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ABSTRACT

Studies on the Performance and Impact of Channel Estimation

in MIMO and OFDM Systems

Michael David Larsen

Department of Electrical and Computer Engineering

Doctor of Philosophy

The need for reliable, high-throughput, mobile wireless communication technologies
has never been greater as increases in the demand for on-the-go access to information, enter-
tainment, and other electronic services continues. Two such technologies, which are at the
forefront of current research efforts, are orthogonal frequency division multiplexing (OFDM)
and multiple-input multiple-output (MIMO) systems, their union being known simply as
MIMO-OFDM. The successful performance of these technologies depends upon the avail-
ability of accurate information concerning the wireless communication channel. In this dis-
sertation, several issues related to quality of this channel state information (CSI) are studied.
Specifically, the first part of this dissertation considers the design of optimal pilot signals
for OFDM systems. The optimization is addressed via lower bounds on the estimation error
variance, which bounds are given by formulations of the Cramér-Rao bound (CRB).

The second part of this dissertation uses the CRB once again, this time as a tool
for evaluating the potential performance of MIMO-OFDM channel estimation and predic-
tion. Bounds are found for several parametric time-varying wideband MIMO-OFDM channel
models, and numerical evaluations of these bounds are used to illuminate several interesting
features regarding the estimation and prediction of MIMO-OFDM channels.

The final part of this dissertation considers the problem of MIMO multiplexing us-
ing SVD-based methods when only imperfect CSI is available. For this purpose, general
per-MIMO-subchannel signal and interference-plus-noise power expressions are derived to
quantify the effects of CSI imperfections, and these expressions are then used to find robust
MIMO-SVD power and bit allocations which maintain good overall performance in spite of
imperfect CSI.

Keywords: OFDM, MIMO, MIMO-OFDM, channel estimation, channel prediction, channel
state information, performance bounds, perturbation theory
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Chapter 1

Introduction

The last several years have seen a remarkable growth in the demand for and deploy-

ment of mobile wireless communication systems with large data-throughput capabilities. In

the past, the demand for such systems came more from the realm of the military. Today,

however, the use of such systems has become mainstream, driven by consumer devices such

as wireless netbooks and laptops, smartphones, and other readily available mobile commu-

nications devices. As the number of people using such systems increases, so does the need

for reliable and efficient techniques for both high-throughput and mobile communications.

One way to increase the throughput of a communication system is to increase the

system bandwidth or the efficiency of the bandwidth utilization. Wireless wideband systems

frequently must operate in both indoor and outdoor multipath channels, i.e., in cluttered

environments that result in multiple copies of transmitted signals arriving at the receiving

devices at slightly different times. These multipath signals result in wireless communications

channels which are frequency selective, altering the transmitted signals differently at different

frequencies. When not properly handled, frequency selective channels may severely corrupt

signals passing through them.

An early and competitive method for combating frequency selective channels is fre-

quency division multiplexing (FDM), in which a single information signal is transmitted over

several lower-rate frequency subchannels whose individual narrowband channel responses ap-

pear constant in frequency [1,2]. In order to prevent interference between signal components

modulated over the different subchannels in an FDM system, the subchannels are generally

required to be orthogonal in frequency. While this may be accomplished by isolating the

subchannel bandwidths one from another in frequency, the resulting bandwidth utilization

will be inefficient. A more efficient bandwidth utilization is obtained by allowing the fre-
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quency subchannels to overlap while maintaining the requirement that they be orthogonal.

This method, aptly named orthogonal frequency division multiplexing (OFDM), was first

proposed during the early research into FDM methods [3–6]. While early technical hur-

dles prevented its widespread adaption immediately following its conception, OFDM is now

widely used in wired and wireless communication systems [3].

For many years, efforts to increase communication throughput focused almost exclu-

sively on the increase and efficient utilization of frequency bandwidth. It was found more

recently, however, that in multipath-rich environments, the spatial environment itself could

be exploited in order to increase throughput through the use of multiple antennas [7–9].

Analytical results for systems using multiple antennas at both sides of the communication

link, which are also known as multiple-input multiple-output (MIMO) systems, indicate a

direct relationship between the number of antennas and the system capacity, a theoretical

measure of throughput. Thus, MIMO provided system designers a previously-untapped way

to increase system throughput.

The recent popularization of both OFDM and MIMO led naturally to the merging of

these to individually advantageous communication techniques. In the combination, known

as MIMO-OFDM, multiple antennas are used to transmit and receive the OFDM signals,

resulting in a signal which is potentially multiplexed in both space and frequency. While

the challenges posed by such systems are greater than those posed by the individual systems

alone, the benefits are also great. Currently, many of the next generation communication

systems proposed, such as IEEE 802.16 (WiMAX) [10–12] and 3G’s Long-Term Evolution

(LTE) [13–15], incorporate MIMO-OFDM [16,17].

It is said that there is no such thing as a free lunch, and that statement is borne out

in both OFDM and MIMO system design. The increases in throughput gained when using

OFDM and/or MIMO methods come at the cost of the additional complexity inherent in

these systems. Moreover, the performance of coherent transmission schemes depends upon

the communication system’s ability to obtain and maintain accurate estimates of parameters

related to the transmission environment, which we refer to simply as the channel parameters.

As a consequence, studies related to channel parameter estimation for OFDM, MIMO, and

MIMO-OFDM systems are well warranted. Additionally, the investigation of transmission
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techniques demonstrating robustness to errors in the channel parameter estimates is also

worthwhile. Such topics are the focus of this dissertation.

1.1 Summary of Contributions

1.1.1 OFDM Pilot Design

The performance of coherent ODFM systems is dependent on the accurate estimation,

either implicitly or explicitly, of the parameters of the communications channel. Accurate

channel estimation is necessary for the successful reception and decoding of the transmitted

data, while good estimates of timing and frequency offsets are critical in order to prevent

OFDM inter-subcarrier and inter-symbol interference. Since such estimation is often accom-

plished via the transmission of known pilot symbols or tones, the study and design of optimal

pilot signals may result to large dividends in terms of system performance.

A good overview of many of the issues related to training design for channel parameter

estimation in OFDM systems is presented in [3]. This includes a discussion of many of the

channel parameters of interest in OFDM systems, such as the channel impulse response,

the timing offset or time delay, and the frequency offset parameters. In [3], it is noted that

OFDM channel estimation is typically carried out through the use of pilot tones interspersed

among the data-bearing symbols in frequency. Optimal pilot designs of this type, utilizing

both single and multiple OFDM symbols for channel estimation, are investigated in [18–23].

In particular, it is shown in [19, 20, 23] that the optimal pilot configuration in terms of the

MMSE is equipowered pilot tones equally spaced over the OFDM subchannels. It is further

shown in [19] that the capacity bound is maximized when the smallest required number of

pilots are used.

Several papers also address the issue of OFDM training design for the estimation

of time and frequency offsets. In [24–27], the correlation properties of the cyclic prefix are

used for coarse timing and frequency offset estimation without the use of additional training.

In [28–35], preamble training sequences dedicated solely to the synchronization problem are

presented. Such sequences are used to estimate the timing and/or frequency offsets prior to

the transmission of data. In [36,37], the design and placement of null and pilot tones in the

OFDM subchannels is discussed with relation to frequency offset estimation. Additionally,

3



several methods jointly consider channel estimation as a means to refine timing and frequency

offset estimates [32, 38, 39]. However, training signals used in these papers are typically not

designed to be optimal for the joint channel and offset estimation problem.

In the first part of this dissertation, the problem of optimal subchannel pilot design

and placement for joint channel and timing offset estimation in OFDM systems is studied,

with particular attention given to the problem of pilot design for the minimization of a lower

bound on the channel estimation error variance while meeting a performance constraint on

the variance of the timing offset estimate. To the author’s knowledge, this problem has not

been previously addressed in the literature. This pilot design problem is addressed through

the use of lower bounds on the channel parameter estimation error variances, which are

found via two separate Cramér-Rao bound (CRB) formulations. The first bound is found

by direct application of a well-known formula for the CRB [40], and the above-mentioned

optimization problem is then cast as the minimization of a weighted trace of this CRB,

where the weighting is introduced as a means to control the relative importance given to the

timing offset and channel estimation components of the problem. This cost function, whose

minimization in terms of the pilot structure may not be solved in closed form, is then used

to determine many of the general properties of the optimal solution. The second bound is

found directly using a CRB-as-a-function-of-parameters formulation [41]. This derivation,

which reduces the coupling between timing-offset- and channel-parameter-related regions of

the CRB, allows the above-mentioned optimization problem to be separated into two simpler

steps, the satisfaction of the timing error constraint followed by the channel impulse response

error minimization.

