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Abstract: The Wireless Personal Area Network (WPAN) is one of the fledging paradigms 

that the next generation of wireless systems is sprouting towards. Among them, a more 

specific category is the Wireless Body Area Network (WBAN) used for health monitoring. 

On the other hand, Ultra-Wideband (UWB) comes with a number of desirable features at 

the physical layer for wireless communications. One big challenge in adoption of UWB in 

WBAN is the fact that signals get attenuated exponentially. Due to the intrinsic structural 

complexity in human body, electromagnetic waves show a profound variation during 

propagation through it. The reflection and transmission coefficients of human body are 

highly dependent upon the dielectric constants as well as upon the frequency. The 

difference in structural materials such as fat, muscles and blood essentially makes 

electromagnetic wave attenuation to be different along the way. Thus, a complete 

characterization of body channel is a challenging task. The connection between attenuation 

and frequency of the signal makes the investigation of UWB in WBAN an interesting 

proposition. In this paper, we study analytically the impact of body channels on 

electromagnetic signal propagation with reference to UWB. In the process, scattering, 

reflectivity and transmitivity have been addressed with analysis of approximate layer-wise 

modeling, and with numerical depictions. Pulses with Gaussian profile have been 

employed in our analysis. It shows that, under reasonable practical approximations, the 

human body channel can be modeled in layers so as to have the effects of total reflections 
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or total transmissions in certain frequency bands. This could help decide such design issues 

as antenna characteristics of implant devices for WBAN employing UWB. 

Keywords: reflection; transmission; scattering; propagator; attenuation 

 

1. Introduction 

 

Wireless Body Area Networks (WBANs) have attracted interest in recent years because of a 

number of promising applications—specifically, in the field of health monitoring. Like everyday attire, 

in a WBAN, several small nodes are placed directly in, on or around the human body. Since WBAN 

nodes acquire their power from rechargeable batteries or by energy harvesting, it is essential that they 

be extremely energy-efficient [1]. Above and beyond the energy efficiency, the nodes are meant to be 

of low complexity to keep costs down, among other things. On the other hand, Ultra-Wideband 

(UWB) communication is a transmission technology that comes with such promises as low-power 

consumption [2], interference robustness [3], high local capacity [4], and less complex hardware, most 

of which are highly desirable for WBANs [5]. One key concern in this regard is about signal 

attenuation which occurs exponentially with frequency. This leads to the need to study electromagnetic 

propagation across human body as medium, with consideration for UWB signal as it relates to 

communication system parameters for implant devices. Particularly, Impulse-Radio (IR) [6] 

transmission appears to be well suited to reduce complexity, since major parts of narrowband 

communication systems such as mixers, RF (Radio Frequency) oscillators, or Phase-Locked Loops 

(PLLs) can be omitted in IR systems [7]. In order to accomplish the requirements mentioned above as 

they relate to energy efficiency and complexity reduction, the distinct behavior of the propagation 

channel has to be taken into account. For WBANs, this has to do with identification of the effects of 

propagation on or around the body. Unlike conventional wireless channels, a human body is rather 

complex in structure. Electromagnetic waves show a profound variation during propagation through 

human body as the reflection and transmission coefficients are highly dependent upon the dielectric 

constants [10], in addition to the frequency. Therefore, it is a challenging task to make a complete 

characterization of the human body channel. Due to the differences in structural materials such as fat, 

muscles, blood etc., electromagnetic wave attenuation is different across the different parts of the 

body. The higher the frequency, the more attenuation takes place, which limits the use of high 

frequency or UWB in WBAN. In this manuscript, we analyze the impact of the body channel on the 

signals in different frequency bands. Scattering, reflectivity, and transmitivity have been studied with 

analysis of approximate layer-wise modeling, and with relevant numerical rendering. Pulses, having 

Gaussian profile, have been used in our analysis. We illustrate that the body channel can be 

mathematically modeled as composed of layers, with total reflection and total transmission of the 

signal in certain frequency bands, so as to approximate the propagation effect. The rest of this paper is 

organized as follows: the whole mathematical model for wave propagation in biological media, 

scattering, reflection, and anti-reflection by single layer is given in Section 2; Section 3 describes 

numerical results and concluding remarks are given in Section 4. 
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2. Mathematical Model 

 

2.1. Wave Propagation through Biological Media 

 

From the appendix A, if the incident wave is a linearly polarized uniform plane wave travelling 

along the z-direction, then, for E and H, Equation (A.9) is of the form: 

 
x
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i ieeHH          (2) 
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The intrinsic impedance of biological material η is given by: 
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The Pointing Vector, that is, the power flowing per unit area of cross section (W/m
2
), gives the 

power density associated with an EM wave: 

iii HEP        (4) 

For a uniform plane wave, time-average power flow is given by: 
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The permittivity and frequency may also determine how far the EM wave penetrates into the body. 

The term depth of penetration (Dp) usually quantifies this. For objects with homogeneous properties 

and with RFR incident at right angles to the surface, depth of penetration is defined as the distance at 

which the power density is decreased by absorption to about 0.13534 of the body‘s surface value. 

However, the magnitude of the electric and the magnetic field reduces by a factor of 0.36788. Depth of 

penetration is defined as: 



1
pD        (6) 

where α is the attenuation constant of the material in nepers per meter. 
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Figure 1. Power absorption in muscle as a function of depth at different frequencies.  

 

 

Figure 2. Variation of Penetration depth with frequency.  

 

 

2.2. Scattering, Reflection, and Anti-Reflection 

 

Sensor nodes find a human body, when they are placed, to be layered media. Fat, muscles etc. are 

such independent layers. Signals from wireless sensors in human body experience scattering, 

reflection, and diffraction by those layers. In Appendix B, we started with acoustic wave for 

mathematical formulation and then used these formulae for electromagnetic wave. We have 

established the basic equations for the wave propagation through the layered media. Now we will use 
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those mathematical equations for calculating some wave properties such as scattering, reflection, and 

transmission while passing through layered media. 

 

2.2.1. Scattering by a Single Interface 

 

In this section we consider the case in which two homogeneous half-spaces are separated by an 

interface at z = 0 (Figure 3):  

𝜌 𝑧 =  
𝜌0 𝑖𝑓 𝑧 < 0
𝜌1 𝑖𝑓 𝑧 > 0

   𝐾 𝑧 =  
𝐾0 𝑖𝑓 𝑧 < 0
𝐾1 𝑖𝑓 𝑧 > 0

  

The goal of this section is to analyze the scattering problem in terms of right- and left-going modes 

(Appendix B).  

We introduce the local velocities 𝑐𝑗 =  𝐾𝑗 𝜌𝑗  and impedances 휁𝑗 =  𝐾𝑗𝜌𝑗  and the right- and  

left-going modes defined by: 

𝑧 < 0 ∶   
𝐴0 𝑡, 𝑧 = 휁0

−1 2 𝑝 𝑡, 𝑧 + 휁0
1 2 𝑢 𝑡, 𝑧 

𝐵0 𝑡, 𝑧 = −휁0
−1 2 𝑝 𝑡, 𝑧 + 휁0

1 2 𝑢 𝑡, 𝑧 
     (7) 

𝑧 > 0 ∶   
𝐴1 𝑡, 𝑧 = 휁1

−1 2 𝑝 𝑡, 𝑧 + 휁1
1 2 𝑢 𝑡, 𝑧 

𝐵1 𝑡, 𝑧 = −휁1
−1 2 𝑝 𝑡, 𝑧 + 휁1

1 2 𝑢 𝑡, 𝑧 
         (8) 

For j = 0, 1, the pairs (Aj, Bj) satisfy the following system in their respective half-spaces: 

𝜕

𝜕𝑧
 
𝐴𝑗
𝐵𝑗
 =

1

𝑐𝑗
 
−1 0
0 1

 
𝜕

𝜕𝑡
 
𝐴𝑗
𝐵𝑗
         (9) 

which means that 𝐴𝑗 (𝑡, 𝑧) is a function of 𝑡 − 𝑧 𝑐𝑗  only, and 𝐵𝑗 (𝑡, 𝑧) is a function of 𝑡 + 𝑧 𝑐𝑗  only. 

Figure 3. Scattering of a pulse by an interface. 

