
 1

Studies on Hyperspectral Face Recognition in Visible Spectrum with 

Feature Band Selection 
 

Wei Di a, Student Member, IEEE, Lei Zhang b*, Member, IEEE 

David Zhang b, Fellow, IEEE, and Quan Pan c, Member, IEEE 

a Laboratory for Applications of Remote Sensing, School of Civil Engineering, Purdue University, West 

Lafayette, IN, USA 
b Biometric Research Center, The Hong Kong Polytechnic University, Hong Kong, China 

c School of Automation, Northwestern Polytechnical University, Xi’an, China 

 
Abstract: 

This paper studies face recognition by using hyperspectral imagery in the visible light bands. The spectral measurements 

over the visible spectrum have different discriminatory information for the task of face identification, and it is found that 

the absorption bands related to hemoglobin are more discriminative than the other bands. Therefore, feature band 

selection based on the physical absorption characteristics of face skin is performed and two feature band subsets are 

selected. Then, three methods are proposed for hyperspectral face recognition, including whole band (2D)2PCA, single 

band (2D)2PCA with decision level fusion, and band subset fusion based (2D)2PCA. A simple yet efficient decision level 

fusion strategy is also proposed for the later two methods. To testify the proposed techniques, a hyperspectral face 

database was established, which contains 25 subjects and has 33 bands over the visible light spectrum (0.4μm - 0.72μm). 

The experimental results demonstrated that multispectral face recognition with the selected feature bands outperforms that 

by using a single band, or using the whole bands, or, interestingly, using the conventional RGB color bands.  
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I. Introduction 

Multispectral and hyperspectral imaging can obtain a set of spatially co-registered images at spectrally-contiguous 

wavelengths, which was first developed for remote sensing purpose [1], and now widely used in agriculture, forest, mineral 

exploration and environment reconnaissance [1-3]. Recently, it has been applied to other areas such as biometrics, skin 

diagnosis, etc. [4-12]. Especially, some studies on hyperspectral face recognition have been reported very recently [8-10][12]. 
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Compared with the traditional gray and color facial image data, hyperspectral imaging can acquire the intrinsic 

spectral information of the skin at many delicate wavelengths, adding to the spatial information, which may reveal the 

skin information in vivo of reflected, absorbed and emitted electromagnetic energy. It can capture distinctive personal 

identification patterns determined by their molecular composition that relates to tissue, blood, and structure, etc. 

Consequently, this leads to the possible application of hyperspectral imaging to face recognition, and has the potential to 

overcome the difficulties in traditional face recognition, such as the variances of face orientations and expression 

[8-10][12][31]. Pan et al. [8][9] explored the facial tissue spectral measurements for hyperspectral face recognition in the 

near-infrared spectral range (0.7µm - 1.0µm). Denes et al. [10] used 3 single visible bands (0.6µm, 0.7µm, and 0.8µm) to 

test the spectral asymmetry. Chang et al. [11] fused the hyperspectral images in the visible spectrum (0.4µm-0.72µm) into 

a single image and compared the result with the visible image to validate the improvement of face recognition due to the 

image fusion. Chou et al. [12] pre-processed the hyperspectral images (visible: 0.4µm-0.72µm, near-infrared: 

0.65µm-1.1µm) by PCA to extract the first principle information for face detection. 

All the above studies, however, do not consider the fact that each spectral band represents the specific 

reflectance/remittance information of the object at that band. Thus, different hyperspectral bands will convey different 

intrinsic information of human face skin and different discriminatory information for classification. A certain type of 

tissue might have distinctive spectral reflectance features in some bands, but might not be significant in other bands [13][14]. 

The facial skin has specific spectral characteristics determined by its chemical components [15][16], and their spectral 

absorption range may convey more information than other bands for face recognition. This paper proposes a feature 

band selection method by exploiting the intrinsic spectral absorption characteristics of the skin in vivo. 

Once the feature bands are selected, the next question is how to process the data for face recognition. Among various 

face recognition methods [17-21][29-31], the bidirectional 2DPCA [21] (denoted here as (2D)2PCA) method, which can be 

viewed as an extension of the 2DPCA [20] by simultaneously considering the row and column directions, has the 

advantage of directly computing the eigenvectors of the image covariance matrix without matrix-to-vector conversion. 

Therefore, it can alleviate greatly the small sample size (SSS) problem in PCA while requiring a lower computational 

burden. In this study, we use (2D)2PCA as the basic technique for face recognition.  

