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Abstract - In this paper we propose an image segmentation 
algorithm based on new-symmetric mixture model. Here the 
pixel intensities of the whole image are characterized through 
a new-symmetric mixture distribution, such that the statistical 
characteristics of the image coincide with that of the new 
symmetric distribution. Using the K-Means algorithm the 
number of image regions and initial estimates of the model 
parameters for the EM algorithm are obtained. The 
segmentation algorithm is proposed by component maximum 
likelihood under Bayesian frame work. The efficiency of the 
proposed method is studied with the five images taken from 
the Berkeley image dataset and computing the values image 
segmentation measures like global consistency error, 
probabilistic rand index and variation of information. A 
comparative study of the proposed model with Gaussian 
mixture model reveals that the proposed method performs 
better. The efficiency of the proposed method with respect to 
the image retrieval is also studied.  
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I. INTRODUCTION 

 mage segmentation is a preprocessing step in image 
analysis and understanding. Much work has been 
reported in literature regarding image segmentation. 

Pal S.K. and Pal N.R (1993), Jahne (1995), Cheng et al 
(2001), Mantas Paulinas and Audrius Usinskas (2007) 
and Shital Raut et al (2009) have discussed various 
image segmentation methods.

 The image segmentation methods are usually 
classified into three categories namely (i) segmentation 
methods based on histogram, threshold and edge 
based techniques, (ii) model based image segmentation 
methods and (iii) image segmentation based on other 
methods like graph, saddle point, neural networks, fuzzy 
logic etc., (Caillol H. et al (1993),Tolias Y.A. and Pamas 
S.M (1998), Brun L. (1998),  Xu Y. et al (1998)). Among 
these methods model based image segmentation is 
more efficient since it preserves the neighborhood 

information and characterizes the features of the image 
region more accurately. Hence much emphasis is given 
for image segmentation based on finite Gaussian 
mixture model

 

(Yamazaki et .al(1998) , Lie T. et al(1993), 
Zhang Z.H. et

 

al (2003) and Nasios N. et al(2006)).

 

In Gaussian mixture model the whole image is 
characterized by the collection of several image regions, 

 
 

where each region is characterized by a Gaussian 
distribution. That is the pixel intensities in each image 
region follow a Gaussian distribution. This Gaussian 
assumption serves well only when the pixel intensities in 
each image region are meso-kurtic and symmetric. But 
in some images like natural scenes the pixel intensities 
of the image region may not be meso-kurtic even 
though they are symmetric. Hence to have an accurate 
analysis of the images, it is needed to develop image 
segmentation methods based on Non-Gaussian mixture 
models.

 

In Non-Gaussian symmetric mixture models the 
kurtosis plays a dominant role. Based

 

on the kurtosis 
the Non-Gaussian models can be classified into two 
categories platy-kurtic and lepto-kurtic. In general many 
of the natural scenes will have image regions having 
platy-kurtic nature. That is the kurtosis of the pixel 
intensities in the image regions is less than three. One 
such model available in literature is new-symmetric 
distribution given by Srinivasa Rao K. et al (1997). The 
new-symmetric distribution is having kurtosis 2.52 and 
symmetric. So it is a platy-kurtic distribution. Hence to

 

have an efficient image segmentation algorithm for 
images having platy-kurtic distributed pixel intensities in 
the image regions, we develop and analyze an image 
segmentation algorithm based on new-symmetric 
mixture model.

 

For developing the image segmentation 
algorithm we require the number of components in the 
image. This is obtained from K-means algorithm. The 
initial estimates of the model parameters are obtained 
from the moment estimates. The updated equations for 
estimating the model parameters through the EM 
algorithm are derived. The segmentation algorithm is 
also presented by taking component maximum 
likelihood. The efficiency of the proposed algorithm is 
studied through experimentation.    
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intensity  z = f(x , y) 

 

is a random variable, because

 

of 
the fact that the brightness measured at a point in the 
image is influenced by various random factors like 
vision, lighting, moisture, environmental conditions etc,. 
To model the pixel intensities of the image region it is 
assumed that the pixel intensities of the region follow a 
new symmetric distribution given by Srinivasa Rao K. et 
al., (1997). The probability density function of the pixel 
intensity is 

 
 

                                                                             

 
 

  (1)

 
 
 
 

The probability curve of new symmetric distribution is 
shown in Figure 1.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 

Its central moments are 
 

 

      

and

 

   (2) 
 
 

The kurtosis of the distribution is              
 
                   (3)    

 
 

  

 
 

            

  

           
(4)

 
 
 

where, K
 
is number of regions , 0 ≤ iα  

≤ 1
  

are weights 

such that  ∑ iα = 1
  

and                  
 
is as given in 

equation  (1). iα is the weight associated with ith  region  
in the whole image.  

