error | 0.0063 | 0.0038 | 0.0043 0.0058 0.0051 0.0080
hadr. error | 0.0020 | 0.0015 | 0.0037 0.0015 0.0015 0.0029
total error 0.0067 | 0.0042 | 0.0057 0.0061 0.0054 0.0085
fit range 0.80-0.94 | 1.6-4.4 | 0.08-0.21 | 0.26-0.64 | 0.08-0.15 | 0.08-0.22

Q = 133 GeV
variable T —lnys P C By, Br
Qs 0.1196 | 0.1180 | 0.1141 0.1188 0.1143 0.1112

stat. error 0.0040 | 0.0054 | 0.0044 0.0029 0.0026 0.0022
exp. error 0.0012 | 0.0010 | 0.0010 0.0011 0.0004 0.0017
pert. error | 0.0054 | 0.0030 | 0.0036 0.0049 0.0044 0.0068
hadr. error | 0.0015 | 0.0008 | 0.0025 0.0012 0.0009 0.0019
total error 0.0069 | 0.0064 | 0.0063 0.0060 0.0052 0.0076
fit range 0.80-0.96 | 1.6-4.8 | 0.06-0.25 | 0.18-0.75 | 0.05-0.25 | 0.06-0.40

Q = 161 GeV
variable T —Inys; P C By By
Ol 0.1214 0.1118 0.1178 0.1224 0.1159 0.1138

stat. error 0.0062 | 0.0084 | 0.0073 0.0046 0.0041 0.0040
exp. error 0.0012 | 0.0010 | 0.0010 0.0012 0.0004 0.0018
pert. error 0.0049 | 0.0027 | 0.0034 0.0045 0.0040 0.0062
hadr. error | 0.0013 | 0.0006 | 0.0020 0.0011 0.0007 0.0015
total error 0.0081 | 0.0089 | 0.0083 0.0066 0.0058 0.0078
fit range 0.80-0.96 | 1.6-5.6 | 0.06-0.25 | 0.18-0.75 | 0.05-0.30 | 0.06-0.40

Q =172 GeV
variable T —1In Ys P C BW BT
Qs 0.1122 | 0.1078 | 0.1087 0.1089 0.1040 0.1140

stat. error 0.0075 | 0.0093 | 0.0079 0.0055 0.0053 0.0056
exp. error 0.0012 | 0.0011 | 0.0010 0.0012 0.0005 0.0018
pert. error | 0.0048 | 0.0027 | 0.0034 0.0045 0.0040 0.0060
hadr. error | 0.0012 | 0.0005 | 0.0019 0.0010 0.0007 0.0014
total error 0.0091 | 0.0098 | 0.0088 0.0072 0.0067 0.0085
fit range 0.80-0.96 | 2.4-5.6 | 0.06-0.25 | 0.18-0.75 | 0.05-0.30 | 0.06-0.30
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Table 6: Results on as(Q) as obtained from fits to distributions of event-shape variables at
Vs =183, 189, 200 and 206 GeV.

Q = 183 GeV
variable T —Iny; p C By Br
Qg 0.1132 | 0.1058 | 0.1103 0.1079 0.1062 0.1148

stat. error 0.0035 | 0.0044 | 0.0038 0.0031 0.0025 0.0027
exp. error 0.0012 | 0.0012 | 0.0010 0.0013 0.0004 0.0018
pert. error | 0.0048 | 0.0026 | 0.0032 0.0044 0.0038 0.0059
hadr. error | 0.0011 | 0.0005 | 0.0018 0.0010 0.0006 0.0013
total error 0.0061 | 0.0053 | 0.0054 0.0056 0.0046 0.0079
fit range 0.80-0.96 | 2.4-5.6 | 0.06-0.20 | 0.22-0.60 | 0.05-0.20 | 0.075-0.25

Q = 189 GeV
variable T —lnys p C By, Br
Qs 0.1163 | 0.1080 | 0.1099 0.1124 0.1056 0.1140

stat. error 0.0021 | 0.0027 | 0.0028 0.0018 0.0016 0.0019
exp. error 0.0012 | 0.0010 | 0.0012 0.0012 0.0004 0.0019
pert. error | 0.0046 | 0.0026 | 0.0032 0.0042 0.0038 0.0059
hadr. error | 0.0011 | 0.0004 | 0.0017 0.0010 0.0006 0.0012
total error 0.0053 | 0.0039 | 0.0047 0.0049 0.0042 0.0065
fit range 0.84-0.96 | 2.4-5.6 | 0.06-0.16 | 0.22-0.60 | 0.05-0.20 | 0.075-0.20

@ = 200 GeV
variable T —Inys; P C By By
Qg 0.1113 0.1091 0.1037 0.1113 0.1028 0.1141

stat. error 0.0023 | 0.0027 | 0.0034 0.0021 0.0019 0.0021
exp. error 0.0012 | 0.0010 | 0.0017 0.0012 0.0004 0.0018
pert. error | 0.0045 | 0.0026 | 0.0031 0.0042 0.0037 0.0058
hadr. error | 0.0011 | 0.0004 | 0.0016 0.0010 0.0005 0.0011
total error 0.0053 | 0.0039 | 0.0052 0.0049 0.0042 0.0065
fit range 0.84-0.96 | 2.4-5.6 | 0.06-0.16 | 0.22-0.60 | 0.05-0.20 | 0.075-0.20