1.1.2 MIMO-OFDM Channel Estimation/Prediction Performance

As with OFDM, the performance of MIMO-OFDM critically depends on its ability

to deal with the frequency- and time-selective nature of the wideband propagation channel.

The general problem of channel estimation in MIMO-OFDM systems is typically addressed

through the use of pilot symbols strategically placed at different times and on different sub-

carriers [3, 12, 42–44]. Once the channel is estimated at the time-frequency locations of the

pilot symbols, estimates at other times and frequencies are typically found using interpola-
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tion. In addition, it is often advantageous to predict or extrapolate channel estimates into

the future as well. Channel prediction is particularly useful for bridging the gap between

the channel estimates and the current channel state in schemes that employ adaptive mod-

ulation or power control [45–48]. The problem of channel prediction has been explored for

single-input single-output (SISO) channels in [47, 49–52], for single-input multiple-output

(SIMO) channels in [53], and for MIMO channels in [54–58].

As in any estimation application, it is useful to quantify the best performance that

may be achieved from channel interpolation and prediction. Performance bounds can serve

as a standard against which various estimation and prediction techniques are evaluated.

Such bounds may also indicate characteristics of the problem that require extra attention

for optimal estimation and prediction performance. In [59], the CRB was used to evalu-

ate prediction performance for narrowband SISO channels, and it was found that channel

knowledge over several wavelengths of motion was required to achieve acceptable prediction

performance even for short intervals in the future. A similar performance bound was found

for narrowband, time-fading MIMO channels [60], which demonstrated that the prediction

and interpolation performance for MIMO channels exceeds those possible for the SISO case.

Apparently, the increase in the number of parameters required for the MIMO case is more

than offset by the extra information about the physical channel provided by the multiple

antennas. In a related work, a constructive bound is found in [61] for the error performance

of a frequency-selective, block-fading channel. This bound is based on an FIR channel model

and does not consider training to be distributed in frequency as in an OFDM system.

In the second part of this dissertation, the theoretical performance of pilot-based

channel interpolation and prediction found in [60] is expanded from narrowband MIMO

channels to frequency-selective, time-fading, wireless MIMO-OFDM channels, where the

analysis is carried out via bounds for the interpolation and prediction error of the channel.

This analysis is based on several extended ray-based parametric channel models for MIMO

channels, and the lower bounds on the interpolation and prediction error for these models

are derived using vector formulations of the CRB as a function of parameters for unbiased

estimators. A new CRB formulation is also derived (see Appendix A) to enable a similar

approach for a specially-structured biased estimator based on one of the channels models.
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The analysis of these bounds demonstrates that better estimation and prediction

performance of OFDM channels can be obtained using MIMO systems. It is also shown

that while models including angle-based antenna array representations enjoy a performance

advantage for perfectly calibrated arrays, the advantage is quickly lost when modeling errors

are taken into account. In particular, the derived bounds allow one to compute the size of

the calibration error required before less-structured models yield better results. The results

of the analysis also have implications for pilot design, with numerical results demonstrating

that MIMO-OFDM systems may function with a lower time and frequency pilot density than

a corresponding SISO implementations, even after taking into account the fact that more

pilot symbols are required to estimate a MIMO channel.

1.1.3 Robust MIMO Multiplexing

The first two parts of this dissertation consider issues related to channel parameter es-

timation and performance for OFDM and MIMO-OFDM systems. In contrast, the final part

of this dissertation focuses on quantifying and mitigating the effects of errors in the channel

estimates for narrowband MIMO systems. Given perfect channel state information (CSI)

at the transmitter and receiver of a MIMO communications link, along with no restrictions

on codebook design, the well-known waterfilling solution maximizes information through-

put given a fixed transmission power. The waterfilling solution achieves this goal through

use of the singular value decomposition (SVD) to separate the MIMO channel into indepen-

dent single-input single-output subchannels enabling interference-free data multiplexing [7,9].

Based on the signal-to-noise ratio (SNR) of the resulting subchannels, bit-loading and coding

schemes are typically devised to approach the available channel capacity.

In practice, two difficulties arise that must be considered when designing an SVD-

based communication scheme. First, it is not possible to obtain perfect CSI since realizable

channel estimates are formed from noisy measurements. Mobility in the communication

system adds additional complications for CSI estimation, since the MIMO channel changes

rapidly when the transmit or receive arrays are in motion. When noisy or outdated CSI is

used in conjunction with an SVD-based multiplexing method, the MIMO subchannels be-

come coupled, resulting in potentially severe subchannel power loss and mutual interference.
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As a consequence, subchannel bit-loading levels selected based on the assumption of perfect

CSI may no longer meet given error performance constraints. For these constraints to be

met, back-off strategies are often employed to reduce the subchannel bit rates and create an

error margin that accounts for the CSI mismatch. However, without knowledge of the levels

of the signal loss and interference induced by the subchannel coupling, it is not clear how to

systematically carry out such reductions.

A second difficulty arises from the finite nature of the symbol constellations used for

bit allocation. In order for the optimality of the waterfilling power levels to hold, subchannel

bit loading requires an infinite-length codebook with continuous modulation order. The use

of discrete codebooks and finite constellations such as quadrature amplitude modulation

(QAM) results in additional performance loss when used with the power levels chosen by

the waterfilling method which were selected assuming idealized symbol constellations [62–

64]. When practical symbol constellations are to be used, subchannel power level selection

incorporating information about the symbol constellations may help reduce such losses due

to mismatches between theory and practice.

Capacity-optimal transmission strategies when only imperfect CSI is available have

been studied in [65–68] and the references therein. Minimum symbol-error-rate (SER) opti-

mization and adaptive modulation have also been studied in [69,70]. These papers generally

advocate multiplexing or beamforming using other information, such as channel covariance

information, to guide their design, and, unlike SVD-based schemes, often require complex

decoding schemes at the receiver.

Several other studies seeking to retain the elegant structure of MIMO SVD-based

solutions have focused on the impact of imperfect CSI and finite modulation. The SER of

MIMO SVD-based multiplexing methods in the presence of imperfect CSI has been examined

in [71] for BPSK transmission. The effect of CSI errors on bit error rate (BER) using

more general constellations including M -ary QAM (M-QAM) has been analyzed in [64, 72–

75]. With an understanding of the effect of imperfect CSI and finite modulation schemes

on SVD-based multiplexing, the primary design task becomes the selection of subchannel

power and bit-loading levels. For instance, having derived an expression for the BER, [73]

proposes an ad-hoc method to select power and bit-loading levels in each subchannel to meet
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a chosen BER constraint. For the special case of uniform power allocation over all of the

MIMO subchannels, [64] develops an expression for an adjusted per-subchannel signal-to-

interference-plus-noise ratio (SINR) that may be used to select subchannel bit-loading levels

[76]. The work of [63] derives the optimal bit loading assuming finite symbol constellations

and perfect CSI, and proposes an ad-hoc method to approximate that optimal solution.

The final part of this dissertation develops closed-form expressions for the subchannel

SINRs in order to quantify the impact of imperfect CSI on SVD-based signaling schemes.

Unlike similar expressions appearing in literature which typically assume the CSI is identical

at both ends of the communications link or that perfect CSI is available at the receiver, the

expressions of this work allow for different levels of CSI error at the transmitter and receiver.

These SINR expressions, developed using the first-order SVD perturbation analysis of [77],

are then used to facilitate robust bit-loading design through the systematic selection of the

subchannel power levels. Bit-loading designs for the general imperfect CSI case are carried

out using ad-hoc iterative techniques. However, for the special case of identical CSI at both

ends of the link, the SINR expression is used to derive approximately optimal subchannel

power levels for M-QAM signaling under a subchannel SER constraint. SINR expressions are

also used to find thresholds for the amount of channel uncertainty and measurement noise

above which beamforming should be used instead of spatial multiplexing over the SVD-based

subchannels.

