
 

 

 University of Groningen

Studies on the growth of voids in amorphous glassy polymers
Steenbrink, A.C.; van der Giessen, E.; Wu, P.D.

Published in:
Journal of Materials Science

DOI:
10.1023/A:1004356108870

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Steenbrink, A. C., van der Giessen, E., & Wu, P. D. (1998). Studies on the growth of voids in amorphous
glassy polymers. Journal of Materials Science, 33(12), 3163 - 3175.
https://doi.org/10.1023/A:1004356108870

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-08-2022

https://doi.org/10.1023/A:1004356108870
https://research.rug.nl/en/publications/5e931e5e-eae0-4b1d-9506-28e0ae118b29
https://doi.org/10.1023/A:1004356108870


0022—2461 ( 1998 Kluwer Academic Publishers 3163

JOURNAL OF MATERIALS SCIENCE 33 (1998) 3163—3175

Studies on the growth of voids in amorphous

glassy polymers

A. C. STEENBRINK, E. VAN DER GIESSEN
Laboratory for Engineering Mechanics, Delft University of Technology,
Delft, The Netherlands

P. D. WU
Faculte& des Sciences Applique&es, Université de Sherbrooke, Sherbrooke,
Canada
Email: E. Vander Gessen@wlmt.tudelft.nl

Numerical studies are presented of the localized deformations around voids in amorphous
glassy polymers. This problem is relevant for polymer—rubber blends once cavitation has
taken place inside the rubber particles. The studies are based on detailed finite element
analyses of axisymmetric or planar cell models, featuring large local strains and recent
material models that describe time-dependent yield, followed by intrinsic softening and
subsequent strain hardening due to molecular orientation. The results show that plasticity
around the void occurs by a combination of two types of shear bands, which we refer to as
wing and dog-ear bands, respectively. Growth of the void occurs by propagation of the shear
bands, which is driven by orientational hardening. Also discussed is the evolution of the
local hydrostatic stress distribution between voids during growth, in view of possible craze
initiation.  1998 Kluwer Academic Publishers

1. Introduction
Voids play a dominant role in the inelastic behaviour

of amorphous polymers through, at least, two well-

known mechanisms. First of all, crazing starts and

propagates with the initiation and growth of voids

[1, 2]. Even though crazing usually tends to lead to

rather brittle fracture, void initiation and growth in-
volve intense local plastic flow. Secondly, voids are

a necessary step in the toughening mechanism in poly-
mer—rubber blends [3, 4]. In the latter case, the voids

are due to cavitation of the rubber particles, either
internally or by debonding. The formation of voids

facilitates plastic deformation in the glassy matrix,
which then increases energy dissipation so as to con-

tribute to enhancing the fracture toughness.

This toughening mechanism has been exploited for
many years to produce blends on the basis of amorph-

ous (but also semi-crystalline) polymers, with rubber

volume fractions typically ranging from 20%—40%

and particle sizes in the range of 0.1—10 lm. Well-

known examples of amorphous blends are high-
impact polystyrene (HIPS) and acrylonitrile—bu-

tadiene—styrene (ABS). Owing to many experimental

studies, there is a quite elaborate, general picture of
the toughening mechanisms, but many details are not

understood well, especially not quantitatively.

Because of the importance of voids involving or

during plastic deformation in amorphous polymers,

the behaviour of voided materials has been intensively
studied both experimentally and theoretically. Focus-

ing here on the theoretical studies, continuum mech-

anics modelling has revealed the deformations around

voids in purely elastic materials (e.g. [5, 6] ) and, much

more recently, in elastic—plastic materials (e.g. [7—10]).

These studies, when relating to blends, assumed that

after cavitation of the rubber particles the rubber has

no effect on the subsequent deformations in the matrix

(provided that the rubber modulus is sufficiently low),
so that the blend is replaced with a porous, pure mat-

rix material with a void volume fraction equal to the
initial rubber volume fraction. The finite element stud-

ies [8, 9] are mainly based on planar cell models
containing a single void, but an axisymmetric model

was also briefly considered [9].

The studies on void growth in polymers referenced

above have used very simplistic, purely phenomeno-

logical material models available at the time. Mean-
while, considerable progress has been made in the fully

three-dimensional, elastic—viscoplastic constitutive

models for amorphous glassy polymers. Develop-
ments by Boyce and co-workers [11, 12] and sub-

sequent modifications [13] have led to a constitutive

model incorporating rate- and temperature-depen-

dent plastic flow (‘‘shear yielding’’), including softening

and subsequent strain hardening, that is partly based
and partly motivated by the underlying physical

mechanisms. This constitutive model was adopted

recently [14, 15] in cell model studies of a voided am-
orphous polymer. These studies predicted a rather

complex phenomenology of plastic deformations



Figure 1 (a) Motivations of the axisymmetric unit cell model for a periodic material with spherical voids, and the planar cell model for

a periodic material with cylindrical voids. (b) Geometry of unit cells; only the shaded area is analysed by virtue of symmetry.

around the void, which is controlled by the initiation

and propagation of shear bands. The latter process is

governed by the typical features of intrinsic softening

and progressive strain hardening.