 

In general the pixel intensities in the image 
regions are statistically correlated and these correlations 
can be reduced by spatial sampling (Lie.T

 

and 
Sewehand. W( 1992 ) ) or spatial averaging  ( Kelly P.A. 
et al.( 1998 ) ) .  After reduction of correlation the pixels 
are considered to be uncorrelated and independent. 
The mean pixel intensity of the whole image is 

 
 
 
 
 

    .

 

III.

 

ESTIMATION OF THE MODEL

 

PARAMETERS BY EM ALGORITHM

 
 

In this section we derive the updated equations 
of the model parameters using Expectation 
Maximization (EM)

 

algorithm. The likelihood function of 
the observations z1,z2,z3,…,zN drawn from an image is 

 

    

 
 
 
 
 

That is       

 
   
 
 
 
 

Where                                            is the set of parameters

 
 
 

                          

 
 
 
 
 
 

      

 

(5)

 

 

 
 

                                   = 

 
 
 

Following the heuristic arguments of Jeff A. Bilmes 
(1997) we have 
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II. FINITE MIXTURE OF NEW 
SYMMETRIC DISTRIBUTION

In low level image analysis the entire image is 
considered as a union of several image regions.  In 
each image region the image data is quantized by pixel 
intensities. For a given  point (pixel) (x , y), the pixel 
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Figure 1 : Probability curve of new symmetric distribution
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The entire image is a collection of regions which 

are characterized by new symmetric distribution. Here, it 
is assumed that the pixel intensities of the whole image 
follow a K – component mixture of new symmetric 
distribution and its probability density function is of the 
form.

           
The first step of the EM algorithm requires the 

estimation of the likelihood function of the sample 
observations.
function of the sample is 

The expectation of the log likelihood  
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(7)

 
 

The updated equation of  α

 

at ( l +1) th

  

iteration is 

 
 
 
 
 
 
 
 
 

 

           

 where,                     = 

 

The updated equation

 

of 2
i

σ

 

at 

 

( l +1)th 

 

iteration is 

 

                                  

 
 
 
 
 

(9)

 
 

where

 
     

 IV.

 

INITIALIZATION OF THE 
PARAMETERS BY  K –

 

MEANS

 
 

The efficiency of the EM algorithm in estimating 
the parameters is

 

heavily dependent on the number of 
regions in the image. The number of mixture 
components initially taken for K –

 

Means algorithm is by 
plotting the histogram of the pixel intensities of the 
whole image. The number of peaks in the histogram can 
be taken as the initial value of the number of regions K.   

 
The mixing parameters iα

 

and the model 
parameters µi,

2
i

σ

 

are usually considered as known 
apriori. A commonly used method in initializing 
parameters is by drawing a random sample from the 
entire image Mclanchan G and Peel D (2000). This 
method performs well if the sample size is large and its 
computational time is heavily increased. When the 
sample size is small, some small regions may not be 
sampled. To overcome this problem we use the K –

 

Means algorithm to divide the whole image into various 

homogeneous regions. In K –

 

Means algorithm the 
centroids of the clusters are recomputed as soon as the 
pixel joins a cluster.

 

After determining the final values of K (number 
of regions) , we obtain the initial  estimates of  2,i iµ σ

  

and iα

 

for the ith

 

region using the segmented region 
pixel         intensities with the method given by Srinivasa 
Rao et al.,(1997) for new symmetric

 

distribution .The 
initial estimate iα

 

is taken as

 

1
Kiα = , where 

 

i = 1,2,...,K. 

The parameters iµ

 

and

 

2
iσ

 

are estimated by the 

method of moments as i zµ =   and   2 24n

 

3(n-1)i Sσ =   

where,  S2

 

is the sample variance.

