
S t u d i e s  o n  t h e  P a i n l e v 6  E q u a t i o n s  (*). 

I .  - Sixth Painlev6 Equa t ion  Pv~. 

KAZUO OKA.~r163 TO 

Summary. - In  this se,ries of papers, we study birational canonical transformations of the Pain- 

levd system Yf, that is, the Hamiltonian system associated with the Painter6 differential equa- 

tions. We consider also Y-function related to TF and particular solutions of Yr. 2.'he present 

article concerns the sixth Painlev6 equation. By giving the explicit forms of the canonical 

transformations of ~ associated with the amine transformations of the space of parameters 

of Y~, we obtain the non.linear representation: G ~ G . ,  of the a]]ine Weyl group of the ex- 

ceptional root system of the type 1~ 4 A canonical transformation of G.  can extend to the 
correspondence of the z-functions related to Yr. We show the certain sequence of ~-]unctions 

satisfies the equation of the Toda lattice. Solutions of 3~, which can be written by the use of 
the hypergeometric functions, are studied in details. 

0 .  - I n t r o d u c t i o n .  

Let E(a ,  b, c) be the set of solutions of the hypergeometric differential equation 

( o . 1 )  t (1  - -  t) ~pf § (e - (a  + 5 § z ) t )  d /  
- ~5f  = 0 .  

I f  / = ](t) is in E(a,  b, c) the function ] - :  ]-(t) defined by 

(0.2) ]-_-= [t~t § e_l]  ] 

i8 contained in •(a, b, e --1) .  The linear map 

z-(e):/-~l- 

from the two dimensional vector space E(a, b, e) to the other E(a,  b, e -  1) i8 an 
isomorphism. In  fact, put  

(0 .3 )  ]+  = (1 - l) ~ + e - a - b f ,  

(*) Entrata in Redazione 1'8 agosto 1985; versione riveduta il 7 novembre 1985. 
Indirizzo dell'A. : Department of Mathematics, College of Arts and Sciences, University 

of Tokyo, Komaba, Meguro, 153 Tokyo, Japan. 
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which defines the linear map f rom J~(a, b, c) to E(a, b, e @ 1): 

L+(c):  / ->  ] + .  

We see tha t  ( L + ( c -  1)L-(c))(]) is a constant  multiple of ]. 

the  hypergeometr ic  series: 

[a].[b]. t" 
] -~ iF(a, b, c; t) ~- n=o [e],n .! ' 

then  we have 

In  part icular ,  if ] is 

(0.4) ] -  = (e -- 1)/7(a, b, c -- 1 ; t ) ,  

(0,5) ]+-- ( c - - a ) ( c - - b ) F ( a ,  b, e @ 1; t ) .  
c 

Here  we assume tha t  none of e, c -  a, c -  b is integer and use the nota t ion:  

[a]~ = a (a  + 1) ...  (a + n - ~ ) .  

The relations (0.2)-(0.4) and (0.3)-(0.5) are known as the contiguity relations for 

the hypergeometr ic  series of Gauss. 

The main purpose of this series of papers is to obtsJin such relations for the set 

of solutions of the Painlev6 equations. In  the  following of this series of papers,  we 

will refer to each of the  six ]?ainlev6 equations as P j  (J  = I,  I I ,  ..., VI). A solution 

of P j  is called a Painlev~ transcendental ]unction. Consider the Painlev6 equat ion 

P = P~, depending on a pa ramete r  v:  we will wri te  the equation as P(v) and d a 

t ransformat ion of a space V of parameters  v. A map of the form 

~:  S(v)  -~  ~ f f ( v ) ) ,  ~ = z(q)  

is called a contiguity relation associated with [, if ~ is rational in q and its derivatives 

with rat ional  funct ion coefficients of the independent  variable t. Using this termi- 

nology, we say (0.2) is a cont igui ty relation of the hypergeometr ic  differential equa- 

t ion associated with the parallel t ransformat ion  of the  pa ramete r :  

c ~--~e--1. 

P1 

Now we give the table of the six Painlev6 ecluations: 

d~q 
tit------ 7 = 6~t~ --[- t 

PII 
d~q 
dt---~ = 2q8 + tq -~ 



KAz~,o O];A3[omo: Studies on the Painlev6 equations, T 339 

P m  

Piv 

Pv 

PvI 

d2q 
dt 2 

2q\~]" " @ 2q3~-4tq2@ 2(t2--~)q @ fi-q 

dt - - Y =  2-q + \dt] 
l dq (q--])~(~q ~) q q(q + l) 
tdt + t ~  + §  q--1 

1(1  1 1 )(dq~ ~ (1 t 1__1 1 ~dq d~q=ff ~ +  + _ + + + 
dt~ ~ - -1  ~-25-- t \ ~ ! q --  t ] dt 

@ q(q --1)(q -- t) [ t t - - 1  d t ( l - -  1)] 

Here ~, fl, 7 and d denote complex constants. We assume throughout  the series 

of papers tha t  d r 0 for Pv and )Jd r 0 for PIII. We concern mainly the studies on 

the contiguity relations of the Painlev6 equations, therefore the first equation P~ 

is not  considered in the following. I t  contains no parameter.  

The Painlev6 equations P j  (J = I, ..., VI) are characterized as nonlinear ordinary 

differential equations of the second order without  any  movable critical point. They 

can be writ ten in the Hamil touian system: 

(0.6) de _ ~ u  dp _ .  ~ 
dt ~p ' d t -  ~q ' 

with the Hamil touian H(t; q,p), rational in t and polynomial in (q,p) ([7], [8]). 

The Hamil touian H j  associated with Pz is given by the following table; 

HI 

HII 

HIII 

Hiv 

Hv 

HvI 

1 
~p~-- 2q 8 -  tq 

, ,  

1 2 -t [q,p2_ (2~]=tq + (2.00 -t- 1)q --  2r]ot}p + 2r]=(Oo + O=)tq] 

2qp ~ -  {q~ + 2tq + 20o}p + O=q 

l [ (q  --  1)2P ~ -  {.o(q --  1) ~ -t- Oq(q -- 1) --  + ~(q --  1)] 

1 
t(t - -  1) [q(q - -  1)(q -- t )p  2 -  

- - {~o(q-  1 ) ( q -  t) + u ! q ( q -  t) + ( 0 - 1 ) q ( q - - 1 ) } p  + u ( q -  t)]. 
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Here the constants in Hj  are connected to a, fl, 7, ~ of the equations p j  us follows: 

Hm:o~-------@o~Ooo, fl = 4Vo(0o+ 1), y = 4rjl , 

H~v: ~ = - - 0 o + 2 0 o ~ + 1 ,  f l = - - 2 0 ~ ,  

Hv: o~=~x,~, , 8 = - - ~ x o ,  ~ , = - - ~ ( 0 + 1 ) ,  

H V I :  ~ - -  ~Zr , fl - ~  - - ~ ; g o i  2 , 1 2 

a = - �89 

a = ~(1  - o~) ,  

2 
- -  ~ ( ~ o +  , ~ +  0 - i ) ~ -  ~ .  

By the assumption, ~ sa 0 for Hv and Vase 0 (A = 0, co) for Hm; The Hamilto- 

nian Hj  has been introduced by the use of the theory of the isomonodromic deforma- 

tion of a linear ordinary differential equation; see [2], [7], [8]. 

The Hamiltonian structure associated with the Painlev6 equation Pj  is repre- 

sented by 

(0.7) . r ~  = (q, p,  H~ ,  t ) .  

We denote by v the set of parameters contained in the Hamiltonian Hj  and by V a 

space of all parameters. When we consider the Hamiltonian system (0.6) at an 

arbitrarily fixed value v of parameters, the Harniltonian structure (0.7) is written as 

~(v )  = (q(v), p(v), ~(v), t) .  

Here H ( v ) =  H / t ;  q, p; v) is the Hamiltonian given above. We cull ~%f(v) the 

Painlev~ system at v. The tota l i ty  of ~ ( v ) :  

-~  = U ~ ( v )  
v e'I,r 

is the Painlev6 system associated with p jo In this series of papers, we will study 

mainly the dependence of ~%f = o%fj on V. 

A geometrical interpretation of the Hamiltonian structure ~ ( v )  at v has been 

studied in [4]. We constructed the fiber space with the foliated structure associated 

with ~ (v ) .  The Painlev6 system ~W itself can be regarded as a fiber space with the 

base space V: a fiber of this fibration is ~ ( v )  provided with the foliation. We do 

not discuss in what follows a geometrical structure of the Painlev6 system, although 

this point of view will yield some interesting and. important problems to be examined. 

We shall see that  for each J the space V = VJ of parameters of H = Hj  is a 

complex affine space, whose dimension s is: 

N I l = I ,  N m = N i v =  2 ,  N v =  3 ,  Nvi=  4.  
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For  example,  it seems ~he th i rd  equation P m  depends on the four parameters  ~, fl, 

~, ~. On the other  hand,  by  replacing q by  ~q and t by/~t,  we can put ,  wi theu t  loss 

of generality, 

7 : 4 ~  ~ = - - 4 ,  

2, # being constants.  

Le t  ( q ( v ; t ) , p ( v ; t ) )  be a solution of the l=[amiltonian system (0.6) with the 

Hamil tonian  H(v)  : H(t; q, 19; v). We call it  simply a solution o] the PainlevJ system 

~ ( v )  and write it  as (q(v) ,p(v)) .  Consider the 2-form: 

/2 ~ dpAdq -- dHAdt  , 

called the ]undamental ]orm at tached to the t tami l tonian  s t ructure  (0.7). We denote 

b y / 2 ,  the restr ict ion o f / 2  on the PMnlev~ system ~W(v) at  v. A t ransformat ion  of 

z :  ~ - > ~ ,  

is said eanonieal if /2 remMns invar iant  under  z :  

~r*/2 = / 2 .  

Denote  by  ~ the restr ict ion of ~ on the fiber Yt~(v). For  v of V, we have v '  such 

tha t  

~ :  ~ ( v )  ~ ( v ' ) ,  

~*(/2~,) = ~ .  

The transformation of V: 

E:  V I-4 l~ r 

is thus induced f rom the canonical t ransformat ion  ~. Le t  

(0.8) q' = Q(t; q, p) , p ' =  P(t; q, p) 

(o.9) t' = T(t) 

(0.1o) ~ ' =  ~o(t)H + ~(t; q, p) 

be an representat ion of z~, where we put :  

~ ( v )  = (q, p , / / ,  t), ~ ( v ' )  = (q', p', H', t'). 

The canonical t ransformat ion  ~ is said to be rational, if for any v, the functions Q, 

P, ~, ~ and q~ are rationM with respect  to the canonical variables. By  the defini- 
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tion, we have the following condi*ions: 

~p ~Q ~P ~Q 
(0.11) ~p 3q ~q 3p 1 ,  

(0.12)~ 3q ~t 3t ~q ~q dt -- 0 

(0.12)~ 3p 3t ~t 8p 3p dt = 0 ,  

d9 
@-~ = 1 .  (0.13) 

When (0.8)-(0.9) define a birat ional  map  f rom (q, p, t) to (q', p ' ,  t'), we call z a bira- 

tional canonical transformation of .~%f. A rat ional  canonical t ransformat ion  of the 

form 

q ' = q ,  - - -p ,  p' t ' =  t ,  t t ' =  H - F  ~(t) 

is said trivial. We do not  distinguish such a t ransformat ion from the  ident i ty  map, 

since the Hamil tonian system (0.6) is unchanged. We consider a canonical transfor-  

mat ion modulo tr ivial  one. 