Q = 206 GeV
variable T —1In Ys 1% C BW BT
Qs 0.1097 | 0.1024 | 0.1075 0.1052 0.1035 0.1076

stat. error 0.0023 | 0.0028 | 0.0029 0.0019 0.0016 0.0019
exp. error 0.0012 | 0.0010 | 0.0010 0.0012 0.0004 0.0018
pert. error | 0.0045 | 0.0026 | 0.0031 0.0041 0.0037 0.0056
hadr. error | 0.0011 | 0.0004 | 0.0016 0.0009 0.0005 0.0011
total error 0.0053 | 0.0039 | 0.0046 0.0048 0.0041 0.0063
fit range 0.84-0.96 | 2.4-5.6 | 0.06-0.16 | 0.22-0.60 | 0.05-0.20 | 0.075-0.20
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Figure 10: The measured distributions, after correction for backgrounds and detector effects,
of thrust, — In y3, heavy jet mass and wide jet broadening at energies between 91.2 and 206 GeV
together with the fitted QCD predictions. The error bars correspond to statistical uncertainties.
The fit ranges cover the central regions indicated by the solid curves, the theoretical predictions
extrapolate well outside the fit ranges, as shown by the dotted curves. The plotted distributions
are scaled by arbitrary factors for presentation.

energy to another due to the irreducible statistical component. Therefore, an energy-
independent luminosity-weighted average is constructed for each variable separately at
energies between 133 and 206 GeV. All other components of systematic uncertainty are
added in quadrature to this error. The total experimental systematic uncertainties of a;
at LEP2 are between 0.5% and 1.5%. Those at LEP1 are below 1% and dominated by
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Figure 11: The measured distributions, after correction for backgrounds and detector effects, of
C-parameter and total jet broadening at energies between 91.2 and 206 GeV together with the
fitted QCD predictions. The error bars correspond to statistical uncertainties. The fit ranges
cover the central regions indicated by the solid curves, the theoretical predictions extrapolate
well outside the fit ranges, as shown by the dotted curves. The plotted distributions are scaled
by arbitrary factors for presentation.

imperfections of the simulation of neutral hadronic energy-flow objects.

7.2 Theoretical Uncertainties

The new method recommended in [4] is applied to estimate systematic uncertainties
related to missing higher orders. Sources of arbitrariness in the predictions are the choice
of the renormalisation scale x, and the logarithmic rescaling factor z, the matching
scheme and the matching modification procedure. For the logarithmic rescaling factor an
additional test, first suggested in [37], is included here. Essentially this test consists in a
replacement of the logarithmic variable L = —Iny (y being an event shape variable such
as 1 —T), by a rescaled variable L — L = —In(y- ;) with z;, of order unity. A variation
of x; is expected to probe missing higher orders in a way different from renormalisation
scale variations. Values of z, different from unity entail changes of the matching formulae,
given in Appendix A3. The so-called perturbative uncertainties are assessed as follows:

e the renormalisation scale z,, is varied between 0.5 and 2.0,

e the logarithmic rescaling factor z; varied in between 2/3 and 3/2 (for —Iny; an

equivalent effect is obtained with the endpoints squared, i.e., a variation from 4/9
to 9/4),

e the modified Log(R) matching scheme is replaced by the modified R matching
scheme,
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Figure 12: Summary of all individual measurements of «; using six variables at eight centre-
of-mass energies. The error bars correspond to the total uncertainties, the shaded areas to the
combined measurements given in Table 7.

e the value of the kinematic constraint ym,ay, obtained with parton shower simulations,
is replaced by the value of ¢, .. using matrix element calculations and

e the first degree modification of the modified Log(R) matching scheme (p = 1) is
replaced by a second degree modification (p = 2).

The uncertainties in a; corresponding to these theoretical uncertainties were previously
obtained by modifying the prediction (e.g., setting a different value of z,,), and repeating
the fits to the data. The quality of fits carried out with extreme variations of theoretical
predictions is usually rather bad, and the values for parameters determined under such
conditions are less reliable.

The new method derives the uncertainty of a;, from the uncertainty of the theoretical
prediction for the event-shape distribution and proceeds in three steps. First a reference
perturbative prediction, the modified Log(R) matching scheme, is determined for the
distribution of each variable using the corresponding values of oy measured at My. Then
all variants of the theory mentioned above are calculated with the same value of «j.
In each bin of the distribution for a given variable, the largest upward and downward
differences with respect to the reference theory are taken to define an uncertainty band
around the reference theory.
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In the last step, the value of o, in the reference theory is varied, in order to find the
range of values which result in predictions lying inside the uncertainty band for the fit
range under consideration. The largest and smallest allowed values of «; fulfilling the
condition finally set the perturbative systematic uncertainty. The method is illustrated
in Fig. 13, taking the thrust as an example.
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Figure 13: Theoretical uncertainties for the distribution of thrust at LEP1. The grey area
represents the perturbative uncertainties of the distribution for a given value a?. Dotted/dashed
lines and points show the individual components to the uncertainty. The curves show the
reference prediction with a + Aa,. The theoretical uncertainty Acys is defined as the largest
deviation from the nominal o still resulting into a prediction lying inside the uncertainty band
for the actual fit range.