The objective of the present work was to explore

further the growth of voids by plastic flow in propa-

gating shear bands, under different states of applied

stress and for different void volume fractions. In addi-

tion to the axisymmetric model [15], we also con-

sidered an analogous planar model, and the

differences in predictions for different values of the

material parameters are discussed. A study of how the

hydrostatic stress field in the matrix material is affec-

ted by the localized plastic flow was also made. Al-

though crazing itself is not modelled, this pertains to

questions as to when and where the critical stress is

attained for craze initiation.

2. The unit cell models
The studies were carried out in terms of unit cell

models either with axial symmetries or in plane strain

conditions. As illustrated in Fig. 1a, the axisymmetric

cell model is an approximation for a material with

a spatial distribution of spherical voids subjected to

a macroscopic principal stress state &
1
, &

2
, &

3
"&

1
in

the (x
1
, x

2
, x

3
)-coordinate system. The voids are as-

sumed to be arranged in a hexagonal closed packing

in planes normal to and stacked in the x
2
-direction.

Each hexagonal cell around voids behaves exactly the

same. All faces of the cell remain flat with zero shear

tractions. The normal tractions on the hexagonal faces

are averaged out to &
2
, while those on the lateral faces

are subject to the same stress &
1

because of cylindrical

symmetry of the stress state about the x
2
-axis. The

cylindrical cell is an approximation of the hexagonal

cell for computational reasons. In the undeformed

state, the voids have a radius a
0
, the half-spacing

between planes of voids is h
0
and the hexagonal region

around each void is replaced with a circle of radius b
0
.

The initial value of the void volume fraction f is

f
0
"2

3
a3
0

(b2
0
h
0
).

Also, a planar version of this cell model was em-

ployed. Such a unit cell represents a material with a

doubly periodic packing of cylindrical voids with axes

along x
3

subjected to macroscopic principal stresses

along the coordinate axes. The initial void radius and

the half-spacings between voids in x
1
- and x

2
-direc-

tions are denoted by a
0
, b

0
and h

0
respectively, as in

the axisymmetric model. The initial value of the void

area fraction, f, in this case is f
0
"(p/4)a2

0
(b

0
h
0
). In

these planar analyses it is assumed that &
3

is such that

plane strain conditions prevail, i.e., the associated

strain-rate EQ
3
"0.

Thus, the cross-section of both cell model versions

is the same, as illustrated in Fig. 1b. Its boundaries

remain straight during the deformation process and

free of any shear tractions. Due to symmetry, only the

shaded region of each cell needs to be analysed. The

loading is assumed to be displacement controlled by

prescribing the velocity ºQ
2

at the cell top, so that the

applied strain-rate EQ
2
"ºQ

2
/h is constant in time (h is

the deformed height of the cell, h"h
0
#º

2
). The

transverse rate of deformation EQ
1
"º

1
/b is pre-

scribed at each instant by prescribing the velocity

ºQ
1

along the lateral sides (b"b
0
#º

1
is the current
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radius/width of the cell), such that the stress ratio

&
1
/&

2
is kept at a constant value during the deforma-

tion process. This ensures that the overall stress

triaxiality ratio &
.
/&

%
retains a constant, predeter-

mined value at all stages of process. Here, &
.

is the

macroscopic mean (or hydrostatic) stress and &
%
is the

macroscopic Mises stress, which are, in general, de-

fined in terms of the principal stresses &
i
as

&
.
"1

3

3
+
k/1

&
k

(1a)

&
%
"(3

2
&@
i
&@
i
)1@2 (1b)

&@
i
"&

i
!&

.
(1c)

(the prime denotes the deviator, and summation over

repeated indices is implied). For the two loading cases

considered here, these expressions become:

Axisymmetric

&
%
"D&

2
!&

1
D (2a)

&
.
"1

3
(&

2
#2&

1
) (2b)

Plane strain

&
%
"1

2
J3 D&

2
!&

1
D (3a)

&
.
"1

2
(&

2
#&

1
) (3b)

The expressions for axisymmetric conditions are

exact; those for plane strain conditions are approxi-

mations, derived for an unvoided, incompressible

material.

The macroscopic state of deformation at each in-

stant is specified in terms of the principal logarithmic

strains E
2
"ln(1#º

2
/h

0
) and E

1
"ln(b/b

0
) in the

planes of the cells (E
3
"E

1
for the axisymmetric case;

E
3
"0 for the plane strain model). For future refer-

ence, we introduce the overall effective, Mises-like

strain, E
%
, as a measure of the macroscopic distortion.

In general, this is defined as

E
%
"(2

3
E

i
E

i
)1@2

analagous to the Mises stress in Equation 1; more

specifically here:

Axisymmetric

E
%
"2

3
DE

2
!E

1
D (4)

Plane strain

E
%
"2

3
(E2

2
!E

2
E

1
#E2

1
)1@2 (5)

Also for future reference, we define a macroscopic

shear rate, !0 , which represents the applied shear strain
rate if there were no voids present:

Plain strain

!0 "
1

J2
EQ
2

(6a)

Axisymmetric

!0 "S
3

2
EQ
2

(6b)

It is noted that the only length scales involved in the

model are the cell dimensions h
0
, b

0
and the void

radius a
0
; there is no intrinsic, material length scale

other than these morphological parameters. Thus, the

solution depends only on their ratios, namely a
0
/b

0
and b

0
/h

0
. We shall confine attention to packings such

that h
0
"b

0
so that the dependence of the results on

the morphology is only through the ratio a
0
/b

0
or

equivalently through the initial void volume/area frac-

tion, f
0
.