1.2 Outline of Dissertation

The remainder of this dissertation will proceed as follows. In Chapter 2, some basics

of OFDM and MIMO systems will be discussed. This will include the presentation of channel

models for various OFDM, MIMO, and MIMO-OFDM systems that will be studied in this

work. Prior work related to the specific topics of this dissertation will also be presented, and

important terms and notation will be defined.

Chapter 3 of this dissertation focuses on single antenna OFDM systems. Based upon

the assumption that channel parameter estimation will be accomplished using pilot tones in

the OFDM subchannels, this chapter explores the problem of optimal pilot signaling relative
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to parameter estimation in OFDM systems by using performance bounds on the variance of

channel parameter estimates of interest.

In Chapter 4, the focus is expanded to MIMO-OFDM systems, of which single antenna

systems are a special case. In this chapter, though, it is assumed that the training signals

are known. The problem then becomes determining the best channel parameter estimation

performance possible given a training signal distributed in both time and frequency. The

resulting bounds have implications concerning both the benefits of using MIMO in wideband

systems and the design of training signals for such systems.

Chapter 5 considers the case when inaccurate channel parameter estimates are used

in a narrowband MIMO system. In this chapter, expressions are derived which quantify

the impact of the channel estimate inaccuracies on the system performance when using

a popular MIMO transmission scheme. These expressions are then used to modify this

scheme, increasing its robustness to estimation inaccuracies. Thresholds are also derived

which address the question of whether or not spatial multiplexing should be employed in the

MIMO system.

A summary of the results of these efforts and a discussion of the potential for future

research are presented in Chapter 6.
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Chapter 2

Background and Modeling

The purpose of this chapter is to prepare the reader for the discussions which follow

in the remainder of this dissertation. Specifically, in what follows we will list commonly used

notation; present general background information relative to orthogonal frequency division

multiplexing (OFDM), multiple-input multiple-output (MIMO) systems, and the Cramér-

Rao bound (CRB); and introduce specific models that will be used in the remaining chapters.

2.1 Notation

The following mathematical notation will be used frequently. Non-bold uppercase

and lowercase letters such as A and a represent scalar variables and functions, lowercase

bold letters such as a denote column vectors, and uppercase bold letters such as A represent

matrices. The identity matrix is denoted by I with or without a subscript. If it has a

subscript, such as IN , the subscript denotes the number of rows and/or columns of the

matrix. The transpose of a matrix A is denoted by AT , the conjugate (or Hermitian)

transpose is denoted by AH , and the Moore-Penrose pseudoinverse is denoted by A†. The

trace of a matrix A is written as tr[A]. The matrix vectorization operator applied to the

matrix A, vec[A], denotes the vector created by stacking the columns of A. The binary

operator ⊗ indicates the matrix Kronecker product, e.g., A ⊗ B, while the binary operator

⊙ indicates the element-wise or Hadamard matrix product. The i, j-th element of a matrix

and the i-th element of a vector are represented as [A]ij and [a]i, respectively. For the

notation (·)+, (a)+ = a if a > 0; otherwise, (a)+ = 0. The notation (·)∗ is used for two

purposes (the selection of which should be clear in context): to indicate the conjugate of a

complex value, e.g., conjugate(A) = A∗, and to indicate the optimality of a specific quantity.

If the matrix A is complex-valued, then Re[A] and Im[A] are the real and imaginary parts
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of A. The set notation {ai} is used to represent the set of items a1, a2, . . . , aN . The notation

x ∼ N (y, z) indicates that value of x is drawn from a normal or Gaussian distribution with

mean y and variance z. For complex proper random variables, a similar notation is given by

x ∼ CN (y, z), where x and y are complex-valued and z is real-valued. When the previous

notation is applied to vectors, a multivariate Gaussian distribution is assumed. Finally, the

expectation of a random variable X is denoted by E[X].

2.2 Background and Prior Work

2.2.1 OFDM

Orthogonal frequency division multiplexing is a signal modulation technique which is

used to transmit high-rate signals by transmitting several lower-rate signals in parallel over

orthogonal frequency subchannels. A good introduction to OFDM is given in [3]. An OFDM

symbol of duration T consists of the sum of N modulated subcarriers and may be written

as

s(t) =







Re
[

∑

N
2

k=−N
2

+1
bk+N/2−1e

j2π(fc−
k+1/2

T
(t−t0))

]

, t0 ≤ t ≤ t0 + T

0, otherwise
, (2.1)

where t0 is the symbol start time, bk, k = 0, . . . , N−1, are the data symbols, fc is the symbol

carrier frequency, and N is assumed to be a multiple of two. The OFDM symbol is often

expressed in complex baseband notation as

s(t) =







∑

N
2

k=−N
2

+1
bk+N/2−1e

j2π k
T

(t−t0), t0 ≤ t ≤ t0 + T

0, otherwise
, (2.2)

which is essentially the inverse Fourier transform of the N input symbols bk, k = 0, . . . , N−1.

The individual subcarriers given by the complex exponentials in (2.2) are orthogonal over

the interval t0 ≤ t ≤ t0 + T . When using a discrete-time equivalent of this model, the

inverse Fourier transform may be replaced by the inverse discrete Fourier transform (IDFT).

In practice, the subchannel modulation is carried out very efficiently using the inverse fast

Fourier transform (IFFT). At the receiver, the OFDM symbol is sampled at least N times
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and the fast Fourier transform (FFT) is then used on these samples to demodulate the data

symbols.

Because the individual subcarrier transmissions occur at a much lower rate, or, equiv-

alently, because the subcarrier frequency bands are relatively narrow, individual OFDM sym-

bols are remarkably robust against the detrimental effects of multipath channels. However, it

is still possible for channel multipath to cause inter-symbol interference between neighboring

OFDM symbols. To counter this effect, a guard time which is longer than the multipath

delay spread is added to each OFDM symbol so that multipath components from one sym-

bol cannot interfere with the subsequent symbol. The OFDM symbol is cyclicly extended

over this guard time so that all of the multipath components of the signal will maintain

the orthogonality properties of the original signal, thus preventing inter-carrier interference

between the subchannels.

2.2.2 The Cramér-Rao Bound

In the study of parameter estimation techniques, it is useful to quantify the best

performance that may be achieved by a particular estimator. Performance bounds can serve

as a standard against which various estimation and prediction techniques are evaluated.

Such bounds may also be used as a design tool. In this context, particular features of a

system are selected with the objective of minimizing the performance bound, and those

selections which achieve this goal are considered optimal. One of the most popular of these

bounds is the Cramér-Rao bound, which provides a lower bound for the variance of unbiased

estimators [41,78,79]. If an estimator’s performance achieves the CRB, the estimator is said

to be an efficient estimator.

The CRB has several key features that make it an attractive choice as a lower bound.

First, the CRB is relatively easy to determine when compared to other performance bounds.

Next, CRB theory often allows us to determine whether or not estimators exist that achieve

the CRB. If it is determined that no CRB-achieving estimator exists, it is still often possible

to find estimators that approximately achieve the bound. Finally, CRB theory is strongly

connected with the theory of maximum likelihood (ML) estimation. ML estimators are
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known to be asymptotically efficient and estimators which achieve the CRB are ML estima-

tors.

We will use the CRB in Chapters 3 and 4 of this dissertation. In Chapter 3, the CRB

is used as a design tool for selecting optimal pilot sequences for OFDM systems. In Chapter

4, the CRB is used to evaluate the relative performance of several channel parameter models

in the context of MIMO-OFDM channel estimation. Note that several CRB formulations

exist, of which we will use only a few, including one derived for this work, in the subsequent

chapters. The specifics of those formulations are discussed within the chapters as needed.

2.2.3 OFDM Pilot Design

As may be noted from the earlier discussion in the Chapter 1.1.1, extensive work

has been carried out relative to the estimation of OFDM channel parameters. It is not our

intention here to provide an exhaustive review of those previous studies. Instead, we wish to

highlight a few works that are directly related to or provide understanding for the methods

to be used in this dissertation.