The theoretical error depends on the absolute value of oy, scaling approximately with
a2, and on the fit range. At LEP2 energies the statistical fluctuations are large. In order to
avoid biases from downward fluctuations, the theoretical uncertainties are calculated with
the value of oy measured at LEP1. For each variable, the corresponding measurement is
evolved to the appropriate energy scale and the uncertainty is calculated for the fit range
used at that energy point.

An additional error is evaluated for the b-quark mass correction procedure. This
correction has only been calculated to O(a?); no resummed expressions are yet available.
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The difference in «, obtained with and without mass corrections is taken as systematic
error. The total perturbative uncertainty quoted in the tables is the quadratic sum of the
errors for missing higher orders and for the mass correction procedure.

The hadronisation model uncertainty is estimated by comparing HERWIG and
ARIADNE to PYTHIA for both hadronisation and detector corrections. The maximum
change with respect to the nominal result using PYTHIA is taken as systematic
error. At LEP2 energies the hadronisation model uncertainty is again subject to
statistical fluctuations. These fluctuations are observed from one energy to the next
and originate from limited statistics of the fully simulated detector-correction functions.
Since non-perturbative effects are expected to decrease with 1/@Q, the energy evolution
of hadronisation errors has been fitted to a simple A + B/ parametrisation. The fit
was performed for each variable separately. In the fit procedure a weight scaling with
luminosity is assigned to the hadronisation uncertainty at each energy point. This ensures
that the hadronisation uncertainty at Mz, which is basically free of statistical fluctuations,
is not altered by the procedure.

The perturbative component of the error, which is the dominant source of uncertainty
in most cases, is highly correlated between the energy points. The perturbative errors
decrease with increasing (), and faster than the coupling constant itself. The overall
error is in general dominated by the combination of renormalisation scale and logarithmic
variable rescaling uncertainties.

8 Combined Results

The measurements obtained with the six different variables are combined into a single
measurement per energy using weighted averages. A weight is assigned to each observable-
dependent measurement « proportional to the inverse square of its total error w; o< 1/07.
The weighted average @, is then given by

N=6

—_E: i
as— wia37

=1

and the combined statistical error is

N=6

stat __ 2

O'as = E (O'ZIUZ) +2pijaz~w,-ajwj y
i£]

for which the correlation coefficients p;; are needed. This correlation between fits of o to
different variables is obtained using a large number of simulated data samples and turns
out to be typically 60%-80%. The correlation of systematic errors is taken into account
by recomputing the weighted average for all variations of the analysis, and the change in
a, with respect to the nominal value is taken as error.

The combination of experimental systematic uncertainties at LEP2 energies is obtained
using a luminosity-weighted average of the uncertainties between 133 GeV and 206 GeV.
Combined results are given in Table 7 and shown in Fig. 14, together with a fit of the
QCD expectation. The curve is seen to be in good agreement with the measurements. In
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Table 7: Combined results for as(Q) as obtained with weighted averages. The last row gives
the RMS of results from different variables as a cross check of the perturbative uncertainties.

Q [GeV] 91.2 133 161 172 183 189 200 206

as(Q) 0.1201 | 0.1161 | 0.1175 | 0.1088 | 0.1090 | 0.1101 | 0.1081 | 0.1054
stat. error | 0.0001 | 0.0025 | 0.0037 | 0.0046 | 0.0022 | 0.0015 | 0.0016 | 0.0016
exp. error | 0.0008 | 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010
pert. error | 0.0050 | 0.0045 | 0.0044 | 0.0043 | 0.0039 | 0.0038 | 0.0037 | 0.0037
hadr. error | 0.0016 | 0.0011 | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 0.0007 | 0.0007
total error | 0.0053 | 0.0054 | 0.0059 | 0.0064 | 0.0047 | 0.0042 | 0.0042 | 0.0042
RMS 0.0045 | 0.0033 | 0.0042 | 0.0035 | 0.0038 | 0.0041 | 0.0046 | 0.0028

the definition of the x? of the fit only the uncorrelated component of the errors is taken
into account, which excludes the perturbative error.

The combined measurements between 133 and 206 GeV are evaluated at the scale
of the Z boson mass by using the predicted energy evolution of the coupling constant
at three-loop level Eq.(A3.3). The measurements evolved to My are given in Table 8.
They are again combined using a weighted average, with weights proportional to the
inverse square of total errors. In contrast to the combination from different variables,
here the measurements are statistically uncorrelated. Correlations between systematic
uncertainties are taken into account and all variations of the determination of o, have
been performed for the weighted average.

The final ALEPH result, os(Myz) = 0.1214 + 0.0048, is given in Table 9. Included
in Table 9 is the combination of measurements at LEP2 energies without the point at
My. The total uncertainty of the combined LEP2 measurement is comparable to that
including LEP1 because the dominant perturbative uncertainties are reduced at higher
energies, even after evolution to My. The measurements at LEP1 and LEP2 are in good
agreement with each other and with previously published ALEPH measurements of a;
using event shapes [1, 38].

Table 8: Combined results for as(My) as obtained with weighted averages and evolved from
the scale ) to M7y.