 

 

We assume that a right-going wave with the time profile f is incoming from the left and is partly 

reflected by the interface. We also assume a radiation condition in the right half-space so that no wave 

is coming from the right. Assume that f is completely supported in  0, ∞ . We next introduce two ways 

to define proper boundary conditions: 

(I) We can consider an initial value problem with initial conditions given at some time 𝑡0 < 0 by: 

𝑢 𝑡 = 𝑡0, 𝑧 =
1

2휁0
1 2 𝑓 𝑡0 − 𝑧 𝑐0  , 𝑝 𝑡 = 𝑡0, 𝑧 =

휁0
1 2 

2
𝑓 𝑡0 − 𝑧 𝑐0    (10) 

As shown in the Appendix B, these initial conditions generate a pure right-going wave whose 

support at t = t0 is in the interval 𝑧 ∈  −∞, 𝑐0𝑡0 , which lies in the left half-space. 
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 (II) We can consider a point source located at some point 𝑧0 < 0 and generating a forcing term of 

the from: 

𝐹 𝑡, 𝑧 = 휁0
1 2 𝑓 𝑡 − 𝑧0 𝑐0  𝛿 𝑧 − 𝑧0     (11) 

As seen in the Appendix B, this point source generates two waves. The left-going wave is 

propagating into the negative z-direction and will never interact with the interface, so we will ignore it. 

The right-going wave first propagates in the homogeneous left half-space and it eventually interacts 

with the interface z = 0. 

In terms of the right- and left-going waves, these two formulations give the same descriptions. We 

have 𝐴0 𝑡, 𝑧 = 𝑓 𝑡 − 𝑧 𝑐0   𝑓𝑜𝑟 𝑧 < 0, and B1(t, z) = 0 for 𝑧 > 0, and consequently, at the interface  

z = 0: 

𝐴0 𝑡, 0 = 𝑓 𝑡 , 𝐵1 𝑡, 0 = 0         (12) 

Note that the delays introduced in the initial conditions (10) and in the forcing term (11) have been 

chosen so that the boundary conditions (12) have a very simple form. 

The pairs (A0, B0) and (A1, B1) are coupled by the jump conditions at z = 0 corresponding to the 

continuity of the velocity and pressure fields: 

𝑢 𝑡, 0 = 휁0
−1 2  

𝐴0 𝑡, 0 + 𝐵0 𝑡, 0 

2
 = 휁1

−1 2  
𝐴1 𝑡, 0 + 𝐵1 𝑡, 0 

2
  

𝑝 𝑡, 0 = 휁0
1 2  

𝐴0 𝑡, 0 − 𝐵0 𝑡, 0 

2
 = 휁1

1 2  
𝐴1 𝑡, 0 − 𝐵1 𝑡, 0 

2
  

which gives: 

 
𝐴1 𝑡, 0 

𝐵1 𝑡, 0 
 = 𝑱  

𝐴0 𝑡, 0 

𝐵0 𝑡, 0 
 ,    𝑱 =  𝑟

(+) 𝑟(−)

𝑟(−) 𝑟(+)
     (13) 

with 𝑟(±) =
1

2
  휁1 휁0 ±  휁0 휁1  . Note that  𝑟(+) 

2
−  𝑟(−) 

2
= 1. The matrix 𝐉 can be interpreted as 

a propagator, since it ―propagates‖ the right- and left-going modes from the left side of the interface to 

the right side. Such a propagator matrix will be called interface propagator in the following. 

Taking into account the boundary conditions (12) yields: 

 
𝐴1 𝑡, 0 

0
 = 𝑱  

𝑓 𝑡 

𝐵0 𝑡, 0 
  

and solving this equation gives: 

𝐵0 𝑡, 0 = ℛ𝑓 𝑡 , 𝐴1 𝑡, 0 = 𝒯𝑓 𝑡  

where ℛ and 𝒯 are the reflection and transmission coefficients of the interface: 

ℛ = −
𝑟(−)

𝑟(+)
=
휁0 − 휁1

휁0 + 휁1
, 𝒯 =

1

𝑟(+)
=

2 휁0휁1

휁0 + 휁1
 

These coefficients satisfy the energy-conservation relation: 

ℛ2 + 𝒯2 = 1 
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meaning that the sum of the energies of the reflected and transmitted waves is equal to the energy of 

the incoming waves. Finally, the complete solution for 𝑧 < 0 in terms of the right- and left-going 

modes is: 

𝐴0 𝑡, 𝑧 = 𝑓 𝑡 − 𝑧 𝑐0  , 𝐵0 𝑡, 𝑧 = ℛ𝑓 𝑡 + 𝑧 𝑐0   

and for 𝑧 > 0: 

𝐴1 𝑡, 𝑧 = 𝒯𝑓 𝑡 − 𝑧 𝑐1  , 𝐵1 𝑡, 𝑧 = 0 

Using (7–8) we can obtain the pressure and velocity fields (Figure 4). 

Figure 4. Scattering of a pulse by an interface separating two homogeneous half-spaces 

(c0, ζ0, z < 0) and (c1, ζ1, z > 0). Here the incoming right-going wave has a Gaussian profile, 

c0 = ζ0 = 1, and c1 = ζ1 = 2. The spatial profiles of the velocity field (a) and of the pressure 

field (b) are plotted at times t = −4, t = −3,..., t = 6. 

 

(a)                                                                               (b) 

 

2.2.2. Single-Layer Case: Scattering 

 

In this section, we consider the case of a homogeneous slab with thickness L embedded between 

two homogeneous half-spaces (Figure 5). Three regions can be described as follows: 

𝜌 𝑧 =  

𝜌0 𝑖𝑓 𝑧 < 0,

𝜌1 𝑖𝑓 𝑧 ∈  0, 𝐿 ,
𝜌2 𝑖𝑓 𝑧 < 0,

  𝐾 𝑧 =  

𝐾0 𝑖𝑓 𝑧 < 0

𝐾1 𝑖𝑓 𝑧 ∈  0, 𝐿 

𝐾2 𝑖𝑓 𝑧 < 0

  

We introduce the local velocities 𝑐𝑗 =  𝐾𝑗 𝜌𝑗  and impedances 휁𝑗 =  𝐾𝑗𝜌𝑗  and the local right- and 

left-going modes defined by: 

𝐴𝑗  𝑡, 𝑧 = 휁𝑗
−1 2 𝑝 𝑡, 𝑧 + 휁𝑗

1 2 𝑢 𝑡, 𝑧 , 𝐵𝑗  𝑡, 𝑧 = −휁𝑗
−1 2 𝑝 𝑡, 𝑧 + 휁𝑗

1 2 𝑢 𝑡, 𝑧  

with j = 0 for z < 0, j = 1 for 𝑧 ∈  0, 𝐿 , and j = 2 for z = L. The boundary conditions correspond to an 

impinging pulse at the interface z = 0 and a radiation condition at z = L2: 

𝐴0 𝑡, 0 = 𝑓(𝑡), 𝐵2 𝑡, 𝐿 = 0 
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The propagation equations (9) in each homogeneous region show that 𝐴𝑗  is a function of 𝑡 − 𝑧 𝑐𝑗  

only and 𝐵𝑗  is a function of 𝑡 + 𝑧 𝑐𝑗  only. The waves inside the slab [0, L] are therefore of the form: 

𝐴1 𝑡, 𝑧 = 𝑎1(𝑡 − 𝑧 𝑐1 ), 𝐵1 𝑡, 𝑧 = 𝑏1 𝑡 + 𝑧 𝑐1   

while the reflected wave for z <0 is of the form: 

𝐵0 𝑡, 𝑧 = 𝑏𝑜(𝑡 + 𝑧 𝑐0 ) 

and the transmitted wave for z > L is of the form: 

𝐴2 𝑡, 𝑧 = 𝑎2  𝑡 −
𝑧 − 𝐿

𝑐2
  

We want to indentify the functions b0 and a2, which give the shapes of the reflected and  

transmitted waves. 

Figure 5. Scattering of a pulse by a single layer. 