3. Material model
The material model accounts for rate-dependent shear

yielding, the intrinsic softening that immediately fol-

lows yield in amorphous polymers and the subsequent

strain hardening due to the stretching of the entangle-

ment network. The model closely follows the original

ideas put forward in one dimension by Haward and

Thackray [16] in which the strain hardening is repre-

sented by a Langevin spring in parallel to a yielding

element. The first formulation in terms of a fully three-

dimensional theory has been given by Boyce et al.

[11]. We here employ a slightly modified version of

that theory developed elsewhere [13].

Rate-dependent yielding is taken to be described by

the expression

c5 1"c5
0
expC!

As
0

¹ A1!A
s

s
0
B
5@6

BD (7)

derived by Argon [17] for the plastic shear-rate, c5 1, as

a function of the driving shear stress, s. Here, c5
0

is

a pre-exponential factor, A is a material parameter

that is proportional to the activation volume, ¹ is the

absolute temperature, and s
0

is the athermal shear

strength. Boyce et al. [11] extended this expression in

a phenomenological way to include the effect of pres-

sure and strain softening. They use s#ap instead of

s
0

where p is the pressure and a is a pressure-depend-

ence coefficient. Furthermore, s is assumed to evolve

with plastic straining from the initial value s
0

to

a steady-state value s
44
, via

sR "h (1!s/s
44
) c5 1 (8)

to incorporate a phenomenological description of

softening. The rate of softening is governed by the
material parameter h.

The driving shear stress, s, in the flow rule (Equa-

tion 7), is determined in the three-dimensional theory
from

q"(1
2
r@
ij
r@
ij
)1@2 (9a)

r6
ij
"r

ij
!b

ij
(9b)

r6 @
ij
"r6

ij
!1

3
r6
kk

d
ij

(9c)

where r
ij

is the local stress tensor and b
ij

is the back

stress (i, j31, 2, 3 and d
ij

is the Kronecker delta). The
back stress is an internal stress associated with the

stretching of the entanglement network upon con-

tinued plastic deformation. Following the suggestion
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by Haward and Thackray [16], this back stress is

modelled using non-Gaussian network theory. Thus,

its principal components, b
i
, have the same directions

as the plastic stretch, and are direct functions of the

corresponding principal plastic stretches, k
i
. It was

shown by Wu and Van der Giessen [13] that the

predictions of the full (or random) network theory

could be captured accurately in terms of a simple

combination of the classical three-chain network de-

scription and the Arruda—Boyce [12] eight-chain

model

b
i
"(1!q) b3~#)

i
#qb8~#)

i
(10)

with q being determined by the maximum plastic

stretch k1 "max(k
1
, k

2
, k

3
) through q"0.85k1 /N1@2.

Here, N is a statistical network parameter, which gives

the average number of links between entanglements

(or cross-links in a rubber) and thus determines the

limit stretch, k
.!9

, of a molecular chain as k
.!9

"N1@2.

The principal back stress components b3~#)
i

and

b8~#)
i

are given by

b3~#)
i

"
1

3
CRN1@2k

i
L~1A

k
i

JNB (11)

b8~#)
i

"
1

3
CRN1@2

k2
i

k
#

L~1A
k
#

JIB (12a)

k2
#
"

1

3

3
+
j/1

k2
j

(12b)

where L~1 is the inverse of the Langevin function

L(b)"cothb!1/b. The material parameter CR is

termed the hardening modulus (in rubber elasticity, it

is the shear rubbery modulus). When the value of

either k1 or k
#

approaches k
.!9

, the hardening rate

increases dramatically, thereby suppressing effectively

all further plastic flow. Hence, the network locks.

Therefore, for monotonic loading conditions, when

either k
i

or k
#

exceeds the value 0.99 k
.!9

, the

network is ‘‘locked’’ and further viscoplastic flow is

suppressed.

For further details on the constitutive model,

readers are referred to other papers, [13, 18, 15].

We only note that the actual implementation of this

model into a finite strain, finite element code to solve,

for example, the void growth problem addressed

above, requires special care in order to keep the com-
putation numerically stable. When this is properly

done, the material model has been shown to be able,

under various deformation conditions, to describe the
initiation of shear bands and their subsequent propa-

gation typical for amorphous glassy polymers (e.g.

[18]).

Most computations to be reported on here have

been carried out for the following set of material
parameters at room temperature (¹"294K): m"0.3,

E"910 MPa, c5
0
"2]1015s~1, s

0
"97 MPa, a"

0.08, A"240 K MPa~1, h"500MPa, s
44
"77 MPa,

N"6.3 and CR"5.7 MPa. These values are typical

for polycarbonate (PC), but are otherwise representa-

tive for a range of glassy polymers. The elastic

modulus, E, is chosen not to be equal to the initial

Figure 2 True stress, r, versus logarithmic strain, e, curves in

uniaxial tension at a strain-rate of e"0.01s~1 for the various sets of

material parameters used in this paper. Values that are not explicitly

mentioned are the same for all sets, and are given in the text. (——)

N"6.3, CR"5.7 MPa, (- - -) N"2.8, CR"5.7 MPa, (— —)

N"2.8, CR"12.8 MPa.