Q [GeV] 91.2 133 161 172 183 189 200 206

as(My) 0.1201 | 0.1229 | 0.1285 | 0.1193 | 0.1207 | 0.1227 | 0.1212 | 0.1183
stat. error | 0.0001 | 0.0028 | 0.0044 | 0.0056 | 0.0027 | 0.0018 | 0.0020 | 0.0020
exp. error | 0.0008 | 0.0012 | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0013 | 0.0012
pert. error | 0.0050 | 0.0048 | 0.0048 | 0.0047 | 0.0044 | 0.0042 | 0.0042 | 0.0042
hadr. error | 0.0016 | 0.0012 | 0.0011 | 0.0010 | 0.0010 | 0.0009 | 0.0009 | 0.0009
total error | 0.0053 | 0.0058 | 0.0067 | 0.0075 | 0.0054 | 0.0049 | 0.0049 | 0.0048
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Figure 14: The measurements of the strong coupling constant ag between 91.2 and 206 GeV.
The results using the six different event-shape variables are combined with correlations taken
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MeV, equivalent to as(Myz) = 0.1211 £ 0.0008.

Table 9: Weighted average of combined measurements for as(Myz) obtained at energies from

160

180 200

220

E,, [GeV]

91.2 GeV to 206 GeV and the average without the point at My.

data set LEP1 + LEP2 | LEP2

as(My) 0.1214 0.1217

stat. error + 0.0009 + 0.0010
exp. error + 0.0011 + 0.0012
pert. error + 0.0045 + 0.0044
hadr. error + 0.0011 4+ 0.0010
total error + 0.0048 + 0.0048
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Finally, as a cross check, another combination method is investigated in which a
simultaneous fit to data sets at all energies is performed. These simultaneous fits are
used in Section 9 to investigate power law corrections. Effectively, this method implies
using statistical uncertainties as weights, so that the result is dominated by the precise
data at Myz. This determination of a,(Mz) = 0.1202 4 0.0052 is practically the same as
without high energy data.

9 Study of Power Law Corrections

Non-perturbative effects in hadronic observables in ete™ annihilation are in general
suppressed by powers of 1/@Q [5]. These effects are small in inclusive quantities such
as the total cross section. For most of the event-shape variables, however, the power of
the 1/Q term is equal to unity, and hadronisation corrections are relatively large (5 -
10 % at @) = My). Corrections for hadronisation are usually derived from Monte Carlo
generators and applied to perturbative predictions, in order to extract the value of a; as
done in Section 6. Here a comparative study is presented in which «; is determined both
with analytical power corrections and with Monte Carlo corrections. The aim is to test
models of power corrections and to evaluate possible improvements for measurements of
a;. Since power corrections scale with 1/@Q), it is important to include data sets from a
large range of centre-of-mass energies, which are fit simultaneously for a given variable.

Power corrections in the spirit of [5] are related to infrared divergences of the
perturbative expansion at low scales. Analytical calculations introduce one additional
phenomenological parameter «p,

1 M1

olp) = [ ok
Hr Jo

which measures effectively the strength of the coupling up to an infrared matching scale

pr of the order of a few GeV. The parameter « is expected to be universal and must be

determined by experiment.

Theoretical predictions exist for mean values and distributions of T', p, C', By, and
Br, and the leading power correction for these variables scales with 1/Q. No calculations
are yet available for y3 which is expected to receive only a 1/Q? or InQ/Q?* correction
[6]. Mean values are analysed first, mainly for illustrative purposes; the statistical
significance of fits to mean values is inferior to analyses of distributions, and perturbative
predictions to second order are used without resummation. The analysis of mean values
include measurements at lower energies [39] and of LEP experiments which have employed
radiative events [40]. The full systematic study then follows for distributions in a second
step using the ALEPH data only. The relevant formulae for power corrections are given
in Appendix A4.

9.1 Mean Values

Mean values are subject to a leading power correction proportional to ag(ur)/Q which
is added to the perturbative prediction being itself proportional to O(a?). The two
parameters a, and «g are determined in simultaneous fits to mean value measurements
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Table 10: Results of simultaneous fits of as and ag(2 GeV) using power corrections to mean
values of event shapes, including lower energy data. The uncertainties and the correlation
between ag and g are obtained using the fit which includes statistical and systematic
uncertainties of the data.

variable as(Mz) ap(2 GeV) | x?/Npor | correlation
T 0.1207 4+ 0.0019 | 0.539 + 0.011 | 69/43 —83%
p 0.1161 4+ 0.0018 | 0.627 + 0.020 | 50/40 -82%
C 0.1228 4+ 0.0027 | 0.461 + 0.016 | 17/18 -91%
By 0.1179 4+ 0.0028 | 0.467 + 0.037 | 11/18 —94%
Br 0.1148 £ 0.0025 | 0.492 + 0.020 7/18 -92%

in the energy range from 12 GeV to 206 GeV. The renormalisation scale z, is set to
unity and the infrared matching scale u; to 2 GeV. Corrections for the b-quark mass are
applied for the perturbative prediction in the same way as for the fits using Monte Carlo
corrections (see Section 6). The quadratic sum of statistical and experimental systematic
errors is included in the definition of the x? of the fit. The fit results are summarised
in Table 10 and shown in Fig. 15. For comparison in Table 11 fit results obtained using
Monte Carlo corrections are summarised.

The quality of fits with power corrections in terms of x?/Npor is good and slightly
better than for fits with Monte Carlo corrections. The values of a, between 0.115 and
0.123 are compatible with the combined measurement of a; given in Section 8. The value
of ap is around 0.5 except for p for which it is 20% larger. The correlation between «
and o obtained from the fit is large and negative.