Let  g be a birat ional  canonical t ransformat ion,  represented by  (0.8)-(0.10). We 

say Yd is stable with respect to z,  if, for any  v of V, zv (~ (v ) )  = ~ ( v ) .  The transfor-  

mat ion ~ is said to  be of the first kind, if t ' =  t in (0.9). Two birat ional  canonical 

t ransformations zi  (i = 1, 2) are said to be equivalent,  if ~ 2 o ~  ~ =- ~ is of the first 

kind un4 d~f is stable with respect to =. We will ident i fy  a~ and =2 if they  are equi- 

valent  each other.  The main subfect of this series of papers  is to investigate a 

birat ional  canonical t ransformat ion of ~ f  which induce an affme t ransformat ion 

of V. Le t  ~ b e  an affine t ransformat ion  of V. I f  for i = 1 , 2  and for any  v 

:~,,: ~ ( v )  ~ ~ ( 4 v ) ) ,  

then  Yd is stable with respect  to z = z2oaT 1. ~ o r e o v e r  if ~ is of the  first kind al  

is equivalent  to ~2. As for this equivalence relation we propose the  following 

conjecture:  

CO~JECmUI~E 0.1. - Suppose that 2"t ~ is stable with respeet to a birational eanonieal 

transformation ~. I f  ~ is of the first kind, then ~ is the identity transformation of ~ .  

Here  we ident i fy  a t r ivial  t ransformat ion  with the identi ty,  as was remarked  

above. 

Assuming tha t  the  assertion of the conjecture is established, we obtain for an 

affine t ransformat ion [ of V the  unique birat iona! canonical t ransformat ion  z - ~  
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= { z ~ ; v ~ V } ,  if it  does exist. We have 

= 

for any  v. z is called a representation of t ~ on the Painlev~ system and wri t ten as 

= t , .  

Given a birationM canonical transformx~ion ~, we denote by  V ~ the set of v such 

tha~ z ( ~ ( v ) )  = ~ ( v ) .  In  the ease when 7~ is of the first kiud, Conjecture 0.1 means 

tha t  V ~--  V if and only if z is the ident i ty  t ransformat ion.  Fur thermor% we make 

the lollowing conjecture.  

CO~JECTU]r 0.2. - I] ~ is o/ the ]irst kind and has a non-empty set V ,~, then V ~ 

is a proper analytic subset el V. 

These conjectures are not  verified yet .  In  any  case, d, can be determined f rom [, 

if it  exists, uniquely up to a stable t ransformat ion of the first kind. 

Let  G be a subgroup of the  group ~r of afflne motions in V, such tha t  for 

any  element g of G there  exists a birat ional  canonical t ransformat ion z which 

induces g: 

~: ~ ( v ) - ~  ~ (g (v ) )  �9 

We denote by  ~ the set of such ~'s and by  ~o the subset of ~ consisting of 

t ransformat ions  ~o of the  first kind which keep ~%f stable. NotiI~g ~0 is a normal  

subgroup of ~, we write the quotient  group ~/~o as G , .  The assertion of Conjec- 

ture  0.1 implies G = G , .  The homomorphism 

G eg -~g ,e  G, 

is called a nonlinear representation el G on the Painlev6 system. 111 other  words, the 

image G ,  of G is the family  of the  contigui ty relations g,  of Painlev~ t ranscendenta l  

functions. We wi!l associate the group G = G j  with each J/~j (J  = I I ,  ..., VI) and 

give an explicit  realization of the representat ion of G. The presentat ion of G j  being 

somewhat complicated,  we will do it later  for each Gj .  The group G contMns the 

affme Weyl  ~ group as a subgroup. To describe the group ]~r, we have to introduce 

the  notion of the z-function of the Painlev~ system. 

Let  (q(t; v), p(t;  v)) be a solution of the Painlev4 system ~ ( v )  at  v. We define 

the v-function w(v; t) related t o  3~(v) by:  

d log w(t;v) = H( t ;  q(t;v) ,  p(t; v); v ) ,  

with ambigui ty  o~ a multiplieative constant  (see [6]). 
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On the other hand, JI~IBo and MIWA have defined in [2] T-functions by using 

the theory of the isomonodromic deformation of linear ordinary differential equa- 

tion. They coincide with (0.15) as for the Painlev6 systems. A birational canonical 

transformation ~-----g, leads to the correspondence of v-functions: 

T(t; v) -~ T(t; g(v)) 

in a n~tural way. We denote it also by ~ ~ g,.  We will make no distinction bet- 

ween two T-functions T~ (i = 1, 2) such that  

d d 
log T~-- ~ log v~ 

is rational in t. They are mutually connected through a trivial canonical transfor- 

mation. This identification will be in discard when we consider rational solutions 

or classical solutions of the Painlev6 system. 

Let G be the afiine subgroup with the representation G -~ G ,  on the Painlev6 

system ~%f. We say that  the T-function T(v) = T(t; v) remains invariant under the 

birational canonical transformation g,, if the logarithmic derivative of the function 

g,(T(V))/T(V) 

is a rational function of t. Here we adopt the identification of T-functions. We 

denote by W the subgroup of G such that  T(v) remains invariant under the represen- 

tation w, of any w of W. I t  will be shown for each J tha t  W is a realization of the 

Weyl group W(R) of the root system R. The type  of each R : Rj (J = II ,  ..., VI) 

is given as follows: 

Rzl: A1 

Rm: B~ 

Riv: As 

Rv: A~ 

RvI: D4. 

Throughout this series of papers we use the notation used in [1] concerning the 

theory of root systems. 

Moreover we witl construct for each J the birational canonical transformation ~, 

corresponding to the parallel transformation E of V. The gloup W = W(Rj) and f 

generate ~r, which is isomorphic to the affine Weyl group W~(Rj). We will obtain 

the representation: 
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on the  Painlev6 system.  For  g of l~, the  birat ionM canonicM t r ans fo rma t ion  g.  

is of the first kind. 

Le t  z(v) = v(t; v) be the  r - funct ion related to a solution (q(v), p(v)) = (q(t; v), 

p(t; v)) of the  Painlev6 sys tem ~g(v) a t  v. For  f of the  group G we define the set 

of z-functions 

(0.16) ~:(~) = {v~; m e Z} 

b y  zo ~ v(v), ~ - ~  (~,)"v(v). I f  d is of infinite order, we call (0.16) ~ v-sequence 

de/tried by E. We will show for ea.ch W j  t ha t  there  exists a parallel  t r ans fo rmat ion  

such t ha t  the  z-sequence (0.16) satisfies the  equat ion:  

Vm_l V~-I  
(0.17) d~ log v.~ = % 2 

Tm 

e~ being a non-zero constant .  Here  (~ is a derivat ion:  we will see 

d 
= d-t for H m  H i v ,  

d 
= t - -  for  H m ,  H v ,  

dt 

d 
= t(1 - -  t) ~ for H w .  

The cons t ra in t  (0.17) for (0.16) is the well-known Toda equation for v-functions. 

We can pu t  in (0:17) e~ = 1 by  choosing sui tably normahza t ion  constants  for v~. 

We will ver i fy  (0.17) wi thout  the  help of the  theory  of the i somonodromic  defor- 

ma t ion  of l inear equat ions:  compare  wi th  [2]. 

Le t  r = z(v) be a r - funct ion  related to the Painlev6 sys tem ~f(v)  a t  v. We have  

the  fami ly  of z-functions:  

v) = {vo; g , v  for g e  G } .  

where g ,  denotes the  representa t ion  of g oil the  Painlev6 system.  The Painlev6 

t ranscendenta l  fanct ions can be represented in t e rms  of functions in ~:(G; v). For  

example ,  we will show tha t  there  exist  the  v-functions zl, z~ such t h a t  

(0.18) q(v) ---- eons t .~  log ~,  
T1 

q(v) being a solution of the Painlev6 equation.  We note  t ha t  the  expressions (0.17)- 

(0.18) are wri t ten  i n  consideration of the  identification of z-functi0ns ment ioned 

above :  see (0.20). 
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I t  is knowal that, for particular values of the parameter v, the Painlev~ equa- 

tion Pj  possesses special solutions expressible in terms of the classical transcendental 

functions, that  is, Gauss' hypergeometric functions, Bessel functions and so on. We 

will readjust these facts and obtain some results on special solutions of the Painlev6 

system, by taking the affine Weyl group W~(R) into consideration. To describe 

the results we use the reflection group I4 z of the affme space V, isomorphic to W~(R). 

Let ~ = g, be the representation of g of l~ r on the Painlev~ system H. We will see 

that  if v is contained in the subset V ~ of V, the Painlev~ system oNZ(v) possesses a 

solution represented by classical transcendental functions. V = is a wall of some Weyl 

chamber associated with W~(R). The list of classical transcendental functions which 

appear as special solutions of o%f--,,YC'a is the following: 

/ t i i  

J~lll 

Hiv 

Hv 

Airy functions 

Bessel functions 

Hermite-Weber ftmctions 

Confluent hypergeometrie functions 

Hypergeometrie functions. 

Some rational solutions of the Painlev6 systems will be studied. 

The present article is the first part of the studies on the Painlev6 systems. We 

study in the following the sixth Painlev6 equation Pv~. The next part of the series 

of papers will be devoted to the theory of the fifth one Pv. The other three equa- 

tions PII, Pro, P~v are relatively known and studied in many articles. We shall 

investigate also these equations in the forthcoming papers, by means of the method 

of birational canonical transformations. 

Some results given in this series of papers have been announced in [5]. 

In w 1, we will firstly define the auxiliary Hamiltonian function h = h(t) asso- 

ciated with the sixeh Painlev6 equation P ~ Pw. We will see that  h = h(t) satisfies 

the nonlinear ordinary differential equation E =- Ev~: 

dh dh b:b2b3b~] ~ ~ [ d h  b~) O. ~" It(1 -- t) ~ 1 ~  @ [~-'/" {2h -- (2t -- 1) d-hi -t- -- IJ1 ~ -  @ : 

Here the constants b~ ( k -  1, ..., 4) are defined by 

bl=�89 b~=�89 b3--�89174 b4=�89 

We can regard b = (bl, b~, b3, b~) as a parameter of the Painlev6 system ~ = YFvI. 

We shall prove that  there is the one to-one eorrespondenea ]rom a solution (q, p) o] 

the JPainlev6 system ~t" to a general solution h o] E. The nonlinear representation of 

the Weyl group W can be deduced !rom this iaet, 
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Let ~ be the parallel transformation: 

(0.19) E: (bl, b2, ba, b~) -+ (bl, b~, b~ @ 1, b~). 

We will construct the birationM canonical transformation E, related to f: see Proposi- 

tion 1.6. Let G ~ be the group generated by the Weyl group W and ~, realized as 

the subgroup of Mliae motions on the space of parameters b. G ~ contains the affine 

We~l group l ~ =  W~(R) of the root system of the type D~. The representation g, 

of any g of G ~ is of the first kind. One of Lhe main purposes of the present article 

is to obtain the explicit form of the birational canonical transformation g,.  We 

will do it in w167 1.2. Proofs of the results stated in w 1 are given in w 2. 

I t  is known that  the Hamiltonian associated with the sixth PMnlev6 equation 

P = Pv~ is invariant under some rational transformations except permutations of 

constants. For example, replacing in P, t by 1/t and q by 1/q, we obtain equation: 

d~q 

dt ~ - ~  -q § + q--q\dt l  -f§ q--tldt § 

-i- q(q - -  1 ) (q  - -  t) _ / 3  - -  
t~(t--1), ~ +  

~--1 t(t--1)] 
7 (q _ 1)------~ § a ~ ] .  