 

V.

 

SEGMENTATION ALGORITHM

 

In this section, we present the image 
segmentation algorithm. After refining the parameters 
the prime step in image segmentation is allocating the 
pixels to the segments of the image.  This operation is 
performed by Segmentation Algorithm. The image 
segmentation algorithm consists of four steps.

 
 

Step 1) Plot the histogram of the whole image.  

 

Step 2) Obtain the initial estimates of the model 
parameters using K-Means algorithm and moment 
estimators as discussed in section 4

 

Step 3) Obtain the refined estimates of the model 
parameters 2,i iµ σ

 

and

 

iα

 

for

 

i=1,2,...,K by using the 
EM

 

algorithm with the updated equations 

 

Step 4) Assign each pixel into the corresponding jth 

 

region (segment) according to the  maximum likelihood 
of the jth

 

component Lj.  

  

That is ,              

 

              

 
 
 
 
 
 
 
 

                            

 
 

VI.

 

EXPERIMENTAL RESULTS

 

To demonstrate the

 

utility of the image 
segmentation algorithm developed in this chapter, an 
experiment is conducted with five images taken from 
Berkeley images dataset (http://www.eecs.berkeley.
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.
The images HORSE, MAN, BIRD, BOAT and 

TOWER are considered for image segmentation. The 
pixel intensities of the whole image are taken as feature. 
The pixel intensities of the image are assumed to follow 
a mixture of new symmetric distribution. That is, the 
image contains K regions and pixel intensities in each 
image region follow a new symmetric distribution with 
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Figure 2.

 
 

Figure 2

 

: 

 

Histograms Of The Images

 
 
 
 
 
 
 
          

HORSE

 

MAN

 

BIRD

 

BOAT

 

TOWER

 
 

The initial estimates of the number of the regions K in 
each image are obtained and given in Table 1.

 
 

Table 1:

 

Initial Estimates of K

 
 

IMAGE

 

HORSE

 

MAN

 

BIRD

 

BOAT

 

TOWER

 

Estimate 
of K

 

2

 

4

 

3

 

4

 

3

 

 

From Table 1, we observe that the image 
HORSE has two segments, images TOWER and BIRD 
have three segments each and images MAN and BOAT 
have four segments each. The initial values of the model 
parameters iµ , 2

iσ

 

and iα

 

for i

 

=

 

1, 2,…,K

 

for each image 
region are computed by the method given in section 3.

 

Using these initial estimates and the updated 
equations of the EM Algorithm given in Section 3 the 
final estimates of the model parameters for each image 
are obtained and presented in tables 2.a, 2.b, 2.c, 2.c, 
2.d ,and 2.e for different images.

 
 

Table : 2.a

 

Estimated Values of

 

the

 

Parameters for

 

HORSE Image

 

Number of Image Regions (K =2)

 
 

 
 
 
 
 
 

Table : 2.b

 

Estimated Values of

 

the

 

Parameters for

 

MAN Image

 

Number of Image Regions (K =4)
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Parameters

Estimation of 
Initial Parameters

Estimation of 
Final Parameters 
by EM Algorithm

    Regions(i)     Regions(i)
1 2 1 2

iα 1/2 1/2 0.39702 0.60298

iµ 121.47 187.91 134.09 184.97

2
iσ 609.82 426.21 1302.8 561.41

Param
eters

Estimation of
Initial Parameters

Estimation of Final Parameters 
by EM Algorithm

Regions(i) Regions(i)
1 2 3 4 1 2 3 4

iα 1/4 1/4 1/4 1/4 0.24315 0.2306 0.34648 0.17977

iµ 63.5 20.234 184.29 106.38 64.541 23.197 183.65 103.01

2
iσ 190.98 165.05 547.54 361.45 497.03 214.15 509.25 1074.40

Estimated Values of the Parameters for BIRD Image
Number of Image Regions (K =3)

Parameters
Estimation of Initial 

Parameters
Estimation of Final 
Parameters by EM 

Algorithm
Regions(i) Regions(i)

