95. Studies on Holonomic Quantum Fields. XVII

By Michio Jimbo and Tetsuji Miwa
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1980)

We report the following two results on the diagonal spin-spin correlation function $\left\langle\sigma_{00} \sigma_{N N}\right\rangle$ of the two dimensional Ising lattice. (i) $\left\langle\sigma_{00} \sigma_{N N}\right\rangle$ satisfies a non-linear ordinary differential equation with respect to the temperature, which is equivalent to a sixth Painlevé equation (P VI). (ii) $\left\langle\sigma_{00} \sigma_{N N}\right\rangle$ satisfies a non-linear ordinary difference equation with respect to N. In the scaling limit, both the differential equation (i) and the difference equation (ii) reduce to known results [1] related to P V (or an equivalent of it, P III [2]) on the scaled two point function.

Our method is to construct an isomonodromy family of linear differential equations in such a way that its τ function [3] coincides with $\left\langle\sigma_{00} \sigma_{N N}\right\rangle$. The difference equation (ii) is a consequence of the relations among the τ function and its Schlesinger transforms [4], [5].

Recently McCoy-Wu [6] and Perk [7] have obtained difference equations for $\left\langle\sigma_{00} \sigma_{M N}\right\rangle$. The relations between their works and ours (for $M=N$) is yet to be clarified.

1. Results. We follow the notations of [8], [9]. Let $\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{-}\left\langle T_{c}\right.}$ (resp. $\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{+}>T_{c}}$) denote the diagonal spin-spin correlation function below (resp. above) the critical temperature, where we use the parametrization
(1)

$$
t=\left(\sinh \beta_{-} E_{1} \sinh \beta_{-} E_{2}\right)^{2}=\left(\sinh \beta_{+} E_{1} \sinh \beta_{+} E_{2}\right)^{-2}
$$

with $t>1, \beta_{ \pm}=1 / k T_{ \pm}$. We set

$$
\begin{align*}
& \sigma_{N,-}(t)=t(t-1) \frac{d}{d t} \log \left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{-}\left\langle T_{c}\right.}-\frac{1}{4} \tag{2}\\
& \sigma_{N,+}(t)=t(t-1) \frac{d}{d t} \log \left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T+>T_{c}}-\frac{1}{4} \mathrm{t}
\end{align*}
$$

Then both $\sigma=\sigma_{N, \pm}(t)$ are solutions of the following second order nonlinear ordinary differential equation.
(3) $\left(t(t-1) \frac{d^{2} \sigma}{d t^{2}}\right)^{2}$

$$
=N^{2}\left((t-1) \frac{d \sigma}{d t}-\sigma\right)^{2}-\frac{d \sigma}{d t}\left((t-1) \frac{d \sigma}{d t}-\sigma-\frac{1}{2}\right)\left((t+1) \frac{d \sigma}{d t}-\sigma\right) .
$$

The equation (3) is equivalent to the sixth Painlevé equation (5.55) [4]
with parameters $\alpha=(N-3 / 2)^{2} / 2, \beta=-(N+1 / 2)^{2} / 2, \gamma=1 / 8, \delta=3 / 8$.
The difference equations for $\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T \pm \leqq T_{c}}$ are written as a first order system. We introduce a set of dependent variables α_{N}, β_{N}, etc. tabulated below.

$$
G_{N}^{(0)}=\frac{1}{\alpha_{N}}\left(\begin{array}{ll}
\alpha_{N-1} & \beta_{N} \tag{4}\\
\gamma_{N} & \alpha_{N+1}
\end{array}\right), G_{N}^{(\pm)}=\frac{1}{\alpha_{N}}\left(\begin{array}{ll}
\alpha_{N}^{(\pm)} & \beta_{N}^{(\pm)} \\
\gamma_{N}^{(\pm)} & \delta_{N}^{(\pm)}
\end{array}\right),
$$

where $\operatorname{det} G_{N}^{(0)}=1, \operatorname{det} G_{N}^{(\pm)}=1$. These quantities (4) satisfy the following bilinear difference equations:

$$
\begin{align*}
& \alpha_{N} \alpha_{N-1}^{(\pm)}-\alpha_{N-1} \alpha_{N}^{(\pm)}-\beta_{N-1} \gamma_{N-1}^{(\pm)}=0, \alpha_{N} \beta_{N-1}^{(\pm)}-\sqrt{t}{ }^{\mp 1} \alpha_{N-1} \beta_{N}^{(\pm)}-\beta_{N-1} \delta_{N-1}^{(\pm)}=0, \tag{5}\\
& \sqrt{t}{ }^{-1} \alpha_{N} \gamma_{N-1}^{(+)}-\alpha_{N-1} \gamma_{N}^{(\pm)}+\gamma_{N} \alpha_{N}^{(\pm)}=0, \alpha_{N} \delta_{N-1}^{(\pm)}-\alpha_{N-1} \delta_{N}^{(\pm)}+\gamma_{N} \beta_{N}^{(\pm)}=0, \\
& (2 N+1) \alpha_{N+1} \alpha_{N-1}-(2 N-1-1) \alpha_{N}^{2}-\alpha_{N}^{(+)} \delta_{N}^{(+)}-\alpha_{N}^{(-)} \delta_{N}^{(-)}=0, \\
& (2 N-3) \alpha_{N} \beta_{N-1}-\sqrt{t}-1 \alpha_{N}^{(+)} \beta_{N}^{(+)}-\sqrt{t} \alpha_{N}^{(-)} \beta_{N}^{(-)}=0, \\
& (2 N-1) \alpha_{N} \gamma_{N-1}-\gamma_{N-1}^{(+)} \delta_{N-1}^{(+)}-\gamma_{N-1}^{(-)} \delta_{N-1}^{(-)}=0, \\
& (2 N+3) \alpha_{N} \beta_{N+1}-\alpha_{N+1}^{(+)} \beta_{N+1}^{(+)}-\alpha_{N N+1}^{(-)} \beta_{N+1}^{(-)}=0, \\
& (2 N+1) \alpha_{N} \gamma_{N+1}-\sqrt{t}{ }^{-1} \gamma_{N}^{(+)} \delta_{N}^{(+)}-\sqrt{t} \gamma_{N}^{(-)} \delta_{N}^{(-)}=0 .
\end{align*}
$$

The correlation functions are related to (4) through
(6) $\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{-}\left\langle T_{c}\right.}=t^{-1 / 4}(t-1)^{1 / 4} \alpha_{-|N|},\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{+}>T_{c}}=-t^{-1 / 4}(t-1)^{1 / 4} \gamma_{-|N|}$,
where α_{N}, γ_{N} correspond to the solution of (5) with the initial condition

$$
\begin{align*}
& \alpha_{1}=\gamma_{0}^{(-)}=\delta_{0}^{(+)}=0, \alpha_{0}=\beta_{0}=-\gamma_{0}=t^{1 / 4}(t-1)^{-1 / 4}, \tag{7}\\
& \alpha_{0}^{(-)}=-\gamma_{0}^{(+)}=t^{3 / 4}(t-1)^{-3 / 4}, \delta_{0}^{(-)}=\beta_{0}^{(+)}=t^{-1 / 4}(t-1)^{1 / 4}, \\
& \alpha_{-1}=\alpha_{0} F(-1 / 2,1 / 2,1 ; 1 / t), \quad \beta_{0}^{(-)}=\alpha_{0} \sqrt{t-1}(F(-1 / 2,1 / 2,1 ; 1 / t) \\
& \quad-F(1 / 2,1 / 2,1 ; 1 / t)), \\
& \alpha_{0}^{(+)}=\alpha_{0} \sqrt{t} \sqrt{t-1} \overline{t-1}^{-1}(2 F(-1 / 2,1 / 2,1 ; 1 / t)-F(1 / 2,1 / 2,1 ; 1 / t)) .
\end{align*}
$$