Pilot design for OFDM channel impulse response estimation has been extensively

studied in the literature, and many different pilot structures have been proposed [3]. One of

the most popular general training structures involves the interspersal of pilot tones among

the data bearing symbols in the MIMO subchannels. Relative to the OFDM model of (2.2),

this amounts to using a subset of the N symbols {bk} as pilot tones and the remainder as

data bearers. In [19,20,23], it was found that the optimal pilot allocations in terms of mean

square error (MSE) minimization for this style of training are given by evenly spacing the

selected number of pilot tones over the OFDM subchannels and by allocating equal power

to each pilot. Using the notation of [20], the equispacing of the pilot tones has the following

mathematical description. Let {np} be the set of subchannel indices into {bk} corresponding

the the pilot tones. Then the optimal pilot tone locations are given by

np = p0 + pV, (2.3)
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where p = 1, . . . , P is the index into the pilot tones set, V ∈ Z is the pilot tone spacing, and

p0 ∈ {0, . . . , V − 1} is an initial location offset. For the optimal pilot tones, it is required

that the spacing V satisfy PV φ/N ∈ Z and V φ/N /∈ Z for all φ ∈ {−L + 1, . . . , L + 1}\{0},
where L is the channel impulse response length. For a given number of pilot tones P , multiple

spacings V may be found which satisfy these conditions. Also, there are several choices for P

which satisfy the above optimality conditions. Clearly, then, the optimal pilot configuration

is not unique. Note that such pilot configurations are also optimal relative to the maximum

likelihood criterion assuming additive white Gaussian measurement noise at the receiver.

Thus, it is not surprising that this solution appears as a limiting case in the CRB-based

optimal pilot discussion of Chapter 3.

In OFDM systems, the channel timing offset or time delay is generally estimated in

two ways. The first makes use of the cyclicly-extended guard time, called the cyclic prefix,

that is added to OFDM symbols to prevent multipath-induced inter-symbol interference [24].

Because the cyclic prefix is simply a periodic extension of the OFDM symbol, it introduces

correlations into the OFDM symbol that may be used to obtain coarse estimates of the time

delay, as well as estimates of the frequency offset. The second method makes use of special

preamble training sequences. These sequences are specifically designed to have good time

correlation properties, allowing the start time of the OFDM symbol to be estimated via a

correlator at the receiver. One of the principal studies dealing with this type of preamble

design is [28], though many various flavors of this technique exist in the literature. Note that

both of these techniques give only coarse timing estimates. If better estimates are needed,

other techniques must be used to refine the estimates. In the work of Chapter 3, it is assumed

that the OFDM system has coarse timing estimates available. Thus, the developments of

that chapter with regard to time delay estimation fit under the umbrella of timing estimate

refinement.

It is instructive to note that the time delay and frequency offset parameters are

modeled in a very similar manner, with the expressions containing the frequency offset in

the OFDM model prior to the FFT at the receiver appearing almost identical to the time-

delay-containing expressions following the FFT. Thus, time-domain techniques for estimating

the frequency offset may be very similar to frequency-domain techniques for estimating the
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time delay. In [37], optimal pilot sequences were found relative to frequency offset estimation

using the CRB. As a basic result, this study determines that the optimal pilot design for

frequency offset estimation consists of a single pilot located at the end of the frequency band

(assuming a flat channel frequency response). This result is very similar to a limiting case

of the results found in Chapter 3 of this dissertation.

In [29], the problem of optimal pilot design via the CRB for the joint estimation of

the OFDM channel impulse response and carrier frequency offset is considered. Interesting,

at the outset of this paper, the development of the CRB parallels that found in the first

part of Chapter 3. However, the training sequences considered in [29] are preamble training

sequences and, instead of considering pilot design relative to the full joint CRB, this work

utilizes the modified CRB (MCRB) [80], which uncouples the time delay and channel impulse

response portions of the CRB. Once the MCRB is obtained, asymptotic approximations are

made to the MCRB in order to find the minimax optimal preamble training sequence, which

they determine is a white time sequence.

2.2.4 SISO and MIMO Channel Prediction

In Chapter 4 of this dissertation, bounds are developed for the interpolation and

prediction performance of wideband MIMO (e.g. MIMO-OFDM) channels given previously-

obtained estimates of the channel at particular times and frequencies. While the interpolation

of channels is discussed frequently in literature, the prediction of channels less frequently

addressed. As a reference for the discussion of Chapter 4, we now wish to briefly discuss a

few prediction methods appearing in the literature. In general, channel prediction methods

rely on models of the communications channel. Prediction is carried out by first estimating

the model parameters, and then using the resulting estimates within the model to extrapolate

the channel. As a result, the different methods are often most distinguishable by the models

upon which they rely. With respect to prediction, one of the most common ways to model

the channel is as a sum of complex sinusoids, each with different magnitudes and phase.
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In [52], the single-input single-output (SISO) channel is modeled as

h(t) =
L

∑

i=1

Aie
j(2πfi+θi), (2.4)

where L is the number discrete signal paths and Ai, fi, and θi are the path attenuation,

Doppler shift, and phase shift for the i-th path, respectively. Having this model, [52] then

uses the ROOT-MUSIC method of [81] to estimate the unknown parameters of the sinusoid.

As another example, in [49], a narrowband SISO channel is modeled as

h(x) =
N

∑

i=1

aie
jkx cos(θi), (2.5)

a sum of spatially-dependant sinusoids, with each sinusoid representing a signal path arriving

from one of a set of N physical scatterers. In this model, x is the receiver position, k is the

wavenumber, ai is the complex scattering amplitude of path i, and θi is the angle between

the direction of receiver motion and the direction of the i scatterer. Assuming a constant

velocity, this model is simplified to a corresponding spatial sampling model as

h(m) =
N

∑

i=1

aie
jmui , (2.6)

where ui = k∆x cos(θi) are normalized Doppler shifts and ∆x is the distance between two

samples. Given this simplified model, the model parameters are estimating using a variant of

the ESPRIT method [82]. This same method was used in [50] to estimate the parameters of

a related wideband channel model. Note that the model of (2.6) may also be considered to be

a finite impulse response model, which class of models are sometimes considered separately

from the class of sum-of-sinusoid models. The ESPRIT algorithm was also used to estimate

the parameters of a MIMO channel model for the purposed of prediction in [56].

Another popular class of models used for channel prediction is the class of autoregres-

sive (AR) models. In these models, the channel evolves in time according to an evolution

model such as

h(t) =
L

∑

i=1

Aih(t − τi) + w(t), (2.7)
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where L is the order of the AR process, {Ai} are the AR coefficients, {τi} are delays,

which are typically assumed to be known and equally spaced in time, and w(t) is a random

input process. This same type of model may be used for MIMO channels, where the scalar

channel h(t) is replaced by a vector and the scalar coefficients {Ai} are replaced by matrix

coefficients. As examples, AR models are used for SISO prediction in [53] and for MIMO

prediction in [60,61].

The results of SISO prediction using the above-mentioned models and methods all

confirm the conclusion of [59], that channel knowledge over several wavelengths of motion is

required to achieve acceptable prediction performance even for short intervals in the future.

The MIMO prediction examples confirm the results of [60] and Chapter 4, that the use of

multiple antennas leads to improved prediction abilities relative to SISO systems. However,

the implementations of such predictors have, to this point, all fallen short of the performance

possibilities suggested in [60] and this dissertation.

2.2.5 MIMO and Waterfilling

In a narrowband multiple-input multiple-output systems assuming additive white

Gaussian noise (AWGN) with NT antennas at the transmitter and NR antennas at the

receiver, the signal at the i-th antenna is given by the sum of the received signals from each

transmit antenna plus noise, and it may be written as

yi =

NT
∑

j=1

hijxj + ni, (2.8)

where hij is the complex channel coefficient between the j-th transmit antenna and the

i-th receive antenna, xj is the signal transmitted by the j-th transmit antenna, and ni ∼
CN (0, σ2

n) is zero-mean AWGN with variance σ2
n. Stacking the received signals at the NR

receive antennas into a vector of length NR, the overall received signal model may be written

in matrix/vector form as

y = Hx + n, (2.9)
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where the i, j-th element of H is given by hij, the i-th element of the column vector y is

given by yi, and the other vectors are defined in a like manner.

In information theory and communications, a popular measure indicating the maxi-

mum amount of information that may be transmitted over a communications channel is given

by the channel capacity, which is defined as the maximum mutual information between the

transmitted and received signals, i.e., the capacity C is given by

C = max
p(x)

I(X;Y), (2.10)

where the maximum is taken over all possible input distributions p(x) [83]. For narrowband

AWGN models such as (2.8), it is known that the maximizing input distribution is Gaussian.

