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ABSTRACT 
In many practical applications such as security and 

surveillance, robotics, medical diagnostics, remote sensing, 

video processing the image segmentation plays a dominant 

role. In general the image segmentation is performed either 

hierarchical method or model based methods. Both methods 

have advantages and disadvantages. Integrating these two 

methods will provide efficient utilization of resources and 

increases segmentation performance. Hence, in this paper  an 

image segmentation method based on generalized Laplace 

Mixture Model integrated with hierarchical clustering method 

was developed and analyzed. The updated equations for 

estimating the model parameters using EM algorithm are 

derived for the generalized Laplace Mixture Model for the 

first time. The segmentation algorithm is presented under 

component maximum likelihood with Bayesian criteria. The 

efficiency of the proposed algorithm is validated by selecting 

sample images from Berkeley image data set and computing 

the segmentation performance measures such as GCE, PRI 

and VOI. A comparative study of proposed algorithm with 

that of model based image segmentation algorithm on GMM 

revealed that the proposed algorithm outperforms the existing 

ones.   

General Terms 
Image segmentation, Gaussian distribution, EM algorithm. 

Keywords  
Segmentation, Image Segmentation, Image Analysis, Laplace 

distribution. 

 

1. INTRODUCTION 
Image analysis is an important step in image processing which 

deals with deriving object description from an image. Image 

segmentation refers to dividing the image into number of 

regions based on the properties of pixel. The different image 

segmentation techniques can be categorized into two 

categories i) Statistical (Dubes R.C and Jain A.K(1998)) ii) 

Structural(Udapa J.K. et al (1996)). Several researchers have 

proposed solutions for segmentation problem using the 

statistical image models (Srinivasa Rao et al(2007)). Hua 

Yang (2000) investigated a probability model based image 

segmentation method where it was assumed that image pixel 

features follow a Gaussian mixture distribution. EM algorithm 

was used for estimating parameters and initializing 

parameters. Anisotropic diffusion and histogram analysis 

methods were applied. Yunjie Chen (2014) studied a model 

based on GMM and nonlocal information.  To obtain a 

smooth bias field Legendre Polynomials were used to fit it 

and merged it to the EM framework. Non local information 

which reduced the effect of noise was also considered. Celia 

A.(2014) studied soft multi-phase segmentation model where 

it was assumed that the pixel intensities are distributed as a 

Gaussian mixture. The model was formulated as a 

minimization problem making use of the maximum likelihood 

estimator and phase-transition theory. The mixture 

coefficients, which were estimated using a spatially varying 

mean and variance procedure, were used for image 

segmentation. 

Shanaz Aman et al (2015) implemented HMRF-EM (Hidden 

Markov Random Field-EM) assuming the image as 2D gray 

level and intensities of pixel follow Gaussian distribution and 

same was implemented for color image segmentation. Vamsi 

Krishna M (2015) developed an image segmentation 

technique based on bivariate Gaussian distribution.. Srinivasa 

Rao et al (2012) applied a symmetric mixture model 

combined with hierarchical clustering for symmetric images. 

It is proved that their method works better than the method 

with GMM. Rajkumar G.V.S et al (2011) developed an image 

segmentation algorithm using finite mixture of doubly 

truncated bivariate Gaussian distribution by integrating with 

hierarchical clustering.  

However, the major drawbacks of GMM are that it assumes 

that the pixel intensities are mesokurtic and symmetrically 

distributed in each image region. But, in many images the 

pixel intensities may not be distributed as mesokurtic even 

though symmetry is maintained. This deviation in segmenting 

images has reduced the performance of image segmentation 

algorithms based on GMM. To improve the efficiency of 

image segmentation method one has to consider the 

generalization of the GMM with respect to kurtosis associated 

with pixel intensities in each image region. An alternative to 

Gaussian distribution with respect to platykurtic variates is 

served by a Laplace probability model (Norman L.Johnson, 

Samuel Kotz and Balakrishnan (1994)). The Laplace 

distribution is further generalized by Srinivasa Rao et al(1997) 

and named it as generalized Laplace distribution. This 

generalized Laplace distribution includes a spectrum of 

platykurtic distributions for which pixel intensities in image 

region are having kurtosis less than three for specific values of 

indexing parameter.  