2. Spin operators. We use free fermion fields $\psi(\theta)$ and $\psi^{\dagger}(\theta)$ $(\theta \in \boldsymbol{R} / 2 \pi Z)$ satisfying $\left\langle\psi(\theta) \psi^{\dagger}\left(\theta^{\prime}\right)\right\rangle=2 \pi \delta\left(\theta-\theta^{\prime}\right)$. We set $\psi_{ \pm}(\theta)=\psi^{\dagger}(-\theta)$ $\pm \psi(\theta)$ and define $\varphi_{N}=: \exp \left(\rho_{N} / 2\right):$ by

$$
\begin{equation*}
\rho_{N} / 2=\iint \frac{d \theta}{2 \pi} \frac{d \theta^{\prime}}{2 \pi} \frac{\sqrt{\omega}}{\sqrt{\omega^{\prime}}} \frac{e^{i N\left(\theta+\theta^{\prime}\right)}}{e^{i\left(\theta+\theta^{\prime}-i 0\right)}-1} \psi_{+}(\theta) \psi_{-}\left(\theta^{\prime}\right) \tag{8}
\end{equation*}
$$

where $\omega=\sqrt{(1-a z)\left(1-a z^{-1}\right)}\left(a=\left(\sinh \beta_{-} E_{1} \sinh \beta_{-} E_{2}\right)^{-1}=1 / \sqrt{t}, z=e^{i \theta}\right)$. Then, using the results in [8] (Chapter VIII) and [9] we obtain

$$
\begin{equation*}
\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{-}\left\langle T_{c}\right.}=\left(1-a^{2}\right)^{1 / 4}\left\langle\varphi_{0} \varphi_{N}\right\rangle . \tag{9}
\end{equation*}
$$

The commutator product of the free field $\psi_{ \pm}(\theta)$ and the "spin operator" φ_{N} is given by

$$
\begin{equation*}
\left[\psi_{ \pm}(\theta), \varphi_{N}\right]=2 \sqrt{\omega}{ }^{ \pm 1} z^{1-N} \varphi_{N}^{\mp}(z) \tag{10}
\end{equation*}
$$

We also set $\phi_{N}^{ \pm}=\phi_{N+1}^{ \pm}(0)=\int \frac{d \theta_{1}}{2 \pi} \sqrt{\omega_{1}^{ \pm 1}} \psi_{ \pm}\left(\theta_{1}\right) z_{1}^{N} \quad$ and $\quad \varphi_{N}^{ \pm}=\varphi_{N+1}^{ \pm}(0)=$: $\phi_{N}^{ \pm} \exp \left(\rho_{N} / 2\right)$:. The last identity follows from

$$
\begin{equation*}
\varphi_{N+1}-\varphi_{N}=: \phi_{N}^{+} \phi_{\bar{N}}^{\overline{-}} \exp \left(\rho_{N} / 2\right): \tag{11}
\end{equation*}
$$

The correlation function $\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{\left.T_{+}\right\rangle T_{c}}$ is given by

$$
\begin{equation*}
\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{+}>T_{c}}=-\left(1-a^{2}\right)^{1 / 4}\left\langle\varphi_{0}^{-} \varphi_{N}^{-}\right\rangle \tag{12}
\end{equation*}
$$

with $a=\sinh \beta_{+} E_{1} \sinh \beta_{+} E_{2}=1 / \sqrt{t}$.
3. Construction of an isomonodromy family. We define a 2×2 matrix $Y\left(z, z_{0}\right)=\hat{Y}\left(z, z_{0}\right)\left(\begin{array}{c}\omega z^{-N} \\ \\ \\ 1\end{array}\right)$ by the following series.

$$
\begin{equation*}
\hat{Y}\left(z, z_{0}\right)_{12}=1+\sum_{i=1}^{\infty}\left(-\lambda^{2}\right)^{l} \int \cdots \int \frac{d \theta_{1}}{2 \pi} \cdots \frac{d \theta_{2 l}}{2 \pi} \frac{z-z_{0}}{z_{1}-z_{0}} f_{N}^{ \pm}\left(z_{1}, z_{2}\right) f_{N}^{\mp}\left(z_{2}, z_{3}\right) \tag{13}
\end{equation*}
$$

$$
\hat{Y}\left(z, z_{0}\right)_{12}= \pm \lambda \sum_{i=1}^{\infty}\left(-\lambda^{2}\right)^{l-1} \int \cdots \int \frac{d \theta_{1}}{2 \pi} \cdots \frac{d \theta_{2 l-1}}{2 \pi} \frac{z-z_{0}}{} \begin{align*}
& \cdots f_{N}^{\mp}\left(z_{2 l}, z\right) \\
& \tag{14}\\
& \times f_{N}^{\mp}\left(z_{2}, z_{3}\right) \cdots f_{N}^{ \pm}\left(z_{1}, z_{2}\right)
\end{align*}
$$