For the model of (2.9), it was further shown in [7,9] that given a fixed total transmit power P ,

the capacity may be realized when x ∼ CN (0,VQVH), where V is the matrix of eigenvectors

from the eigen-decomposition HHH = V ΛVH and Λ is the diagonal matrix of eigenvalues

such that [Λ]ii = λi. The matrix Q is a diagonal matrix whose entries, given by

[Q]ii =

(

µ − σ2
n

λi

)+

(2.11)

with

µ =
P +

∑NT

i=1
σ2

n

λi

NT

, (2.12)

are the powers allocated to the corresponding elements of x. The MIMO-subchannel power

allocation given by (2.11) is commonly referred to as waterfilling, the name coming from

a physical analogy between the subchannel power allocation problem and the problem of

determining water depth when filling a container having a multi-level base using a fixed

amount of water. Note that the optimality of waterfilling power levels presupposes that the

codebook of possible transmission vectors x is infinite and continuous, an assumption that

may only be approximated in practice.

Considering the signal model of (2.9), the waterfilling solution may be realized through

the used of the singular value decomposition (SVD). Let H have the SVD given by H =

UΣVH , where the V defined here is the same as that defined in Section 2.2.5. The matrices
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U and V are orthonormal and the elements of the diagonal diagonal matrix Σ are the

square-roots of the values of λi which are used in the waterfilling power level determination

of (2.11). Now note that if x = VQ
1
2 s with s ∼ CN (0, I), then x meets the conditions

given for the input signal by waterfilling, and an estimate of the information signal s may

be obtained as

ŝ = UHy (2.13)

= ΣQ
1
2 s + Un. (2.14)

Note that this transmission scheme decomposes the MIMO channel into independent SISO

subchannels, each of which may now be dealt with using SISO techniques.

2.2.6 Adaptive Modulation in MIMO

In the previous discussion, it was noted that, assuming a perfectly known channel (i.e.,

perfect channel state information (CSI)), the SVD-based waterfilling solution decomposes

the MIMO channel into independent SISO subchannels. Based on the signal-to-noise ratio

(SNR) of the resulting subchannels, bit-loading and coding schemes may be devised using

SISO techniques to approach the available channel capacity. However, as was discussed in

Chapter 1.1.3, CSI is never perfect in practice and practical symbol constellation designs do

not meet the capacity-achieving input conditions assumed by the waterfilling solution. Thus,

the power levels proscribed by the waterfilling solution are not guaranteed to be optimal with

respect to the actual MIMO channel, and bit-loading levels will be chosen based on incorrect

SNR information.

Given knowledge about the nature of the CSI imperfections and/or the symbol con-

stellations to be used, it is often possible to find modified MIMO SVD-subchannel power

and bit-loading levels that outperform those selected assuming perfect conditions. Such

techniques, which attempt to adjust the power and bit-loading levels based upon symbol

constellation and/or CSI imperfection information, are referred to as adaptive modulation

techniques. Note that by this definition, the SVD-based signaling schemes discussed in

Chapter 5 of this dissertation are considered adaptive modulation techniques.
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A great many papers in literature consider the general problem of adaptive modula-

tion, out of which we will only discuss a few most relevant to this dissertation. In [63,64,73],

adaptive modulation techniques are are presented for SVD-based MIMO transmission as-

suming perfect CSI. In other words, these techniques focus solely on the problem of choosing

the best bit-loading levels given a selected symbol constellation. The operation of these

methods depends upon expressions which relate a performance criterion, such as bit error

rate (BER) or symbol error rate (SER), to the MIMO-subchannel SNRs. In [63], the selec-

tion of this relation is left to the reader, though a particular bit-loading method is assumed

for the simulations. In [64,73], this relation, which is between BER for M-QAM with square

constellations and SNR, is given by [84]

BER ≈ 0.2 exp

[−1.5 SNR

M − 1

]

. (2.15)

Given a constraint on BER, BERTarget, which is chosen to ensure successful transmission,

bit-loading levels may be determined for the SVD subchannels by finding the maximum

number of bits possible such that

b ≤ log2

[ −1.5 SNR

ln(5 BERTarget)
+ 1

]

, (2.16)

where b, the number of bits, is related to M by M = 2b for square constellations.

The papers of [64, 73] also present adaptive modulation schemes assuming imperfect

CSI. These methods are similar to those presented for the perfect CSI case except that the

subchannel SNR expressions, which depended upon waterfilling subchannel power levels,

must be replaced with with signal-to-interference-plus-noise ratio (SINR) expressions that

quantify the effect of CSI imperfections on the SVD subchannels. The SINR expression used

in [73] is equivalent to one of the SINR expressions derived in Chapter 5 for the special

case of identical CSI at both the transmitter and receiver, referred to in the chapter as the

common CSI (CCSI) case. The SINR expression used in [64] is also similar to this CCSI

expression, though it is not as accurate.

Note that an expression similar to that of (2.16) is presented in Chapter 5 (see (5.57))

to relate the SER for M-QAM constellations and SNR. Its distinguishing feature (other than
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using SER instead of BER) is that it permits the use of non-square M-QAM constellations,

which allows a greater range of bit-loading levels to be considered. It also allows the deriva-

tions in Chapter 5 that are based upon it to be carried out more easily than would be possible

using (2.16).

Also note that the adaptive modulation algorithm of [73], which is the best performing

method from the papers discussed here, is used for the purpose of comparison in Chapter

5. The general details of this algorithm are presented in this chapter, so we do not include

them here.

2.3 OFDM Signal Model

For the channel parameter estimation and pilot selection problem to be discussed in

Chapter 3, consider the frequency-selective channel impulse response model given by

h(t) =
L−1
∑

l=0

hlδ(t − lTs − τd), (2.17)

where L is the number of discrete multipath components, which is assumed to be known,

Ts is the system sampling period, hl is the complex channel coefficient for the l-th path,

and τd is the timing offset or first-path time delay. The discrete-time OFDM symbol s(n),

n = 0, . . . , N − 1, is constructed from N data and pilot symbols {bp} by means of the

length-N IDFT as

s(n) =
1√
N

N/2
∑

p=−N/2+1

bp ej 2π
N

np (2.18)

=
1√
N

N−1
∑

m=0

bm−N/2+1 ej 2π
N

(m−N/2+1)n. (2.19)

Note that we have indexed the OFDM subchannels with the zeroth frequency at the center of

the frequency band, that is, p ∈ [−N/2+1,−N/2+2, . . . , 0, 1, . . . , N/2], instead of the more

conventional 0 to N−1 IDFT indexing to allow for a more traditional physical interpretation

of the results. Transforming (2.19) into the continuous-time domain and adding a cyclic
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prefix of duration TG, we may represent the baseband transmitted signal as

sCT (t) =
1√
N

N−1
∑

m=0

bm−N/2+1 ej 2π
T

(m−N/2+1)t, −TG ≤ t ≤ T, (2.20)

where T is the OFDM symbol length, which is related to the sampling time Ts and the IDFT

size N by T = NTs.

Assuming that ν(t) is AWGN, the baseband received OFDM symbol after convolution

with the channel is given by

yCT (t) =
1√
N

∫

s(τ)h(t − τ) dτ + ν(t) (2.21)

=
1√
N

N−1
∑

m=0

L−1
∑

L=0

bm−N/2+1hle
j 2π

T
(m−N/2+1)(t−τd−lTs) + ν(t). (2.22)

For the purposes of Chapter 3, we restrict our focus to the zero inter-carrier and inter-symbol

interference case. Therefore, we assume that the carrier frequency is perfectly synchronized

at the transmitter and receiver and that the guard interval is larger than the delay spread,

i.e., (L−1)Ts+τd < TG. With these assumptions, the sampled received signal after discarding

the cyclic prefix is given by

y(k) = yCT (kTs)

=
1√
N

N−1
∑

m=0

L−1
∑

L=0

hlbm−N/2+1 e−j 2π
T

(m−N/2+1)τd ej 2π
N

(m−N/2+1)(k−l) + ν(kTs). (2.23)

By taking the DFT of x(n), we obtain the frequency-domain received signal

x(p) =
1√
N

N−1
∑

n=0

x(n) e−j 2π
N

np + n(p) (2.24)

=

(

L−1
∑

l=0

hl e−j 2π
N

pl

)

bp e−j 2π
T

pτd + n(p), (2.25)

where p ∈ [−N/2 + 1,−N/2 + 2, . . . , 0, 1, . . . , N/2] and n(p) is the noise frequency response

which, under the present assumptions, is zero-mean Gaussian distributed with variance σ2
n.
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In matrix/vector notation, this may be written as

x = ΓBFLh + n, (2.26)

where

x = [ x(−N/2 + 1) · · · x(N/2) ]T , (2.27)

Γ = diag(w
−(−N/2+1)τd

T , . . . , w
−(N/2)τd

T ), (2.28)

B = diag(b−N/2+1, . . . , bN/2), (2.29)

h = [ h0 · · · hL−1 ]T , (2.30)

and

n = [ n(−N/2 + 1) · · · n(N/2) ]T , (2.31)

with wy
x = e−j 2π

x
y, and FL composed of the first L columns of the zero-frequency-centered

N ×N DFT matrix. The model of (2.26) forms the basis of the development and discussions

presented in Chapter 3.