This replacement extends to the canonica.] transformation: 

(q, p ,  H ,  t) ~ -~, ~ (z.o + ~ + 0 - -  i + Xo~) q - -  q~_~, - -  t~ ' 

and yields in the IIamiltoniml the permutation of constants: 

~ 0  ~ ~oo  . 

We have the representation of the group G ~ of permutations of the four constants 

~o, gl, 0, ~ ,  on the Painlev6 system ]~ (see [4], [10]). Let G -= Gw be the group 

generated by G ~ and G 1, then we obtain the representation of G 

G ---> G, 

on 5(f. We define the affine space V = V~ as the totali ty of vectors v--= (vl, v~, 

%, %) such that  

and regard it us the space of parameters of ~f. We shall realize G us the subgroup 

of affine motions in V and see it is isomorphic to the affme Weyl group of the ex- 

ceptionM root system of the type/~4: The determination of G will be done in w 3; 

see Theorem 1. 



348 Khz~'o OKA~O~O: Studies on the Painlevd equations, h 

The section 4 concerns the studies on the ~-fuuctions of the Puinlev~ system ~%f. 

We show in Proposition 4.2 and in Theorem 2 tha~ the ~-sequenee defined[ by the 

purullel tra.nsformation (0.19) satisfies the Toda equation (0.17). Moreover a solu- 

tion q(t; v) of the sixth Painlev6 equation P(v) is writ ten in t he  form 

(0.20) v~(q(t; v) --  ~) : ~:-~ ~v~-- ~'~ ~ 2  , 

where vl, ~2 ure v-~uuctions of the fumily ~:(G; v) an4 ~ ~ t ( t - -1)(d/dt ) .  

For certain ~alues of the parameters v, the Painlev4 system ~f(v) ut v possesses 

solutions such tha t  in the expression (0.20) the v-functions T~, ~ are represented 

in te~ms of hypergeometric functions (see [2], [4]). We say such solutions to be 

classical. Classical solutions of ]t~(v) are the subject of the final section, w 5, where 

we will see tha t  they  appear in walls of a Weyl  chamber of the affine Weyl  group 1~ 

of the root system of the type  D~. The studies of the last section will lead us to a 

new view-point in the theory oi hypergeometrie fm~ctions through the theory  of 

the Painlev4 system. We will give some examples of ~-sequences whose ~-func- 

tions are classical and examine them in details. 

1.  - S i x t h  P a i n l e v 6  e q u a t i o n .  

1 .1 .  Auxil iary Hamiltonian ]unction. 

In  the present article, we s tudy  mainly the sixth Painlev4 equation Pw: 

d~q 

dt ~ 

1 1 

q(q-1)(q-t)[ ? t_ t - 1  ~t ( t -1 ) ]  
-~ t ~ ( t _ l ) 2  ~-~  q ~ - 7 ( q _ i ) ~ -  ~ - -~ -~ ] "  

The Hamil tonian Hw associated with it is the following: 

~(t-1) 
[ q ( q  - -  1)(q  - -  t ) p  2 - -  

- - { z o ( q - - 1 ) ( q - - t )  + z~q(q- - t )  + ( O - - 1 ) q ( q - - 1 ) ) p  + ~(q--  t)] ,  

where ~ (/i = 0, 1), ~r 0 denote the constants such tha t  

. o = ~ / z 2 ~ ,  ~,=  ~ / ~ ,  0 = V 1 - ~ 3 ,  

Let e~ (j = 1, ..., 4) be the canonical basis of the four dimensional complex vector 

space C ~ with a symmetric  bilinear form (bib'); we have by  definition (e~lej)-~ 
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= (ejle~) = ~ , ,  d~. being the Kronecher ' s  delta.  We associate the constants  of the 

t t ami l ton ian  Hvi with a vector  

4 

(1.1) b = ~ bjej 
J = l  

in the following manner :  

(1.2) ~.=b1@b~, zl=b~--b2, O=bz@bt@l ,  x~=b3~b~. 

We consider the space C 4 as the parameter  space of the Painlev6 system: 

(L3) ~'%I = (q, p, Hvi,  t) , 

associated with Pw, through (1.1)=(1.2). In  the following of this paper, the vector  

(1.1) will be wri t ten simply as b = (b~, b2, b3, bd). Denote by  ak[b] the  k-th fund:~- 

menta l  symmetr ic  polynomial  (k = 1, ..., 4) of b~, b2, ha, b4 and by  a:[b] (s = 1, 2, 3) 

the s-th one with respect to b~, b3, bd. 

A Hamil tonian funct ion Hvi(t) related to J~w is defined by  

[1.4] Hvi(t) = Hw(t; q(t), p(t)) ,  

where (q(t), p(t)) is a solution of the Hamil tonian system 

(1.5) dq ~H @ _ ~H 
dt ~p ' d t -  ~q 

with the t tami l tonian  Hvi = Hvi(t; q, p). We call Hvi(t) simply a Hamil tonian func- 

t ion of ~ v i .  For  the purpose of simplification of presentat ion,  we omit in what  

follows the subscript f rom Pvi, ~ v i ,  Hw and so on, unless there  is a risk of con- 

fusion. We introduce the auxil iary tI~nfil tonian function:  

(:t.6) h(t) = t ( t -  1)H(t) @ a~[b]t -- �89 

which plays an impor tan t  role in our studies. In  fact  we obtain the following 

propositions. 

PRoPosI~IOZ~ 1.1. - The junction h = h(t) satis]ies the nonlinear ordinary di]- 

]erential equation: 

Ew d~.h It(1 d~h3 ~ dh 
t t$ [  

PRO]~OSI~Io~ 1.2. - There is the one-to:one correspondence ]rom a general solution h 

of F. = Evi to that (q, p) o] the Painlevd system $~'~. 
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This correspondence is denoted b y  

(1.7) F(h) = (q, p ) .  

h is expressed as the polynomial  in (q, p), by  the  definition (1.6). On the other  hand,  

it is shown tha t  q and p are rat ional  with respect to h and its derivat ives dh/dt, 

d~h/dt 2. So we say (1.7) defines a birat ional  correspondence. We will prove these 

propositions in the  nex t  section. 

t~EiYIARK 1.1. -- The equation E has the one-parameter  family of singular solutions : 

(1.s)  h = ~t §  

Here  (1, it) is on the elliptic curve:  

4 

(1.9) {i(1 @ 2/t) @ (h[b]}2 = l-[ ( i  @ b~). 
i = l  

In  general, the  function h is not  wri t ten in the form (1.8) for (q, p), since there  

is no algebraic first integral  for the Painlev6 system. This fact  has been known as 

the transeendeney of the  Painlev6 equation ([10]). 

1.2. Invarianee o] the di//erential equation E. 

For  a point  b = (bl, b2, b3, b,) of C ~, consider the following four linear t ransfor-  

mations w~. (j = 1, ..., 4): 

wl: (bl, b~, b3, b4) -->(b~, bl, b3, b3) 

w2: (bl, b2, b3, b4) -->(bl, b3, b~, b~) 

w3: (bl, b~, b3, b4) "-->(bl, b~,b4, bs) 

w4: (bz, b~, b3, b4) --->(bl, b2,--bz,  --ba).  

I f  we pa t  

a l  = e l  - -  e ~  , a 2  = e 2  - -  e 3  , a 3  = e 3  - -  e4, a a  = e3 ~ e4, 

then  for each j, w~ is a reflection in C 4 with respect to at, t ha t  is, 

- 2  (via,) " ,  

Let  W be the group generated by  wl, ..., wd. W is a subgroup of the complex ortho- 

gonM group 04(C) and moreover  we have the 
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PROeOSITIO~ 1.3 ([1]). -- W is isomorphic to the Weyl group W(R) o] simple ,'oot 

system R o] the type D~. 

In order to simplify notation, we will write W(R) as W(D~). 

~u regard C 4 also ~s "the space of parameters of the nonlinear differential equa- 

tion E --~ Ew. When considering the Painlev~ system ~ [b ]  at b, we denote E by 

E[b] and by (q[b], p[b]) a solution of ~ [b ]  with the auxiliary Hamiltonian function 

h[b]. I t  is easy to see the 

PRoeosImIo~ 1A. - _For any w o] W, we have 

E[b] : E[w(b)]. 

In fact, the coefficients oi the equation E ~re the fundamental symmetric polynomials 

of b~, b~, b~, b~ and a~(b), that  is, the invariant polynomials of the Weyl group W(D~). 

For a solution h-~ h[b] of E[b], 

hw : h[w(b)] 

satisfies E[w(b)] and vice versa. Definitively, by putting 

(1.10) h ~ h~, 

we obtain the relation between (q, p) -~ (q[b], p[b]) and (q~, p~) = (q[w(b), p[w(b)]) 

by means of the correspondence (1.7). In fact, we show the 

P~oPosImIo~ 1.5. - There exists the birational canonical trans]ormation o] the 

2ainlev6 system: 

w,: (q, p, H[b], t) -~ (q~, p~, H[w(b)], t) .  

By the definition w, is the representation of w and its explicit form will given in 

the proof of this proposition: see the section 2.2. Let W ,  be the group generated 

by (w,), (j = 1, ..., 4). W, is homomorphie to the Weyl group W-~  W(Dd). In 

particular, we have from the Proposition 1.5 the expressions: 

q ~ :  R(w; q, p) , p~---- S(w; q, p) , 

q ----/~(w-1; q~, P~), P ---- S(w-1; q~, P~), 

R, S denoting r~tional functions. ~[oreover, we can construct the representation 

of the affme Weyl group W~(R) associated with the root system oi the type D4 on 

the P~inlev6 system. We write W~(R) as W~(Dd) in the following of this paper. 
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1.3. Realization o] the parallel trans]ormation. 

Let h ~ h[b] be an auxiliary Hamil tonian function and (q, p)  -~ I~(h) a solutioa 

of the Painlev6 system defined by the correspondence (1.7). We will prove the 

following proposition: 

PROP0SITIO~ 1.6. - There exists the birational canonical trans]ormation: 

(1.11) ~,: (q, p, H[b], t) --~ (q+, p+, H[b+], t ) ,  

where 

(1.12) b+ : b ~- e3. 

I f  we denote by  ~ (j = 1, ..., 4) the parallel t ransformation:  

b .--~ b -q- e j , 

then ~, is a representation of ~ = f3 In  order to prove the proposition, we introduce 

the other auxiliary function h + = h+[b] defined by 

(1.13) h +-~ h - -  q ( q - - 1 ) p  + (b14- b,)q -- �89 b2+ b~). 

~re will verify the following two propositions. 

P~oPosImiO~ 1.7. - h +, dh+/dt, d2h+/dt 2 are polynomials  in (q, p)  and rational in  t. 

Conversely~ q and p are written as rational ]unctions o] h+~ dh+/dt, d~h+/dt ~ and t. 

PRoPosI~Io~ 1.8. - h + satis/ies the nonlinear di]]erential equation E[b+]. 

Proposition 1.6 is an immediate consequence of these propositions. In  fact, note 

firstly that ,  by  Proposition 1.8, we can put  

h +-~ h[b +] -~ h[/(b)] 

and then  obtain by (1.6) and (1.13) the followil~g: 

(1:14) HV(b)] = H[b] I ~ , 
t(t-1) 

where 

(1.15) X = q(q -- 1)p --  (bx + b,)(q -- t) . 
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i f  we regard h +, dh+/dt, d~h+/dt 2 as polynomials in (q+, 2 +) by means of the cor- 

respondence (1.7), then (q, 2 )  can be writ ten as rational functions of (q+, p+) and t: 

(1.16) q = Q ( t ; q + , p  + ),  2 = P ( t ; q + , 2  + ) ,  

by the second assertion of Proposition 1.7. Oppositely, we write (q+, 2 +) as rat ional  

function of h + and its derivatives by applying again Proposition 1.2. Then we deduce 

again from Proposition 1.7 the expression: 

(1.17) q + = Q + ( t ; q , 2 ) ,  2 + =  P+(t; q, 2) . 