where $f_{N}^{ \pm}\left(z, z^{\prime}\right)=\left(\omega / z^{N}\right)^{ \pm 1} /\left(1-\mathrm{e}^{-i\left(\theta-\theta^{\prime} \pm i \kappa 0\right)}\right)$ with $\kappa=+$ or.$- \quad Y\left(z, z_{0}\right)$ is so normalized that $\hat{Y}\left(z, z_{0}\right)=1+O\left(z-z_{0}\right)\left(z_{0} \neq \infty\right)$ or $1+O(1 / z)\left(z_{0}=\infty\right)$. Moreover we have $\operatorname{det} \hat{Y}\left(z, z_{0}\right)=1$.

We denote by $\hat{Y}_{ \pm}\left(z, z_{0}\right)$ the restriction of $\hat{Y}\left(z, z_{0}\right)$ to $D_{ \pm}=\{z| | z \mid \lessgtr 1\}$, and set $Y_{ \pm}\left(z, z_{0}\right)=\hat{Y}_{ \pm}\left(z, z_{0}\right)\left(\begin{array}{c}\omega z^{-N} \\ \\ 1\end{array}\right)$. The connection between $Y_{ \pm}\left(z, z_{0}\right)$ is given by

$$
\begin{array}{ll}
Y_{-}\left(z, z_{0}\right)=Y_{+}\left(z, z_{0}\right)\left(\begin{array}{cc}
1-\lambda^{2} & -\lambda \\
\lambda & 1
\end{array}\right) & (\kappa=+) \tag{15}\\
Y_{-}\left(z, z_{0}\right)=Y_{+}\left(z, z_{0}\right)\left(\begin{array}{ll}
1 & -\lambda \\
\lambda & 1-\lambda^{2}
\end{array}\right) & (\kappa=-)
\end{array}
$$

If we modify the expectation value so that $\left\langle\psi(\theta) \psi^{\dagger}\left(\theta^{\prime}\right)\right\rangle=\lambda 2 \pi \delta\left(\theta-\theta^{\prime}\right)$, we obtain the following identities.

$$
\begin{equation*}
\hat{Y}_{\bullet}\left(z, z_{0}\right)_{11}=1+\left(1-\frac{z}{z_{0}}\right) \frac{\left\langle\varphi_{0}: \phi_{N}^{-}(z) \phi_{N}^{+}\left(z_{0}^{-1}\right) \exp \left(\rho_{N} / 2\right):\right\rangle}{\left\langle\varphi_{0} \varphi_{N}\right\rangle} \tag{16}
\end{equation*}
$$

if $N \lessgtr 0$, or $N=0$ and $\left|z_{0}\right| \gtrless 1$, or $N=0$ and $\varepsilon= \pm$ (for $\kappa= \pm$).

$$
\begin{equation*}
\hat{Y}_{\iota}\left(z, z_{0}\right)_{12}=\left(1-\frac{z}{z_{0}}\right) \frac{\left\langle\varphi_{0}^{+}(z) \varphi_{N}^{+}\left(z_{0}^{-1}\right)\right\rangle}{\left\langle\varphi_{0} \varphi_{N}\right\rangle} \tag{17}
\end{equation*}
$$

if $N \lessgtr 0$, or $N=0$ and $\left|z_{0}\right| \gtrless 1$, or $N=0$ and $\varepsilon=\mp$ (for $\kappa= \pm$).

$$
\begin{equation*}
\hat{Y}_{\iota}\left(z, z_{0}\right)_{21}=\left(1-\frac{z}{z_{0}}\right) \frac{\left\langle\varphi_{0}^{-}\left(z_{0}^{-1}\right) \varphi_{N}^{-}(z)\right.}{\left\langle\varphi_{0} \varphi_{N}\right\rangle}, \tag{18}
\end{equation*}
$$

if $N \lessgtr 0$, or $N=0$ and $\left|z_{0}\right| \lessgtr 1$, or $N=0$ and $\varepsilon= \pm$ (for $\kappa= \pm$).