Young’s modulus, because amorphous glassy poly-

mers generally exhibit a small strain viscoelastic effect

resulting in a nonlinear stress—strain response prior

to yielding. Therefore, E is chosen to match a typical

ratio between yield stress and yield strain in uniaxial

tension (cf. [18]), which leads to a typical value of

E/s
0
"9.38. To study briefly the effects of the softening

and hardening characteristics, some results are shown

for N"2.8 and/or CR"12.8 MPa. The uniaxial

stress—strain curves for the matrix material corre-

sponding these various parameter sets shown in Fig. 2

indicate that they cover a realistic range of ultimate

strains and of stress drops upon softening. The effect

of the softening rate, h, on void growth has been

investigated elsewhere [15].

4. Axisymmetric versus planar
deformations

Void growth computations are carried out in terms

of the axisymmetric as well as the plane-strain model

for two sizes of initial voids: a
0
/b

0
"0.2 or 0.5. The

larger value is supposedly relevant for polymer—rub-

ber blends in which the rubber particles have

cavitated. For the axisymmetric model, the corres-

ponding void volume fraction is around 10%, which is

a reasonable value for the volume fraction of cavitated
rubber particles in a blend at locations near, but not

right at, the fracture plane. The smaller value of a
0
/b

0
is considered in order to separate the effect of void

interactions. The finite element mesh that is used for

a
0
/b

0
"0.2 is shown in Fig. 3. A very fine mesh is

needed around the void, especially near the equator in

order to pick up the localized deformations that will

be shown to develop for the materials under consid-
eration. The macroscopically applied strain-rate EQ

2
is

equal to that used in Fig. 2.

4.1. Shear band patterns
Figs 4 and 5 show how the smaller voids, a

0
/b

0
"0.2,

grow under two remote stress states, specified by
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Figure 4 Distribution of the instantaneous plastic shear rate, c5 1, for a material with N"6.3, CR"5.7 MPa and with the initial void specified

by a
0
/b

0
"0.2 for low triaxiality loading, &

1
/&

2
"0, under (a) plane strain, E

%
"(i) 0.072, (ii) 0.14, (iii) 0.25, and (b) axisymmetric conditions,

E
%
"(i) 0.068, (ii) 0.16, (iii) 0.26. The corresponding stress—strain curve is shown in Fig. 6.

Figure 3 Finite element mesh of the shaded region in Fig. 1b used

for the cases with a
0
/b

0
"0.2. The mesh used for a

0
/b

0
"0.5 has

a similarly fine mesh around the void.

&
1
/&

2
"0 and 0.73, respectively. For each state of

remote stress, results are shown for the planar model

(a) and for the axisymmetric model (b). Under axisym-

metry, &
1
/&

2
"0 implies remote uniaxial tension,

while &
1
/&

2
"0.73 corresponds to a remote stress

triaxiality of &
.
/&

%
"3 (cf. Equation 2), which is com-

monly considered to be representative for the state

of stress ahead of a crack tip. For each state of stress

and for both geometries, three snapshots of the instan-

taneous plastic zone are shown in Figs 4 and 5 at

typical stages of the deformation process. These stages

are marked in the computed macroscopic stress—strain

curves for the various cases, shown in Fig. 6. The

plastic zones are visualized in terms of contour plots

of the current plastic shear rate, c5 1, normalized by

!0 from (Equation 6).

For the lower triaxiality, &
1
/&

2
"0, Fig. 4a shows

that plasticity in the planar model starts with some

highly concentrated plasticity near the equator of the

void emanating in a well-defined shear band under

45°. The thickness of this shear band is almost uniform

and independent of the mesh size. In fact, previous

numerical studies with the same material model of

simpler problems like compression, have shown that

the shear band thickness is controlled mainly by the

softening and hardening characteristics of the material

[18]. As the material inside this band continues to

deform with continued overall strain, it first further

softens and then strain hardens due to the stretching

of the entanglement network, until the stress inside the

band becomes large enough to trigger yield in neigh-

bouring material. It is the continuous repetition of this
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Figure 5 Distribution of the instantaneous plastic shear rate, c5 1, for the same material as in Fig. 4 but for high triaxiality loading,

&
1
/&

2
"0.73, under (a) plane strain, E

%
"(i) 0.028, (ii) 0.043, (iii) 0.66, and (b) axisymmetric conditions, E

%
(i) 0.026, (ii) 0.040, (iii) 0.060. The

corresponding stress—strain curve is shown in Fig. 6.

Figure 6 Macroscopic effective stress—effective strain response for

material with N"6.3, CR"5.7 MPa and with a
0
/b

0
"0.2. The

symbols refer to the plots shown in Figs 4 and 5. (h) Plane strain (s)

axisymmetric.

process that gives rise to propagation of the shear

band, in the present case in the direction of loading. As

a consequence of this shear band propagation, mater-
ial appears to be drawn into the ligament between

voids, and the void grows into a strongly prolate

shape. In this plane strain case, the macroscopic stress
remains virtually constant after macroscopic yield (see

Fig. 6). Notice in Fig. 4a that more than one shear

band can get triggered at larger strains. Also, we see

some ‘‘reflections’’ of the shear bands in the top right-

hand side of the quarter cell, which are in fact con-
tinuations of shear bands from the neighbouring cell.

This indicates that even for these relatively small

voids, there is significant interaction with the next

nearest voids.