Very little work has been reported in literature in image 

segmentation algorithm based on mixture of generalized 

Laplace distributions which will provide accurate 

performance in image segmentation for images which are 

having platykurtic nature of pixel intensity distribution in 

image regions. With this motivation in this paper an image 

segmentation algorithm is developed and analyzed with 

mixture of generalized Laplace distribution integrated with 

hierarchical clustering. In this paper the experimentation is 

done on images obtained from Berkeley data set 

(www.eecs.berkeley.edu). The performance of algorithm is 

evaluated by calculating PRI (probability Random Index), 

VOI (Variation of Information) and GCE(Global Consistency 

Error). The images are reconstructed using maximum 

likelihood estimates and probability model. The reconstructed 
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images performance is evaluated by calculating quality 

metrics such as Average difference, Maximum distance, 

Image fidelity, Mean Square Error and Signal Noise ratio. The 

remaining paper is organized as follows section 2 deals with 

Mixture of Generalized Laplace distribution, section 3 deals 

with estimation of model parameters through EM algorithm, 

Section 4 explains about updating initial estimates and section 

5 describes the image segmentation algorithm. The 

experimentation and results are presented in section 6 and 

finally conclusion in section 7. 

2. GENERALIZED LAPLACE MODEL 

AND MIXTURE OF GENERALIZED 

LAPLACE MODEL 
In image analysis the entire image is considered as a union of 

several image regions. In each image region the image data is 

quantized by pixel intensities. For a given point pixel (x, y), 

the pixel intensity z=f(x,y) is a random variable.  To model 

the pixel intensities of the image region it is assumed that the 

pixel intensities within the region follow a generalized 

Laplace distribution.  The probability density function of the 

pixel intensity is given by 

𝑓 𝑥, µ, 𝜎2 =  
 𝑟2+

(𝑥−µ)2

𝜎2  
𝑟

𝑒
−|

𝑥−𝜇
𝜎

|

2𝜎   𝑟
𝑘=0  

𝑟
𝑘 𝑟2 𝑟−𝑘 (2𝑘 !)

  where -∞<x<∞, -

∞<µ<∞, σ>0                                (1) 

The probability curve of the distribution is presented in figure 

1. 

 

Fig 1: Frequency Curve 

The mean value of pixel intensity X is obtained as E[X]=μ, 

Variance V(X)=E[(x- μ)2]=2σ2. 

It is a symmetric distribution.Here, it is assumed that the 

entire image is a collection of several image regions. In each 

image region the pixel intensities are characterized by 

generalized laplace probability model. As a result of which 

the pixel intensities in the whole image region is characterized 

by a k-component mixture of generalized laplace distribution. 

The probability density function of pixel intensities in whole 

image is of the form 

𝑝(𝑥) =  𝛼𝑖  𝑓𝑖(xs , 𝜇𝑖 , 𝜎𝑖
2)𝑘

𝑖=1  ,  (2) 

where k is the number of regions, 0≤αi≤1 are weights such 

that Σ αi =1 and αi is the weight associated with ith region in 

the whole image and 𝑓(𝑥, µ, 𝜎 2) is the probability density 

function of Generalized Laplace distribution and is as given in 

equation(1)Usually the pixel intensities in image regions are 

correlated. The spacial sampling method or spacial averaging 

methods are applied for reducing the correlation among pixel 

intensities (Lie.T and Sewehand. W(1992)) (Kelly P.A.et 

al(1998)). The mean pixel intensity of the whole image region 

is 

𝐸 𝑍 =  𝛼𝑖𝜇𝑖
𝑘
𝑖=1                                         (3)                                                                                                                

3. ESTIMATION OF THE MODEL 

PARAMETERS BY EM ALGORITHM 
The estimates of the model parameters are obtained through 

EM algorithm. It is assumed that the intensity of pixel in 

image region follows a new Laplace distribution and whole 

image is characterized with a finite mixture of new 

generalized Laplace distributions. Its probability distribution 

function is given in equation (2). 