Then, with different considerations, three types of methods are proposed. First, it is natural to treat each feature band 

as different patterns and use them all as the input to (2D)2PCA for recognition. The second way is to process each band 

separately and to do the decision level fusion to obtain the final recognition result. Third, some subsets of feature bands 
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can be constructed and fused within each subset due to the high correlation between neighbouring bands. Each fused 

image can be used separately to obtain its own (2D)2PCA projection matrix. Feature band fusion can help to remove the 

redundancies between neighbouring bands and the noise, which also efficiently combines different characteristics of 

images[22][23]. Here, we focus on the weighted average fusion [22] and Laplacian Pyramid image fusion [23]. The recognition 

results of each subset are then fused at the decision level, whereby a Distance and Voting rule is proposed.  

The experiments are based on a newly built database using a novel hyperspectral face acquisition system. Two key 

feature bands are selected (540nm and 580nm) and three methods are proposed: whole band based (2D)2PCA (WB for 

short), single band based (2D)2PCA with decision level fusion (SBD for short), and band subset fusion based (2D)2PCA 

with different image fusion methods (BS-xFD for short). Results demonstrated the effectiveness of our proposed band 

selection method, which outperforms methods using either a single band or using the whole bands. Moreover, by 

simulating the RGB channels, we demonstrated that the selected absorption feature bands perform better than the 

conventional RGB bands in face recognition. This work implies that a new multispectral face recognition system based 

on the selected feature bands could be developed in the near feature. 

 

II. Database Establishment 

Researchers have recently studied the feasibility of hyperspectral face image recognition. The Munsell Color Science 

Laboratory established the Lippmann2000 database [28] which contains hyperspectral images from 4 Caucasians and 3 

East-Asians. Pan et al. [8][9] acquired spectral images over the near-infrared spectrum (0.7-1 µm) from 200 human 

participants and showed the effectiveness of near-infrared hyperspectral image for face recognition under different 

postures and expressions. Chang et al. [11] established a database that contains 82 participants of different ethnicities, ages, 

facial hair characteristics and genders over the visible spectrum under different illumination: halogen light, fluorescent 

light and day light. The Carnegie Mellon University constructed a database of 18 subjects with 54 diverse faces at 

multiple sessions over a two-month period to test spectral asymmetry for personal identification [10]
.  

However, none of the above database is publicly available. In our study, we built an indoor hyperspectral face 

acquisition system which mainly consists of a CRI’s VariSpec LCTF and a Halogen Light (Illustrated in Fig. 1), and 

collected a hyperspectral dataset of 300 hyperspectral image cubes from 25 volunteers with age range from 21 to 33 (8 

female and 17 male). For each individual, 4 sessions were collected at two different times (2 sessions each time) with an 

average time span of 5 months. The minimal interval is 3 months and the maximum is 10 months. Each session consists 
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of three hyperspectral cubes – frontal, right and left views with neutral-expression. The spectral range is from 400nm to 

720nm with a step length of 10nm, producing 33 bands in all. Fig. 2 shows an example of the hyperspectral face. Since 

the database was constructed over a long period of time, significant appearance variations of the subjects, e.g. changes of 

hair style and skin condition, are presented in the data. In data collection, positions of the camera, light and subject are 

fixed, which allows us to concentrate on the spectral characteristics for face recognition without masking from 

environmental changes.  

 

III. Feature Band Selection  

The facial skin color is determined by its chemical components that have specific spectral characteristics[15][16] and may 

contribute differently for face recognition. Thus, a feature band selection method that based on the intrinsic biomedical 

absorption characteristics of the skin in vivo is proposed aiming to preserve the most informative bands while removing 

bands that convey little discriminatory information.  

The face skin color is affected by many factors, such as blood flow, water concentration blood oxygenation, melanin 

concentration, even aging, makeup or the perspiration level[15] [29]. Generally, skin color is most affected by three types of 

light-absorbing chemical compounds: carotene, melanin and haemoglobin [15]. However, compared with haemoglobin, 

the amount of carotene is very little, and melanin is more likely influenced by the outside factors such as sunlight [15][16]. 