 

 

2.2.3. Single-Layer Case: Reflection and Transmission Coefficients 

 

The unknown functions b0 and a2 can be obtained from the continuity conditions for the velocity 

and pressure at the two interfaces. At z = 0, we have: 

 
𝐴1 𝑡, 0 

𝐵1 𝑡, 0 
 = 𝑱𝟎  

𝐴0 𝑡, 0 

𝐵0 𝑡, 0 
 ,   𝑱𝟎 =  

𝑟0
(+)

𝑟0
(−)

𝑟0
(−)

𝑟0
(+)
  

with 𝑟0
(±)

=
1

2
  휁1 휁0 ±  휁0 휁1  . Similarly, at z = L: 

 
𝐴2 𝑡, 𝐿 

𝐵2 𝑡, 𝐿 
 = 𝑱𝟏  

𝐴1 𝑡, 𝐿 

𝐵1 𝑡, 𝐿 
 ,  𝑱𝟏 =  

𝑟1
(+)

𝑟1
(−)

𝑟1
(−)

𝑟1
(+)
  

with 𝑟1
(±)

=
1

2
  휁2 휁1 ±  휁1 휁2  . We can write these relations in terms of the functions aj, bj as: 

 
𝑎1 𝑡 

𝑏1 𝑡 
 = 𝑱𝟎  

𝑓 𝑡 

𝑏0 𝑡 
 ,   

𝑎2 𝑡 
0

 = 𝑱𝟏  
𝑎1 𝑡 − 𝐿 𝑐1  

𝑏1 𝑡 + 𝐿 𝑐1  
  

which can be solved to get the reflected and transmitted waves. The situation is more complicated than 

in the case of a single interface, because of the time delays ±L/c1. A convenient and general way to 

handle these delays is by going to the frequency domain, so that the time shifts are replaced by phase 

factors. The Fourier transforms of the modes are defined by: 



Sensors 2010, 10              

 

 

5511 

𝑎 𝑗  𝜔 =  𝑎𝑗  𝑡 𝑒
𝑖𝜔𝑡𝑑𝑡,  𝑏 𝑗  𝜔 =  𝑎𝑗  𝑡 𝑒

𝑖𝜔𝑡𝑑𝑡 

They satisfy the interface conditions: 

 
𝑎 1 𝜔 

𝑏 1 𝜔 
 = 𝑱𝟎  

𝑓  𝜔 

𝑏 0 𝜔 
 ,  

𝑎 2 𝜔 
0

 = 𝑱𝟏  
𝑎 1 𝜔 𝑒

𝑖
𝜔𝐿

𝑐1

𝑏 1 𝜔 𝑒
−𝑖

𝜔𝐿

𝑐1

       (14) 

where we have used the identity: 

 𝑎1 𝑡 − 𝐿 𝑐1  𝑒𝑖𝜔𝑡𝑑𝑡 =  𝑎1 𝑠 𝑒
𝑖𝜔 𝑠+

𝐿
𝑐1
 
𝑑𝑠 = 𝑎 1 𝜔 𝑒

𝑖
𝜔𝐿
𝑐1  

Introducing the frequency-dependent matrix: 

𝑱 1 𝜔 =  
𝑟1

(+)
𝑒
𝑖
𝜔𝐿
𝑐1 𝑟1

(−)
𝑒
−𝑖
𝜔𝐿
𝑐1

𝑟1
(−)
𝑒
𝑖
𝜔𝐿
𝑐1 𝑟1

(+)
𝑒
−𝑖
𝜔𝐿
𝑐1

  

The second equation of (14) can be written as: 

 
𝑎 2 𝜔 

0
 = 𝑱 1 𝜔  

𝑎 1 𝜔 

𝑏 1 𝜔 
       (15) 

The syplectic matrix 𝑱 1 𝜔  is a propagator in the frequency domain. It propagates the right- and 

left-going modes from the right side of the interface 0 to the right side of the interface 1, and it depends 

on the layer thickness L. Finally, combining the first equation of (14) and (15), we obtain the relation: 

 
𝑎 2 𝜔 

0
 = K 0 𝜔  

𝑓  𝜔 

𝑏 0 𝜔 
       (16) 

where the frequency-dependent syplectic matrix: 

K 0 𝜔 = 𝑱 1 𝜔 𝑱𝟎 =  
𝑈  𝜔 𝑉  𝜔        

𝑉  𝜔 𝑈  𝜔        
  

is the overall propagator of the slab. Equation (16) shows that K 0 𝜔  propagates the right- and  

left-going modes from the left side of the interface 0 to the right side of the interface 1. We  

find explicitly: 

𝑈  𝜔 = 𝑟0
(+)
𝑟1

(+)
𝑒
𝑖
𝜔𝐿
𝑐1 + 𝑟0

(−)
𝑟1

(−)
𝑒
−𝑖
𝜔𝐿
𝑐1  

𝑉  𝜔 = 𝑟0
(+)
𝑟1

(−)
𝑒
𝑖
𝜔𝐿
𝑐1 + 𝑟0

(−)
𝑟1

(+)
𝑒
−𝑖
𝜔𝐿
𝑐1  

By solving equation (16), whose unknowns are 𝑎 2 𝜔  and 𝑏 0 𝜔  and using the expressions of 𝑟𝑗
(±)

, 

we obtain: 

𝑏 0 𝜔 = ℛ  𝜔 𝑓  𝜔 ,  𝑎 2 𝜔 = 𝒯  𝜔 𝑓  𝜔  

where the frequency-dependent reflection and transmission coefficients are: 

ℛ  𝜔 = −
𝑉  𝜔 

𝑈  𝜔        =
𝑅1𝑒

2𝑖
ωL
c 1 +𝑅0

1+𝑅0𝑅1𝑒
2𝑖

ωL
c 1

     (17) 
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𝒯  𝜔 =
1

𝑈  𝜔        =
𝑇0𝑇1𝑒

𝑖
ωL
c 1

1+𝑅0𝑅1𝑒
2𝑖

ωL
c 1

            (18) 

using that  𝑈  𝜔  
2
−  𝑉  𝜔  

2
= 1. Here 𝑅0 =

휁0−휁1

휁0+휁1
,𝑅1 =

휁1−휁2

휁1+휁2
 ,𝑇0 =

2 휁0휁1

휁0+휁1
 , and 𝑇1 =

2 휁1휁2

휁1+휁2
 are the 

reflection and transmission coefficients of the two interfaces. The reflection and transmission 

coefficients of the layer satisfy the energy conservation relation  ℛ  𝜔  
2

+  𝒯  𝜔  
2

= 1 for all ω, 

which means that the individual energies of the frequency components of the incoming pulse are 

preserved by the scattering process. The main qualitative difference between the scattering by a single 

interface and the scattering by single layer is that the reflection and transmission coefficients in the 

layer case are frequency-dependent. This frequency dependence originates from interference effects 

between the waves that are scattered back and forth by the two interfaces of the layer. 

 

2.3. Filtering Property of the Layer 

 

2.3.1. Reflection 

 

Let us consider a layer embedded between two homogeneous half-spaces that have the same 

material properties, i.e., the situation in which ρ2 = ρ0 and K2 = K0. We then have R1 = –R0 and  

T1 = T0, which implies that the global reflectivity of the layer can be written as: 

 ℛ  𝜔  
2

= 1 −
1+𝑅0

4−2𝑅0
2

1+𝑅0
4−2𝑅0

2 𝑐𝑜𝑠 
2𝜔𝐿

𝑐1
 
     (19) 

The reflectivity is periodic with respect to the angular frequency ω with the period ωc = πc1/L. As a 

function of the angular frequency the reflectivity goes from the minimal value: 

 ℛ  
𝑚𝑖𝑛

2
= 0 𝑓𝑜𝑟 𝜔 = 𝑘𝜔𝑐 ,𝑘 ∈ ℤ 

to the maximal value: 

 ℛ  
𝑚𝑎𝑥

2
= 1 −  

1 − 𝑅0
2

1 + 𝑅0
2 

2

 𝑓𝑜𝑟 𝜔 =  𝑘 +
1

2
 𝜔𝑐 ,𝑘 ∈ ℤ 

This shows that for any value of the reflection coefficient R0 of a single interface, there exist 

frequencies that are fully transmitted or fully reflected by the layer. If we consider the case of strong 

scattering 𝑇0
2 ≪ 1, then the transmitted frequency bands have a width of the order of 𝜔𝑐𝑇0

2 around the 

fully transmitted frequencies kωc. Outside of these bands, where total reflection occurs, the typical 

reflectivity is large, of order 1 − 𝑇0
4/4. 
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Figure 6. Reflectivity  ℛ  𝜔  
2
 versus frequency for a single layer with R0 = −R1 = 0.1  

(a) and R0 = −R1 = 0.9 (b). The period is ωc = πc1/L. 