Consequently, the biration~l t ransformation (1.11) is given by (1.14), (1.16) and 

(1.17). We will see tha t  it  is a canonical t ransformation from W[b] to YF[b +] ~-- 

----~ff[f(b)], by  the use of the explicit forms of (1.16) and (1.17), given in the sec- 

tion 2.3. 

R ~ , ~ K  1.2. - We obtain from f ,  the birational canonical t ransformations (t~j). 

(j ~- 1, ..., 4), by  combining ~, with W.  obtained in Proposition 1.5 as the represen- 

ta t ion of the Weyl  group W = W(D~)  on the Painlev6 system. We have the rep- 

resentation 

G O ~ G~ 

of the group generated by W and t~ (] ~ 1, ..., r cf. the section 2.4. 

2. - Realization of  the affine Weyl  group W~(Dd) .  

2.1�9 _Proo] o/ _Propositions 1.1 a n d  1.2. 

Firs t  of all we make an a t t empt  to obtahl a differenti~j1 equation satisfied by 

the auxiliary Hamil tonian function h = h(t). By the defi~ition we have 

(2.1) h ~- q(q - -  1)(q -- t )2  2 -  {bl(2q - -  1)(q - -  t) - -  b~(q - -  t) + (b~ ~- b,)q(q - -  1)} 2 + 

-[- (bx + ba)(bl + bd)q - -  b~,t - -  �89 

I t  io]lows from (1.6) tha t  

dh 
(2 2) - -  q ( q - - 1 ) p 2 +  { b l ( 2 q - - 1 ) - - b ~ } p - - b ~  

�9 d t  

since for the Hamiltoni~n function, 

~t H(t) _ ~ ~ H ( t ;  q, p )  (q.~)=(~(t),~(t)) 
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We obtain from (2.1) and (2.2): 

(2.3) 
h t dh ( dh ) = a~[b] -- bd)q(q --  --  ~ a2[b], 

and then, 

- -1  d2h [. dh \ 
(2.4) t(t ) - ~  = 2q ~,;[b] a~[b]|-- 2q(q -- 1) 

[ 

/ 
( ~ t ~  b3ba)-- 

dh 
- ~l[b] ~ + ~[b] 

by differentiating (2.3) and using the Hamiltonian system (1.5). I t  follows from 

(2.3) and (2.4) that  

(2.5) 

(2.6) 
1 q(q--1)p ~ ~-~[--(~t --a~[b])B + (a'l[b] dh~--- a~[b])C] 

where 

(2.7) 

(2.7) '  

dh , \ 

1 
: , dh ~ dh ---- A det~(rl[b]_d_~__a3[b] - ~ + b 3 b , ]  

d~ h dh 
B = t ( t - : L ) ~  + ~,[b] ~ - - -  ~ [b ] ,  

c = 2 \ ~ - -  ~ - ~ [ b ] .  

bat + 

I~ewriting (2.2) in the following form: 

q(q --1)  + b ---- --  (q(q - - 1 ) p ) ~  - {b~(2~/--1) --  b~}g(q--:l)p 

and substituting (2.5), (2.6), we arrive at the differential equation E ~ Evi. The 

Proposition 1.1 is thus established. Given a solution ( q , p ) =  (q(t),p(t)) of the 
Painlev6 system, we have a solution h = h(t) of the nonlinear differential eqtla- 

tion E. Conversely, for a solution h of E, we define (q, ~0) by (2.5), (2.6). I t  e~n be 
verified by computation that  (q, ~) thus obtained is a solution of the Painlev6 

system, provided that  h is not a singmlar solution, that  is, d~h]dt2V= O. This fact 

proves the Proposition 1.2; we do not enter into details of computation. 
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I~E~A~]< 2.1. -- I t  may  occur that  h ~ h(t) is a singular solution of E of the form 

(1.8). In  this case, q ~ q(t), a solution of the  Painlev~ equation P, satisfies also an 

algebraic differential equat ion of the first order, as it is easily seen by  vi r tue  of the 

Hamil tonian  system. We will say such q = q(t) is semi-transcendental. On the 

other  hand,  it  is known tha t  a Painlev~ t ranscendenta l  function is in general transcen- 

dental: it  does not  satisfy an algebraic differential equat ion of the first order except  

for some special value of the parameters .  We will s tudy such case in the section 5 

and obtain semi-transcendental  solutions of the Painlev6 system. 

2.2. Weyl group W(D~). 

Let  W ~ W(D~) be the Wcyl  group of the simple root  system of the type  Dd, 

and consider the realization of W given in the bebinning of the  section 1.2. We 

obtain now the explicit  form of the rat ional  t ransformat ion  

(2.8) (q, p) -+ (q~, p~) 

for w of W, assuming tha t  the auxil iary Hamil tonian funct ion h related to (q, p) 

is not  a singular solution of E.  This t ransformat ion  will be given b y  the relations: 

r ( h )  = (~, p)  , r (h~)  = (q~, p~) 

and by  (1.10). Since 

dh dh~o d~h d2hw 
(2.9) d--{ = d-~' dt --~ - -  dt 2 

we have f rom (2.3), (2.4) the following relations: 

q q~ 
(2.~0) ~ [ b ] ( q ( q - - 1 ) p ) - - ( 7 [ b ]  = F [ w ( b ) ] ( q ~ ( q _ l ) p ~ ) - - G [ w ( b ) ]  

where 

dh , 

F [ b ] =  | , dh , dh b I ' 
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Remark  tha t  the elements of l~[b] and G[b] are polynomials in (q~, p~) as well as 

in (q,p) by  means of (2.2). For  example,  if w = w~, we obtain:  

dh 

dt 
--  q ( q - - 1 ) p ~ +  

where (q~ ,p~)~- (q~ ,p . ) .  The relations (2.10) give us the explicit  form of (2.8), 

since 

(dh_~ b2~ ,~ b~ ) d e t F [ b ]  = A ---- d- / .  t ~- , 

is not  zero by  the assumption.  Moreover, there  exist polynomials e~(w; b), e~(w; b) 

of b~, .. . ,b4 such that 

1 ! 
(2.11) //[b] --/~[w(b)] = ~el(w; b) + ~--1  c~(w; b) . 

In  fact  the Hamil tonian H[b] is connected to h[b] as follows: 

H [ b ]  - -  - -  h [ b ]  4- 
t ( t - - 1 )  2t 2(t--1) 

We have from (2.8), (2.10) the t ransformat ion:  

w. :  ~ [ b ]  -+ ~ [w (b ) ]  

which can be easily seen to be canonical by  t h e  use of (0.11)-(0.13). Hence Proposi- 

t ion 1.5 is completely verified. 

EXA~PLE 2.1. - P u t  w ~ wlw~wl, t ha t  is, w(b) ~ (ba, b~, b~, b4). We obtain f rom 

(2.1o) 

- -  dh 21 - -  1)p ~ ( q ~ - - l ) p ~  dh/dt -~ b~ 0 --~-~ ba/  (q 

since a:[b] ~-r and G[b]-= G[w(b)], where 

dh 
d-t --~ - -  (q - -1)P~ + {bl(2q - - 1 )  - -  b~}p - -  b~= 

2 =- --  q~o(q~--l)p,o-}- {b~(2q,~-- 1) - -  b.,}p,o-- b~. 
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2.3. Aux i l i a ry  Junction h +. 

In this paragraph we prove Propositions 1.6, 1.7 and 1.8. Let h-= h[b] be an 

auxiliary function and (q, p) the solution of the PMnlev6 system such that U(h) = 

= (q, p) .  By differentiating the both sides of (1.13) with respect to t and by using 

the system of differential equations: 

(2.12)1 

(2.12h 

dq t(t - -1)  ~-~ =- 2q(q --1)(q --  t )p - -  

- -  b~(2q - -  1)(q - -  t) + b2(q - -  t) - -  (b3 + b4)q(q - -  1),  

t ( t  - -  1) dp  ~-~---- (q(q--1)  -~ ( q - - 1 ) ( q - - t )  -~ q ( q - - t ) ) p 2 +  

q- {bl(4q - -  2t - -  1) --  b~ q- (b, q- ba)(2q --  1)}p - -  (bl q- b3)(bl q- b4), 

we obtain first by  (2.2): 

(2.13) 1 [dh+ b]) -~- t(t-- )(--~-q- 

~- (q --  t) {h + -~ (b3-- ba -~ l b ] ( 2 t _ l )  1 } 1)X q- ~ - -~b~b2 -~ 

Here we put 

0 . 

(2.14) X = -  q ( q - - 1 ) p  -- (bl + b,)q ~- �89 + b2 + b~) . 

Moreover it follows from (2.12), (2.14) that 

t ( t - -1 )  - ~ q -  baq- b, = - - ( b 3 - - b 4 ) ( q - - t ) 2 q  - ( 2 X - - b 3 ( 2 t - - 1 ) ) ( q - - t )  , 

(q -1 )  ax t){ dh+ ) 
d - t ' : - -  ( q -  \ t i t  -~ b~ - - 2 b a X - - b ~ b 2 - -  

- - [ h + +  (ba--b~-+- 1 )X  + 1 b ] ( 2 t - - 1 )  

Taking these equations into consideration, we arrive at the following expression: 

(2.15) 2 ) at + (b. + 1),  X = 

d 2h + [ dh + ~- +] 
= t ( t -1 )  ~ + (b.+ 1) [ (2 t -  1 ) - ~ - -  ~ j + blb~b,. 

ttcnce q and X are written as rational function~ of h +, dh+/dt, d2h+/dt 2 and t by 

(2.13), (2.15)~ and so is the function 29. The prooi of the Proposition 1.7 is completed. 
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In  order to obtgin the differential equat ion satisfied by  h +, we eliminate (q, X) 

f rom (2.13), (2.15) and 

(2.16) h + ~ h -- X .  

We deduce firstly f rom (2.13), (2.16): 

,[td~§247 ~)X+g(~D ~- ~b~ + (2.17) ~(t-1)[ dt 

+ (q - t )  X , - -b~X--~(G+ b D ' + i ( b D  ~ ~ 0 ,  

where we write b + = (b~+, b~+~ b 3+, b+). Note tha t  by  the def in i t ion b + = b~ (k r 3) 

and b + = ba § 1. I t  follows i rom (2.13)i (2.17) tha t  

d~§ + + + ( 2 ~ + - ( 2 t - 1 )  = Ida+ (b~)~)x, 41b~(2~+'(2t-1) b~b~b,}x+ 
~--~- + + dt / dt / 

= (b~b~) § (b+b+)~§ (b+b+) ~ UE] + ((b+~)" + (b+~)~ + (b~;)~)-E + + +~ 

f rom which we obtain the differential equat ion 

dt / t (~ - - l ) - -~71  § L dt 2h+- - (2 t - -1 )  dt j § ~,[b+] = I~ (b,+) ~ ~=~ I ( E  § 

The proof of Proposi t ion 1.8 is completed. 

As we have discussed a t  the end of the last section, (2.13), (2.15) and (1.14) 

define the  canonical t ransformat ion:  

~,: ~'~[b] ~ ~ ' [b+] .  