Fig. 3 illustrates the absorption characteristics of hemoglobin and melanin [15]. Fig. 4 shows the calibrated skin reflectance 

(2nm bandwidth) of 4 individuals under two lighting conditions from our dataset. It clearly shows    two hemoglobin 

absorption bands (around 540nm and 580nm) which correspond to Fig. 3. Thus, in our study two feature band subsets 

centred at the peak absorption bands are selected in order to better describe the absorption valley (one consists of bands at 

530nm, 540nm and 550nm, the other one contains the bands at 570nm, 580nm and 590nm). The hemoglobin absorption 

peak at 420nm is not considered due to the low signal-to-noise-ratio at this band in our system. In the following, we 

propose three classes of hyperspectral face recognition algorithm in the context of (2D)2PCA, by which the experimental 

results validate that the selected absorption feature bands are indeed the most informative and lead to higher recognition 

rate than using any single band or using the entire bands. 

   

IV. Algorithms  

Suppose that we have S hyperspectral data cubes for each of the M subjects. Denote by N the number of feature band 
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subsets. For the ith feature band subset, there are Ii bands. Then we denote by b
msiX  (1 ib I≤ ≤ , Ni ≤≤1 ) the bth band 

image of the ith feature band subset for the mth individual in the sth cube. Here, we employ (2D)2PCA as the base method 

and 3 algorithms are proposed: whole band (2D)2PCA, single band (2D)2PCA with decision level fusion, and band 

subset fusion based (2D)2PCA with decision fusion. 

 
4.1 Whole Band (2D)2PCA 

An intuitive idea to process the hyperspectral data is to view all the selected hyperspectral bands as different patterns at 

the corresponding wavelength, and process them by using the standard (2D) 2PCA method. We refer to this method as 

the Whole Band (2D) 2PCA (abbreviated by WB here). The covariance matrices along the row and column directions in 

the image space are computed as: 
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the orthogonal eigenvectors of G1 corresponding to the k1 largest eigenvalues, and the projection matrix 

],...,,[
2222212 kvvvV =  consists of the orthogonal eigenvectors of G2 corresponding to the largest k2 eigenvalues. k1 

and k2 can be determined by setting a threshold to the cumulant eigenvalues Cu.  

Similarly, for each test hyperspectral data cube, we first extract its feature band subsets and then project each band 

image, denoted by b
iX~  (1 ib I≤ ≤ , Ni ≤≤1 ), by V1 and V2 to the projection space. The distance of the test data to the 

mth individual is defined as:  
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Y V X V  is the average of all training data of the mth individual in the projection 

space. The final classification of the test hyperspectral data is made as the one that gives the minimum distance: 

m
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4.2 Single Band (2D)2PCA and Feature Band Subset (2D)2PCA  

The above proposed WB method takes all the selected bands equally as the input of (2D) 2PCA. However, different 

bands may have quite different characteristics. Due to the limitations of the eigenvalue based method, which uses the 

variation to measure the importance of patterns, the characteristics of different bands and different identities may be 

mixed up. Also, since nearby bands tends to have more similar characteristic, by grouping them into separate feature set 

can further benefit the performance of (2D) 2PCA. Denote by 1 2{ , ,..., }
i

i
IX X X  the ith feature sub-band set. For each 

feature set, by applying formula (1)-(4), a multiple decision set { 1̂j , 2ĵ ,... ˆ
Nj } can be obtained. The final classification 

result can be obtained by decision level fusion which will be proposed in section 4.3. Further, if we simply treat each 

single band as a sub-band set, then N pairs of projection matrix can be obtained, and the recognition performance of each 

single band can be obtained by the projection matrix that corresponds to the same single band obtained from training. In 

the following, this Single Band (2D)2PCA method is called SB for short.  

Furthermore, since different bands in hyperspectral imagery contain complementary information, additional 

improvements may be obtained by fusing bands in each feature sub-band set into a single image. The pixel-level image 

fusion could extract, pixel-by-pixel, the most important information from each spectral band and result in a single fused 

image without much distortion or loss of information. A general formula of image fusion is: 

1 2({ , ,..., } )
i

i i
If=F X X X                                  (5) 

where Fi is the fused image obtained from the ith feature sub-band set, and f(·) represents the fusion function. Two 

pixel-level image fusion methods [22][23] are used here. One is the simple weighted averaging: 
1

iIi
bi bib

F w X
=

= ∑ , where 

wbi is the weight for the bth band in the ith feature band-subset. The other one is Laplacian Pyramid fusion [23], where 

measurement for coefficient selection is defined as the local energy within a neighbourhood region.  