It can be seen that the values of o with power corrections are systematically lower
than with Monte Carlo corrections (Table 11). The large value of «; with Monte Carlo
corrections is not unusual in the framework of fixed order calculations; in general a better
description is obtained with an optimised scale u < Q.

Table 11: Results of fits to mean values of event shapes using Monte Carlo corrections.
The errors are obtained with the fit which includes statistical and experimental systematic
uncertainties.

variable as(My) x%/Npor
T 0.1285 + 0.0005 70/44
P 0.1273 4+ 0.0007 | 67/41
C 0.1269 4+ 0.0006 | 23/19
By 0.1274 + 0.0007 14/19
Br 0.1174 £ 0.0005 16/19
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Figure 15: Event-shape mean values (shifted by an arbitrary amount) as function of centre-of-
mass energy. The full lines show the result of fits with power corrections, the dashed lines are
fits with Monte Carlo correction.

9.2 Distributions

In the simplest model [5] power corrections to distributions are incorporated as a shift of
the perturbative prediction by the same amount as the additive correction to mean values.
The modified Log(R) matching scheme including corrections for the b-quark mass is used
for the perturbative prediction. The shift is constant for 7', p, and C, but depends on
the actual value of the variable for By, and Br , leading to a squeeze of the distributions.
Simultaneous fits of o and «q are carried out using only ALEPH data from 91 GeV to
209 GeV within the fit ranges given in Tables 5 and 6. The statistical significance of single
data sets at LEP2 is insufficient to determine two parameters simultaneously. Therefore,
the distributions of each variable are fit simultaneously at all energies, taking advantage of
the 1/@ scaling properties of the non-perturbative term. Results with power corrections
are given in Table 12; for comparison fits of o obtained with Monte Carlo corrections for
hadronisation are given in Table 13.

Experimental systematic uncertainties are obtained in the same way for both
measurements. The method described in Section 7.2 is extended to two parameters to
determine the perturbative uncertainties of «y and oy from the power corrections. In
this case the uncertainty bands are evaluated simultaneously at all energies for a given
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Table 12: Results of simultaneous fits of a5 and ag(2 GeV) to distributions at energies between
91 and 206 GeV using power corrections.

Variable T P C By Br

as(Mz) 0.1192 | 0.1068 | 0.1159 | 0.1043 | 0.1175
stat. error 0.0007 | 0.0011 | 0.0007 | 0.0009 | 0.0004
exp. error 0.0014 | 0.0029 | 0.0015 | 0.0024 | 0.0017
pert. error 0.0057 | 0.0040 | 0.0059 | 0.0041 | 0.0072
non pert. error | 0.0001 | 0.0001 | 0.0008 | 0.0001 | 0.0001
total error 0.0059 | 0.0051 | 0.0062 | 0.0048 | 0.0074
x%/Npor 73/47 | 124/42 | 83/54 | 76/47 | 181/59
ap(2 GeV) 0.452 | 0.808 | 0.443 | 0.812 | 0.667
stat. error 0.012 | 0.038 | 0.009 | 0.047 | 0.008
exp. error 0.025 | 0.085 | 0.035 | 0.068 | 0.003
pert. error 0.013 | 0.024 | 0.006 | 0.020 | 0.009
non pert. error | 0.061 | 0.158 | 0.043 | 0.177 | 0.137
total error 0.068 | 0.185 | 0.056 | 0.196 | 0.137
correlation —29% | —45% | =32% | —=27% | —25%

variable. Non-perturbative systematic uncertainties for o are estimated by varying the
infrared matching scale in the range 1 GeV < p; < 3 GeV. Another uncertainty for o
and « is stemming from missing higher order corrections to the Milan factor (Appendix
Ad), M — M + O(a;/m). As recommended in [41], M is varied by 0.2 around its
nominal value of 1.49.

The quality of the fits with power corrections is again slightly better than with Monte
Carlo corrections. The values of a; are clearly lower than with Monte Carlo corrections, in
particular for wide jet broadening and heavy jet mass, on average by 10%. A large spread
between the results from different variables is observed. The values of oy are grouped in

Table 13: Results of simultaneous fits of a, to distributions at energies between 91 and 206
GeV using Monte Carlo corrections.

Variable T P C By Br

as(My) 0.1264 | 0.1187 | 0.1225 | 0.1164 | 0.1260
stat. error | 0.0001 | 0.0002 | 0.0001 | 0.0002 | 0.0001
exp. error | 0.0008 | 0.0010 | 0.0007 | 0.0006 | 0.0006
pert. error | 0.0063 | 0.0038 | 0.0058 | 0.0051 | 0.0080
hadr. error | 0.0019 | 0.0014 | 0.0015 | 0.0015 | 0.0029
total error | 0.0067 | 0.0041 | 0.0061 | 0.0054 | 0.0085
?/Npor | 75/48 | 144/43 | 88/55 | 111/48 | 222/60
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three classes of observables: 7" and C' yield 0.45, p and By give 0.81 and By is in between
these two classes with a value of 0.67. These results are compatible with each other at
the level of two standard deviations.