1 2 3 1 2 3

iα 1/3 1/3 1/3 0.13161 0.66786 0.20053

iµ 53.491 124.05 124.05 60.691 192.85 129.81

2
iσ 535.4 513.93 513.93 857.07 86.799 1581.2

Table : 2.c
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different parameters. The number of segments in each
of the five images considered for experimentation is 
determined by the histogram of pixel intensities. The 
histograms of the pixel intensities of the five images are 
shown in
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Estimated Values of the Parameters for BOAT Image
Number of Image Regions (K =4)

Estimated Values of The Parameters For TOWER Image
Number of Image Regions (K =3)

Substituting the final estimates of the model 
parameters, the probability density function of pixel 
intensities of each image are estimated.
The estimated probability density function of the pixel 
intensities of the image HORSE is

       
                      
              

The estimated   probability density function of the pixel 
intensities of the image  MAN is

Table : 2.d

Estimation of Initial Parameters Estimation of Final Parameters 
by EM Algorithm

    
Parameters

Regions(i) Regions(i)

1 2 3 4 1 2 3 4

iα 1/4 1/4 1/4 1/4 0.2570 0.24231 0.28458 0.22741

iµ 34.98 216.5 81.146 131.13 41.008 212.7 81.062 128.11

2
iσ 374.1 657.54 259.39 387.02 636.2 699.25 785.09 881.93

Table : 2.e

     
Parameters

Estimation of 
Initial Parameters

Estimation of Final Parameters 
by EM Algorithm

Regions(i) Regions(i)
1 2 3 1 2 3

iα 1/3 1/3 1/3 0.43267 0.051312 0.51602

iµ 55.663 223.75 107.79 60.79 193.31 104.42

2
iσ 276.53 1082.4 297.62 487.89 3140.4 404.79

The estimated  probability density function of the pixel 
intensities of the image  BIRD is
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The estimated  probability density function of the pixel 
intensities of the image  BOAT is
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Using the estimated probability density function 
and image segmentation algorithm given in section 5, 
the image segmentation is done for the five images 
under consideration. The original and segmented 
images are shown in Figure 3.

 

Figure 3

 

:

 

Original and Segmented Images
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VII.

 

PERFORMANCE EVALUTION

 

After conducting the experiment with the image 
segmentation algorithm developed in this chapter, its 
performance is studied. The performance evaluation of 
the segmentation technique is carried by obtaining the 
three performance measures namely, (i) Probabilistic 
Rand Index (PRI), (ii) Variation Of Information (VOI) and 
(iii) Global Consistence Error (GCE). The performance of 
developed algorithm using finite new symmetric 
distribution mixture model (NSMM-K) is studied by 
computing the segmentation performance measures 
namely PRI, GCE, and VOI for the five images under 
study. The computed values of the performance 
measures for the developed algorithm and the earlier 
existing finite Gaussian mixture model(GMM) with K-
Means algorithm are presented in Table 3 for a 
comparative study. 

Table 3 : Segmentation Performace Measures

IMAGES METHOD
PERFORMACE 

MEASURES
PRI GCE VOI

HORSE
GMM 0.9142 0.1737 1.8643

NSMM-K 0.9283 0.1634 1. 8403

MAN 
GMM 0.9228 0.3107 1. 8389

NSMM-K 0.9342 0.1734 1.7875

BIRD
GMM 0.9106 0.1369 1. 7479

NSMM-K 0.9140 0.1352 1.7259

BOAT
GMM 0.9026 0.6485 1. 7882

NSMM-K 0.9174 0.6483 1.7542

TOWER
GMM 0.9102 0.1090 1. 8643

NSMM-K 0.9246 0.0981 1.7988

From table 3 it is observed that the PRI values 
of the proposed algorithm for the five images 
considered for experimentation are less than that of the 
values from the segmentation algorithm based on finite 
Gaussian mixture model with K-means. Similarly GCE 
and VOI values of the proposed algorithm are less than 
that of Finite Gaussian Mixture Model. This reveals that 
the proposed algorithm outperforms the existing 
algorithm based on the finite Gaussian mixture model. 
When the kurtosis parameter of each component of the 
model is zero, the model reduces to finite Gaussian 
mixture model and even in this case the algorithm 
performs well.