In the axisymmetric model (see Fig. 4b), localization

into shear bands is much less pronounced, but growth

of the void is controlled again by propagation of shear

bands. The shear bands are thinner than in the planar

model and confined more to the neighbourhood of the

void. This is an immediate consequence of the kin-
ematics of localized shearing. In the axisymmetric

model, a shear band is actually a cross-section of
a conical plane; shearing along that plane requires

circumferential straining for reasons of compatibility.
As a consequence of this more confined shear banding,

the macroscopic stress—strain curve is very different

than that under plane strain conditions, and is, in fact,

qualitatively similar to the homogenous stress—strain

curve in Fig. 2.
The shear banding under higher stress triaxiality,

&
1
/&

2
"0.73, shown in Fig. 5, is of a completely dif-

ferent nature. Rather than a shear band under 45°, we
observe that plasticity starts with rather well-defined

shear bands under roughly !30° with the main load-

ing direction, both in the planar and in the axisymmet-

ric model. These shear bands appear well prior to

macroscopic yielding (see Fig. 6), but localization into
these shear bands intensifies at macroscopic yield and

beyond, while the shear bands become slightly curved.

In view of the shape of these shear bands we shall refer
to them as ‘‘dog-ear’’ bands as compared to ‘‘wing’’

shear bands observed under low triaxiality in Fig. 4.
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Figure 7 Distribution of the instantaneous plastic shear rate, c5 1, for a material with N"6.3, CR"5.7 MPa and with the initial void specified

by a
0
/b

0
"0.5 for low triaxiality loading, &

1
/&

2
"0, under (a) plane strain, E

%
"(i) 0.064, (ii) 0.092, (iii) 0.21, and (b) axisymmetric conditions,

E
%
"(i) 0.062, (ii) 0.10, (iii) 0.18. The corresponding stress—strain curve is shown in Fig. 9.

Propagation of these dog-ear shear bands occurs in

such a way that the shape of the band region remains

the same, while it sweeps the entire ligament between

voids with continued deformation. Due to this type of

shear banding, the void grows into a markedly oblate

shape, i.e., with the longest axis perpendicular to the

maximal straining direction x
2
.

Though limited, the models, which are in themsel-

ves planar or axisymmetric cell models, find their

motivation in the expectation that either one of them,

or both, capture some features of the behaviour of a

real material in three dimensions with the same rela-

tive void size a
0
/b

0
and subject to similar remote

loading conditions. In view of the very fine meshes

that are needed to resolve accurately the shear bands

that occur, full three-dimensional void growth compu-

tations with the present material model pose enor-

mous requirements on computational resources.

However, the qualitative similarity between the results

for the planar model versus those for the axisymmetric

model in Figs 4 and 5, suggests that the real three-

dimensional phenomena involved in void growth at

the same remote stress triaxiality are similar. It is to be

expected, however, that shear bands in three dimen-

sions will prefer to take planar shapes, like in the

present planar model, because this puts much milder

requirements on deformation of the neighbouring

material to ensure compatibility.

4.2. Void interaction
Figs 7 and 8 show how the above picture changes

when a
0
/b

0
"0.5, i.e. when interactions between voids

become more significant. Comparing the low triaxial-

ity results in Fig. 7 with those for the smaller void

in Fig. 4, it is seen that the larger void exhibits

less tendency to grow into an oblate shape, especially

in the planar model. This is caused by the fact that

in this case, the shear band pattern changes after

macroscopic yield (see Fig. 9). During the rather sharp

drop in the macroscopic stress response right after

macroscopic yield (see Fig. 7a for E
%
"0.092), one

observes not a single wing-like shear band, but a num-

ber of such bands together with traces of two dog-ear

shear bands. It is the latter type shear band that

appears to survive at larger strains and tends to span

across the entire remaining ligament. Under axisym-

metric conditions (Fig. 7b) such dog-ear shear bands

do not appear, but the wing-like shear bands are

significantly weaker than for the smaller voids in

Fig. 4b.

For the higher stress triaxiality in Fig. 8, we find

only dog-ear shear bands, as for the smaller voids in

Fig. 5, but the shear bands appear to be less intensive

so that plastic deformation is more distributed over

the matrix. In the planar model, in Fig. 8a, we again

see traces of both families of shear bands appearing

shortly after macroscopic yield.
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Figure 8 Distribution of the instantaneous plastic shear rate, c5 1, for the same material as in Fig. 7 but for high triaxiality loading,

&
1
/&

2
"0.73, under (a) plane strain, E

%
"(i) 0.036, (ii) 0.051, (iii) 0.13, and (b) axisymmetric conditions, E

%
"(i) 0.029, (ii) 0.051, (iii) 0.13. The

corresponding stress—strain curve is shown in Fig. 9.

Figure 9 Macroscopic effective stress—effective strain response for

material with N"6.3, CR"5.7 MPa and with a
0
/b

0
"0.5. The

symbols refer to the plots shown in Figs 7 and 8. (h) plane strain,

(s) axisymmetric.

4.3. Wing versus dog-ear shear bands
The following simple picture, illustrated in Fig. 10,

emerges from the studies presented above and related
previous work [14, 15]. Two types of shear band occur

around voids in an amorphous glassy matrix: wing-

like shear bands and dog-ear shaped bands.Wing-like

bands are favoured at lower triaxialities, while dog-ear

shear bands appear to be favoured at higher stress
triaxialities and at higher concentrations of voids. At

some stages of deformation, both families of shear

bands are available, but this appears to be mainly

a transition from one type to the other.