The likelihood function of observations x1,x2….xn is 

 L(𝜃)= 𝑝(xs , 𝜃𝑙𝑁
𝑠=1 ) 

 L(𝜃) =  ( 𝛼𝑖  𝑓𝑖(xs , 𝜇𝑖 , 𝜎𝑖
2)𝑘

𝑖=1 )𝑁
𝑠=1  

This implies 

Log L( 𝜃) =   log(𝑁
𝑠=1  𝛼𝑖  𝑓𝑖(xs , 𝜇𝑖 , 𝜎𝑖

2)𝑘
𝑖=1 )    where 

𝜃 = {𝜇, 𝜎2, 𝛼𝑖 ;i=1,2,..k} 

 𝑙𝑜𝑔   
 𝑟2+

(𝑥−µ)2

𝜎2  
𝑟

𝑒
−|

𝑥−𝜇
𝜎

|

2𝜎   𝑟
𝑘=0  

𝑟
𝑘 𝑟2 𝑟−𝑘 (2𝑘 !)

  𝑁
𝑠=1           (4) 

E Step: In the E Step the expectation value of log L(𝜃)  with 

respect to initial parameter 𝜃0is  

Q(𝜃;  𝜃0)= 𝐸𝜃0 log 𝐿(𝜃)  

P(𝑥𝑠,θ
l
)=  αi

lfi(xs , θl)k
i=1  

Log L(𝜃) =   log(N
s=1  αi

lfi xs , θ
l k

i=1                    (5) 

The conditional probability of xs belonging to region k is 

Tk(xs , θl) = 
αk

l fk (xs ,θl )

p(xs ,θl )
   = 

αk
l fk (xs ,θl )

  k
i=1 αi

l
fi (xs ,θl )

 

Q(𝜃;  𝜃0)=  Ti
N
s=1

k
i=1 (xs , θl

)(log fi xs , θl + logαi
l 

where, fi xs , θl = 
 𝑟2+

(𝑥−µ)2

𝜎2  
𝑟

𝑒
−|

𝑥−𝜇
𝜎

|

2𝜎   𝑟
𝑘=0  

𝑟
𝑘 𝑟2 𝑟−𝑘 (2𝑘!)

  

M Step:  To get estimation of parameters, maximize Q(𝜃; 𝜃𝑙) 

such that  αi=1. 

Using Lagrange type function and maximizing  

𝛼𝑖 = 
1

N 
 Ti(xs , θlN

s=1 ) 

αi for (l+1)th iteration is  

 αi 
l+1=

1

N 
 Ti(xs , θlN

s=1 ) = 

 
1

N
  

αi
l fi (xs ,θl )

  k
i=1 αi

l
fi (xs ,θl )

 N
s=1    (6) 

For updating the parameter µi, i=1,2,..k, 

Consider the derivative of Q(𝜃; 𝜃𝑙) with respect to µi, and 

equate to 0 

Q(𝜃; 𝜃𝑙)=E[log L((𝜃; 𝜃𝑙)] 
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∂

∂µi
 Q(𝜃; 𝜃𝑙) = 0 This implies 

∂

∂µi

 
 
 
 
 

  Ti(xs ,N
s=1

k
i=1 𝜃𝑙)

 𝑙𝑜𝑔   
 𝑟2+

 𝑥−µ 2

𝜎2  
𝑟

𝑒
− 

𝑥−𝜇
𝜎

 

2𝜎   𝑟
𝑘=0  

𝑟
𝑘 𝑟2 𝑟−𝑘  2𝑘 ! 

   + 𝑙og(αi
l)

 
 
 
 
 

= 0 

     (7) 

This implies 

∂

∂µi
   Ti(xs ,N

s=1
k
i=1 𝜃𝑙)  𝑙𝑜𝑔    𝑟2 +

 xs −µi 
2

𝜎𝑖
2

 
𝑟

  −  
𝑥𝑠−µi

𝜎𝑖
 −

log2𝜎𝑖−  log(𝑘=0𝑟 𝑟𝑘𝑟2𝑟−𝑘(2𝑘!)+log(αil)=0
 

    (8) 