In  fact,  an expression of the fo rm (1.16) is given b y  (2.13) and (2.15), if we regard 

h + ~ h[b+] as polynomial  in (q+, p+) th rough  (2.1). Moreover we obtain the explicit  

fo rm of (1.17) by  applying (2.5) and (2.6) to the funct ion h + and then  by  considering 

h + as f lmction of (q, p) .  We do not  enter  into details of computat ion.  

t~E~A~K 2.2. - The canonical t ransformat ion E, is determined nnder  the assump- 

t ion tha t  none of the auxil iary functions h, h + is l inear in t. t towever ,  the formula 

(2.16) stands also for a singular solution h = h(t) of the nonlinear differential equa- 

t ion E, unless h + is a linear fmaction of t a t  the  same time. In  fact~ as i t  has been 

shown in the proof of Proposit ion 1.8, the function h + defined by  (2.16) satisfies the 

equat ion E[b+], provided tha t  dh+/dt § (b+) ~ ~ O. Moreover if d~h+/dt ~ ~ 0 7 then  we 

have the correspondence / ' (h  +) = (q+, p+) by Proposit ion 1,2. 
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I%E~ARX 2.3. - Denote (1.15) by Y[b]: we have H[b +] = / / [ b ]  -- (1/t(t -- 1)) Y[b]. 

We obtain from (2.15): 

/~+@ (bs-~ 1)C + 
(2.18) Y[b] -= 2(dh+/dt _( (b~ + 1) ~) 

where 

d~h + dh + ( dh+ ) 
1~+---- $ ( t - - 1 ) - ~ V - - ~ [ b + ] - ~ - -  ~ g3[b+], V+-- - 2 t - ~ - - - h +  --a2[b+].  

On the other hand,  it  follows from (2.5) and (2.6) tha t  

(2.19) 5( [b ] - -  
- - B + b 3 C  

2(dh/dt + b~) ' 

B, C being given by (2.7), (2.7)'. We will use (2.18) and (2.19) in the section 4.2. 

2.4. Parallel transformation and the a//ine Weyl group. 

Let  t"~ be the parallel  t ransformation of C~: 

b - - > b + e s  (] = 1, ..., 4) 

and W ~ W(Dd) the Weyl  group considered above. We denote by G O the group 

generated by W and El, ..., fd: G O is a subgroup of the group ~/(C ~) of affine motions. 

We have constructed in the previous sections the representation of G~ 

G O ->  G.~ 

on the PMnlev6 system associated with the sixth Painlev6 equation. 

Consider the element Wo of G such tha t  

(2.20) wo(b) = (bl, b~, -- b,-- 1, -- ba-- 1) 

and let ]~ be the group generated by W and wo. We will show tha t  the representa- 

tion of l~ is given in a brief manner,  al though the realization G~ is a little compli- 

cated. To determine the representation of wo on the Painlev6 system, we remark 

first that: 

PI~OI~OSITIO~ 2.1 ([1]). - ~ is isomorphic to the a//ine Weyl group W~(Dd) asso- 

ciated with the root system of the type Dd. 

The explicit form of the representation ~ = (wo). of Wo will be obtained by the 

use of the relation: 

Wo = w d w 3 ~ w J ~ .  
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On the  other  hand, remarking tha t  (2.20) is equivalent  to the  t ransformat ion:  

(2.21) 0 --~ --  0 

of the constants of the  t tamil tonian,  we can construct  the birat ional  canonical 

t ransformat ion ~ by  a s traightforward way. In  fact,  consider the canonical trans- 

format ion 

(q, p,  ~ ,  t) -~  (q, ~ , / 7 ,  t) (2.22) 

such that 

Then we have 

I 7 - -  1 
t(t--~) 

which shows 

0 / 7 = H  0 

q - - t '  q - - t  

-- xl-- i~. 

- -  [ q ( q  - -  1)(q - -  t )~  2 -  

- -  {zo(q - - 1 ) ( q  - -  t )  + z l q ( q  - -  t )  - -  (0  3 r  1)q(q - -  1)}p + s - -  t ) ] ,  

= ~ ( ~ o +  ~ - -  0 - - 1 )  ~ -  ~ L ,  

(q, ~ , /7 ,  t) = ~[w0(b)] .  

It follows that 

PI~OPOSITION 2.2. - The trans]ormation (2.22) de]ines ~ = (wo),. 

We have thus the representat ion of the affme Weyl  group Wa(Dd)on  the  Painlev6 

system. The highest root  of I~ is the vector  

a = e i  ~-  e2 

and the reflection with respect to -- ~ is of the form:  

(2.23) w[b] = (--  b2-- 1, - -  b l - -  1, ba, bd) . 

The canonical t ransformat ion @, is obtained f rom z b y  the use of the relation 

= w ' w o w ' ,  w'[b] = (b3, bd, bl, b2) �9 

For  g of G ~ g.  is a birat ional  canonical t ransformat ion  of the first kind. In  the 

following section we will consider a birat ional  canonical t ransformat ion of the Pain- 

lev6 system of more general type.  
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3. - Trans format ion  group o f  th e  Pa in l ev6  sys tem.  

3.1. Symmetry o] the Painlev~ equation. 

I t  is known ([10]) that ,  if we replace q by 1 -- q and t by  1 -- t, the Painlev6 

equation is t ransformed into the following equation: 

dr, 2 + q --t V t ]  lt+t--'q+ zi-t/ T m 

_~ q ( q - - 1 ) ( q - - t ) [  t t - - 1  t ( t - - ! ) l  
t~(t-- 1) ~ ze-- ? ~ - -  fi (q _ i ) -~ - -~  ~- d ~ j .  

This change of variables extends to the canonical tra.nsformation of the Painlev6 

system. In  fact,  if we pn t  

(3.1) q l :  1 - -  q ,  P l = - - P  , t l :  1 - -  t ,  H i =  - -  H 

and then rewrite (ql, Pl, H1, tl) as (q, p, H, t), the Hamil tonian remains invariant  

except the change of the constants:  

:For the sake of simplification of presentation, we denote the canonical transforma- 

tion (3.1) and the succeeding replacement by  

1. (1 q, -- p, -- H, 1 t) x. .  (q, p, H, t) -~ - -  - -  . 

~oreover ,  consider cano~'ical t ransformations of the form: 

x . .  ( q , p , H , t ) - +  l, eq__q~p,__t~ , , e = ~ ( ~ o - ~  ~ l - y O - - l  + z~ ) ,  

- - q  ( t - - 1 ) p ,  ( t - -1 )~H -F- (t--1)(q--1)p,t_--Z- ~ , x . :  ( q , p , H , t )  -+ --i' 

where we use the abbreviated form of notation.  They are connected to the changes 

of constants : 

xa: ~ o ~ 0 ,  0 - -+~o.  

*vVe have the 

PROPOSITION 3.1 ([4]). - The Hamiltonian i t  is invariant /or each ] (]----i, 2, 3) 

under the trans/ormation x~. except the permutation m j o/ the constants uz, O. 
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Let  G 1 be the  group generated by  x r (~ = 1, 2, 3). This consists of the permuta-  

tions of the finite set {Uo ~ u~ ~ ~oo, 0} and then is isomorphic to the symmetr ic  group ~ .  

generate a group G~ isomorphic On the other  hand,  the canonical t ransformat ions  x ,  

to G~; so we obtain a representat ion of G x on the Painlev6 system. 

R E ~ K  3.1. - The permuta t ions  xi induce affine t ransformat ions of C i as follows : 

xl: (bl, bp, b3, bd) --> (b~, - -  bp, b3, bd) 

x~: (bl, 4 ,  4 ,  b~) 

-->(�89 �89 �89 

�89 (-- b~-- 52 ~ ba ~- b,)), 

xa: (b~,bp, b3, b,)'-->(�89 � 8 9  

�89 (b~ -~- b2 -~- ba - -  b~ - -  1 ) ,  �89 (b~ -~- b~- -  ba -~- b~ - -  1) )  . 

We denote  also by  G ~ the group generated by  these affine t ransformat ions  of C A. 

3.2. A/line space V o] parameters. 

Let  G be the subgroup of ~r ~) generated by  the two subgroups G ~ and G 1, 

considered above. Note tha t  G is generated by  wi (j = 1, ...~ 4), [3 and x J (j = 1, 2, 3). 

We will prove the 

P~oPosITm~ 3.2. - G is isomorphic to the amine Weyl group o] the simple root 

system o/ the type Fa: W~(F4). 

To prove this proposition, we introduce firstly the space V of the parameters  

of the  Painlev6 system. I t  is a four dimensional vector  space with canonical basis f~ 

(k = 1~ . . . ,4 )  such tha t  a vector  of V of the form 

4 

(3.2) = Z 
k = l  

is related to the constants  of the Hamil tonian  in the following manner :  

I t  follows from (1.1) t ha t  

(3.3) v l= b3~- b4, vp= bl-~ b~, ca= bl-- bp, v~= b3-- ha. 

The group G can be regarded in a na tura l  way as a subgroup of the group d ( V )  

of affine motions of V. Let  ~0 be the linear map f rom V to C ~ defined by  (3.3). For  
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the sake of simplification of nota t ion 7 we denote also b y  g the element ~0*g of ~ ( V )  

and by  G the  subgroup ~0" G. I t  is convenient  to adopt  V as the space of para- 

meters of ~he Painlev6 system, so ~hat we write the Painlev6 system at  v of V as 

~ ( v ) ,  the I Iamil tonian as H(v), a solution of ~f(v) as (ft(v), p(v)) and so on. We 

ma y  write oVg(v) as ~f'[b], if necessary, where v and b are mutual ly  connected through 

the isomorphism ~v. For  each g of G, there  exists the birat ional  canonical trans- 

format ion 

g,:  ~ ( ~ )  -~ ~ ( g ( v ) ) ,  

whose explicit form can be given by  the use of the eanoi~iea l t ransformations,  

(w;). (j = 1, ..., 4), 1,, x~ (] = 1, 2, 3). We obtain the representat ion of G 

G ~G, 

on the Painlevg system. I f  we write (3.2) simply as v =  (%7 %, %, %), then the 

elements of G, w,.~ w0, E~ and xi are realized as follows: 

wl:  v --> (V~ v27 - -v37 va) 7 

1 

( -  v~ + ~ -  % + ~,)) 7 
Wa: v --> (V17 V~ %~ --Vd) 7 

w4: v ----> ( - -  v l ,  v2, v37 va) 7 

Wo: v - - > ( - - v  1 - 2 7 v ~ 7 % , v a ) 7  

Ea: v - - ~ ( v l + l , h , h , v , - ~ l ) ,  

x~: v ---> (q)17 Va~ v~7 %) , 

x2: v --~ (V~7 VaT %7 v~) , 

xS: v - - > ( % - - 1 , % @ 1 7 % , v ~ ) .  

We denote by  (v Iv ' ) the  symmetr ic  bilinear form of V such tha t  (fklf~,)-= (fk. If~)= d~,. 

3.3. Veriiieation o/ Proposition 3.2. 

Consider the following elements of G:  

8 1 ~ -  X 1 ~ 82 = X I ~ 2 Z  1 ,  

84 --.~ W l W 2 W 3 W 2 W  1 , 

8 3 = W 3 , 

S 0 = ~ 3 W o Z l W l Z 1  o 
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Viewing them as e l e m e n t  of ~r we have:  

st: v---->(vi, vz~ v~, va) 

83: v -->(Vi~ V2~ va~ "3) , 

~ ( v , - v . - , . +  v,)). 
So: v - -> ( - -v~- - l ,  - - v l - - 1 ,  %, vl). 

We denote by  G,  the subgroup of G generated by  sj  (j = 0, 1, ..., 4). P u t  

a l = f 2 - - L ,  az-~- fa--L~ a 3 = f ~  

a~= �89 ao= - - f l - - f ~ .  