 

(a)                                                                                 (b) 

 

2.3.2. Anti-Reflection 

 

The total transmission phenomenon is also encountered in situations in which the two half-spaces are 

different. Indeed, consideration of human body part as an ideal, fully-transmitting layer is certainly beyond 

perfection. In a microscopic or constituent-wise sense, a human body-part, striated muscle for example, 

iscomposed of water (70.09%), ether-soluble extract (6.60%), crude protein (21.94%), etc. [35]. When one 

is faced with the task of modeling portions of human body as a medium for electromagnetic (signal) 

propagation, there are inevitable practical assumptions and approximations to be made. Thinner layers can 

be considered with more homogeneous characteristics, while for thicker setting with internal variability, the 

aggregate behavior sums up by and large. Thus a certain part of a human body like muscle or fat, when 

considered in macroscopic perspective, can be regarded as a continuum, and hence the idea of a planner-

layered-medium assumption of human body tissues contextually holds for all practical modeling 

considerations. Such model could greatly affect related system design pertaining to crucial parameters 

(antenna and others); for instance, in addition to the frequency and bandwidth employed for the signal, the 

measurement of the depth of the body at which the transceiver of an implant device would function with 

acceptable accuracy has a lot to do with such parameters as permittivity, permeability, and impedance of 

the intermittent layers of body tissues. 

Figure 7. A propagation system consisting of 3 layers; air, human body channel, and a transceiver. 
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Figure 7 shows a grossly approximated propagation system consisting of three layers: air, human 

body channel, and a transceiver. Admittedly, finding fully-transmitting or fully-reflecting layers in 

body-parts is unrealistic, but it is widely adopted practice to model systems using phantoms comprised 

of components having somewhat homogeneous characteristics, yet closely resembles body-parts in 

aggregate behavior. In some recent works ([33] and [34]) UWB antenna impedance matching has been 

studied in the context of biomedical implants. We assume that the two homogeneous half spaces 

(Figure 7) have different impedances ζ0 ≠ ζ2, then it is possible to choose the thickness L and the 

impedance ζ1 of the layer so that a given frequency ω will be fully transmitted from one half-space to 

the other one, which would not be the case in absence of such a layer. From the analysis of the 

reflectivity function: 

 ℛ  𝜔  
2

= 1 −
1−𝑅0

2−𝑅1
2+𝑅0

2𝑅1
2

1+2𝑅0𝑅1 𝑐𝑜𝑠 
2𝜔𝐿

𝑐1
 +𝑅0

2𝑅1
2
     (20) 

One can show that a necessary and sufficient condition for  ℛ  𝜔  
2

 to be zero is that 

R0
2 + R1

2 = −2R0R1 cos  
2ωL

c1
 . In the case ζ0 ≠ ζ2 this in turn enforces one to choose the impedance of 

the layer to be 휁1 =  휁0휁2 (so that R0 = R1) and the thickness L to be chosen so that ωL/(πc1) is half an 

integer (so that cos(2 ωL/c1) = –1). Usually the thickness is chosen to be equal to a quarter of the 

wavelength, meaning ωL/(πc1) = ½. 

Figure 8. Transmitivity  𝒯  𝜔  
2
versus frequency for a single layer with R0 = −R1 = 0.1  

(a) and R0 = −R1 = 0.9 (b). The period is ωc = πc1/2L. 

 

(a)                                                               (b) 

 

2.4. Path Loss in the Human Body (Near Field Far Field Consideration) 

 

When EM RF waves propagate in freespace, the power received decreases at a rate of  1 𝑑  𝑛 ,  

n being the coefficient of pathloss. Other kinds of losses would be fading of signals due to multipath 

propagation. However, for propagation of EM waves in a lossy medium like human tissue, the losses 

would be mainly due to absorption of power in the tissue, where it is dissipated as heat. As the tissue 

medium is lossy and mostly consists of water, the EM waves are attenuated considerably before they 

reach the receiver. The Specific Absorption Rate (SAR) is useful in determining the amount of power 
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lost due to heat dissipation. SAR is defined as power absorbed per unit mass of the tissue [29]. SAR is 

a standard measure of how much power is absorbed in the tissue and depends upon E- and H-field 

strengths. By determining the average SAR over the entire mass of the tissue between the transmitter 

and the receiver, we are able to compute the total power lost. SAR in the near field of the transmitting 

antenna depends mainly on the H-field, whereas the SAR in the far field of the transmitting antenna 

depends mainly on the E-field. We use Maxwell‘s E- and H-fields equations for lossy medium to 

obtain the average SAR of the medium between the transmitting and the receiving antenna in the far 

field and near field, respectively. WBAN applications involve wireless communications between 

implanted biosensor nodes inside human body.  

These nodes exchange data among themselves and also with the base-station. In general, the system 

model consists of numerous biosensor nodes placed inside the various parts of the human body 

surrounded by tissues. In particular, for the development of this model, we consider only one 

transmitting and one receiving antenna separated by a distance d. An elemental short dipole (dipole 

length_wavelength) in a lossy human tissue medium is considered for this purpose [28] and is shown 

in Figure 9. A small area of tissue surrounding the antenna is considered for our analysis. Thus we can 

safely assume the human tissue under consideration to be a homogeneous medium with no sharp 

edges, no rough surfaces and having uniform electric and magnetic properties. The received power is 

assumed to be due only to the power from the transmitter and not from any other source. The space 

around the radiating antenna is divided into near field and far field regions as shown in Figure 10.  

Figure 9. A Hertzian Dipole. 

 

Figure 10. Field regions around a Hertzian Dipole. 
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The region of space immediately surrounding the antenna is known as the near field region. The 

extent of the near field in the case of short dipoles is given by d0 = λ/2, where λ is the wavelength [30]. 

In the near field, the E- and H-field strengths vary rapidly with the distance from the antenna. The far 

field is the entire region beyond the near field. In the far field region, the E- and H-field exhibit a plane 

wave behavior. Power absorbed between the transmitting and receiving antennas can be considered as 

the sum of power absorbed in near field (PNF) and far field (PFF) regions. The total power absorbed 

between the two antennas is computed by numerical integration. 

Consider an elemental oscillating electric dipole in a lossy medium of conductivity σ (S/m), 

permittivity є (F/m), permeability μ (H/m), complex propagation constant γ, complex intrinsic 

impedance 휂 =
𝛾

𝛼+𝑗𝜔𝜖
 [28] at frequency ω, as shown in Figure 8. The dipole consists of a short 

conducting wire of length 𝑑𝑙, terminated in two small conductive spheres or disks. Assume that the 

current I is uniform and varies sinusoidally with time [28]. The electromagnetic field at a distance ‗R‘ 

for an Hertzian dipole is derived from the vector potential A, given by [28]: 

𝐴 = 𝑎𝑧
𝜇𝐼𝑑𝑙

4𝜋

𝑒−𝛾𝑅

𝑅
= 𝑎𝑧𝐴𝑧  

where 𝑎𝑧  is the unit vector in the z-direction, 𝛾  is the propagation constant, given by 𝛾 = 𝛼 + 𝑗𝛽; 

attenuation constant 𝛼 and phase constant 𝛽 is given by as [28]: 

𝛼 = 𝜔 
𝜇휀

2
  1 +  

𝜍

𝜔휀
 

2

− 1 

1/2

 (Neper/m) 

𝛽 = 𝜔 
𝜇휀

2
  1 +  

𝜍

𝜔휀
 

2

+ 1 

1/2

 (rad/m) 

Spherical components of A (i.e., aRAR + aθAθ + aφAφ) are given by AR = Azcosθ, Aθ = –Azsingθ and 

Aφ = 0. The magnetic field intensity H and the electric field intensity E is given by [28]: 

𝐻 =
1

𝜇
 ∇ × 𝐴 = 𝑎𝜑

1

𝜇𝑅
 
𝜕

𝜕𝑅
 𝑅𝐴휃 −

𝜕

𝜕휃
𝐴𝑅  

𝐸 =
1

𝛼 + 𝑗𝜔𝜖
 ∇ × 𝐻 =

1

𝛼 + 𝑗𝜔𝜖
 𝑎𝑅

1

𝑅𝑠𝑖𝑛휃

𝜕

𝜕휃
 𝐻𝜑𝑠𝑖𝑛휃 − 𝑎휃

1

𝑅

𝜕

𝜕𝑅
 𝑅𝐻𝜑   

Solving the above magnetic and electric field equations for lossy medium and expressing in terms 

of complex impedance 휂 we get: 