Since each Fi is obtained from a band subset that is non-overlap with others, the difference between them might be 

significant. Thus each Fi is processed separately using formula (1)-(4), where totally N pairs of projection matrix are 

constructed, and again, N decision values { 1̂j , 2ĵ ,... ˆ
Nj } are obtained. To integrate these decisions reasonably, we 

propose a two step decision making rule, namely the Dv rule, in the next sub-section. 

 

4.3 Decision Rule by Distance & Voting (Dv)  
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Here we propose a simple decision fusion method based on the majority voting strategy which is proved to be simple but 

as effective as the other more complicated schemes, such as Bayesian and Dempster-Shafer theory [22][24-27] .  

Denote by ||●|| the cardinality of a set, and by Ωj the set that consists of the minimum distance 

Mmdd i
m

i
j ,...,2,1),min( == . The cardinality of Ωj represents the total number of votes given by each feature band 

subset that classifies the test data to the jth class. The two step decision making rule (Dv) is as follows: 

Step I. If a unique maximum vote exists, i.e. Ω max Ωq j= , j=1,2,…,M , the final decision is made as: 

j
j

q Ω= maxarg
  

                                  (6) 

Step II. If q is not unique that satisfies Ω max Ωq j= , then suppose that there are K sets 
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calculate the sum of the distances for each of these K sets 
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where Di is the element of 
kqΩ , 1

kqi≤ ≤ Ω .Then the final decision is made as: 

arg min
k

d
q

k
q S= , 1≤ k ≤ K                                 (8) 

In this paper, the proposed Band Subset Fusion Decision scheme using the weighted average image fusion is denoted as 

BS-WFD, and the one using Laplacian Pyramid fusion with salient measurement selection rule is denoted as BS-LFD.  

 

V. Experiments  

In the experiment, frontal hyperspectral images of the 25 individuals (each with 4 cubes) were used. The established 

dataset is available at http://www.comp.polyu.edu.hk/~cslzhang/datasets.htm. Each time, 2 of the 4 cubes were selected to 

form the training data set, and the left 2 cubes were for testing, leading to 6 different combinations. Average performance 

was used to evaluate different algorithms. Since all data were acquired under controlled and constant illumination, the 

radiance data were used directly without calibration. The first 6 and last 3 bands were removed due to high noise, leaving 

24 spectral bands in all. The eye coordinates were located manually for image registration, and a sub-region of face with 

size 162×150 was cropped from each band, normalized and scaled to a size of 54×50 image to save the computational 

cost. A list of all tested algorithms with different settings is given in Table 1.  
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5.1 Experiment 1 

To analyze the performance of different spectral bands for face recognition, we test the recognition rates of each single 

band by (2D)2PCA with different cumulant eigenvalue Cu. Projection matrices are constructed for each band and applied 

to the corresponding band of the test hyperspectral cube which leads to a classification decision of each band. Fig. 5 and 

Table 2 show the recognition rates of MB, WB(1,24) (denoted as WB) and SBD(24,1) (denoted as SBD) under different 

values of Cu, where “MB” represents the average recognition rate of all bands. The methods WB(1, 24) and SBD(24,1) 

are the integration of all the bands, thus they reach moderate recognition results. It is also observed that the recognition 

rate is not very sensitive to different values of Cu. 

It should be noted that the hemoglobin absorption bands (especially at 540nm and 580nm) show much higher 

recognition rate than other bands. This validates our consideration of feature band selection. Next, we compare the 

recognition rates of each selected feature band and methods WB(2,3,3) and SBD(2,3,3). The results are in Table 3 and 

plotted in Fig. 6, where MB(6) stands for the average recognition rate of all the six selected feature bands. WB is short 

for WB(2,3,3) and SBD is short for SBD(2,3,3). It is seen that methods WB(2,3,3) and SBD(2,3,3), which use all the 

selected feature bands, outperform each single feature band. SBD(2,3,3) achieves slightly higher recognition rate than 

WB(2,3,3) since it calculates the projection matrix for each band thus incorporates possible differences between bands.  

Comparing the results listed in Table 2 and Table 3, one can notice that by applying the same strategy, such as WB 

and SBD, methods using the selected feature bands (i.e. WB(2,3,3) and SBD(2,3,3)) outperform the methods using all 

24 bands (i.e. WB(1, 24) and SBD(24,1)). Also, since SBD separates the band factor from the factor relating to 

individual subject, it yields a better projection and better performance than WB . 