As can be seen from Table 12, perturbative uncertainties are related mainly to «;
and much less to ag, and vice versa for non-perturbative uncertainties. Therefore it
appears that o, is mainly determined by the perturbative contribution to the prediction
and ay is fixed by the power correction part. The perturbative uncertainties for o, with
power corrections are similar to the uncertainties obtained with Monte Carlo corrections.
The non-perturbative uncertainties are much smaller than corresponding hadronisation
corrections.

The uncertainties of oy are between 15% and 25%, and are dominated by the non-
perturbative contribution stemming from the uncertainty of the Milan factor. This
uncertainty is three times larger for p and By, than for 7" and C.

The measurements of a, and «g are not independent, the statistical correlation from
the fit being typically —95%. The total correlation is modified by systematic effects,
and the correlation coefficients are obtained by constructing a total covariance matrix
which includes experimental and theoretical uncertainties. The correlation coefficient
for experimental systematic effects is also large and negative, typically —60%, but the
correlation of theoretical uncertainties is weak and about —10% to —30%.

In Fig. 16 the results of measurements of a,(Myz) and aq using power corrections are
compared to the average value of a; obtained with the standard method based on Monte
Carlo corrections in Table 9. The measurements of o, and g from the different variables
are combined using weighted averages as outlined in Section 8. The total correlation
between the weighted averages of a; and o is obtained using the total covariance matrix
of the combined measurement. The results are given in Table 14. These results of a; and
ap are consistent with other recent analyses of power law corrections [40, 44]. The value
of a; is found to be significantly lower than that obtained with Monte Carlo corrections
(Table 13) and the values of g are universal only within about two standard deviations. A
large spread is observed between results using different variables. The determination of «y
using By, p and to a lesser extent Br is affected by large non-perturbative uncertainties,
which indicate that missing higher order corrections to the Milan factor may significantly
change the value of «. Therefore, the numbers of o, given in this section are not

Table 14: Combined results of simultaneous fits of a5 and (2 GeV) using weighted averages.

parameter as(Mz) | ag(2 GeV)
central result | 0.1112 0.496
stat. error 0.0006 0.006
exp. error 0.0014 0.026
pert. error 0.0050 0.069
non pert. error | 0.0001 0.068
total error 0.0053 0.101
correlation —48%
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Figure 16: Contours of confidence level for simultaneous measurements of a; and «g (ellipses)
compared to the combined measurement of a; using Monte Carlo corrections (shaded band).

considered as a measurement, but as a test, of power corrections. The discrepancy between
o using Monte Carlo corrections and 1/@Q) corrections and the universality of ag needs to
be investigated further.

10 Conclusions

New results have been presented for observables determined from hadronic final states in
the data recorded by ALEPH at centre-of-mass energies between 91.2 GeV and 209 GeV.
The variables have been treated in a consistent way at all energies.

Inclusive charged particle spectra have been found to be in good agreement with
predictions from QCD generators, as is shown in Figs. 1 and 2, except for pJ**. The
energy evolution of the mean charged particle multiplicity and the peak position of the
scaled momentum spectrum are illustrated in Figs. 3 and 5 and have been observed to be
consistent with MLLA predictions. The evolution of xx distributions has been compared
to global parametrisations of fragmentation functions in Fig. 6.

Measurements of jet rates and various event-shape variables have been carried out and
are shown in Figs. 7, 8 and 9. The distributions of thrust, C-parameter, heavy jet mass,

35



— Inys, wide and total jet broadening have been compared to calculations of perturbative
QCD in Figs. 10 and 11, and the strong coupling constant has been measured at all
energies. The results shown in Fig. 14 have been found to be in good agreement with the
expected energy evolution of the running coupling constant. The final combined result is

s (Mz) = 0.1214 + 0.0048.

The precision of the measurement is limited by perturbative uncertainties, which have
been scrutinised with a new method.

A model of non-perturbative 1/Q) power corrections has been investigated and the
associated parameter has been determined to be ay(2GeV) = 0.496 + 0.101. The value
of a; determined simultaneously is significantly lower than the nominal result obtained
with Monte Carlo hadronisation corrections. For g a large spread of results between
different variables, as depicted in Fig. 16, and important non-perturbative uncertainties
for wide jet broadening and heavy jet mass have been observed and need to be further
investigated.
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A Theoretical Predictions

A1l Mean charged particle multiplicity
The asymptotic prediction for (Ng,) at large Y is given by [16]

8 132N, 1 B 1
1n<Nch) = KLPHD 5 exp ( a;(ry) 5 + |:5 - Z:| In OAS(Y)> s (All)

a 11 2 11 2
-, a=—N.+ , b=—N,—-ny,

b 377 3N? 3¢ 3/

with the number of colours N, and the number of flavours ny. The mean multiplicity
corresponding to the limiting spectrum reads as [16]

where

Y =InQ/2A, B=

(Nap) = KLPHDS r'(B) (g)B+1 I5ii(2) | (A1.2)

where z = /1%y and Ip is the modified Bessel function of order B. Higher order
corrections to the MLLA prediction of Eq.(A1.2) have been calculated in [17], resulting
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in the expression

K 2
(Nap) = LPHD yr—aie exp (20\/? + . [7‘1 + 2a9¢* + %(ln 2Y 4 2)
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c= ﬁo 3 0 — 3 ) 1 — 3 ) F — 3 J

and the coefficients a; and ¢; depend on ny. Their numerical values can be found in [17].