This implies 

 Ti xs , θ
l   

 xs −µi 

𝜎𝑖
2

  
 −2𝜎𝑖

2 

r2𝜎𝑖
2+ xs −µi 

2 +
σi

 xs −μi  
  N

s=1 = 0  

This implies 

 Ti xs , θ
l N

s=1
xs −µi

σi  xs −μi  
−   Ti xs , θ

l 𝑁
𝑠=1

 2 xs −µi  

r2𝜎𝑖
2+ xs −µi 

2=0 (9)                          

 where Ti xs , θl =
αi

l+1  fi (xs ,θl ) 

 αi
l+1  fi (xs ,θl )k

i=1

 

For updating 𝜎𝑖
2  differentiate Q ( 𝜃; 𝜃𝑙)  w.r.t 

𝜎𝑖
2 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑒 𝑡𝑜 0 

∂

∂  𝜎𝑖
2
 Q (𝜃; 𝜃𝑙) = 0 

∂

∂𝜎𝑖
2
   Ti(xs ,N

s=1
k
i=1 𝜃𝑙)  𝑙𝑜𝑔   

 𝑟2+
(𝑥−µi )2

𝜎2  
𝑟

𝑒
−|

𝑥−µi
𝜎

|

2𝜎   𝑟
𝑘=0  

𝑟
𝑘 𝑟2 𝑟−𝑘 (2𝑘!)

   +

log(αil)=0         (10) 

This implies 

∂

∂𝜎𝑖
2
   Ti(xs ,N

s=1
k
i=1 𝜃𝑙)  𝑙𝑜𝑔    𝑟2 +

 xs −µi 
2

𝜎𝑖
2

 
𝑟

  −

𝑥𝑠−µi𝜎𝑖−log2𝜎𝑖−  log(𝑘=0𝑟 𝑟𝑘𝑟2𝑟−𝑘(2𝑘!)+log(αil)=0  
       (11)

           

This implies 

  
 xs −µi 

2

 𝑟2𝜎𝑖
2+ xs −µi 

2
 𝜎𝑖

2
−  

𝑥𝑠−µi

2𝜎𝑖
3
 −

1

2𝜎𝑖
2
 N

s=1 Ti xs , θ
l = 0 

        (12) 

where,  Ti xs , θl =
αi

l+1  fi (xs ,θl ) 

 αi
l+1  fi (xs ,θl )k

i=1

 

 

 

4. INITIALIZATION OF THE 

PARAMETERS BY HIERARCHICAL 

CLUSTERING: 

For EM algorithm the parameter αi and the model parameters 

μi and σi
2 should be initialized. The initial values can be taken 

as αi =
1

k
  where k is the number of image regions obtained 

from the hierarchical clustering algorithm. The steps involved 

in hierarchical clustering algorithm are discussed by 

(S.C.Johnson(1967)). The shape parameter r can be estimated 

by sample kutosis using the following equation 

μ4

μ2
2   

=
  

r!

k ! r−k !
r2 r−k  2k+4 !r

k =0    
r !

k ! r−k !
r2 r−k  2k !r

k =0  

x  
r !

k ! r−k !
r2 r−k  2k+4 !r

k =0

2         (13)                                 

There exists one root for the shape parameter r in (0,2r) which 

is obtained by Newton Raphson Method. Obtaining this shape 

parameter ri the other estimates µ
𝑖
 𝑎𝑛𝑑 𝜎𝑖

2 can be obtained by 

method of moments as 

µ
𝑖

 = 𝑥                             (14) 

𝜎𝑖
2 =  

  
𝑟 !

𝑘 ! 𝑟−𝑘 !
𝑟2 𝑟−𝑘  2𝑘 !𝑟

𝑘=0  

  
𝑟 !

𝑘 ! 𝑟−𝑘 !
𝑟2 𝑟−𝑘  2𝑘+2 !𝑟

𝑘=0  
  s2                                                   (15) 

         where s2 is the sample variance.    

Once the initial estimates are obtained, final refined estimates 

are obtained through EM algorithm given in section 3. 

5.  SEGMENTATION ALGORITHM 
After refining the parameters the next step is to segment the 

image by allocating the pixels to the segments. This operation 

is performed by segmentation algorithm. The image 

segmentation algorithm consists of four steps 

Step 1: Obtain the number of image regions using 

hierarchical clustering algorithm. 