Then aj (j = t ,  ..., 4) compose the set of fundamenta l  roots of the exceptional root  

system of the type  F4 and each s~ is a reflection of V with respect to the  hyperplane 

(ajlv) = 0. a0 is the minus of the highest root  and so is a reflection with respect to 

(aolV) =- 1 : see [1]. Therefore sr (j = 1, ..., 4, 0) generate the aifine Weyl  group W~(/va) 

of the  root  sys tem of the  type/v4 and G~ is isomorphic to Wa(/v4). The Coxeter graph 

of G,  is of the form: 

4 
0 - - 0 - - 0  .... 0 0 

8o 81 82 8a 84, 

that is, we have the relations 

s~ = 1 (~ = 1, ..., 4, 0 ) ,  

(SoS.)~= (s~s~)~= (s.s.)~ = 1 .  

(s2s~)'-- - 1 

(s~sj)~-~ 1 (otherwise) . 

TO prove the  Proposit ion 3.2, if is enough to show s~ (j = 1, ..., 4, 0) generate G. 

Recall t ha t  G is generated by  the  two subgroups G O and G 1, and G O is generated 

by  the Weyl  group W and the parallel  t ransformat ion f3. We C]aim: G 1 is a sub- 

group o/ G,.  In  fact,  w8 and x 1 are contained in G~ b y  the de f l a t ion  of sj: )~ore- 

over  wl and x" are in G, ,  since x 2-- sls, sl, w , =  s~s~s2. On the other  hand,  put t ing  

g, = x*w~x ~, we see x a =  g, sog~; note  

gl: V "->(Vl, --V~ V~ Va). 
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We will show nex t  t h a t  G O is a subgroup o/ G~. P u t  g~=sss ,  s3, g~:w~pzw~.  It 

is easy  to see: 

g~: v ->(v l ,  v~ , - -vd ,  - -v~) ,  g~: v --> ( - -v~ ,%,  %, vd). 

Then W is a subgroup of G, ,  since w~ = g2sag~, w4 : g~w~g3. Final ly  pu t t ing  

go : Sa84838US3SaS3 "~- 84g284 

we obta in  the  expression 

~a : WaWdX2goXSWoX~'W3 , 

which is verified b y  the  use of 

go: v -->(v~, vl, v3, vd). 

Definit ively f3 is in G. ,  since wo = X3sogl. The proof  of the  Proposi t ion 3.2 is thus 

completed.  

3.4. Conclusion. 

Gett ing  together  the  discussion given above,  we arr ive  a t  the  following theorem:  

Tt~EO~E)~ 1. - .Let G be the realization o] the a/fine Weyl group o] the root system 

o] the type F4 as the re]leetion group o] the/our dimensional amine space V. Then there 

exists the representation 

(3.4) q: G --+ G, 

on the Painlev~ system ~ associated with the sixth _Painlev~ equation, such that, for g 

o/ G, g. = ~(g) is a birational eanonieal trans]ormation o] ~/g'. 

I~E~Am~ 3.2. - (3.4) is not  an i somorphism.  I n  fact ,  the Hami l ton ian  of the  

Painlev6 s y s t em  is i nva r i an t  under  (s3),: W ( v ) =  (s~(v)). We will ltse this fact  in 

the  following section in order  to establish some expressions of a Painlev6 t ranscen-  

denta l  funct ion by  means  of T-hmetions.  

EXA~-PLE 3.1. - I f  we pu t  
q 

(3.5) u =  V q ( q - 1 ) ( q - t )  
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then the Painlev6 equation P ---- Pw is t ransformed into the equation: 

where 

d2u 2t du I 
u 2 t (1 - - t )  ~uF(U; t ) ,  

t 1 - - t  2 
~ ( u ;  t) = ~ So(u; t) § ~ - -  § ~ .  

~ t) So(u; t ) - - 1  
_~03 t(t--1)  

So(u; t) - t' 

q = SO(u; t) denoting the inverse function of (3.5). I t  follows that ,  if ~o = ul = ~r 

= 0 = O, then a general solution of P is of the form 

(3.6) q(t) = So(clcodt) -~ e2co~(t); t) , 

where (o~(t) ( i-~ 1, 2) are linearly independent sohrtion of the hypergeometric dif- 

ferential equation 

d~u ~_ du 1 
t(1 - t) -h-5- - (1 - s t )  ~ -  ~ u = o .  

The function (316) with two parameters e~, e2 is c~lled the solution o] E. Pieard. This 

occurs ~t the point v ~  (--1,  0, 0, 6) of the affine space V. 

Let  (~(v~ G) be the orbit of v ~ by G. Then we have the 

PBo]eosI~IO~ 3.3. - The Painlev6 system W(v)  at v o] (P(v~ G) is integrable by 

quadrature with elliptic ]unctions, provided that a birational eanonical transformation 

does exist ]or g, where v = g(v~ 

For instance, pu t  g = wlw~wl. Then a solution of the Painlev6 system at g(v ~ = 

= (�89 �89 �89 -- �89 is given by  the formulas given in the example 2.1 with (3.6). 

I~E~A~K 3.3. -- V ~ is characterized by  the equations: 

v ~  So(V~ = s d v ~  = s~,(v~ = s d v ~  , 

therefore the isotropy subgroup G(v ~ of G at  v ~ is generated by ss (j = 1, 2, 3, 0). 

The Coxeter graph of G(v ~ is 

4 
0 0 0 0 

8 o 81 8~ 8 8 

t ha t  is, G(v ~ is isomorphic to the Weyl  group W(Bd) of the root system of the 

type Bd. 
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4. - r-function of  the Painlev~ system.  

4.1. r-sequence and Toda equation. 

Let  #tO(v) be the Painlev4 system at  v of V, h(v) an auxi l iary funct ion and (q(v), 

p(v)) a solution of H(v) such tha t  ]P(h(v)) = (q(v), p(v)). A v-fm~etion v(v) of 5/~(v) 

related to the t tamil toni~n H ( v ) =  H(t; q,p; v) is defined by  

(4.1) 

We have by  (1.6) 

(4.2) 

u(t;  q(~), p(~); ~) = ~logd ~(v) . 

d 1 
h(v) -~ t( t--1)  ~ l o g  v(v) + a~[b]t--~a2[b] 

where v and b are mutuMly connected by  the  correspondence (3.3): we write b = ~o(v). 

The v-function v(v) is holomorphic on the universal  eove~ing Riemann snrface of 

C \{0 ,  1}; see [6]. For  any  g of G, we h~ve constructed the biratior_M canonical 

t ransformat ion:  

g. :  ~ ( v )  ~ Yt(g(v)) , 

which illduecs in ~ na tura l  way the correspondence f rom the r - funct ion v ( v ) t o  

the other  v(g(v)). Disregarding ambigui ty  about  multiplicative eonst~.nts, we denote 

it  also by  g , .  As we have ment ioned in the introduct ion,  the two v-fttnction v~, v2 

are identified, if the logarithmic der ivat ive  of the quotient  ~/v~ is a r a t i o n M  func- 

t ion of t. B y  adopt ing this identification, we obtain f rom the preceding section the 

following proposit ion:  

P~o~osImIO~ 4.1. - The v-/unction is invariant under the group W.  o/the canonical 

trans/ormations. 

W. is a realization of the Weyl  group W(D~). 

D~,~I~I~Io~ 4.1. - A r-sequence de/ined by g is by  definition a sec~uenee of v-func- 

tions, wri t ten  as 

(4.3) 

such tha t  for any  integer m, 

g ,  Vm_l ~ Vm 

g,  being the  representat ion of g of G on the PMulev~ system. 
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One of the most important  examples of the v-sequence is related to the parallel 

t ransformation d - -  d3, studied in the proposition 1.6. I t  is defined by d[b] = (b~, 

b~, bs q- 1, ba) or d(v) = ~*d(v) ~ (v~ 4- 1, v2, v3, v4 4- 1). For an arbi t rary  fixed point 

v of V, we put  for an integer m, 

v~ : f~(v),  vo : v ,  b~ : f~[b] , bo : b (b = qJ(v)) . 

So, start ing from ~fo----~,V~(v), we have the sequence of the Painlev6 systems 

and tha t  of the functions (q~, p~), h~ such tha t  F(h~) -~ (q~, p~). Here ~. denotes 

the birational canonical t ransformation (1.11). Let  r~ the r-function of ~f~ related 

to (q~, p~). We will prove the following proposition: 

Pl~oPosimioN 4.2. - The r-sequence ~:(d)-~ {r~; m e Z} is subject to the constraint: 

d d 
(4.4) ~ t ( t - - 1 ) ~ l o g  ~ 4 -  (b~4- bad- m)(b~4- bdq- m) = c(m) ~-Ir'~+~ 

Tm 

c(m) being a nonzero constant. 

(4.5) 

where 

(4.6) 

In fact, put 

(4.7) 

REMARK 4.1. -- (4.4) is equivalent to:  

(52 log T~ = e(m) T~_IT~+I 
rm 

d 
= t ( t - - 1 ) ~ .  

~,~ = r ,~{t ( t -  1)} ~" , c.~ = �89 (bl + ba 4- m)(b3 4- b4 4- m ) ,  

therefore ff~ satisfy (4.5). The substi tution (4.7) is corresponding to a trivial can- 

onical t ransformation of the form 

We can put  c(m) = 1, by  taking suitably multiplicative constants of the z-functions. 

The equation (4.5) is known as the Toda equation. 

The preceding proposition establishes the following theorem: 

TITEOI~EM 2. - The T-sequence ~E(~) of the Painlevg system satisfies the Toda equation. 
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RElV~ARK 4.2. -- We can deduce from Proposit ion 4.1 the results similar to Theo- 

rem 2 concerning the r-seqnence ~(dj) (j = 1, ..., 4). 

4.2..Proof o] -proposition 4.2. 

Remark  first d~[b] = (b~, G, b3 q- m, b~). Put t ing  

X,~= q~(q~-- l )p~--  (b~ q- b,)qm ff- �89 q- b~ q- b,) , 

:Y~ = q~(q~- -  1)p~-- (bl q- b , ) (q~- -  t ) ,  

we have by (1.14) and (2.16) 

1 
(4.8) H . + I  = Hm Y~ 

t(t 1) 

(4.9) h~+l = h~ - - X , , .  

}5oreover, we deduce from (2.18), (2.19): 

(4.1o) 
/~+1 q- (ba q- m q- 1) C~+1 - -  B~ q- (b3 q- m) C~ 

Y~' = 2(dh~+ddt + (b~+ ~ § 1)~) = 2(dh,ddt + (b3 + ~)~) ' 

where 

d~h~ dh~ 
Bm~- t ( t - - 1 ) - - ~  -~ o' l[bm]--~---  o'3[bm] , 

d~h~ dh,~ 
B ~ =  t(t - -1 )  - d - ~ - -  r -~ a3[b~] 

[ dh~ ) - -  a2[b~] ; 

see Remark  2.3. I f  follows from (4.10) tha t  

(4.11) :Y~_~-- r ~  = 
t(t - 1)(d*h, ddt~) 

dh~/dt q- (G q- m) 2 
d, [dh~ m)~) : t ( t - -  1) ~ l o g  ~--~- q- (b3q- �9 

On the  other hand, since, by  (4.8) and by  the definition of the r-function, 

d Tm 
(4.12) Y~ = t( t --  1) ~ l o g  

Tm+l ~ 

we obtain from (4.11): 

(4.13) c(m) "~-~,~+1 dh,~ 
~m - -  dt ~- (ba + m) ~ , 
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r being a non-zero constant. Taking (4.2) into consideration, we see the right 

hand side of (4.13) equals 

t ( t - -1 )  ~ l o g  v,~+ (b~ + ba + m)(ba + bd-~ m) , 

which establishes the proposition. 

4.3. y-junction and Painlev6 transcendental ]unctions. 