2.4 Parametric MIMO Wideband Models

The MIMO wideband models considered in Chapter 4 are discrete-multipath or ray-

based channel models, i.e., the models assume that that the signal at the receiver is a sum

of a finite number of copies of the signal sent by the transmitter, each copy experiencing

its own attenuation, delay, and Doppler. These models may be derived by extending the

common narrowband time-varying SISO channel model [85]

h(t) =
L

∑

l=1

αle
jωd,lt, (2.32)

where αl is the complex scattering coefficient of path l, ωd,l is the Doppler frequency in rad/s

of path l at time t, and L denotes the total number of paths traveled by the signal between

the transmitter and the receiver. This model may be easily extended from a SISO to a

MIMO system by including array responses for the tranmsitter and receiver. Let at,l and
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ar,l be array responses for the transmitter and receiver, respectively. Then the narrowband

MIMO channel model may be written as

H(t) =
L

∑

l=1

αlar,la
T
t,le

jωd,lt, (2.33)

where at,l is a vector of length Mt, the number of tranmsit antennas, and ar,l is a vector of

length Mr, the number of receive antennas. This model has been used in several channel

measurement campaigns [86–88] and forms the basis for the derivations and analysis of [60].

The narrowband model of (2.33) may be extended further to accommodate the description

of wideband channels as

H(ω, t) =
L

∑

l=1

αlar,la
T
t,le

j((ωc−ω)τl−ωd,lt), (2.34)

where ω is the frequency variable in rad/s, ωc is the center or reference frequency of the band

of interest, and τl is the delay in seconds associated with path l. While we have presented this

model as an extension of (2.33), it may also be derived directly as a time-varying multipath

channel kernel [89]. One of the advantages of this model is that the channel is explicitly

defined for every time and frequency. Thus, it is directly applicable to the MIMO-OFDM

problem where information symbols are transmitted at particular times and frequencies.

The developments in Chapter 4 use several specific channel models based upon the

general model of (2.34). The principal differences of these individual models arise from

assumptions made about the array response term ar,la
T
t,l.

2.4.1 Structured DOD/DOA Model

For the first models used in Chapter 4, the array response vectors are assumed to be

structured functions of the direction of departure (DOD) and direction of arrival (DOA) of

the signal paths relative to the transmit and receive antenna arrays, respectively. The first of

these models assumes that the antenna configurations are known and are precisely calibrated.

It may also be modified to form a new model for situations in which there is a small level of

uncertainty concerning the exact antenna configurations by adding a perturbation term to
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each array response vector so that the overall response term for the l-th signal path becomes

(ar,l + vr,l)(at,l + vt,l)
T , where vt,l and vr,l are the array perturbation terms for the transmit

and receive arrays, respectively. The specifics of these structured models will be discussed

in more detail in the context of Chapter 4.

2.4.2 Unstructured Vector Model

The structured DOD/DOA model assumes specific array configurations that depend

on the signal path DODs and DOAs. The estimation of DOD and DOA parameters can be

difficult and the results may be very sensitive to calibration errors. To avoid such problems, a

more general model may be applied to the channel parameter estimation problem. Note that

in the context of Chapter 4, this model is not assumed to be a ground truth representation

of the actual channel, but is instead used as an approximation of the structured DOD/DOA

model for the purposes of simplifying channel estimation. In this unstructured vector model,

the path gains and the angle- and position-dependent array responses of the DOD/DOA

model are replaced by unstructured vectors, termed spatial signatures. That is, the vectors

at,l and ar,l for this model are not assumed to be explicit functions of DOD or DOA, but

instead abstractly represent the transmit and receive array responses for path l with delay

τl and Doppler ωd,l. This model will be referred to Chapter 4 as the vector spatial signature

(VSS) model, and will be presented in more detail prior to its use there.

2.4.3 Unstructured Matrix Model

The model of (2.34) may be abstracted one step further by replacing the vector re-

sponse vectors of at,l and ar,l of path l by a matrix spatial signature Al. As in the VSS

model, the matrices Al are not assumed to be explicit functions of DOD or DOA, but in-

stead abstractly represent the channel characteristics for a particular path with associated

delay τl and Doppler ωd,l. Also like the VSS, this model is not assumed to be a ground

truth representation of the actual channel, but is instead used as an approximation of the

DOD/DOA model. Since it is parameterized in a different manner, we expect the perfor-

mance of channel estimation based upon this model to differ from that achieved when using

the DOD/DOA model. One significant difference is that since no restriction is placed on the
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elements of the matrices Al, they may be of arbitrary rank, in contrast to the rank-one ma-

trices formed by the outer products ar,la
T
t,l. The consequences of this fact will be reflected in

the system performance. Note that this matrix spatial signature (MSS) model is essentially

a two-dimensional filter in ω and t with matrix filter taps. At a fixed time t, it is similar

to the multi-channel finite impulse response (FIR) channel models frequently used in the

literature, although the taps are not evenly spaced in time.

2.5 MIMO Perturbation Model

In MIMO communication systems, accurate knowledge of the communication chan-

nel, referred to as channel state information (CSI), is a vital factor enabling good system

performance. In many systems requiring CSI at both the transmitter and receiver of a com-

munications link, CSI is obtained through channel estimation at the receiver with the aid

of training data sent from the transmitter, and that information is then periodically com-

municated back to the transmitter. These estimates are typically imperfect, with both the

estimation and feedback processes contributing to CSI imperfections. In Chapter 5 of this

dissertation, we investigate the impact of such imperfections on MIMO system performance.

For the purposes of Chapter 5, we mathematically describe this imperfect CSI by letting

H be the channel as known at the transmitter, H + ∆H1 the channel as known at the re-

ceiver, and H + ∆H1 + ∆H2 the actual MIMO channel, where the preceding matrices all

have dimension Nr × Nt, the number of receive and transmit antennas, respectively. This

particular formulation allows the expressions derived in Chapter 5 to depend only upon the

known CSI H and the assumed statistics for the CSI imperfections, instead of requiring more

structured knowledge of the CSI imperfections. In the context of the above CSI notation,

the matrix ∆H1 represents the discrepancies between the actual channel and the transmit

CSI that are unique to the transmitter alone, the source of which may include quantization

effects and errors in the feedback channel, as well as variations in the MIMO channel when

assuming that the receiver updates its CSI more frequently than the transmitter. Channel

variations considered in this context may occur, for example, if the transmitter or receiver

moves during the interval between channel estimation and channel feedback. On the other

hand, the matrix ∆H2 represents CSI errors that are common to both the transmitter and

27



Table 2.1: Channel State Information Relationships

Transmitter H
Receiver H + ∆H1

Actual Channel H + ∆H1 + ∆H2

receiver. Such errors are typically introduced at the receiver and are then fed back to the

transmitter. Factors contributing to this term include estimation errors and outdated CSI

present at the receiver. The CSI setup is summarized in Table 2.1. Note that when ∆H1 = 0,

the transmitter and receiver possess the same CSI.
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Chapter 3

Optimal Pilot Design for Joint Time Delay and Channel Estimation
in OFDM

3.1 Introduction

In this chapter, we examine the problem of optimal subchannel pilot design and

placement for joint channel and timing offset estimation in OFDM systems. In particular,

we consider the problem of pilot design in order to minimize a lower bound on the channel

estimation error variance while meeting a performance constraint on the variance of the

timing offset estimate. In order to address this problem, we consider two Cramér-Rao bound

(CRB) formulations. The first of these is found directly by applying the well-known Bangs

formula [40]. Our optimization problem is then cast as the minimization of a weighted

trace of this CRB, which allows us to control the relative importance of the timing offset

and channel estimation problems when designing pilots. While this minimization may not

be solved for the pilots in closed form, the cost function, which may be solved numerically,

provides valuable insights into the structure of optimal solutions. Following this presentation,

a second CRB is found indirectly using a CRB as a function of parameters (CRB-FOP)

formulation [41]. This derivation, which reduces the coupling between timing-offset- and

channel-parameter-related regions of the CRB, is particularly suited to our needs, allowing

the problem to be separated into two simpler components.