Step 2: Obtain the initial estimates of the model 

parameters using hierarchical clustering. 

Step 3: Obtain the refined estimates of the model 

parameters αi, μi, σi
2 for i=1,2….k, by using EM 

algorithm with updated equations. 

Step 4: Assign each pixel into the corresponding jth 

region according to the maximum likelihood of the 

jth component Lj. 

That is zs is assigned to the jth region for which L is 

maximum.  

             𝐿 = 𝑚𝑎𝑥  
 𝑟2+

(𝑥−µ)2

𝜎2  
𝑟

𝑒
−|

𝑥−𝜇
𝜎

|

2𝜎   𝑟
𝑘=0  

𝑟
𝑘 𝑟2 𝑟−𝑘 (2𝑘!)

    

(16) 

 

6.  EXPERIMENTATION AND 

RESULTS 
For experimental analysis five images are randomly selected 

from Berkeley image dataset 

(www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/B

SDS300/html/dataset/images.html). The image pixel 

intensities are taken as feature of the image assuming that they 

follow mixture of generalized Laplace distribution. The value 

of K (number of image regions) is obtained by histogram of 

pixel intensities. The five images and their respective 

histograms are shown in figure 2.   
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Image 

 

 

 

 

 

 

 

 

 

Histogram 

  

 

   

 

Fig 2: Images and their Histograms 

Based on histograms the initial estimates for five images have 

been obtained. The regions obtained from the image are 

named as C1,C2,C3..CK where K is the number of regions. The 

model parameters considered are αi, μi and σi for i=1, 2…K 

and they are obtained by the method given in section 4. Final 

parameters for the five images have been derived using these 

initial parameters and updated equations in section 3 the final 

parameters and presented in tables 1,2,3,4 and 5. 

Table 1 

Estimated Values of the Parameters for Image1 

Number of regions(K=3) 

Parameter

s 

Estimation of Initial 

Parameters 

By Hierarchical 

Estimation of Final 

Parameters by EM 

Algorithm 

C1 C2 C3 C1 C2 C3 

αi 0.33 0.33 0.33 0.40 
0.1

0 
0.49 

μi 
148.3

4 

10.8

2 

204.7

8 

156.9

9 

6.8

4 

165.

87 

σi 15.29 8.4 16.00 23.42 
8.4

3 

25.3

3 

Table 2 

Estimated Values of the Parameters for the Image2 

Number of regions(K=2) 

Parameters 

Estimation of Initial 

Parameters by K 

Means 

Estimation of Final 

Parameters by EM 

Algorithm 

C1 C2 C1 C2 

αi 0.5 0.5 2.4 -1.4 

μi 164.84 81.89 92.64 78.77 

σi 25.81 23.64 22.94 20.49 

Table 3 

Estimated Values of the Parameters for Image3 

Number of regions(K=3) 

Parameters 

Estimation of Initial 

Parameters 

By Hierarchical 

Estimation of Final 

Parameters by EM 

Algorithm 

C1 C2 C3 C1 C2 C3 

αi 0.33 0.33 0.33 -0.73 0.90 0.83 

μi 53.46 180.85 113.02 118.31 104.94 48.80 

σi 16.03 4.94 11.2 13.82 2.93 15.8 

Table 4 

Estimated Values of the Parameters for Image4 

Number of regions(K=3) 

Paramete

rs 

Estimation of Initial 

Parameters 

By Hierarchical 

Estimation of Final 

Parameters by EM 

Algorithm 

C1 C2 C3 C1 C2 C3 

αi 0.33 0.33 0.33 -0.16 1.15 0.015 

μi 
242.7

0 

34.3

3 

179.7

9 

190.3

5 

30.3

8 

170.8

0 

σi 12.63 5.85 18.36 9.53 3.5 27.39 

Table 5 

Estimated Values of the Parameters for Image5 

Number of regions(K=3) 