 

5.2 Experiment 2 

To test the efficiency of our proposed BS-WFD and BS-LFD algorithms, we applied them to the selected feature bands 

with a fixed Cu=98.5%. Fig. 7 compares the results of the following methods: BS-WFD with 12 weighting cases; 

BS-LFD; MB(24) by averaging the recognition rates of all the 24 spectral bands and MB(6) by averaging the recognition 

rates of all the 6 feature bands. Table 4 lists the recognition rates by 12 different weighting schemes for image fusion. A 

format of w1-w2-w3 was used to record the weights, e.g. “3-10-1” means that weights ratio for the 3 feature bands in a 

subset are 3, 10, and 1 respectively with sum-to-one. The central bands (540nm and 580nm) are assigned with higher 

weights to emphasize their importance.  



 9

From Fig. 7 and Table 4, we can see that the proposed methods BS-WFD and BS-LFD achieve the best 

performance. They outperform MB(6), MB(24) and any single band (the best performance obtained by single band is at 

540nm). In comparison with Experiment 1 (Table 3 and Fig. 6), it can also be seen that BS-WFD and BS-LFD are better 

than SBD and WB. This is because they take advantage of image fusion which may reduce the image noise. The results 

also show that different weights in BS-WFD do not have significant influence on the recognition rate. Since BS-WFD 

utilizes the prior information to assign the key absorption bands with higher weights, its performance is better than 

BS-LFD whereby fusion only depends on information obtained from the image.  

 

5.3 Experiment 3 

In order to demonstrate the advantage by selecting specific spectral bands for face recognition over the conventional 

RGB color bands, we simulated RGB images from the red, green and blue bands (centered at 600nm, 560nm and 

490nm respectively) from the acquired hyperspectral data. Fig. 8 shows some simulated RGB face images. A form of 

“r-g-b” is used to record how the color image is simulated. For example, “3-5-7” means that 3 bands centered at 600nm, 

5 bands centered at 560nm and 7 bands centered at 490nm are averaged to represent the red, green and blue channel 

respectively. Balanced and unbalanced color compositions are both shown in Fig. 8. Fig. 9 illustrates the face recognition 

rate of the simulated color images with balanced color composition. 

In Fig. 9, we tested four schemes. The first 3 schemes use only the red bands, green bands or blue bands to simulate 

the R, G or B color channels by average fusion, and then use standard (2D)2PCA for face recognition. The red line in Fig. 

9 shows the recognition results using only the simulated R channel. Similarly, the green and blue lines show the results of 

green and red channels respectively. The fourth scheme is to apply the proposed Dv rule to the results obtained by the 

three simulated RGB channels. It shows that the performance is improved compared with any single R, G or B channel. 

However, the recognition rate is even much lower than that by using the whole bands WB(1,24). Also we noted that in 

some RGB simulation cases, the number of the used bands is even larger than that in the proposed band-selection 

method, which demonstrates that the selected feature bands which do not strictly locate in the RGB region may contain 

more useful information for face recognition.  

 

VI. Conclusions 

This paper studied the application of hyperspectral imagery in face recognition. A hyperspectral imaging system was built 
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and a hyperspectral face database was established to test the face recognition methods. Considering that the absorption 

bands of facial skin could highlight the intrinsic biomedical characteristics of the skin in vivo, we conducted feature band 

selection and proposed three classes of methods for hyperspectral face recognition: WB, SBD and BS-xFD (BS-WFD, 

BS-LFD). Based on the experimental results, we can make the following conclusions. First, face recognition with feature 

band selection outperforms that by using either a single band or using the whole bands. Second, BS-xFD takes the 

advantage of image fusion which may reduce the image noise, thus leads to a better performance than WB and SBD. 

Also since SBD considers the differences between bands, it outperforms WB. Third, we demonstrated that the selected 

absorption feature bands perform better than the conventional RGB color bands in face recognition. This implies that a 

new multispectral face recognition system based on the selected feature bands could be developed in the near feature.  
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Fig. 1 The established hyperspectral face imaging system. 
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Fig. 2 Illustration of a set of 33 hyperspectral face bands. 
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Fig. 3 Absorption characteristics of hemoglobin and melanin. 
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Fig. 4 Skin reflection of 4 individuals under two illumination conditions acquired by our sensing
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Fig. 5 Recognition rate of each single band by (2D)2PCA and by methods of WB(1,24) and SBD(24,1).  
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Fig. 6 Recognition rate of each selected single feature band and by methods of WB(2,3,3) and SBD(2,3,3).  
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Fig. 7 Recognition rate of each subset by (2D)2PCA, the proposed methods BS-WFD with 12 weighting cases (denoted
from 1 to 12) and BS-LFD.  
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Fig. 8 Examples of RGB color image simulation. 
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Table 1. A brief summarization of the recognition methods. 