The remainder of this chapter will proceed as follows. In Section 3.2, the OFDM

signal model is presented. In Section 3.3, the joint CRB derivation is then shown. Using

these results, the problem of optimal pilot selection is presented in Section 3.4. The ensuing

discussion provides motivation for CRB-FOP derivation, which is carried out in Section 3.5.

Finally, simulation examples are presented in Section 3.6, followed by the concluding remarks

in Section 3.7.
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3.2 Signal Model

Consider the OFDM signaling model of (2.25) derived in Chapter 2.3, which is repro-

duced here:

x(p) =

(

L−1
∑

l=0

hl e−j 2π
N

pl

)

bp e−j 2π
T

pτd + n(p), (3.1)

where L is the number of discrete multipath components, which is assumed to be known,

Ts is the system sampling period, hl is the complex channel coefficient for the l-th path,

and τd is the timing offset. Since this timing offset is equivalent to the primary channel

time delay, i.e., the time delay of the first path of the impulse response, we will refer to it

simply as the time delay or delay in the remainder of this chapter. We assume that the

channel coefficients {hl} and the time delay τd are unknown and must be estimated through

the use of pilot tones transmitted as part of an OFDM symbol s(n), n = 0, . . . , N − 1,

which is constructed from N data and pilot symbols {bp} by means of the length-N inverse

discrete Fourier transform (IDFT). The additive noise {n(p)} is assumed to be independent,

identically-distributed zero-mean complex Gaussian noise so that n(p) ∼ CN (0, σ2
n). Recall

that, for the purposes of this work, we have restricted our focus to the zero inter-carrier

and inter-symbol interference case. Therefore, we assume the carrier frequency is perfectly

synchronized at the transmitter and receiver and that the guard interval is larger than the

delay spread, i.e., (L − 1)Ts + τd < TG. Equivalently, we may assume that a good estimate

of the carrier frequency offset and a course estimate of the delay spread have been obtained

previously by means of correlations in the cyclic prefix, a preamble training sequence, or

another related method.

As previously shown in Chapter 2.3, the model shown in (3.1) may be written in

matrix/vector notation as

x = ΓBFLh + n, (3.2)

where

x = [ x(−N/2 + 1) · · · x(N/2) ]T , (3.3)

Γ = diag(w
−(−N/2+1)τd

T , . . . , w
−(N/2)τd

T ), (3.4)

B = diag(b−N/2+1, . . . , bN/2), (3.5)
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h = [ h0 · · · hL−1 ]T , (3.6)

and

n = [ n(−N/2 + 1) · · · n(N/2) ]T , (3.7)

with wy
x = e−j 2π

x
y and FL composed of the first L columns of the zero-frequency-centered

N × N DFT matrix.

3.3 The CRB

Since the overall goal of this chapter is to find optimal pilot configurations for the

joint estimation of the time delay τd and the channel impulse response h, we require a way

to quantify the strengths of particular pilot designs in terms of system performance. To this

end, we now seek to find the CRB with respect to τd and h given the OFDM signal model

of (3.2). Let the parameter vector Θ be defined as

Θ , [ τd Re[hT ] Im[hT ] ]T , (3.8)

where Re[a] and Im[a] are the real and imaginary parts, respectively, of the complex variable

a. Then the CRB with respect to Θ, can be calculated using Bangs formula [40]

[

(CRB)−1
]

ij
= Tr

[

C−1∂C

∂θi

C−1 ∂C

∂θj

]

+ 2Re

[

∂xH

∂θi

C−1 ∂x

∂θj

]

= J(Θ)ij,

(3.9)

where J(Θ) is the Fisher information matrix (FIM) and we assume C = E[nnH ] = σ2
nI for

this problem. Applying Bangs formula to our signaling model (3.2), the FIM is found to be

J(Θ) =
2

σ2
n





Jτd
JT

21

J21 Jh



 (3.10)

with

Jτd
= hHFH

L BHD2BFLh, (3.11)
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J21 =





Im[FH
L BHDBFLh]

−Re[FH
L BHDBFLh]



 , (3.12)

Jh =





Re[FH
L BHBFH ] −Im[FH

L BHBFH ]

Im[FH
L BHBFH ] Re[FH

L BHBFH ]



 , (3.13)

and

D =
2π

Ts











−N
2

+ 1
. . .

N
2











. (3.14)

In order to invert the FIM, we need to use two inversion properties. First, given

a nonsingular complex-valued matrix A, we have the following easily-verifiable inversion

relationship [90]:





Re[A] −Im[A]

Im[A] Re[A]





−1

=





Re[A−1] −Im[A−1]

Im[A−1] Re[A−1]



 . (3.15)

Second, given a nonsingular matrix, the inverse may be found as a function of partitions of

the matrix as





A B

C D





−1

=





X−1 −X−1BD−1

−D−1CX−1 D−1 + D−1CX−1BD−1



 , (3.16)

where X = A − BD−1C is the Schur complement of D [79]. Applying (3.16) to (3.13), we

find

J−1
h

=





Re[A−1] −Im[A−1]

Im[A−1] Re[A−1]



 . (3.17)

Note J−1
h

is the CRB with respect to h assuming τd is known. We denote this matrix as

CRBh so that CRBh = J−1
h

. Likewise, J−1
τd

is the CRB with respect to τd assuming h is

known, i.e, CRBτd
= J−1

τd
. Having obtained J−1

h
, the inverse of (3.10) may now be found by
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applying (3.16) with the result

CRBτd,h =
σ2

n

2





γ−1
τd

CRBT
21

CRB21 CRB22



 , (3.18)

where

γτd
= hHFH

L BHDΠ⊥
BFL

DBFLh, (3.19)

Π⊥
BFL

= I − BFL(FH
L BHBFL)−1FH

L BH , (3.20)

CRB21 =





−γ−1
τd

Im[q]

γ−1
τd

Re[q]



 , (3.21)

and

CRB22 =





Re[Q−1] + γ−1
τd

Im[q]Im[qT ] −Im[Q−1] − γ−1
τd

Im[q]Re[qT ]

Im[Q−1] − γ−1
τd

Re[q]Im[qT ] Re[Q−1] + γ−1
τd

Re[q]Re[qT ]



 (3.22)

with

Q = FH
L BHBFL (3.23)

and

q = A−1FH
L BHDBFLh. (3.24)

Comparing the individual CRB expressions for CRBτd
and (3.17) with their related subblock

expressions (3.19) and (3.22) of (3.18), we note that the expressions comprising (3.18) contain

the uncoupled CRB expressions of (3.11) and (3.17), but each subblock also includes a penalty

term as a consequence of the coupling between the estimation of τd and h.

The CRB of (3.18) depends on particular instances of the channel response h. While

this is useful in understanding system performance given particular instantaneous channel

realizations, it may also be useful to have a CRB formulation that does not depend on the

particular channel realization. Such a CRB formulation may be obtained though the use of

the expected value operation, i.e., E[CRBτd,h], where the expectation is over the channel

realizations h. Unfortunately, E[CRBτd,h] (specifically E[CRB22]) cannot, in general, be

calculated in closed form. One popular way to address this type of problem has been to
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use the modified CRB (MCRB) [29, 80], which, like the CRB, lower bounds the minimum

unbiased estimation error variance. The MCRB accomplishes this feat by performing the

expectation relative the nuisance parameters, in our case, h, on the FIM prior to matrix

inversion. However, for our problem, the MCRB leads to the uncoupling of the CRB ex-

pressions relative to the estimation error variance of τd and h, which is not acceptable for

our purposes. Note that the study of the h-specific expressions is still warranted since the

features of the optimal pilot designs developed from these expressions are widely applicable.