𝐸𝑅 = 휂
2𝐼𝑑𝑙𝑐𝑜𝑠휃

4𝜋
𝑒−𝛾𝑅  

1

𝛾𝑅3
+

1

𝑅2
       (21) 

𝐸휃 = 휂
𝐼𝑑𝑙𝑠𝑖𝑛휃

4𝜋
𝑒−𝛾𝑅  

1

𝛾𝑅3 +
1

𝑅2 +
𝛾

𝑅
           (22) 

𝐻𝜑 =
𝐼𝑑𝑙𝑠𝑖𝑛휃

4𝜋
𝑒−𝛾𝑅  

1

𝑅2 +
𝛾

𝑅
                (23) 
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2.4.1. Power Absorbed in the Near Field 

 

The SAR in the near field is given by [31]: 

𝑆𝐴𝑅 =
𝜍

𝜌

𝜇𝜔

 𝜍2 + 𝜖2𝜔2
 1 + 𝑐𝑐𝑜𝑟𝑟 𝜏 

2𝐻𝑟𝑚𝑠
2   𝑤𝑎𝑡𝑡𝑠/𝐾𝑔 

where 𝜌 is the density of the medium and ccorr is the correction factor to take into account the changed 

reflection properties for small distances R of the antenna from the scatterer. Since we assume both the 

transmitting and receiving antennae are in a same homogeneous medium, the plane wave reflection 

coefficient 𝜏  is zero. By substituting 𝜏 = 0  and RMS value of the H-field, the above equation  

reduces to: 

𝑆𝐴𝑅 =
𝜍

𝜌

𝜇𝜔

 𝜍2 + 𝜖2𝜔2
 
𝐼𝑑𝑙𝑠𝑖𝑛휃

4𝜋
𝑒−𝛼𝑅  

1

𝑅2
+
 𝛾 

𝑅
  

2

 

which gives the value of SAR at a point at distance ‗R‘ and angle ‗θ‘ from the dipole. Power at 

infinitely small volume  𝑑𝑉 = 𝑅2𝑠𝑖𝑛휃 𝑑𝑅 𝑑휃 𝑑𝜑  is: 

∆𝑃 = 𝑆𝐴𝑅 × ∆𝑚𝑎𝑠𝑠 = 𝑆𝐴𝑅 × 𝜌 × 𝑑𝑉       (24) 

The power absorbed in the near field of the lossy tissue can be obtained by computing the average 

SAR over the entire tissue mass in the near field, which is obtained by integrating ∆𝑃 over the entire 

mass in the near field region, i.e., from the surface of the antenna (R = r) to the end of the near-field 

region (R = d0): 

𝑃𝑁𝐹 =    ∆𝑃
2𝜋

𝜑=0

𝜋

휃=0

𝑑0

𝑅=𝑟

 

= 𝜍
𝜇𝜔

 𝜍2 + 𝜖2𝜔2
 
𝐼𝑑𝑙

4𝜋
 

2

   𝑅2𝑠𝑖𝑛3휃
2𝜋

𝜑=0

𝜋

휃=0

𝑑0

𝑅=𝑟

× 𝑒−2𝛼𝑅  
1

𝑅4
+
 𝛾 2

𝑅2
+

2 𝛾 

𝑅3
 𝑑𝑅𝑑휃𝑑𝜑 

Solving by numerical integration and writing 
1

 𝜍2+𝜖2𝜔2
 as  휂 / 𝛾 :  

𝑃𝑁𝐹 = 𝜍𝜇𝜔
 휂 

 𝛾 

𝐼2𝑑𝑙2

6𝜋
 𝐴 + 𝐵 + 𝐶     (25) 

where: 

𝐴 = 𝑒−2𝛼𝑟  
 𝛾 2

2𝛼
+
𝑑0 − 𝑟

4𝑟2
+
 𝛾  𝑑0 − 𝑟 

2𝑟
  

𝐵 = 𝑒−2𝛼𝑑0  
− 𝛾 2

2𝛼
+
𝑑0 − 𝑟

4𝑑0
2 +

 𝛾  𝑑0 − 𝑟 

2𝑑0
  

𝐶 = 𝑒−𝛼 𝑑0+𝑟  
2 𝑑0 − 𝑟 

 𝑑0 + 𝑟 2
+

2 𝛾  𝑑0 − 𝑟 

 𝑑0 + 𝑟 
  

The antenna dimensions depend on the wavelength of the wave in the medium given by 𝜆𝑚 =
2𝜋

𝛽
 [28]. 
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2.4.2. Power Absorbed in the Far Field 

 

Neglecting 
1

𝑅2 ,
1

𝑅3 … .. terms from field Equations (21)–(23) for the far field, we have: 

𝐸𝑅 = 0,𝐸휃 = 휂
𝐼𝑑𝑙𝑠𝑖𝑛휃

4𝜋
𝑒−𝛾𝑅  

𝛾

𝑅
  

𝐻𝜑 =
𝐼𝑑𝑙𝑠𝑖𝑛휃

4𝜋
𝑒−𝛾𝑅  

𝛾

𝑅
  

In the far field the specific absorption rate depends only on the 𝐸𝑟𝑚𝑠  value which is given by [29]: 

𝑆𝐴𝑅 =
𝜍

𝜌
𝐸𝑟𝑚𝑠

2  𝑤𝑎𝑡𝑡𝑠/𝐾𝑔  

=
𝜍

𝜌
  휂  𝛾 

𝐼𝑑𝑙𝑠𝑖𝑛휃

4𝜋𝑅
𝑒−𝛼𝑅 

2

 

The power absorbed in the infinitely small volume  𝑑𝑉 = 𝑅2𝑠𝑖𝑛휃 𝑑𝑅 𝑑휃 𝑑𝜑  in the far field, at a 

distance R and angle 휃 from the dipole can again be obtained from (24): 

∆𝑃 = 𝜍   휂  𝛾 
𝐼𝑑𝑙

4𝜋
 

2

𝑠𝑖𝑛3휃𝑒−2𝛼𝑅𝑑𝑅 𝑑휃 𝑑𝜑 

The total power absorbed in the far field of the lossy tissue between the source and destination 

antennas can be obtained by computing the average SAR over the entire tissue mass in the far field 

from distance d0 to d (d0 is the point where the far field starts). This is obtained by integrating ∆𝑃 over 

the mass in the far field between the two antennas: 

𝑃𝐹𝐹 =    ∆𝑃
2𝜋

𝜑=0

𝜋

휃=0

𝑑

𝑅=𝑑0

= 𝜍 휂 2 𝛾 2
𝐼2𝑑𝑙2𝑑𝑙

12𝜋𝛼
 𝑒−2𝛼𝑑0 − 𝑒−2𝛼𝑑   (26) 

 

Power received 

 

The effective radiated power (ERP) is obtained by subtracting the loss in the near field (PNF) and far 

field (PFF between the transmitting and receiving antennas) from the transmitted power PT (i.e.,  

(PT –PLoss)Gt), where PLoss = PNF +PFF is obtained from (25) and (26). The power density (Pe, Power 

per unit area) at a distance ‘d‘ is different in near field and far field regions: 

(a) PR in the Near Field: There is no general formula for the estimation of field strength in the near 

field zone [30]. Only measurements can provide a simple means of field evaluation. However, 

reasonable calculations can be made for antennas like dipole or monopole. When the receiving 

antenna is in the near field region of the transmitting antenna, the power density does not 

necessarily depend on the distance from the antenna, but varies rapidly with distance, and may 

exhibit oscillatory behavior. The magnitude of on-axis (main beam) power density varies 

according to the location in the near field and its maximum value is approximated by [32] 

𝑃𝑒 = 16 𝛿𝑃/𝜋𝐿2, where L is the largest dimension of the antenna, P is PT – PNF, and 𝛿 is the 

aperture efficiency (typically 0.5–0.75) [32]. It can be approximated as 𝛿 = 𝐴𝑒/𝐴 (Ae is the 
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effective aperture and A is the physical area of the antenna). The power received by the 

receiving antenna in the near field can be approximated by: 