$$
\begin{equation*}
\hat{Y}_{\bullet}\left(z, z_{0}\right)_{22}=1+\left(1-\frac{z}{z_{0}}\right) \frac{\left\langle: \phi_{0}^{-}\left(z_{0}^{-1}\right) \phi_{0}^{+}(z) \exp \left(\rho_{0} / 2\right): \varphi_{N}\right\rangle}{\left\langle\varphi_{0} \varphi_{N}\right\rangle} \tag{19}
\end{equation*}
$$

if $N \lessgtr 0$, or $N=0$ and $\left|z_{0}\right| \lessgtr 1$, or $N=0$ and $\varepsilon=\mp$ (for $\kappa= \pm$).

$$
\begin{array}{ll}
\hat{Y}_{+}(0, \infty)_{11}=\left\langle\varphi_{0} \varphi_{N-1}\right\rangle /\left\langle\varphi_{0} \varphi_{N}\right\rangle & \text { if } \kappa= \pm, N \leqq 0, \\
\hat{Y}_{+}(0, \infty)_{12}=\left\langle\varphi_{0}^{+} \varphi_{N}^{+}\right\rangle /\left\langle\varphi_{0} \varphi_{N}\right\rangle & \text { if } \kappa= \pm, N \leqq 0, \\
\hat{Y}_{+}(0, \infty)_{21}=\left\langle\varphi_{0}^{-} \varphi_{N}^{-}\right\rangle /\left\langle\varphi_{0} \varphi_{N}\right\rangle & \text { if } \kappa= \pm, N \leqq 0, \\
\hat{Y}_{+}(0, \infty)_{22}=\left\langle\varphi_{0} \varphi_{N+1}\right\rangle /\left\langle\varphi_{0} \varphi_{N}\right\rangle & \text { if } \kappa= \pm, N \leqq 0 . \tag{23}
\end{array}
$$

From (8), (14) and (15) we obtain

$$
\begin{align*}
\frac{d}{d a} \log \left\langle\varphi_{0} \varphi_{N}\right\rangle= & -\sum_{c= \pm} \operatorname{trace} \operatorname{Res}_{z=a^{4}} \hat{Y}_{\bullet}\left(z, a^{c}\right)^{-1} \frac{\partial}{\partial z} \hat{Y}_{\bullet}\left(z, a^{a}\right) \tag{24}\\
& \times \frac{\partial}{\partial a} \log \left(\begin{array}{r}
\omega z^{-N} \\
\\
1
\end{array}\right) .
\end{align*}
$$

4. Deformation and the Schlesinger transformation. The construction in § 3 entails the following monodromy property for the ma$\operatorname{trix} Y_{N}(z)=Y_{-}(z, \infty)$. It is a multi-valued analytic matrix with four regular singularities at $z=0, a, a^{-1}$ and ∞, where the local exponents are given by

$$
\begin{equation*}
T_{0}^{(0)}=\binom{-N-\frac{1}{2}}{0}, T_{0}^{(+)}=\binom{\frac{1}{2}}{0}, T_{0}^{(-)}=\binom{\frac{1}{2}}{0}, T_{0}^{(\infty)}=\binom{N-\frac{1}{2}}{0} \tag{25}
\end{equation*}
$$

respectively. Moreover its global monodromy matrices $\left(-1_{1} 1\right)$ at z $=a^{-1}, \infty \operatorname{and}\left(\begin{array}{cc}-1+2 \lambda^{2} & 2 \lambda \\ 2 \lambda\left(1-\lambda^{2}\right) & 1-2 \lambda^{2}\end{array}\right)$ (if $\left.\kappa=+\right),\left(\begin{array}{cc}-1+2 \lambda^{2} & 2 \lambda\left(1-\lambda^{2}\right) \\ 2 \lambda & 1-2 \lambda^{2}\end{array}\right)$ (if $\kappa=-$) at $z=0, a$ are independent of $a^{ \pm 1}$. These properties are sufficient to guarantee that $Y_{N}(z)$ should satisfy linear differential equations of the form (cf. [3], [5])

$$
\begin{gather*}
\frac{\partial Y_{N}}{\partial z}=\left(\frac{A_{0}}{z}+\frac{A_{+}}{z-a}+\frac{A_{-}}{z-a^{-1}}\right) Y_{N} \tag{26}\\
\frac{\partial Y_{N}}{\partial a}=\left(-\frac{A_{+}}{z-a}+\frac{1}{a^{2}} \frac{A_{-}}{z-a^{-1}}+\frac{1}{2 a}\left(\begin{array}{cc}
1 & 0
\end{array}\right)\right) Y_{N} \\
A_{\nu}=G_{N}^{(\nu)} T_{0}^{(\nu)} G_{N}^{(\nu)-1}(\nu=0, \pm), \quad A_{0}+A_{+}+A_{-}=-T_{0}^{(\infty)} . \tag{27}
\end{gather*}
$$