A2 Inclusive scaled momentum spectrum and peak position

The distribution of £ = —Inz, in the MLLA approximation of the limiting spectrum is
given by [16]

B
1 do Cr AN, 2 dz _p, |cosha+ (1 —2t)sinha |’
—— = 27K I'B —e 7
i = 2 K Ger [[ o [
16N, o
I °Y h 1 — 2¢)sinh A2.1
x Ip (\/ ; sinha[cos a+ ( t) sin a]) : (A2.1)
with
a=ay+iz ,t=1—2=, ap=arctanh(2t — 1) .

Y
The limiting spectrum determines both the shape and the normalisation as function of A
and the global hadronisation constant Kypgp. The prediction of the distorted Gaussian
is defined as [18]
lde Ny (1 1
— exp

1 1 1
—— = —k— =856 — = (24 k)6 + =50° + —kd* A2.2
d 5 Sk 285 4( k)o 65(5 24k(5> , ( )

where § = (£ — £)/o with the mean value £, the width o, the skewness s and the kurtosis
k. The shape parameters are given by

I p [48\ -
§ = 5(1+ﬂ\/ﬁ0—y>+§ou),
o ﬁ(ﬁo_yf(l_@ Es)
— V3 \ 48 64V Y )’
p [3 (48"
o= Vv (ar)
1 BoY  Bo
F= 5y (\/K_Is>’ (A23)
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where p = 11 + 2n;/N? and the correction to the mean 30(1) has to be determined
experimentally. The energy evolution of £* is given by [16]

g*zy(%ﬂ/g—%) , (A2.4)

a2

“T16Nb

The formula applies for peak positions determined either with the limiting spectrum or
with the distorted Gaussian.

where

A3 Event-shape distributions

To second order in «;, the distribution of a generic event-shape variable y(y = 1 —
T7 P BW7 BT7 Ys, C) is given by

1 do(y _ _ 2
L) A + @60)" (AW + B)] . (A3)
Otot Y
_ O 33 — 2ny 7 .
h s — 5 = T 4. = 5 = . .
where @, = bo = T, 0 p = renormalisation scale (A3.2)

The evolution of the running coupling constant at three-loop level is given as function of
the scale parameter Ay by

on(y) = m [1 _ m In[In(p?/A%)] 1
’ Yo In(u2/A2) v In(u2/A%) A3 In®(u2/A2)
Vg Y2
X (—2 {In*(4*/A%) — In [In(p®/A%)] = 1} + —)] , (A3.3)
Y0 Yo
with

33-2n; 153 — 190y _ 1 [2857 5033 3%
o= T s T T T | T 18 T 5a M

The coeflicient functions A and B are obtained by integrating the ERT [29] matrix
elements. The cumulative cross section is defined as

R(y, o) ! /Oy da(ac,as)dx : (A3.4)

Otot dz

which may be cast into the second-order form
Ro(ag)(y, as) =1+ A(y)as + [A(y)2mby In xi + B(y)] @, (A3.5)

where A and B are integrated forms of A and B, and the explicit scale dependence for a;
has been dropped.
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The prediction of the Log(R) matching scheme is given by [30]
InR(y,a;) = Lgi(aL) + ga(asL) — (G L + G1oL?) @ (A3.6)
1
- (Gal?+ GulP)a? + Al + |BG) - 340)| a2,

with L = In(yo/y) where yo = 1 fory = 1T, p, y3, Br, By and yo = 6 for C.. Expressions
for the functions ¢g; and g, which resum leading and next-to-leading logarithms to all
orders in ayg, can be found in the literature [30]-[34]. A recent evaluation of the matching
coefficients G;; is given in [4]. A kinematic constraint is imposed to the modified Log(R)
matching scheme to guarantee that the prediction of the distribution vanishes at a given
value Ymax,

1 do(y)
Ot Ay

_dr

InR max) = 0, =
D R (Ymax) a

~0. (A3.7)

Y=Ymax Y=Ymax

To fulfil this constraint L is replaced by

(@) e

The power p is usually chosen equal to unity, the case p = 2 is called second degree
modification. The values of Y. for the variables used here are taken from [4]. Hence the
prediction of the modified Log(R) matching scheme is simply obtained by replacing L by
L in Eq.(A3.6).

The expression for the R matching scheme reads as [30]

R(y, as) = (1 + Clas + 02552) €xXp [Lgl (Ost) + gZ(QSL) + GQlLasﬂ (A39)
— Gula? - [Cl +Gul+ G12L2} Qs

1
— |Cy+ Ci(Gi L+ 012L2) + §(G1lL + 012L2)2 + (G22L2 + G23L3) a,’
+ A(y)a, + B(y)a,”

The constraints for the modified R matching are the same as for Log(R), Eq.(A3.7).
Here a simple modification of L does not satisfy the second constraint. Therefore, L is
modified and the matching coefficients G;; and G5, become functions of y according to
the condition

[Nl(yma.x) =0 5 éll (yma.x) =0 5 é21 (ymax) =0. (A310)

This is achieved with the following modification

iy) = 51 [(yO) —< Z°X>p+1} : (A3.11)
o = o (1)
|-

o = o ()
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Finally, the expression for the modified R matching scheme can be written as

~ ~ ~ p ~ ~ ~
R(y,as) = (14 Cia, + Coa®) exp |:Lgl(asL) + g2(a, L) — ( Y ) Gro,L + G21L532}

ymax

— Gyl - [01 +GulL+ GuE?] a, (A3.12)
~ o~ ~ 1 ~ - ~ ~ ~

— [02 =+ Cl(GHL + G12L2) + §(G11L + G12L2)2 -+ (G22L2 -+ G23L3):| 652

+ A(y)a, + B(y)a,” .