𝑃𝑅 = 𝑃𝑒𝐴𝑒 =
16𝛿 𝑃𝑇 − 𝑃𝑁𝐹 

𝜋𝐿2
𝐴𝑒  

(b) PR in the Far Field: On the other hand when the receiving antenna is in the far field region of 

the transmitting antenna, the power density is dependent on the distance d and is given by: 

𝑃𝑒 =
 𝑃𝑇 − 𝑃𝐿𝑜𝑠𝑠 

4𝜋𝑑2
𝐺𝑡  

The power received by the receiving antenna in the far field is 𝑃𝑅 = 𝑃𝑒𝐴𝑒 , where the receiving 

antenna aperture Ae is given by 𝐴𝑒 =
𝜆2

4𝜋
𝐺𝑟  Here, Gt and Gr are the gain of the transmitting and 

receiving antenna, respectively. Thus the received power is: 

𝑃𝑅 =
 𝑃𝑇 − 𝑃𝑁𝐹 − 𝑃𝐹𝐹 𝜆

2

 4𝜋𝑑 2
𝐺𝑡𝐺𝑟  

and a total phase change of 𝑒−𝑗𝛽  is involved during the propagation of the wave. Thus, PMBA can be 

used for calculating the propagation loss using the two Equations (25) and (26). 

Figure 11. PMBA (tissue medium) and Freespace Pathloss at 2.4 GHz. 

 

 

3. Numerical Results 

 

The permittivity of biological tissues depends on the type of tissues (e.g. skin, fat, or muscle), water 

content, temperature, and frequency. However, the permittivity and frequency may also determine how 

far the EM wave penetrates into the body. The term depth of penetration (Dp) usually quantifies this. It 

is observed from Equations (1) and (2) that the wave gets attenuated as it propagates in the biological 

material along the z-axis. As shown in Figure 1, variation of radiation power density has been 

compiled for four different frequencies (27 MHz, 100 MHz, 433 MHz, and 1,500 MHz) with respect to 

the depth in muscle. At a given depth, usage of lower frequency results in a higher power density as 

illustrated in Figure 1. We discovered a distinct feature (demonstrated by Figure 2) which states that 

attenuation is more in fat than that in muscle with respect to frequency. Expressions for left- and  

right-going modes of a pulse have been derived in appendix B. Equations (19) and (20) express the 

reflectivity and transmitivity of a layer respectively. Equations (7) and (8) are the expressions of the 
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left- and right-going modes respectively of a pulse when scattered by a single interface between two 

layers. Figure4. shows the scattering of a Gaussian pulse by an interface separating two homogeneous 

half-spaces (c0, ζ0, z < 0) and (c1, ζ1, z > 0). The spatial profiles of the velocity field (a) and of the 

pressure field (b) are plotted at times t = −4, t = −3,..., t = 6. Reflectivity  ℛ  𝜔  
2
 versus frequency has 

been depicted by Figure 6. We can see here that, at a certain period ωc = πc1/L, the reflectivity 

maximum which is almost 0.04 for a layer with R0 = −R1 = 0.1 (a) and almost 1.0 for a layer with  

R0 = −R1 = 0.9 (b). In Figure 8, Transmitivity  𝒯  𝜔  
2
versus frequency curves have been drawn. 

Transmitivity has been found to vary periodically with a certain frequency. The period of this 

frequency band depends upon the choice of the layer thickness L. For a layer with R0 = −R1 = 0.1, 

transmitivity is about 1.0 (a) and for a layer with R0 = −R1 = 0.9, transmitivity is about 0.9 (b). Here the 

period is ωc = πc1/2L. From Equation (20), we can see that by the proper choice of the impedance of 

the layer to be 휁1 =  휁0휁2 (so that R0 = R1) and the thickness L to be chosen so that ωL/(πc1) is half an 

integer (so that cos(2 ωL/c1) = –1), we can form a fully transmitting layer. Usually the thickness is 

chosen to be equal to a quarter of the wavelength, meaning ωL/(πc1) = ½. Therefore, from the results 

shown above, we can infer that a layer can either fully reflect or fully transmit any incoming wave at a 

certain frequency or frequency band. We can use these results to UWB by proper choice of impedance 

and the thickness L. Power loss in near filed and far field due to absorption has also been analyzed. A 

propagation loss model (PMBA) for homogeneous tissue bodies has been presented, which compares 

PMBA with the freespace propagation model (𝑃𝑅 = 𝑃𝑇𝐺𝑡𝐺𝑟  
𝜆

4𝜋𝑑
 
𝑛

; with loss coefficient n = 3). A 

frequency range of (900 MHz to 3 GHz) has been considered here. We have been able to make a 

conclusion that, compared to freespace, there is an additional 30–35 dB of attenuation at small 

distances the far field (Figure 11). This loss increases further with the distance and frequency. It is 

argued that the human body cannot be considered as layered a media. However, we have been able to 

homogenize the human body channel, which is shown in Appendix C. 

 

4. Conclusions 

 

Employing UWB in WBAN involves a lot of promise, just as there are a number of relevant 

challenges. We studied the technical feasibility in this regard with a concentration in electromagnetic 

propagation of the signal across human body. Unlike conventional wireless channels, human body 

comes with a great deal of structural complexity requiring significantly different design considerations. 

The reflection and transmission coefficients of human body are heavily dependent upon the dielectric 

constants as well as upon the frequency. In this work, we investigated a layer-wise model for 

electromagnetic propagation across the components of the body in regard to such key aspects as 

scattering, reflectivity, and transmitivity. Naturally, the segmentation in precise layers are not what we 

come across in a body. But, the approximate model employing homogenization could help assess the 

aggregate behavior of the wireless communication involving implant devices, thus guiding the 

potential design issues for antenna characteristics, for instance. We also presented numerical 

depictions of some of the pertinent signal characteristics. From here on, one could expect to further 

improve the model in terms of suitable layering and other parameters of approximations. 
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Appendix A 

Let us assume that a biological medium is infinite in extent, source-free, isotropic, and 

homogeneous. The medium is isotropic if ɛ is a scalar constant, so D (electric displacement field 

vector) and E (electric field vector) are the same in every direction. A homogeneous medium is one for 

which ɛ (relative permittivity), μ (relative permeability), and σ (conductivity) are constants. For this 

case, Maxwell‘s equations become: 

t

B
E




      (A.1) 

t

D
JH




       (A.2) 

0 B       (A.3) 

0 D       (A.4) 

Using following identities: 

  EEE 2    (A.5) 

HB        (A.6) 

ED        (A.7)  

EJ        (A.8) 

where, ɛ, μ, and σ are relative permittivity, relative permeability, and conductivity of the medium, 

H is magnetic field vector, B is magnetic flux density, J is the displacement current. We can find the 

expressions for wave equation: 
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    (A.9) 

In view of the fact that equations governing E and H in the biological material (Maxwell‘s 

equations) are linear and keeping in mind that any arbitrarily time-varying function can be expressed 
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as a sum of number of sinusoidal functions, time dependence of the fields, E and H, can be given by 

the factor e
jωt

 so that: 

2

2

2















t

j
t

 

Using the relationships in (A.9), the wave equation becomes: 

022  EE           (A.10) 

where: 
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         (A.11) 

And where c is the free space velocity (3 × 10
8
 m/s) and γ is the propagation constant. This is in 

general, a complex quantity and may be written in the form: 

 j  

where the attenuation constant is: 
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and the phase constant in radians per meter is: 

2/1
2

'

"
' 11

2



































c

    (A.14) 

for 1
'

"





  

























2

'

"

125.01



     (A.15) 

Using Equation (A.15), the wavelength λ can be determined by: 
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2
       (A.16) 

Appendix B 

In this appendix, we use a number of essential transformations of the wave equation that are 

specific to layered media. We consider the particular case in which the parameters of the medium vary 

in a piecewise-constant manner; in other words, we consider a stack of layers made of homogeneous 

media. We study the propagation of a normally incident plane wave, which enables us to reduce the 

problem to the one-dimensional acoustic wave equations [9]. We will see that the problem can be 

recast as a product of matrices corresponding to the scattering of the wave by the successive interfaces 

between the layers. This is a classical setup for waves propagating in this particular type of layered 

media, and it is extremely useful for direct numerical simulations. The equations for the  

three-dimensional velocity u and pressure p are: 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝛻𝑝 = 0        (B.1) 

1

𝐾

𝜕𝑝

𝜕𝑡
+ 𝛻.𝑢 = 0              (B.2) 

where ρ is the density of the medium and K the bulk modulus of the medium. These two equations 

correspond respectively to conservation of momentum and mass. The density and bulk modulus are 

assumed to be spatially varying along the z-coordinate. If the initial conditions correspond to a plane 

wave that is normally incident to the layered medium, then the solution of the equations remains 

independent of the transverse variables, and the transverse velocity is zero. The system can then be 

reduced to the one-dimensional wave equations. It should be noted that more general conditions, 

corresponding in particular to point source, require a more general three-dimensional framework. In 

this appendix, we focus our attention to the one-dimensional case. 