Let (q, p) = (q(v)~ p(v))  be a solation of the Painlev6 system ~f(v) at v. 

have from (4.12): 

d v(v) 
(4.14) q(q - -  1)p - -  (b, 4- bd)(q - -  t) = t(t - -  1) ~ log ~(/3(v)) " 

We 

As we have mentioned in Remark 3.2, the Painlev6 system ~%f(v) is invariant under 

the canonical transformation (s~),: in particular (q, p) : (q(s3(v)), p(sa(v))).  I t  follows 

~(4os~(~)) 
d v(v) 

= t(t - 1) ~ log ~ ( 4 ( ~ ) )  ' 

from (4.14) that 

d 
(4.15) q ( q - - 1 ) p  --(Vbl~- b , ) ( q - - t )  = t ( t - - 1 ) ~ l o g - -  

where f4=  sa~asa. Therefore we have from (4.14) and (4.15): 

d, v(dW)) 
(b3-- b,)(q --  t) = t(t - - 1 ) ~ l o g ~ .  

We arrive at the following proposition: 

P]~OPOSlTIO~ 4.3. -- A solution (q, p) o/;gg'(v) is represented in terms o/ v-junctions 

as (4.14) and 

d ~ ( 4 ( v ) )  
(4.16) v,(q - -  t) = t(t - -  1) ~ log T(da(v)) " 

4.4. _Particular solutions and Y-junctions. 

Consider the transformation ga of G such that g3(v) = ( - - v ~  v2~ va, vd) and put  

gd= ga&ga (see the section 3.3). Let V(g~) be the hyperplane of V defined by:  

(4.17) v = g~(v). 

I t  is easy to see (4.17) is equivalent to each of the following three expressions: 

vx+v~+v3-{--v4=O, ~r + g ~ = O ,  blJrba=O. 
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I n  this case, the  Painlev6 sys tem Yg'(v) is possessed of a fami ly  of special solutions 

of the  fo rm:  

dq 
(4.18) t(t - - 1 )  ~-  = - -  uo(q - -1 ) (q  - -  t) - -  zlq(q - -  t) - -  (O - -1 )q (q  - - 1 )  , p=-- :0 ;  

cf. [3], [4]. The t t ami l ton ian  funct ion and  the  auxi l iary  funct ion related to 

such a solution are :  

( 4 . 1 9 )  

P u t  

H ( t ; v ) - - O ,  h ( t ; v )=b lb3 t - - � 89  

a = b l + b ~ = � 8 9  = z o + z ~ + 0 - - 1 .  

I f  a = 0, then  (4.18) is reduced to the  linear equat ion 

dq 
t(t - -  1) ~- = { (go  + x~ ) t  - -  ~,}q - -  x o t .  

So we assume a # O. 

(4.20) 

I t  follows f rom (4.14) t h a t  

a(q --  t) = t(t --  1) d l o g  r ( [ d v ) )  , 
~b 

where r(v) is reduced to a cons tan t  b y  (4.19); we can pu t  r0 = r(v) = 1 wi thout  

loss of general i ty.  R e m a r k  t ha t  (4.14) is val id even if ho = h(v) is a l inear funct ion 

in t; see R e m a r k  2.2. Inse r t ing  (4.20) into (4.18), we see the  funct ion r~----- r(da(v)) 

satisfies the  following hypergeomet r ic  differential  equat ion:  

(4.21) 
d2T1 

t ( ! - - t ) ~ +  ( c - - ( a ~ b ~ l ) t ) d r '  - ~ - -  abrl = 0 , 

where, by  (4.17), 

S ta r t ing  f rom r0 = 1, and the  hypergeomet r ie  funct ion:  

rl = r u~-l(1 - -  u)~ - - t u ) - ~  du 
J 

we obta in  successively the  v-functions v~ for m > 2 b y  the  use of the  Toda equa- 

t ion (4.4). For  example ,  r~ is a cons tan t  mult iple  of: 

( c - - l - - ( a  + b--1)t)T~-~-~ - - t ( t - - 1 )  \ dt b ( a - - 1 ) T ] .  
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The auxil iary funct ion h,, defined by  (4.2) is no longer a singular solution of the 

differential equat ion E ~ =  E[[?(b)] for m > 1. Hence, the solution (q~, p,~) =/~(h~) 

of the Painlev6 system ~f~ = #F(t'$(v)) is well-defined and wri t ten  as ra t ionalfunc-  

t ion of the hypergeometr ic  funct ion Ti and its first derivative.  We obtain the semi- 

sequence of v-functions: 

(4.22) ~:+(#) = { ~ ;  m > 0 ) .  

I~E~ARK 4.3. - I t  is known tha t ,  if 

T~_~T~+~ (m > I ) ,  To= 1, 5 ~Iog T~=  ~ 
Tm 

then v~ (m ~ 2) are given by:  

(4.23) T~ = 

%i, ~Ti, ..., ~m-i Vl 

~Ti, (52Vi, .., ~Vi 

. . ,  . . o  . . .  , , .  

~m-ITl, (~mTi, ..., ~2m-2T i 

with an a rb i t r a ry  funct ion r~. This fact  might  be remarked  for the first t ime by  

G. DAI~BOUX: see Zepon sur la thdorie ggndrale des surfaces, col. I I .  I f  we define for 

(4.22) the functions ~ by  (4.7) and normalize their  multiplicative constants  as 

e(m) = 1 in (4.5), then  ~ (m ~ 2) are wri t ten  in the form (4.23). 

5.  - C lass i ca l  s o l u t i o n s .  

5 .1 .  Weyl chamber of W~(D4). 

In  this section, we s tudy  a solution of the  Painlev6 sys tem ~ f  which is wr i t t en  

by  the use of e lementary  functions or classical t ranscendenta l  functions:  hyper-  

geometric function,  Bessel funct ion and so on. W e  call such a solution a classical 

solution of .~r We adopt  the  nota t ion in the  section 1 and consider a vector  b = 

-= (b~, b2, b3, b4) as a pa ramete r  of ~ ' .  L e t ~  r be the realization of the affine Weyl  

group W~(D4) of the  type  D~, for which we have constructed in the section 2 the 

representa t ion 

on the  Painlev6 system. We denote by  ~ a Weyl  chamber  of ~r in the  space C 4 of 

parameters  of H and by  ~ the set of walls of ~. For  ~ generic point  of b of ~, the  

Painlev6 system ~f[b] has no classical solution. This fact  is an imme4ia te  consequence 
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of the irreducibility of the Painlev6 t ranscendenta l  functions:  cf. ([10]). O~l the 

other  hand,  w~ have the  following theorem:  

TttEOI~E~ 3. - I] b is contained in ~ ,  then $~[b] has a classical solution. 

We can assume tha t  ~ is defined by  the  following five hyperplane:  

(5.1) b~-- b2 = 0 

(5.2) b~-- b3 = 0 , 

(5.3) b3-- b4 = 0 , 

(5.~) b~ § b~ = 0,  

(5.5) b~ § b~-- i = O . 

In  fact,  for another  ~' ,  there  exists w of I~ r which t ransforms ~ '  onto ~. Applying 

the representat ion w.  t o  the  Painlev6 system a%f[b'] at  a point  b' of ~ ' ,  we can 

ver i fy  the theorem for E',  even if i t  happens tha t  the auxil iary funct ion h[b'] Re- 

generates into a singular solution of E[b']. We will s tudy in details cases o f  degen- 

erat ion for some examples.  

RE~A~K 5.1. -- The Weyl  chamber  ~ defined by  (5.1)-(5.5) is ~ simplex with the 

vertices: 0 (the origin), P~(e~), P~(�89 (e~ § e2)), P3(�89 (e~ + e~ § e~-- e~)), PR(�89 (e~ + e~ q-- 

§ e3 § eR)). IIere e; (] = 1, ..., 4) are the canonical  basis of C ~ with respect to 

the symmetr ic  bilinear form (bib');  see the section 1.2. ]~ach _P~ is of the form 

1 
- -Z iT j ,  
n j  

where wj denote  the weight vectors of the Weyl  group W =  W(DR) and (nl, n:,  

na, n~) = (1, 2, 1, 1): cf. [1]. 

5.2. Prop] o] Theorem 3. 

(i) Case (5.1). - I f  b is on the hyperplane (5.1), then  ~1 = 0. I t  is easy to  

see aEf[b] has a fami ly-of  solutions of the form:  

dp 
q _ = l ,  t ( t - 1 ) ~ = ( t - 1 ) p ~ + ( { - ( t - 1 ) ~ o + 0 - 1 } p - ~ ,  

which is a singular solution of the  Painlev6 equat ion P = Pw. 

(ii) Case (5.3). - Apply the canonical t ransformat ion x~, in t roduced in the 

section 3.1, to the  Pa.inlev6 system ~f[b] at  b. By  put t ing  

2 z ,  [b] = .~[x~(b)] = (q,/9, H, t ) ,  
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we have a solution of ~ x ~ ( b ) ]  of the form:  

(5.6) q ~ O ,  t ( t - - 1 )  ~--P t - - - - t p ~ - - ( t X l + O - - 1 ) p - - u .  

I t  corresponds to a singalar solution q -  ~ of P:  note  ~r = 0. 

(iii) Case (5.2). - Apply again the  t ransformat ion x~ to ~ [ b ]  ~md put  x~W[b]  = 

= (q, p, H, t). The t ransformat ion  x ~ of V induces the al ternat ion of the constants 

uo and ~ .  We have the par t icular  solutions: 

dq 
(5.7) dt - -  n~(q - -  ! ) ( q - -  t) - -  z~q(q - -  t) - -  (0 - -  1)q(q - -  1) ,  p ----- O, 

since (5.2) implies : 

The Riccati  equat ion (5.7) is solved b y  use os the  Gauss hypergeometr ie  differential 

equat ion;  see the section 4.4. We obtain f rom (5.7) a family  of classical solu- 

tions of $F[b].  

(iv) Case (5.5). - We have ~0 = 1 f rom (5.5). This case is reduced to (5.4) 

by  the t ransformat ion x~, since x 3 replaces Xo by  0, and so (5.5) by  (5.4). 

(v) Case (5.4). - Le t  b = (b,, b~, be, b~) be a point  on the hyperplane  (5.4) 

and ~gt~ = (q, ~o, H, t) be the Painlev~ system at  b. We prove the following proposi- 

tion, which establishes the theorem. 

(5.8) 

(5.s)' 

where 

PI~OPOSlTION 5.3. - J/V[b] has a elassioal solution o/ the /orm 

Z 2 -  bdZ 

q = 2b, g ~ ( b l ~  bd)(b~ ~ bd)' 

Xo = --  Z - -  �89 (b~ -~ b~ + b,) , 

X 0 =  q ( q - - 1 ) p  - -  (b~ + bz)q + �89 + b~ + ba) 

and Z is a solution of the equation: 

d Z  
(5.9) t ( t - - 1 )  dt - -  Z ~  - ( 1 - - b l - - b ~ - - 2 ( b a - - 1 ) t ( Z - - ( t  + b~+ bd)(b1~ bd)t. 

5.3. Proo] o] Proposi t ion 5.1. 

Consider the hyperplane:  

(5.10) b z +  bd-~ 1 = 0 .  
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I t  is easy to see tha t  for a point b of (5.10), ~f~[b] has a solution of the form: 

? (5.11) ~ - - t - ~ O  , t ( t - - 1 )  = - - t ( t - - 1 ) ~ 5 2 +  {~o(t--1) -F t i , - - ( 2 t - - 1 ) } ~ - - ~ .  