The wing-like shear bands originate at the equator

of the void, and are oriented under approximately 45°

relative to the maximal principal tensile stress direc-

tion. This initial location coincides with the location

where plastic flow starts when &
2

is the maximal

principal stress (as has been predicted long before

from purely elastic analyses [5, 8, 9]). The orientation
of about 45° is controlled primarily by the direction

of maximum macroscopic shear stress. In the pre-
sent analyses, this direction remains fixed during de-

formation, and the shear band retains its orientation

when it propagates; but, in a more complex deforma-
tion history one should expect the shear band orienta-

tion to change as the maximum shear direction

changes.

The dog-ear shear bands often appear as slightly

curved shear bands, oriented roughly under !30°

with respect to the maximum macroscopic tensile
stress. However, closer inspection shows that at the

location where the shear band initiates from the void

surface, it subtends an angle of again 45° with the local

circumferential direction of the void surface. This indi-

cates that the occurrence of these types of shear band
is to some extent controlled by the void’s circumferen-

tial stress state rather than by the macroscopic stress

state. These shear bands are always formed after some
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Figure 10 Schematic illustration of the two main types of shear

bands that can form around voids in amorphous glassy polymers:

(a) wing-like shear bands, (b) dog-ear shaped shear bands.

amount of plasticity near the void equator, and there-

fore their presence can never be predicted from purely

elastic considerations (in fact, Goodier’s [5] analytical

elastic solution for an isolated void, generalized to

arbitrary remote stress triaxiality, as well as its plane
strain counterpart predict the maximum circumferen-

tial stress to occur at the void equator too).

Especially for the relatively large voids considered
in Figs 7 and 8, we have observed transitions from

wing-like shear banding to dog-ear bands. This transi-

tion is reflected in the stress—strain curves as a rather

sharp drop after macroscopic yield (see Fig. 9). Fig. 11

shows that the transition is also witnessed clearly in
the response of the lateral macroscopic strain E

1
to

the prescribed strain E
2

in the x
2
-direction. For

&
1
/&

2
"0, we find continuous lateral contraction in

the axisymmetric cell, whereas for the planar model

Figure 11 Applied strain, E
2
, versus macroscopic lateral strain, E

1
,

for the material with N"6.3, CR"5.7 MPa and with a
0
/b

0
"0.5

(see also Fig. 9). The symbols refer to the plots shown in Figs 7 and

8. (h) plane strain, (s) axisymmetric.

a marked kink is seen, at which continued straining is

possible without significant lateral deformation. This

kink dE
1
/dE

2
"0 coincides with the transition from

a wing-like shear band at small strains into a dog-ear

shaped band (see Fig. 9). A similar kink is observed at

higher triaxiality, in both axisymmetric and planar

models, but in these cases some lateral contraction

follows this kink. This ‘‘snap back’’-like phenomenon

is associated with the release of elastic energy stored in

the system when macroscopic softening takes place as

the dog-ear shear band matures. Upon further strain-

ing, the contraction almost vanishes in the case where

dog-ear bands had initiated until large applied strains;

this is to be attributed to the drawing of the ligament

between voids caused by the propagation of the shear

band. These observations are confirmed by studies

presented elsewhere [15].

It is emphasized that the occurrence of shear bands,

and hence the competition between both types of

shear bands, is determined by the local conditions of

stress, strain-rate and state of deformation in the ma-

terial. The conditions for shear banding in the present

problem, where even the elastic field is non-homo-
geneous, cannot be established by simple analysis, but

requires an accurate, detailed analysis of all governing

field equations (which is done here through finite

element discretization).

5. Effect of softening and hardening
characteristics

The previous study [15] of void growth in amorphous
polymers has briefly addressed the effect of the rate

of intrinsic softening, h. In agreement with the results

of other strain localization studies in these materials
(e.g. [18]), it was found that the tendency for the

formation of sharp shear bands decreases with de-

creasing h. Associated with this decrease, the amount

of macroscopic softening after yield decreases, even
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Figure 12 Effect of CR and N on (a) the macroscopic effective

stress—effective strain response, (b) the void area fraction under

plane strain conditions for a material with a
0
/b

0
"0.2. The symbols

correspond to the plots in Figs 4 (&
1
/&

2
"0) and 5 (&

1
/&

2
"0.73).

(——) N"6.3, CR"5.7 MPa, ()) ))) N"2.8, CR"5.7 MPa, (- - -)

N"2.8, CR"12.8 MPa.

though void growth itself may still provide ‘‘geometric

softening’’ especially at higher stress triaxialities.

Here, we briefly investigate the effects of the para-

meters CR and N that primarily determine the harden-

ing characteristics of the material, but implicitly also

affect the shear strength drop after yield, as demon-

strated in Fig. 2. Even though the variations of N and
CR relative to the previously used values are seen to

give rise to substantial changes in the response to
homogeneous uniaxial tension (in unvoided material),

the response of the voided material under uniaxial
macroscopic tension (&

1
/&

2
"0) is found to be affec-

ted much less, even for the case with relatively small

voids shown in Fig. 12a. The main effect appears to

be that the macroscopic yield and the subsequent flow

stress are elevated somewhat with increasing CR or
decreasing N; this is due to the fact that the maximum

shear strain that is attainable inside the shear band

decreases in the same direction, so as to give less
localized flow in shear bands. Also, with increasing

macroscopic strain, some macroscopic strain harden-

ing is now being observed. This is even stronger under

higher triaxiality, &
1
/&

2
"0.73. However, the rate of

void growth is seen from Fig. 12b to be only slightly
affected by N and CR.