Name Symbol Band 
Selection 

Bands Used 
 (Total ) 

Recognition Method 

WB 
WB(1,24) No 24 (24) Eqs. (1)-(4); N=1, I1 =24 

WB(2,3,3) Yes 6 (24) Eqs. (1)-(4); N=2, I1 =3 and I2 =3 

SBD 
SBD(24,1) No 24 (24) Eqs. (1)-(4) and (6)-(8); N=24, Ii =1, (i=1,2,…,24) 

SBD(2,3,3) Yes 6 (24) Eqs. (1)-(4) and (6)-(8); N=2, I1 =3 and I2 =3. 

BS-xFD  
BS-WFD Yes 6 (24) Eqs. (1)-(8) With varying weight assignment strategy 

BS-LFD Yes 6 (24) Eqs. (1)-(8) Laplacian Pyramid with salient measurement selection rule 
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Table 2. Mean recognition rate of each single band by (2D)2PCA and by methods of WB(1, 24) and SBD(24,1). 
Cu 0.97 0.98 0.99 1.00 

MB(24) 0.65208 0.65152 0.65167 0.65082 
WB(1,24) 0.67000 0.67333 0.67667 0.67333 
SBD(24,1) 0.68333 0.68333 0.68333 0.68667 
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Table 3. Recognition rate of each selected single feature band and by methods of WB(2,3,3) and SBD(2,3,3) 
Cu 0.970 0.975 0.980 0.985 0.990 0.995 1 

530nm 0.73333 0.73333 0.73333 0.73333 0.73000 0.73000 0.73000 
540nm 0.75667 0.75667 0.75667 0.75333 0.75333 0.75667 0.75667 
550nm 0.74333 0.74333 0.74333 0.74000 0.74000 0.74000 0.74000 
570nm 0.73667 0.73667 0.73333 0.73333 0.73333 0.73333 0.73333 
580nm 0.74000 0.74000 0.74000 0.74000 0.74000 0.73667 0.73333 
590nm 0.69333 0.69667 0.69667 0.69667 0.69333 0.69333 0.69333 
MB(6) 0.73390 0.73444 0.73389 0.73278 0.73167 0.73167 0.73111 

WB(2,3,3) 0.75670 0.75670 0.75670 0.75670 0.75670 0.75667 0.75667 
SBD(2,3,3) 0.76333 0.76333 0.76333 0.76333 0.76333 0.76333 0.76333 
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Table 4. Recognition rates of each subset by (2D)2PCA, BS-WFD of 12 weighting strategies, and BS-LFD. ERD 
represents the Estimated Row Dimension and ECD represents the Estimated Column Dimension. 

Weighted Fusion Subset 1 Subset 2 Mean of two 
Subsets 

Dv Combine 
of 2 Subsets ERD ECD 

BS
-W

FD
 

1 (1-1-1& 1-1-1) 0.763333 0.740000 0.751667 0.770000 32 32 

2 (1-5-1&1-5-1) 0.763333 0.760000 0.761667 0.783333 33 34 

3 (1-10-1&1-10-1) 0.756667 0.756667 0.756667 0.790000 34 36 

4 (1-15-1&1-15-1) 0.756667 0.753333 0.755000 0.783333 35 37 

5 (3-10-1&3-10-1) 0.763333 0.760000 0.761667 0.786667 33 34 
6 (5-10-1&5-10-1) 0.763333 0.760000 0.761667 0.786667 32 34 
7 (5-10-1&1-10-1) 0.763333 0.756667 0.760000 0.793333 33 36 

8 (5-10-1&3-10-1) 0.763333 0.760000 0.761667 0.786667 32 34 

9 (3-10-1& 1-10-1) 0.763333 0.756667 0.760000 0.790000 33 36 

10 (3-10-1&5-10-1) 0.763333 0.760000 0.761667 0.786667 33 34 

11 (1-10-1&3-10-1) 0.756667 0.760000 0.758333 0.790000 34 35 

12 (1-10-1&5-10-1) 0.756667 0.760000 0.758333 0.786667 34 34 

BS-LFD 0.756667 0.756667 0.756667 0.783333 41 41 
 

 