Here we have set

$$
\begin{equation*}
G_{N}^{(0)}=\hat{Y}_{+}(0, \infty), G_{N}^{(\pm)}=\hat{Y}_{ \pm}\left(a^{ \pm 1}, \infty\right) \tag{23}
\end{equation*}
$$

By a change of variables $z=a x, t=a^{-2}, Z(x)=K Y_{N}(a x), K=\left(\begin{array}{c}i a^{N-1} \\ \\ 1\end{array}\right)$, the integrability condition for (26) reduces to a sixth Painlevé equation ((5.55) in [4]) with parameters $\alpha=(N-3 / 2)^{2} / 2, \beta=-(N+1 / 2)^{2} / 2$, $\gamma=1 / 8, \delta=3 / 8$. Correlation functions are related to the τ function $\tau_{N}(t)$ associated with (26); by comparing (24) with the defining equation $d \log \tau_{N}(t)=\operatorname{trace}\left(A_{0} A_{+}(d a / a)+A_{0} A_{-}\left(d a^{-1} / a^{-1}\right)+A_{+} A_{-}(d(a\right.$ $\left.\left.-a^{-1}\right) /\left(a-a^{-1}\right)\right)$, we find

$$
\begin{equation*}
\left\langle\varphi_{0} \varphi_{N}\right\rangle=\text { const. } t^{1 / 8}(t-1)^{-1 / 4} \tau_{N}(t), \tag{29}
\end{equation*}
$$

The result (3) for $\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{T_{-}\left\langle T_{c}\right.}$ follows from (8), (29) and (5.60) [4].
To derive difference equations, we observe that changing N into $N-1$ amounts to shifting the exponents by integers (Schlesinger transformation) as $T_{0}^{(0)} \mapsto T_{0}^{(0)}+\left(\begin{array}{cc}1 & \\ & 0\end{array}\right), T_{0}^{(\infty)} \mapsto T_{0}^{(\infty)}+\left(\begin{array}{cc}-1 & \\ & 0\end{array}\right)$. It is known [4] [5] that such transformations are achieved by multiplication by a rational matrix $R_{N}(z)$:

$$
\begin{align*}
Y_{N-1}(z) & =R_{N}(z) Y_{N}(z), R_{N}(z)=\left(\begin{array}{cc}
1 & \\
& 0
\end{array}\right) z+R_{0 N} \tag{30}\\
R_{0 N} & =\left(\begin{array}{lc}
\left(Y_{1 N}^{(\infty)}\right)_{12}\left(G_{N}^{(0)}\right)_{21} /\left(G_{N}^{(0)}\right)_{11} & -\left(Y_{N N}^{(\infty)}\right)_{12} \\
-\left(G_{N}^{(0)}\right)_{21}\left(G_{N}^{(0)}\right)_{11} & 1
\end{array}\right)=G_{N-1}^{(0)}\left(\begin{array}{cc}
0 & \\
1 & 1
\end{array}\right) G_{N}^{(0)-1}
\end{align*}
$$

Here $Y_{1 N}^{(\infty)}$ signifies the coefficient matrix of $\hat{Y}_{-}(z)=1+Y_{1 N}^{(\infty)} z^{-1}+\cdots$ $(z \rightarrow \infty)$. In particular, (30) implies
(31) $\quad G_{N-1}^{(\pm)}=R_{N}\left(a^{ \pm 1}\right) G_{N}^{(\pm)}$.