6. Hydrostatic stresses in ligament
Even though the details of craze initiation are not fully

established, the value of the hydrostatic (or mean)

Figure 13 Distribution of the hydrostatic mean stress, r
.
, for

a material with N"6.3, CR"5.7 MPa and with the initial void

specified by a
0
/b

0
"0.2 for low triaxiality loading, &

1
/&

2
"0, un-

der (a) plane strain, E
%
"0.14, and (b) axisymmetric conditions,

E
%
"0.16.

stress r
.
"1/3r

kk
plays a crucial role [1, 2, 19]. In

view of the importance of the competition between

yielding and crazing in the matrix on the fracture

toughness of a rubber blend, it is useful therefore to

understand the development of hydrostatic stresses in

the matrix around a void (as an idealization of a cavi-

tated rubber particle). To fix ideas, let us assume for
simplicity that crazing occurs once a critical value of

the hydrostatic stress is attained anywhere in the
matrix.

It follows immediately from Goodier’s [5] elastic
analysis for an isolated spherical void, generalized to

arbitrary remote stress triaxialities, that the maximum
mean stress in the material always occurs at the equa-

tor of the void, and can be expressed entirely in terms

of Poisson’s ratio, m, and the macroscopic stress para-
meters &

.
and &

%
. Void interaction may enhance this

local value, but only by a few per cent for a
0
/b

0
"0.5.

Once plasticity takes place, the elastic solution loses

applicability. On the other hand, for massive plastic

deformation in metals, it is known from the work of
Bridgman [20] that the hydrostatic stress inside

a neck is elevated substantially. Necking of the liga-

ment between voids has also been observed to occur in
the foregoing, so that it seems very pertinent to study

the evolution of the mean stresses from the early

elastic stages until substantial growth of the void and

ligament necking.

Figs 13 and 14 show the distribution of the local
mean stress, r

.
, at instants (nearly) coinciding with
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Figure 14 Distribution of the hydrostatic mean stress, r
.
, for the

same material as in Fig. 13 but for high triaxiality loading,

&
1
/&

2
"0.73, under (a) plane strain, E

%
"0.043, and (b) axisymmet-

ric conditions, E
%
"0.040.

macroscopic yield under low and high triaxiality, re-

spectively. At those instants, shear bands of various

degrees of intensity have already formed, as shown

previously in Figs 4 and 5. This and previous plastic

flow have, to a large extent, destroyed the elastic mean

stress fields, so that the peak values of r
.

are no

longer found at the equator of the void but at some

distance away from that. This is most clearly seen

from Fig. 14 for the higher triaxiality (&
1
/&

2
"0.73).

For the lower triaxiality (Fig. 13a), a peak mean stress
is also seen on the equatorial plane away from the

void equator, but in this case a band of elevated
mean stress is observed as well. This band coin-

cides with the lowest 45° shear bands observed in
Fig. 4a which intersects at the void surface with the

rather faint dog-ear shape band that is also seen at this

point.

Upon closer examination of Fig. 14, along with the

plots in Fig. 5, it follows that the locations of the peak
hydrostatic stresses practically coincide with the inter-

section of the currently active shear bands, i.e. the tip

of the dog-ear bands. This can be readily understood
by noting that, at the tip of crossing shear bands, a

state of high dilation must exist for compatibility reas-

ons. Assuming that craze initiation is controlled by the

local mean stress, these results suggest that the inter-

section of shear bands could serve as points of craze
initiation, as confirmed by a number of experimental

observations, see, for example, [21]. The value of the

maximum mean stress in the axisymmetric model is
seen to be significantly higher than that in plane strain

at roughly the same overall strain. This should

Figure 15 Mean stress distributions along the equatorial plane

x
2
"0 at different strains E

%
for the material shown in Fig. 14 under

axisymmetric conditions with &
1
/&

2
"0.73 for (a) a

0
/b

0
"0.2, and

(b) a
0
/b

0
"0.5. The corresponding stress—strain curves are shown in

Figs 6 and 9, respectively.

obviously be attributed to the circumferential com-

patibility conditions that must be met near the inter-

section of shear bands in addition to the in-plane ones.

To explore further the evolution of the state of

hydrostatic stress during the deformation process,

Fig. 15 shows the distribution of r
.

over the equato-

rial plane only, at various stages of the deformation. In

this figure, attention is confined to high remote stress

triaxiality and to the axisymmetric model, but the

results under plane strain have been found to be quali-

tatively similar. Fig. 15a shows how the stress state

shown in Fig. 14b has evolved from the early stages

where localized plastic flow had only just initiated
near the void equator. Already in those early stages

(prior to macroscopic yield), the peak mean stress

occurs at some distance ahead of the current void

equator, again associated with the intersection of

shear bands (cf. Fig. 5b). It is interesting to see that the
peak mean stress continuously increases during the

stages shown, but reaches a maximum (at E
%
+0.037)

prior to macroscopic yield when the macroscopic
mean stress attains a maximum. Also note that this

local maximum mean stress r
.

is roughly equal to

1.4s
0
, whereas the maximum macroscopic mean stress

&
.