After developing the image segmentation 
method it is needed to verify the utility of segmentation 
in model building of the image for image retrieval.The 
performance evaluation of the retrieved image can be 
done by subjective image quality testing or by objective 
image quality testing.  The objective image quality 
testing methods are often used since the numerical 
results of an objective measure allows a consistent 
comparison of different algorithms. There are several 
image quality measures available for performance 
evaluation of the image segmentation method.  An 
extensive survey of quality measures is given by 
Eskicioglu A.M. and Fisher P.S. (1995). For the 
performance evaluation of the developed segmentation 
algorithm, we consider the image quality measures like 
average difference, maximum distance, image fidelity, 
mean square error, signal to noise ratio and image 
quality index.

Using the estimated probability density 
functions of the images under consideration the 
retrieved images are obtained and are shown in Figure 
4.

Figure 4 : The Original and Retrieved Images

ORIGINAL  IMAGES RETRIEVED IMAGES

The image quality measures are computed for 
the five retrieved images HORSE, MAN, BIRD, BOAT 
AND TOWER using the proposed model and FGMM 
with K-means and their values are given in the Table 4.
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Table 4

 

:

 

Comparative Study of Image Quality Metrics

 
 
 
 
 
 
 
 
 
 
 
 
 
 

IMAGE Quality Metrics FGMM FNSDMM 
with K-Means

Standard Limits

HORSE

Average Difference 0.5011 0.44135 Close to 1
Maximum Distance 1.0000 1.0000 Close to 1
Image Fidelity 1.0000 1.0000 Close to 1
Mean Square Error 0.5011 0.4414 Close to 0
Signal to Noise Ratio 5.6542 5.9301 As big as possible
Image Quality Index 1.0000 1.0000 Close to 1

MAN

Average Difference 0.4858 0.50021 Close to 1
Maximum Distance 1.0000 1.0000 Close to 1
Image Fidelity 1.0000 1.0000 Close to 1
Mean Square Error 0.4995 0.5079 Close to 0
Signal to Noise Ratio 5.6828 5.6251 As big as possible
Image Quality Index 1.0000 1.0000 Close to 1

BIRD

Average Difference 0.4939 0.6573 Close to 1
Maximum Distance 1.0000 1.0000 Close to 1
Image Fidelity 1.0000 1.0000 Close to 1
Mean Square Error 0.8590 0.5050 Close to 0
Signal to Noise Ratio 5.6861 4.4842 As big as possible
Image Quality Index 1.000 1.0000 Close to 1

BOAT

Average Difference 0.5039 0.6217 Close to 1
Maximum Distance 1.0000 1.0000 Close to 1
Image Fidelity 1.0000 1.0000 Close to 1
Mean Square Error 0.7931 0.5070 Close to 0
Signal to Noise Ratio 5.6318 4.6573 As big as possible
Image Quality Index 1 1.0000 Close to 1
Average Difference 0.4936 0.6640 Close to 1
Maximum Distance 1.0000 1.0000 Close to 1

TOWER
Image Fidelity 0.9999 0.9999 Close to 1
Mean Square Error 0.8788 0.5076 Close to 0
Signal to Noise Ratio 5.6870 4.4347 As big as possible
Image Quality Index 1.0000 1.0000 Close to 1

From the Table 4, it is observed that all the 
image quality measures for the five images are meeting 
the standard criteria. This implies that using the 
proposed algorithm the images are retrieved accurately. 
A comparative study of proposed algorithm with that of 
algorithm based on Finite Gaussian Mixture Model 
reveals that the MSE of the proposed model is less than 
that of the finite Gaussian mixture model. Based on all 
other quality metrics also it is observed that the 
performance of the proposed model in retrieving the 
images is better than the finite Gaussian mixture model.

VIII. CONCLUSION

An image segmentation algorithm based on 
new symmetric mixture model with K-means is 
developed and evaluated. This algorithm is more 
suitable for the images having platy-kurtic image 
regions. The new symmetric mixture model is capable of 
characterizing several natural images with kurtosis close 
to 2.52. The updated equations of the model parameters 
are derived through EM algorithm under Bayesian 
framework. The estimated probability density function of 
the pixel intensities in the whole image is useful for the 
image retrieval. The experimental results revealed that 

the proposed method out performs the existing 
Gaussian mixture model in both image segmentation 
and image retrieval.
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