If we write down (31) and the constraint (27) in terms of the parameters $\alpha_{N}, \beta_{N}, \cdots$ given in (4), we obtain (5). However, care must be taken in identifying α_{N}, γ_{N} with $\left\langle\varphi_{0} \varphi_{N}\right\rangle$ and $\left\langle\varphi_{0}^{-} \varphi_{N}^{-}\right\rangle$. As is shown in (20)-(23), the latter correspond to different monodromy problems ($\kappa=+$ or -) according to the sign of N, and hence to different solutions of (5). This explains the appearance of $|N|$ in (6). Finally the differential equation (3) for $\left\langle\sigma_{00} \sigma_{N N}\right\rangle_{\left.T_{+}\right\rangle T_{c}}$ is obtained by noting that $\left\langle\varphi_{0}^{-} \varphi_{N}^{-}\right\rangle$coincides with the τ function corresponding to the Schlesinger transformation $T_{0}^{(0)} \rightarrow T_{0}^{(0)}+\binom{1}{0}, T_{0}^{(\infty)} \rightarrow T_{0}^{(\infty)}+\binom{0}{-1}$ (Theorem 4.1[4]).
5. Scaling limit. Here we shall show that the previously known results [1] are reproduced from (3), (5) in the scaling limit $N \rightarrow \infty, t=1$ $+N^{-1} \bar{t}$ with $\bar{t}>0$ fixed.

In this limit the confluence of two regular singularities $z=0, \infty$ takes place to produce an irregular singularity of rank 1.

Since the monodromy stays constant as we vary N, the limiting monodromy data are determined from the original ones. To see this we scale the infinite series (14) by setting $z=e^{i \varepsilon p}, \varepsilon=\bar{t} / 2 m N$ ($m>0$: arbitrary). Choosing $\kappa=+$ we then have

$$
\lim _{\varepsilon \rightarrow 0}\left(\begin{array}{cc}
\varepsilon^{-1} & \tag{32}\\
& 1
\end{array}\right) Y_{ \pm,-N}(z, \infty)=\bar{Y}_{ \pm}(p)=\hat{\bar{Y}}_{ \pm}(p)\left(\begin{array}{ll}
\bar{\omega}(p) e^{i \bar{\tau} p \varepsilon m} & \\
& \\
& 1
\end{array}\right)
$$

where $\bar{\omega}(p)=\sqrt{p^{2}+m^{2}}$ and $\hat{\bar{Y}}_{ \pm}(p)=1+O\left(p^{-1}\right)$ as $p \rightarrow \infty$ in the region $\mathscr{D}_{ \pm}$ (Fig. 1).

Fig. 1
Modifying (14) slightly we get also, after scaling, $\bar{Y}_{3}(p)$ which has a similar property in the region \mathscr{D}_{3}. These are connected through

$$
\bar{Y}_{+}(p)=\bar{Y}_{3}(p)\left(\begin{array}{ll}
1 & \lambda \tag{33}\\
0 & 1
\end{array}\right), \quad \bar{Y}_{-}(p)=\bar{Y}_{3}(p)\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right) .
$$

The linear differential equations (26) tend to

$$
\frac{\partial \bar{Y}}{\partial p}=\left(\frac{\bar{A}_{+}}{p-i m}+\frac{\bar{A}_{-}}{p+i m}+\left(\begin{array}{cc}
i \bar{t} / 2 m & \tag{34}\\
& 1
\end{array}\right)\right) \bar{Y}, \frac{\partial \bar{Y}}{\partial \bar{t}}=\frac{1}{2 m}\left(\begin{array}{cc}
i p & \bar{b} \\
-\bar{c} & 0
\end{array}\right) \bar{Y}
$$

$$
\begin{align*}
\bar{A}_{ \pm} & =\bar{G}^{(\pm)} T_{0}^{(\pm)} \bar{G}^{(\pm)-1}, \bar{A}_{+}+\bar{A}_{-}=\left(\begin{array}{cc}
1 & \bar{t} \bar{b} / 2 m \\
-\bar{t} \bar{c} / 2 m & 0
\end{array}\right) \tag{35}\\
\bar{G}^{(\pm)} & =\left(\begin{array}{ll}
\bar{a}^{(\pm)} & \bar{b}^{(\pm)} \\
\bar{c}^{(\pm)} & \bar{d}^{(\pm)}
\end{array}\right)=\lim _{\cdot \rightarrow 0}\left(\begin{array}{ll}
\varepsilon & \\
& 1
\end{array}\right) G^{(\pm)}\left(\begin{array}{ll}
\varepsilon^{-1} & \\
& 1
\end{array}\right) .
\end{align*}
$$