In one-dimensional medium the equations for the velocity u and pressure p are: 

 
𝜌 𝑧 

𝜕𝑢 𝑡, 𝑧 
𝜕𝑡

+
𝜕𝑝 𝑡, 𝑧 
𝜕𝑧

= 0

1
𝐾 𝑧 

𝜕𝑝 𝑡, 𝑧 
𝜕𝑡

+
𝜕𝑢 𝑡, 𝑧 
𝜕𝑧

= 0
  (B.3) 

with ρ being the density and K the modulus of the medium, which are both functions of the spatial 

coordinate z. We write this system of equations in matrix form: 

𝜕

𝜕𝑧
 
𝑝 𝑡, 𝑧 

𝑢 𝑡, 𝑧 
 = −  

0 𝜌 𝑧 

𝐾 𝑧 −1 0
 
𝜕

𝜕𝑡
 
𝑝 𝑡, 𝑧 

𝑢 𝑡, 𝑧 
  

A diagonalization of the 2 × 2 matrix gives: 

 
0 𝜌 𝑧 

𝐾 𝑧 −1 0
 = 𝑀 𝑧 −1  

𝑐 𝑧 −1 0

0 −𝑐 𝑧 −1 𝑀 𝑧  

where: 

𝑀 𝑧 =  
휁 𝑧 −1 2 휁 𝑧 1 2 

−휁 𝑧 −1 2 휁 𝑧 1 2 
 , 𝑀 𝑧 −1 =

1

2
 
휁 𝑧 1 2 −휁 𝑧 1 2 

휁 𝑧 −1 2 휁 𝑧 −1 2 
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with 𝑐 𝑧 =  𝐾 𝑧 𝜌 𝑧   and 휁 𝑧 =  𝐾 𝑧 𝜌 𝑧  being respectively the local speed of sound and 

impedance. The system can then be written as: 
𝜕

𝜕𝑧
 
𝑝 𝑡, 𝑧 

𝑢 𝑡, 𝑧 
 = −

1

𝑐 𝑧 
𝑀 𝑧 −1  

1 0
0 −1

 𝑀 𝑧 
𝜕

𝜕𝑡
 
𝑝 𝑡, 𝑧 

𝑢 𝑡, 𝑧 
  

In this representation the material parameters ρ and K may either vary or remain constant (special 

case) with respect to the space coordinate z. 

 

Right- and Left-Going Waves 

 

We consider the special case with a homogeneous medium in which the coefficients ρ and K are 

constant. Consequently the speed of sound c and the impedance ζ are constant, and the system can  

be written: 

𝜕

𝜕𝑧
 𝑀  

𝑝 𝑡, 𝑧 

𝑢 𝑡, 𝑧 
  = −

1

𝑐
 
1 0
0 −1

 
𝜕

𝜕𝑡
 𝑀  

𝑝 𝑡, 𝑧 

𝑢 𝑡, 𝑧 
   

Then if we define: 

 
𝐴 𝑡, 𝑧 

𝐵 𝑡, 𝑧 
 = 𝑀  

𝑝 𝑡, 𝑧 

𝑢 𝑡, 𝑧 
 =  

휁−1 2 𝑝 𝑡, 𝑧 + 휁1 2 𝑢 𝑡, 𝑧 

−휁−1 2 𝑝 𝑡, 𝑧 + 휁1 2 𝑢 𝑡, 𝑧 
    (B.4) 

it follows that: 

𝜕

𝜕𝑧
 
𝐴 𝑡, 𝑧 

𝐵 𝑡, 𝑧 
 = −

1

𝑐
 
1 0
0 −1

 
𝜕

𝜕𝑡
 
𝐴 𝑡, 𝑧 

𝐵 𝑡, 𝑧 
     (B.5) 

The equations for A and B decouple: 

𝜕𝐴 𝑡, 𝑧 

𝜕𝑧
+

1

𝑐

𝜕𝐴 𝑡, 𝑧 

𝜕𝑡
= 0 

𝜕𝐵 𝑡, 𝑧 

𝜕𝑧
−

1

𝑐

𝜕𝐵 𝑡, 𝑧 

𝜕𝑡
= 0 

and the waves can be written 𝐴 𝑡, 𝑧 = 𝑎 𝑡 − 𝑧 𝑐   and 𝐵 𝑡, 𝑧 = 𝑏 𝑡 + 𝑧 𝑐   for some wave-shape 

functions a and b. Thus, in the constant medium case we have decomposed the wave into the right- and 

left-going waves A and B, which do not interact. 

To fully specify the problem we have to prescribe initial conditions, for instance the velocity and 

pressure profiles at time t = 0: 

𝑢 𝑡 = 0, 𝑧 = 𝑢0 𝑧 , 𝑝 𝑡 = 0, 𝑧 = 𝑝0 𝑧  

We then translate these initial conditions for u and p into initial conditions for the modes A and B: 

𝐴0 −𝑧 ∶= 𝐴 𝑡 = 0, 𝑧 = 휁−1 2 𝑝0 𝑧 + 휁1 2 𝑢0 𝑧  

𝐵0 −𝑧 ∶= 𝐵 𝑡 = 0, 𝑧 = −휁−1 2 𝑝0 𝑧 + 휁1 2 𝑢0 𝑧  

which gives the expressions for the modes: 

𝐴 𝑡, 𝑧 = 𝐴0 𝑐𝑡 − 𝑧 , 𝐵 𝑡, 𝑧 = 𝐵0 𝑐𝑡 + 𝑧  

and finally the expressions for the wave: 



Sensors 2010, 10              

 

 

5527 

𝑝 𝑡, 𝑧 = 휁1 2 
𝐴 𝑡, 𝑧 − 𝐵 𝑡, 𝑧 

2
 

𝑢 𝑡, 𝑧 = 휁−1 2 
𝐴 𝑡, 𝑧 + 𝐵 𝑡, 𝑧 

2
 

The initial conditions determine the mode decomposition and can be chosen to generate a pure 

right-going wave (if 𝑝0 ≡ 휁𝑢0) or a pure left-going wave (if 𝑝0 ≡ −휁𝑢0). 

A more physical way to generate a wave is to assume that the wave vanishes as 𝑡 → −∞ and to 

introduce a source term in the acoustic wave equations: 

𝜌
𝜕𝑢 𝑡, 𝑧 

𝜕𝑡
+
𝜕𝑝 𝑡, 𝑧 

𝜕𝑧
= 𝐹 𝑡, 𝑧  

𝐾−1
𝜕𝑝 𝑡, 𝑧 

𝜕𝑡
+
𝜕𝑢 𝑡, 𝑧 

𝜕𝑧
= 0 

By assuming a point source 𝐹 𝑡, 𝑧 = 휁1 2 𝑓 𝑡 𝛿 𝑧 , the system for A and B becomes: 

𝜕𝐴 𝑡, 𝑧 

𝜕𝑧
+

1

𝑐

𝜕𝐴 𝑡, 𝑧 

𝜕𝑡
= 𝛿 𝑧 𝑓 𝑡  

𝜕𝐵 𝑡, 𝑧 

𝜕𝑧
−

1

𝑐

𝜕𝐵 𝑡, 𝑧 

𝜕𝑡
= −𝛿 𝑧 𝑓 𝑡  

whose solutions are: 

𝐴 𝑡, 𝑧 =  
𝑓 𝑡 − 𝑧 𝑐   𝑖𝑓 𝑧 > 0

0   𝑖𝑓 𝑧 < 0
  

𝐵 𝑡, 𝑧 =  
0   𝑖𝑓 𝑧 > 0

𝑓 𝑡 + 𝑧 𝑐   𝑖𝑓 𝑧 < 0
  

As a result, the velocity and pressure fields are: 

𝑢 𝑡, 𝑧 =
휁−1 2 

2
 
𝑓 𝑡 − 𝑧 𝑐   𝑖𝑓 𝑧 > 0

𝑓 𝑡 + 𝑧 𝑐   𝑖𝑓 𝑧 < 0
  

𝑝 𝑡, 𝑧 =
휁1 2 

2
 
𝑓 𝑡 − 𝑧 𝑐   𝑖𝑓 𝑧 > 0

−𝑓 𝑡 + 𝑧 𝑐   𝑖𝑓 𝑧 < 0
  

This means that the source term generates two waves with equal energy that propagates to the right 

and to the left. 