Parameter

s 

Estimation of Initial 

Parameters 

By Hierarchical 

Estimation of Final 

Parameters by EM 

Algorithm 

C1 C2 C3 C1 C2 C3 

αi 0.33 0.33 0.33 0.25 -0.09 0.83 

μi 
110.9

1 

190.5

3 

51.0

8 

60.3

5 

164.3

8 

74.8

0 
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σi 14.39 14.82 
18.6

2 

18.5

3 
12.50 

34.3

9 

Substituting the final estimates of the model parameters the 

probability density function of pixel intensities of each image 

are estimated.The estimated probability density function of 

the pixel intensities of the image1 is f(x,θl) = 

 
1

140.52
  1 +

 𝑥 − 56.99 2

23.422
 

𝑟

𝑒
− 

𝑥−56.99
23.42

 
+ 

 
1

170.58
  1 +

 𝑥 − 6.84 2

8.43
 

𝑟

𝑒
− 

𝑥−6.84
8.43

 
+ 

(1/1501.98)  1 +
 𝑥 − 165.87 2

25.332
 

𝑟

𝑒
− 

𝑥−165.87
25.33

 
 

The estimated probability density function of the pixel 

intensities of image2 is f(x,θl) = 

 
1

137.64
  1 +

 𝑥 − 92.64 2

22.942
 

𝑟

𝑒
− 

𝑥−92.64
22.94

      
 

   +(1 /122.94)  1 +
(𝑥 − 78.77)2

20.492
 

𝑟

𝑒−|
𝑥−78.77

20.49
|
 

The estimated probability density function of the pixel 

intensities of image3 is f(x,θl) = 

  

 
1

82.92
  1 +

 𝑥 − 118.31 2

13.822
 

𝑟

𝑒
− 

𝑥−118.31
13.82

 
 

+   
1

167.58
   1 +

 𝑥 − 104.94 2

27.932
 

𝑟

𝑒
− 

𝑥−104.94
27.93

 
 

+  1/94.8)  1 +
 𝑥 − 48.80 2

15. 822
 

𝑟

𝑒
− 

𝑥−48.30
15.82

 
  

The estimated probability density function of the pixel 

intensities of image4 is f(x,θl) = 

 
1

57.18
  1 +

 𝑥 − 190.35 2

9.532
 

𝑟

𝑒
− 

𝑥−190.35
9.53

 
+ 

 
1

21
  1 +

 𝑥 − 30.38 2

3.52
 

𝑟

𝑒
− 

𝑥−30.38
3.5

 
+ 

 1/164.34  1 +
 𝑥 − 170.80 2

27.392
 

𝑟

𝑒
− 

𝑥−170.80
27.39

 
 

The estimated probability density function of the pixel 

intensities of image5 is f(x,θl) = 

 

 
1

111.18
  1 +

 𝑥 − 60.35 2

18.532
 

𝑟

𝑒
− 

𝑥−60.35
18.53

 
+ 

 
1

75
  1 +

 𝑥 − 164.38 2

12.502
 

𝑟

𝑒
− 

𝑥−164.38
12.50

 
 

+ 1/206.34  1 +
 𝑥 − 74.80 2

34.392
 

𝑟

𝑒
− 

𝑥−74.80
34.39

 
 

Using the estimated probability density function and 

segmentation algorithm in section 5, image segmentation is 

performed for the five images. The original images and 

segmented images are shown in figure 3. 

Fig 3: Original and Segmented Images 

7. PERFORMANCE MEASURES 
To evaluate the performance of image segmentation 

algorithm, performance metrics like probabilistic rand index 

(PRI) given by Unnikrishnan R. et.al (2007), global 

consistency error(GCE) given by Martin D. and et.al (2001) 

and variation of information (VOI) given by Meila M.(2005) 

have been calculated and compared with existing GMM. The 

standard criterion for the metrics is that PRI and GCE values 

must lie in range 0 to 1 while VOI can be as big as possible. 

The computed values of segmentation performance measure 

for segmentation methods based on Generalized Laplace 

Mixture Model using Hierarchical and GMM are given in 

Table 6. 