Here we have set $\bar{b}=\lim \varepsilon^{-2} \beta_{N} / \alpha_{N}, \bar{c}=\lim \gamma_{N} / \alpha_{N}$.
The difference equations (5) are scaled to give

$$
\frac{d}{d \bar{t}}\left(\bar{G}^{(\pm)}\left(\begin{array}{cc}
e^{\mp \bar{I} / 2} \tag{36}\\
& 1
\end{array}\right)\right)=\left(\begin{array}{cc}
\mp 1 / 2 & \bar{b} / 2 m \\
-\bar{c} / 2 m & 0
\end{array}\right) \bar{G}^{(\pm)}\left(\begin{array}{c}
e^{\mp \bar{t} / 2} \\
\\
1
\end{array}\right)
$$

which is one of the equivalent expressions of the deformation equations for (34).

If we set $\bar{A}_{+}=\left(\begin{array}{cc}1 / 2+\bar{z} & -\bar{u}(1 / 2+\bar{z}) \\ \bar{z} / \bar{u} & -\bar{z}\end{array}\right), \bar{A}_{-}=\left(\begin{array}{cc}1 / 2-\bar{z} & \bar{u} \bar{y}(-1 / 2+\bar{z}) \\ -\bar{z} / \bar{u} \bar{y} & \bar{z}\end{array}\right)$, then $\bar{y}=\bar{y}(\bar{t})$ is a solution of PV with $\alpha=1 / 8, \beta=-1 / 8, \gamma=0, \delta=-1 / 2$. The relation (29) reduces in the limit to (4.11.9) [1] (with $\bar{t}=-t$; the factor $1 / 2$ there is erroneous)
(37) $\lim d \log \left\langle\varphi_{0} \varphi_{N}\right\rangle=\left(-\bar{t} \bar{z}+\left(-2 \bar{z}^{2}-\bar{y} \bar{z}\left(\frac{1}{2}-\bar{z}\right)+\bar{y}^{-1} \bar{z}\left(\frac{1}{2}+\bar{z}\right)\right)\right) \frac{d \bar{t}}{\bar{t}}$.

Finally the differential equation (3) is scaled to

$$
\begin{equation*}
\left(\bar{t} \frac{d^{2} \bar{\sigma}}{d \bar{t}^{2}}\right)^{2}=\left(\bar{\sigma}-\bar{t} \frac{d \bar{\sigma}}{d \bar{t}}+2\left(\frac{d \bar{\sigma}}{d \bar{t}}\right)^{2}\right)^{2}+4\left(\frac{d \bar{\sigma}}{d \bar{t}}\right)^{2}\left(\frac{1}{4}-\left(\frac{d \bar{\sigma}}{d \bar{t}}\right)^{2}\right) \tag{38}
\end{equation*}
$$

where $\bar{\sigma}(\bar{t})=\lim \sigma_{N, \pm}(t)$.
Acknowledgement. This work was done during our stay in SUNY, Fermilab and Saclay, April-June, 1980. We are grateful to Prof. B.M. McCoy, Dr. J.H.H. Perk, Dr. H.B. Thacker, Dr. D. Wilkinson and Prof. E. Brézin for their kind hospitality.

References

[1] M. Jimbo and T. Miwa: Aspects of holonomic quantum fields. RIMS preprint, no. 317, Kyoto Univ. (1979).
[2] T. T. Wu, M. B. McCoy, C. A. Tracy, and E. Barouch: Phys. Rev. B, 13, 316 (1976).
[3] M. Jimbo, T. Miwa, and K. Ueno: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I, RIMS preprint, no. 319, Kyoto Univ. (1980) (to appear in Physica D.).
[4] M. Jimbo and T. Miwa: Ditto. II, RIMS preprint, no. 327, Kyoto Univ. (1980).
[5] L. Schlesinger: J. Reine u. Angew. Math., 141, 96 (1912).
[6] B. M. McCoy and T. T. Wu: Non-linear partial difference equations for the two dimensional Ising model. Preprint ITP-SB-80-26 (1980).
[7] J. H. H. Perk: Quadratic identities for Ising model correlations. Preprint ITP-SB-80-42 (1980).
[8] B. M. McCoy and T. T. Wu: The two-dimensional Ising model. Harvard University Press (1973).
[9] M. Sato, T. Miwa, and M. Jimbo: Publ. RIMS, Kyoto Univ., 16, 531 (1980).