 

Appendix C 

 

Homogenization: 

 

For a channel like the human body where muscle, fat, blood cannot be considered as slabs or layers, 

we consider the idealized situation in which the parameters vary only with depth, and moreover, we 

make the important assumption that the variations are on a relatively fine scale. We assume that the 

scale of variation is small compared to the distance traveled by the pulse, as well as compared to the 

wavelength of the pulse. One may then expect that the waves are not strongly affected by the 

impedance in any particular layer. When a pulse propagates through such fine layers, the interaction 
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with each layer is small, and propagation is not much affected. The pulse therefore travels as if the 

medium were homogeneous with the layers replaced by ―averaged‖ ones. In general, we refer to this 

homogeneous medium as the homogenized medium. It is also referred to as an effective, average, or 

equivalent medium. We start by writing the medium parameters in the form𝜌 = 𝜌 𝑧/𝑙 ,𝐾 = 𝐾 𝑧/𝑙 , 

with 𝑙  a parameter that can be viewed as the layer size. Thus, ρ(z) is the variable density when 

observed through a magnifying glass with magnification factor 1 𝑙 . We then observe the fluctuations 

on their natural or intrinsic scale of variation. Typically, we will model ρ(z) as a stationary random 

process. Again we consider that the slab has constant parameters 𝜌 ≡ 𝜌  and 𝐾 ≡ 𝐾 , then 휁 =  𝐾 𝜌  and 

𝑐 =  𝐾 /𝜌 . Assuming that the local propagation speed c varies with z but the impedance is constant. 

We choose the value 휁  to be this constant. With these assumptions we have: 

𝜌 𝑧 

𝜌 
=

𝐾 

𝐾 𝑧 
=

𝑐 

𝑐 𝑧 
 

We introduce propagator 𝑃𝜔  for each frequency ω, then we have: 

𝑑

𝑑𝑧
𝑃𝜔  0, 𝑧 = 𝐻𝜔  𝑧, 𝑧/𝑙 𝑃𝜔  0, 𝑧 ,  𝑃𝜔  0,0 = 𝐼                     (C.1) 

where we have denoted the identity matrix by I and we have introduced: 

𝐻𝜔  𝑧, 𝑧′ =
𝑖𝜔

𝑐 
 
 ∆ +  𝑧′ − 1 ∆ −  𝑧′ 𝑒−2𝑖𝜔𝑧 /𝑐  

−∆ −  𝑧′ 𝑒+2𝑖𝜔𝑧 /𝑐   1 − ∆ +  𝑧′  
  

 ∆ ±  𝑧 =
1

2
 
𝜌 𝑧 

𝜌 
±

𝐾 

𝐾 𝑧 
  

∆𝑙
 ±  𝑧 = ∆ ±  𝑧/𝑙 , 𝑧′ =

𝑧

𝑙
 

The matrix 𝑃𝜔  0, 𝑧  ―propagates‖ the wave components from z = 0 to any other location 𝑧 > 0, 

since the linearity of: 

𝑑

𝑑𝑧
 
𝑎 
𝑏 
 =

𝑖𝜔

𝑐  
 
 ∆𝑙

 + − 1 ∆𝑙
 − 𝑒−2𝑖𝜔𝑧 /𝑐  

−∆𝑙
 − 𝑒+2𝑖𝜔𝑧 /𝑐   1 − ∆𝑙

 +  
  
𝑎 
𝑏 
 , 0 < 𝑧 < 𝐿               (C.2) 

implies that: 

 
𝑎  𝜔, 𝑧 

𝑏  𝜔, 𝑧 
 = 𝑃𝜔  0, 𝑧  

𝑎  𝜔, 0 

𝑏  𝜔, 0 
                                             (C.3) 

for any 𝑧 ∈  0, 𝐿 . Equation (C.2) can be found by Fourier transforming 𝐴 𝑡, 0 + 𝑅0𝐵 𝑡, 0 =

𝑇0𝑓 𝑡 ,  𝑇1𝐴 𝑡, 𝐿 − 𝐵 𝑡, 𝐿 = 0  with boundary conditions 𝑎  𝜔, 0 + 𝑅0𝑏  𝜔, 0 = 𝑇0𝑓  𝜔 , 

𝑅1𝑒
−2𝑖

𝜔𝐿

𝑐 𝑎  𝜔, 𝐿 − 𝑏  𝜔, 𝐿 = 0, where 𝑓  𝜔 =  𝑓 𝑠 𝑒𝑖𝜔𝑠𝑑𝑠. 

Equation (C.1) is diagonal and can be integrated by exponentiation: 

𝑃𝜔  0, 𝑧 =  𝑒
𝑖𝜔𝑆𝑙 𝑧 0

0 𝑒−𝑖𝜔𝑆𝑙 𝑧 
                             (C.4) 

𝑆𝑙 𝑧 =   
1

𝑐 𝑦/𝑙 
−

1

𝑐  
 

𝑧

0
𝑑𝑦                               (C.5) 
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To determine the effective medium that emerges in the limit of fine layering 𝑙 → 0, we see from 

(C.5) that we need to study the behavior of   
1

𝑐 𝑦/𝑙 
−

1

𝑐  
 

𝑧

0
𝑑𝑦  as 𝑙 → 0 . Homogenization can be 

illustrated using the simple model in which the medium is made up of independent and identically 

distributed layers of equal width 𝑙 → 0. The medium is defined by one sequence of independent and 

identically distributed positive random variables Cn that are bounded and bounded away from zero. 

The local speed of propagation is given by: 

𝑐 𝑧/𝑙 = 𝐶 𝑧/𝑙  

where  𝑥  denotes the integer part of x. Since  𝑧/𝑙 → ∞ as 𝑙 → 0, we can apply the law of large 

numbers to obtain: 

  
1

𝑐  
𝑦
𝑙
 
−

1

𝑐 
 

𝑧

0

𝑑𝑦 = 𝑙  𝑐−1 𝑦  

𝑧
𝑙

0

𝑑𝑦  

= 𝑙 𝑧/𝑙    
𝑧

×
1

 𝑧/𝑙 
  

1

𝐶𝑗

 𝑧/𝑙 −1
𝑗=0  

           

𝔼 
1

𝐶1
 

+ 𝑙  
𝑧

𝑙
−  𝑧/𝑙  

1

𝐶 𝑧/𝑙 

𝑙→0
   𝑧𝔼  

1

𝐶1
                 (C.6) 

The convergence is in the almost sure sense, for almost all realizations of the medium, or with 

probability one with respect to the randomness. In this setting, homogenization in the frequency 

domain means that we should choose 𝑐  such that in the limit that 𝑙 → 0  the propagator 𝑃𝜔  0, 𝑧  

becomes the identity for all z. Using (C.4–C.5), we see that we must have: 

𝑐 =  𝔼  
1

𝐶1
  

−1

 

Thus, the harmonic mean of local propagation speeds is the homogenized or effective propagation 

speed. This effective propagation speed is frequency independent in this example, and therefore it is 

also the effective propagation speed in the time domain. We can get the transmitted and reflected 

waves in the Fourier domain: 

𝑎1  𝜔, 𝐿 =
𝑇0𝑇1

1 + 𝑅0𝑅1𝑒
2𝑖
𝜔𝐿
𝑐  

𝑓  𝜔  

𝑏0
  𝜔, 0 =

𝑅0 + 𝑅1𝑒
2𝑖
𝜔𝐿
𝑐  

1 + 𝑅0𝑅1𝑒
2𝑖
𝜔𝐿
𝑐  

𝑓  𝜔  
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