Table 6: Segmentation Performance Measures 

Image 
Method Performance Measures 

PRI GCE VOI 

Image1 

 

GMM 0.94 0.72 2.84 

GLMM-H 0.99 0.68 2.25 

Image2 

 

GMM 0.96 0.78 2.55 

GLMM-H 0.98 0.75 2.23 

Image3 

 

GMM 0.97 0.77 2.32 

GLMM-H 0.98 0.75 1.48 

Image 4 
GMM 0.97 0.69 2.23 

GLMM-H 0.98 0.66 1.45 

Image 5 
GMM 0.96 0.77 2.12 

GLMM-H 0.97 0.73 2.02 

 

From Table6 it is observed that segmentation performance 

measures for all five images for segmentation method using 

generalized Laplace mixture model s much superior than 

those of segmentation methods based on GMM. Therefore the 

proposed segmentation method is superior than that based on 

GMM. This may be due to the platy kurtic nature of the image 

regions.Using the developed algorithm the image can also be 

reconstructed. There are several quality metrics for the 

performance measure of image quality. In this paper, the 

quality metrics considered are image fidelity, Mean Square 
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Error, Signal to Noise Ratio and Image Quality Index. The 

computed values of image quality metrics are given in Table 

7. 

Table 7: Segmentation Quality Metrics 

Image 

Method Image Quality Metrics 

Image 

Fidelity 

Mean 

Square 

Error 

Signal 

to 

Noise 

Ratio 

Image 

Quality 

Index 

Image1 

 

GMM 
0.99 0.88 0.24 

1.0 

GLMM-

H 

0.99 0.72 0.24 0.988 

Image2 

 

GMM 
0.99 0.82 2.01 

0.99 

GLMM-

H 

0.99 0.65 2.03 0.99 

Image3 

 

GMM 
0.98 0.99 1.45 

0.98 

GLMM-

H 

0.99 0.89 1.45 0.99 

Image 4 

GMM 
0.99 0.99 2.23 

1.0 

GLMM-

H 

0.99 0.92 2.69 1.0 

Image 5 

GMM 
0.99 0.92 1.09 

0.99 

GLMM-

H 

0.99 0.76 1.13 0.997 

The original images and reconstructed images using 

developed segmentation algorithm are presented in figure 4. 

Image Original Image Reconstructed Image 

Image

1 

 

 

 

Image

2 

 

 

Image 

3 

 

 

 

 

 

 

Image 

4 

 
 

 

Image 

5 

 

 

Fig 4: Original Image and Reconstructed Image 

 From table7 it is observed that the five images reconstructed 

using proposed method is more close to reality. The image 

fidelity value is almost same for both methods. However the 

mean square error is less for proposed method than that of 

method based on GMM. Similarly the Signal noise ratio for 

images 2,4 and 5 are bigger for proposed model than method 

based on GMM. For images 1 and 3 the signal noise ratio for 

both methods are same. Similar phenomenon is observed for 

image quality index. The proposed method incidentally 

provides an approach for dimension reduction in transmitting 

images i.e the estimated probability model of whole image 

with estimated parameters is sufficient for reconstruction of 

image. 

8. CONCLUSION 
In this paper an image segmentation technique using mixture 

of generalized Laplace distribution integrated with 

hierarchical clustering was designed and developed. Since in 

some images the pixel intensities of image regions are platy 

kurtic, the whole image is characterized by a k-component 

mixture of generalized Laplace probability model. The 

generalized Laplace probability model includes wide spectra 

of platy kurtic probability models for different values of shape 

parameter. The shape parameter of each image region is 

estimated using sample kurtosis of pixel intensities in image 

region. The other parameters of the model are estimated by 

deriving updated equations for the EM algorithm associated 

with generalized Laplace distribution. The initialization of 

parameters is carried using hierarchical clustering and 

moment method of estimation. Performance of proposed 

model is validated through conducting experimentation with 

five images randomly selected from Berkeley image database. 

The image segmentation performance measures such as GCE, 

PRI, and VOI are computed. From this experimentation it is 

observed that the deviation from GMM without affecting 

symmetry is highly effective in segmenting natural images 

such as bridge, bird, horse, giraffe and flying bird which are 

having platy kurtic image regions. It is also observed from  

the image quality metrics for the image retrievals computed 

with this five images in image reconstruction outperforms 

existing image segmentation algorithms when pixel intensities 

in each image region are having platy kurtic distribution. It is 

possible to extend this segmentation and image retrieval for 

color images by considering multivariate generalization of 

Laplace distribution which will be taken up elsewhere. 
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