(at yield) is only 0.86s
0
. Without further exploring

the consequences of this, we note that hydrostatic
stresses of 1.4s

0
approach the cavitation instability

limit recently established [22] for similar material

properties.
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Fig. 15b finally illustrates the effect of the relative

void size on the local hydrostatic stress development

by giving the results for the larger voids, a
0
/b

0
"0.5.

In the early stages, the mean stresses near the void at

corresponding strains are very much similar to that in

Fig. 15a for the smaller void. However, at continued

straining the location of peak mean stress moves into

the ligament regime, and we find the maximum hy-

drostatic stress at the centre of the ligament, just like

in a necked specimen [20]. The maximum value of r
.

found for this larger void is at all stages significantly

smaller than for the smaller void. Also we see that the

largest peak value is found after macroscopic yield.

Assuming that craze initiation is controlled by the

value of r
.

this means that for a given value of the

critical mean stress, crazing may be initiated in the

system with the smaller voids whereas the material

with larger voids does not craze.

7. Discussion and conclusions
We have reported the results of detailed finite element

studies of the deformations around voids, and their

growth, in glassy polymers. The main characteristics

of the results are as follows:

1. for stress triaxialities ranging from uniaxial ten-

sion to crack-tip like stress states, local plasticity initi-

ates shear bands from the equator of the void before

macroscopic yield takes place;

2. with continued macroscopic deformation, these

bands develop into one of two types of shear bands

occur: wing shaped or dog-ear shaped bands;

3. as these shear bands mature with on-going defor-

mation, they propagate in a direction roughly normal

to the band.

In some cases, both families of shear bands occur

simultaneously, usually at strains just beyond macro-

scopic yield. This typically signals a transition from

wing-like to dog-ear shaped bands. In these cases, the

combined shear band patterns momentarily bear a

strong resemblance to the theoretical slip line fields

near a rounded notch, as discussed, for example, else-

where [21, 23]. Such patterns have also been found

in a recent numerical study [24] of plasticity around

blunt crack tips using the same material model, and

similar parameters as used here.
The wing-like shear bands that are predicted under

sufficiently low macroscopic stress triaxiality have

indeed been observed experimentally by Sue and Yee

[8]. They used relatively thick PC plates, containing

just a single void, subjected to uniaxial tension; this
relates best to our results for the relatively small voids

(a
0
/b

0
"0.2). Just like in our computations, see

Fig. 4a, plasticity was observed to start with a combi-
nation of both types of shear bands, followed by

strong localization in wing-type bands after macro-

scopic yield. Unfortunately, the experiments were not

continued much beyond yield, so that a comparison of

void growth and shear band propagation at the larger
strains shown in Fig. 4a is not possible. We are not

aware of any similar observations of plastic zones

around voids under elevated stress triaxialities, where

we predict dog-ear type shear bands. However, such

bands are akin to the main shear bands observed

experimentally near the tip of a round notch in a thick

PC specimen [25], where it is well-known that the

stress triaxiality is raised substantially above the re-

motely applied state of stress.

When attempting to compare the predicted shear

band patterns with experimental observations, care

should be taken with the two respective interpreta-

tions. In the experiments described elsewhere [8, 25],

shear bands are visible through the change in birefrin-

gence that has occurred due to molecular reorienta-

tion during plasticity. In this paper, what we refer to as

shear bands are regions of currently active plasticity;

previous plastic deformation does not emerge in the

plots. Furthermore, one has to be careful with the size

scales. Depending on magnification and material,

micrographs often reveal individual microshear bands

that are organized in more macroscopic bands. The

material model that has been used here is a continuum

model, which does not represent individual micro-

shear bands associated with the molecular ‘‘shear

yielding’’ process. At best, it provides a continuum

representation of such microshear bands in terms of

their collective behaviour. Hence, the predicted shear

bands should be interpreted as such ‘‘macroscopic’’

bands; the internal structure in terms of micro-shear

bands cannot be resolved.

The results presented here supplement the picture

that has emerged from earlier studies of voids in elas-

tic—plastic polymeric materials [7—9]. Our analyses

differ from the earlier studies in the literature mainly

in that (i) proper account has been given of large local

strains, and (ii) a physically motivated three-dimen-

sional constitutive description of the elastic—viscoplas-

tic response has been adopted, including strain

softening upon yield and subsequent progressive

strain hardening. This, together with the fact that

today’s computer power allows for much finer finite

element discretizations, is the reason for the prediction

of finer and more pronounced shear bands than earlier

ones, e.g. [8—10].

The studies predict a local enhancement of the hy-

drostatic stress near intersections of shear bands, indi-

cating these as potential locations for craze initiation.

The maximum value found anywhere in the ligament

between voids tends to increase as the void grows,
until macroscopic yield takes place. Depending on the

precise craze initiation criterion, this suggests that

craze initation need not occur from the void surface,

where the elastic stress concentration is, but may

await some significant plastic deformation and void
growth. This emphasizes that the complex competi-

tion between plasticity and crazing in toughening of

blends may depend on details of the local plasticity,
which is emanable only through computational stud-

ies of the present type.

The primary motivation for this study was the local

plastic flow around cavitated rubbery particles in

amorphous blends. The study is relevant for blends in
which the rubber modulus is so low that the stress-

carrying capacity of the rubber after cavitation can be

neglected, and the cavitated particle can be regarded
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as a void. In a follow-up of this work, we will explicitly

investigate the role of the rubber, by actually incor-

porating the rubber particle in the model.
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