If  b is on (5.4), /~ = t'-l(b) is on (5.10), where t'----Ea. In  this case the auxiliary 

Hamiltoni~n function h - =  h-(t) related to (5.11) is: 

(5.12) h - = t ( t - - 1 ) ~ ( t ) - - ( b ] - - b 3 + b ~ ) t  +�89 

5[oreover for a solution ~ = :~(t) of (5.11) with b = t'-~(b)~ the function 

(5.13) Z(t) = t(t -- 1)$ -- (b~ + b~)t 

is ~ solution of (5.9). Since the auxiliary function h ---= h(t) of H[b] is connected to 

(5.12) as : 

h = h - - -  Z -- �89 (b~ + b~ + b,) ,  

we have 

(5.14) 1 Ibm__ bib2) h = - - b ~ t + ~  3 

for which the expressions (2.5), (2.6) are not defined. In  fact, writing for ] ---- 1, ..., 4 

dh 

we obtain from (5.13) 

A 3 ~  A ~ -  0 . 

On the other hand, there does exist a solution (~, 15) of JF[b] = ~f~[d-l(b)] which 

is not  classical. Such solutions constitute a family with two-parameters,  from 

which we obtain the special solution (5.11) by taking the limit:  ~ - - t - > 0 .  The 

birational canonical t ransformation ~.~-1 defined by (2.13), (2.15) can be applied to 

(~, i~) except for (5.11). Pu t  for such (~, 15) 

X = ~(~ -- 1):~ -- (bl + b,)~ 4- �89 (b~ + b2 + bd). 

The auxiliary Hamil tonian function h of W[b] is given by:  

h = h - - 2  
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and is no longer of the form (5.14). I t  represents (q, ~) by the formulae (2.13), (2.15) 
with b = F-~(b). We obtain from (2.5), (2.6) 

C 1 
q = 2 A ~ '  q ( q - - 1 ) p = ~ - ~ [ - - B + b ~ C ] ,  

where, by (5.4) 

1 d~h [t dh ) b ~ B = t ( t - -  )~-~+(b~+b~)A~, C = 2 \ - - ~ - - h - - b i b s +  3. 

Moreover, we can deduce from (2.15): 

2A82 = t ( t - -])  d~h + 2b~[tdh h ~ b dh ] - -  3-~--b~b2b~ =- B - - ( b ~ - /  b~ + b3)Az + b3C. 

It follows that: 

(5.15) q(q --1)p -- (b~ + b3)q -= -- X -- l (b~ + b2 + b3) . 

Since by (5.13) 

2]~__- t =  Z + �89 b2+ bd), 

we deduce (5.8)' from (5.15) by put t ing q = t. To verify (5.8), consider (2.13) and 
(2.17), which are in this case written as: 

t ( t -1)A~+(q-t)  ~+2b.2+gb~(2t--1)-- blb~ =0 ,  

{ ~ 1 } { 2~+ b~2-- 1, q(t--1)  ta - - h + ~ ( b ~ l b , - - b  ) + ( B - - t )  ~ 4 ~bl 4 2] = 0 . 

By eliminating q -  t from these relations, we have 

C 2 2 + b 3 X - ~ ( 5 1 + b ~ )  2 +  ~b412 

2A3 h + 253X + �89189 
t 

which reduces to (5.8) after the limiting: q--~ t. Since (5.8) and (5.8)' defines the 
canonical transformation from ]f[ / - l (b)]  to ~ [b ] ,  they give a solution of the Pain- 
lev6 system ~[b] .  The proof of Proposition 5.1 is thus completed. 

5A. E~ampIes of v-functions. 

Consider again the hyperplane (4.17); we have determined the scmi-sequence 
of v-functions ~:+(f)=- {v~; m ~ O} with 

v o - ~ l ,  T ~ =  ~V(b,+  bd, 1 q- b a +  b~, 1 q- b=+ b~; t) .  



KAzUo OKA~OTO: Studies on the Painlevd equations, I 377 

In  what  follows~ we will obtMn ~-iu_nctions T., Mso for m < 0. To do so, we have 

to compute the canonical t ransformation [,1 from a%f(v) to a~a(t~-~(v)) by  a similar 

manner  to Proposition 5.1, since for (4.18) 

A I ~ A a ~  O . 

Pu t  Yf(v) = (q, p, H, t), 3/P(t~-l(v)) = (q-, p-,  H- ,  t) for v of V(g,), and moreover 

X -  = q-(q-- -  1)p-- -  (b~ + b,)q- + �89 (b~ Jr b~ 4- b,) . 

By assuming b3+ bdv ~ O, p ~ 0, we deduce from (2.2), (2.3), (2.4) and (2.15) tha t  

(5.16) 
1 

X -  = (b3 + b,) q - -  q(q - -  1)# - -  -~ (bs 4:- bz + b,) + 2b3(b3 + b,) q(q - -  1 )p  
As 

q ( q - - 1 ) p  = q(q - -1)  

A3 - - q ( q - - 1 ) p  + b ~ ( 2 q - - 1 ) - - b s "  

~ o w  we put  p = O. 

1 
(5.17) X -  --~ --  (ba + bd)Z0 - - ~  (b~ + b3 + bd), 

from which we have, by using (2.13), 

(5.18) t - - q -  _ t 
t - - 1  t -~- Zo 

I t  follows from (5.16) that :  

(b2 + b3) q 
Z 0 = 

bl(2q - -  1) --  bs ' 

I~ROPOSITIO~ 5.2. -- I /unction q- given by (5.18) is a solution o/ the Painlev~ 

equation P(t'-l(v)) at E-l(v). 

PROOF. - Since q is a solution of the Riccati equation (4.18), Zo satisfies 

(5.19) t(t --1)ddZ'- .= (b3 ~- ba)Z~ ~- (2b3t + bs ~- bd)Zo ~- (b2 -~ b~)t. 

I t  follows from (5.18) tha t  

dq- 
(5.20) t(t - -  1) -~-  ----- no(q--- 1)(q---  t) + z l q - ( q - - -  t) + Oq-(q---  1),  

which shows ~- is a solution of P([-l(v)). 

I :~ESIARK 5 . 2 .  --  Define the canonical t ransformation 

(5.21) (q, p, H, t) -~ (q, p, i~, t) 
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by: 

We have 

Zo ~ 0 ~ = t t  0 ~o § 0 
~ : P - - - q  q - - 1  q - - t '  q - - t  t t - - 1  

suvh that 

wher6 

Applying (5.21) to ~f[f-~(v)], we see immediately (5.20) gives a family of classical 

solutions of P(d-l(v)). 

I t  is not difficult to determine the z-function v_~ = ~(d-~(v)). In fact, taking 

(4.14) into consideration we obtain from (5.17) 

. . . .  (ba § b~)Zo § t(b~ § b,) (b2 § b,) t($ ])~log~_~d, 

where we put 3o ~-1. I t  follows from (5.19) that  ~ = ~_~ satisfies: 

d ~  b ' dT: t ( 1 - - t ) - ~ §  § §  

a ' :  -- bl--  b~, b ' =  -- b3-- b 4 §  1 , e'-~ 1 -- b~-- b4. 

We can thus determine z-functions ~ a]so for m < 0 by means of (4.4). We arrive 

at the following proposition. 

P~oPosz~rzo~ 5.3. - I] we write a point b on the hyperplane b~ § ba-~ 0 in the form: 

(5.22) b =  ( � 8 9 2 4 7  c - - l ( a §  § 1 8 9 2 4 7  � 8 9 2 4 7  

then the Painlev~ system ,,%f[b] at b has particular solutions defined by the Riceati c~uation 

t ( t - - 1 ) ~ t = - - a q 2 §  , p - ~ O .  

Starting from such a solution (~,p), we have the z-sequence at b: 

~(~) = {~.,; m e z} 

v o-~ 1 , T ! :  F(a~ b~ v; t) , T _ I :  E( - -  a~ 2 -- b~ 2 -- e i t) . 

1 
--- 1) [~(~ - -  1 ) ( q  - -  t )  : ~  + t(t 

§ { ~ o ( q - 1 ) ( q - t )  § ~ l q ( q - t )  + (0 + z ) q ( q - 1 ) } ~  + ~,(q-  t)], 
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I[ we define s by (4.7), they satisfy 

~2 log f~ = e ( m )  - -  

f o r  m ~ 1 and for -- m ~ 1 separately. 

- 2  
Tm 

I:~E)IAtCK 5.3. - By  normalizing multiplicative constants of f~ as e(m)= 1, we 

obta in  the expression (~.23) also for - - m  ~ 2. 

I~EMA~K 5.4. - P u t  for an integer n 

F~ ~ ~V(a, b, e + n; t). 

By assuming none of e, e -  a and e - - b  is integer, we have 

) (5.2~) ~t+e§ F .  = (e § n--1)F,~_~, 

( d ) ( c ~ - n - - a ) ( e - ~ n - - b ) F n + l  
(5.25) ( 1 - - t ) ~ - ~ e - ~ n - - a - - b  F~,---- e + n  ' 

which are known as the contiguity relations of Gauss (confer (0.2), (9.3)). I t  is 

known ([9]) t ha t  the f~nction 

~ .  = { t (1  - t ) } ~  

satisfies the Tods  equation:  

~2 log G~ --- 

where a .  is some constant  and 

G~-I G~+I d 

2 e . : ( v ~ - n - - 1 )  ~ - ( a - ~ b - 1 ) ( c ~ n - 1 )  ~-ab.  

We see f rom Proposi t ion 5.3 the Funct ion  F .  is a v-function at  d2 t~3~b] for a point  b 

oi C ~ of the form (5.22). I t  lollows tha t  (5.24), (5.25) can be obtained f rom the  

birat ional  canonical t ransformat ion  ([2). f rom ~ .  to Jt~+l, or to ~%f._1, where 5F~ 

denotes the Painlev~ system ~[/~Es[b]]. 

5.5. Rational solutions. 

Recall  a hypergeometr ic  funct ion is reduced to a polynomial  (Jacobi polynomial,  

Gegenbauer polynomial  and so on) for a special value of the parameters  a, b, v. 

Hence the  Painlev6 sys tem has a ra t ional  solution at  a point  b of the  form (5.22). 

We see i t  occurs cer ta inly at  the intersection of walls of the Weyl  chamber.  We 

give an example of r~tional solutions of the Painlev~ system. 
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P~oPosITIo~r 5. - The Painlev~ sys tem ~%f(v,~) at 

v,~ = (--  3 - -  m,  O, 1, - -  m) 

has the rat ional  solution: 

t+m ) 
(5.26) (q~' P~) \ t  § m '  t § m § 1 ' 

m being non-negative integers. 

P~ooF. - I t  is easy to see the PMnlev6 system ~ ( v )  a t  

v = ( - -  3, 0 , 1 ,  0) 

possesses a solution of the  form 

(5.27) (q'/)) = "t' 1 -~- t ' 

f rom which we have the I-Iamiltonian functions:  

2 
_ 1 2 h ( t ) = - -  t - - l § 2 4 7  H(t )  1 § t t ' 

and then  the T-function 

3o = T(v) = t-~(1 § t ) .  

On the  other  hand, we obtain f rom (5.27) 

1 
Yo ~ q(q - -  1)p  - -  (bl § b4)(q - -  t) = - -  

l §  

hence we can pa t  

~1 = ~ ( 4 ( v ) )  = 1 .  

I t  follows f rom (4.4) with e(m) -~ (m + 1)(m + 2) tha t  

( 5 . 2 s )  ~ = ~(v,~) = t -~-~(t  § m § 1) 

where v~- - - -L~(v) .  Consequently we have (5.26) and 

( m § 2 4 7  m ( m §  l )  
y . ~ = - - t  § 

t § 2 4 7  t §  

by  means of (5.28) and (4.12), which proves the proposition. 

t '  
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