The renormalisation scale dependence enters in the coupling constant a;(u) and in the
second order terms of the predictions. Explicitly, for z,, # 1, the following terms acquire
a scale dependence,

B(y) = B(y) + 2nbo A(y) Inz, , (A3.13)
G21 = G21 + 27Tb0 G11 11137
GQQ = G22 + 27Tb0 Glg Inz
62 = 02 + 27Tb001 lnxi s
Go(asL) = go(asL) + by (OKSL)Q g1 (o L) In xi ;

I

TENTN

Y

$
iiiii

where ¢ (z) refers to the derivative with respect to z. The resummation in terms of the
logarithmic variable L = In %2 can be re-written in terms of a rescaled variable L=In nyOL
Such a rescaling alters the resummed formulae for the modified predictions according to

p p
I - I=1m K Yo ) —(L> +1}, (A3.14)
p TL -y TL * Ymax
gi(asl) = Gi=gi(asL), (A3.15)
. ~ d
9A0sL) = 5= gafouT) +nay (Lgl(asL)). (A3.16)

Rescaling the logarithmic variable also entails changes to the fixed-order coefficients both
in the modified and unmodified cases

Gz — Gip=Gr (A3.17)
Gun — 611 =G +2Gpnzg
Ga — @23 =G
Goy — Goy = Goy +3GuInay
Gan — 621 = Go1 +2Go Inzp + 3GasIn’ 11,
C; = C=Ci+Gylnzg+ Gl
C, — 62 =Cy+ (C1G11 + G ) Inzp + (C1G12 + Goo + %G%) In*z;

+(Gas + G12G11) In® 27, + 3G, In ..

P
For the modified R matching scheme, the modification factors of the type [1 — (ymx) ]
of Eq.(A3.11) are to be applied to Gn and Ggl after the x; variation.
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A4 Power Corrections
A4.1 Mean Values

The theoretical prediction for the mean value (y) of an event-shape variable may be cast
into the form

(y) = ()P + ()P,

where the perturbative part can be written to second order in «; as
(y)Pr = Aja, + Bya,® (A4.1)

with known coefficients A, and B,. The power correction term (y)P°" is given by [41]

1
(YP" =a,P with ar =2, a,=1, ac =371, ap,, = §fBW g, = fBy , (A4.2)

and
4CF M1 50 Q K
2.2 A4,
P= 1M o) - @ - D (w24 Ta) @] . ey
where
_1575C, — 0.104n; 67 72\ 5 ~
M=1+ 50 K CA<18 6) gnf,C’A—3.

The Milan factor M includes two-loop corrections and its value is 1.49 for ny = 3 [42].
The power correction term for the wide and total jet broadenings receives an additional
skew

T 3 ,B
- T L2 Y Ad.4
I = aCeacw 1 120, —
T 3
fBy = —F—m——+-— ﬁ +n (A4.5)

2/ 2CFaCMW 4 6CF

where 1y = —0.6137056 and acuw is to be evaluated at the scale Q' = Qe~3/* according
to

aoaw = s(Q) (1 + K 2(7?')>

A4.2 Distributions

In event-shape distributions the effect of power corrections is to shift the perturbative
spectra by the same amount as the correction to mean values

ldo_(y)corrected B lda(y— Ay) pert

Ay = ) A4.
o dy o dy ) Yy ayp ( 6)

The concept of a constant shift Ay does not apply not to jet broadenings [43], where the
shift is B-dependent (B = By, Br) and acts on the cumulative cross section

R(B) == /0 j—gdb R**™ (B — agPfz(B)) . (A4.7)
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For the wide jet broadening the By -dependent shift reads as follows

S = In % =2 — p(R) + X(R) + (1 + R) — (1) (A48)

where 1(x) is the derivative of the logarithm of I'(x) and

li o (BW Q) 1 3
— - = A4.
R 20}7 . In BW 4 y ( 9)
and .
1+2\"° 2
o) = [a:(r5) w2 x@=20@F-1) (A1)
with )
1+2\ "
= . A4.11
e = [ () (A411)
For the wide jet broadening the Br-dependent shift is given by
! 1 —
for = [y (Br) +9(1+2R) —¢’(1+R)+§H(B D, (A4.12)
2 dz N ['[1+ 2R 2Br
H — 22 oR(x)—R(2) B= "1 _
(@) /w P TA+R RG]~ emAR)’

R(z) = —%[(L—%)ln(l—m%)-l—lnx],

where z corresponds to the Landau pole in R(z) when the integrand vanishes and L is
defined as L = 27/(By acmw(Q)). In order to fulfil the kinematic constraint of Eq.(A3.7)
for vanishing predictions at ymax for the modified matching schemes, the power correction
is modified as well according to

np
Ay — Ay = a,P (1 Y ) , (A4.13)

ymax

with np=2 as suggested in [37].
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