3.4 Optimal Pilot Selection

We now address the issue of optimal pilot design. Specifically, given a fixed total

transmit power PT , we wish to find diagonal entries for the matrix B, denoted by the vector

b, which optimize a weighted sum of the diagonal entries of the CRB, i.e.,

b∗ = arg min
b∈B

G(α,b), (3.25)

where the cost function G(α,b) is given by

G(α,b) =

[

α

(

2πN

Ts

)2

γ−1
τd

+ (1 − α)

(

1

L

)

tr(CRB22)

]

. (3.26)

The coefficients 2πN/Ts and 1/L in G(α,h) serve to normalize the τd and h portions of the

CRB matrix while the weighting parameter α ∈ [0, 1] may be used to control the relative

importance attached to the estimation performance for τd and h when selecting b∗.

Note that in the optimization statement of (3.25), we have designated that the vector

b∗ be chosen from some set of possible pilots B. While the possible sets that may reasonably

be selected for B is quite large, we will restrict our attention in this work to two possible

sets from which the optimal pilot vector may be selected: BDP , the set of all combinations

of P discrete and equipowered pilots (the remaining N − P elements of b are set to zero),

and BCP = R
N , the set of all real valued vectors of length N . By examining the expressions

for the entries of (3.10), it may be noted that no generality is lost by considering only pilots

in R
N as opposed to CN , the set all complex vectors of length N , since only the magnitude
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of b influences the FIM expression. We will refer to the optimization over BDP as the

discrete pilot set (DPS) scenario and the optimization over BCP = R
N as the continuous

pilot distribution (CPD) scenario. These two scenarios are probably the most commonly

considered in OFDM pilot design when considering OFDM symbols individually.

3.4.1 Uncoupled CRB Cases

With these two scenarios in mind, we may now discuss the optimization problem of

(3.25) in the context of these strategies starting with the limiting uncoupled CRBs J−1
τd

and

CRBh, for which it is assumed that h or τd are known, respectively. First, reconsider the

expression for Jτd
, the FIM with respect to τd assuming h is known:

Jτd
= hHFH

L BHD2BFLh (3.27)

= ‖DBg‖2 , (3.28)

where g = FLh is the discrete frequency response of the channel impulse response h. For

the DPS case, the optimal P equipowered pilot locations are chosen as the set corresponding

to the locations of the largest P products [D]2ii|gi|2, locations which are generally near the

band edges where the channel frequency response magnitude is large. For the CPD case, all

of the pilot power is given to a single pilot tone whose location is given by

i∗ = arg max
i∈[−N/2+1,N/2]

[D]2ii|gi|2. (3.29)

Note that if P = 1 for the DPS case, then the DPS and CPD solutions are identical.

Now consider the case of choosing the pilots to maximize the trace of the CRB relative

to h assuming τd is known. This trace may be written as

tr[CRBh] = tr
[

(FH
L BHBFL)−1

]

. (3.30)

The solution in this case was found for the CPD in [19,20,23], though not under the guise of

a CPD optimization. In these works, it was found that (3.30) was minimized when the pilots

are equipowered and are spaced evenly over the the frequency bins, where the meaning
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of evenly-spaced in terms of the pilot locations is defined in [20] with the pilot locations

specifically given by np = p0 + pV , ∀φ ∈ {−L + 1, . . . , L + 1}\{0} where V ∈ Z such that

PV φ/N ∈ Z and V φ/N /∈ Z and p0 + N/2 − 1 ∈ {0, . . . , V − 1}. Obviously, there are

several pilot configurations that satisfy the equispace requirement and thus minimize (3.30),

including spreading the pilot power evenly over all of the frequency bins, though [19] does

show that capacity-wise, it is advantageous to use the minimum number of required pilots.

As long as P ≥ L is chosen to satisfy the above condition, the DPS case will correspond to

a possible solution of the CPD case. Otherwise, the optimal DPS solution will be close to

equispaced and will not correspond to a CPD solution.

3.4.2 Coupled CRB Case

Now let us consider the optimization problem of (3.25) involving the CRB subblocks

γ−1
τd

and CRB22 from the joint CRB of (3.18). Unfortunately, this optimization cannot be

solved for the optimal pilots in closed form, even for the cases of α = 0 and α = 1 which focus

the optimization fully on the estimation performance of h or τd, respectively. Fortunately, the

optimization may be solved numerically. Since this is a signal design problem, it is typically

done offline and we are justified in considering techniques that may require a moderate level

of computational complexity.

The optimization for the DPS involves a simple but computationally-intensive search

over the possible pilot combinations. Without any prior knowledge of the likely solution

form, finding b∗ requires that all N -choose-P possible pilots be investigated, a number which

increases rapidly with increases in both N and P < N/2. However, with prior knowledge

of the general structure of the solution, good solutions may be obtained over a significantly

reduced search space (e.g., see Section 3.6).

For the CPD, solutions may be found using numerical optimization algorithms, e.g.,

Matlab’s unconstrained optimization routine fminunc, which uses a linesearch algorithm

when applied to this type of problem, may be used. The computational complexity for even

moderate values of N is much lower than that for the comparable DPS solution, making

CPD using numerical optimization an appealing route to a solution. It should be noted that

the resulting solutions to (3.25) may not necessarily be unique, and they are not guaranteed
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to be globally optimal since the cost function G(α,b) is not convex in b. However, we

have found this type of optimization generally yields good solutions with the CPD solution

always equaling or outperforming the DPS solution, i.e, G(α,b∗
CPD) ≤ G(α,b∗

DPS) in all

of the simulations we have carried out. This suggests at least local convexity around local

minima, which correspond to good solutions.

While we cannot, in general, find closed form solutions to the optimization of (3.25),

we can gain some insights into the general structure of the solution by examining the con-

stituent components of the cost function G(α,b), which we will do for the CPD, though

similar inferences may be made for the DPS. First, consider the minimization of γ−1
τd

, which

is equivalent to minimization of G(1,b) and to the maximization γτd
. We may rewrite the

expression for γτd
in (3.19) as

γτd
= hHFH

L BHDΠ⊥
BFL

DBFLh (3.31)

= hHFH
L BHD2BFLh − hHFH

L BHDΠBFL
DBFLh (3.32)

= ‖DBFLh‖2 − ‖ΠBFL
DBFLh‖2 , (3.33)

where

ΠBFL
= BFL(FH

L BHBFL)−1FH
L BH . (3.34)

Note that ΠBFL
(and Π⊥

BFL
) is projection matrix so that ΠBFL

ΠBFL
= ΠBFL

, a property

used to obtain the equality of (3.33). Observe also that γτd
≤ ‖DBFLh‖2, the FIM matrix for

the uncoupled case. As was mentioned previously, that FIM was maximized by allocating all

of the pilot power to a single element of b corresponding to a point near the band edge where

the channel frequency response is large. This solution is modified in the coupled expression

by the penalty term ‖ΠBFL
DBFLh‖2. While the uncoupled term favors allocating all of the

available power at a single or possibly a few points near the band edges, the inverse in (3.34)

requires that at least L elements of b are nonzero and that they have a fairly even spacing.

The result is a combination of the two. Typically, the solution involves L + 1 discrete pilot

clusters, the number of unknowns to be estimated, with the outermost pilots shifted closer

to the band edges and the remaining plots spread across the band. The term pilot cluster
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refers to two consecutive elements of b given allocated power, isolated from other powered

elements, which essentially act as a single pilot. It is likely that if power allocation were

possible over a continuous range of frequencies, these pilot clusters would then be realized

as single pilot tones at frequencies between the discrete frequency possibilities allowed here.

The pilots away from the band edges are allocated a relatively small amount of power when

compared to those at the band edges, and that power progressively reduces towards the band

center. An example of this pilot allocation will be shown in the simulations.

Now consider the term involved in the minimization of G(0,b), which is equivalent

to the minimization of tr[CRB22]. This term may be written as

tr[CRB22] = tr[Q]−1 + γ−1
τd

tr[qqH ] (3.35)

= tr
[

(FH
L BHBFL)−1

]

+

∥

∥(BFL)†DBFLh
∥

∥

2

∥

∥Π⊥
BFL

DBFLh
∥

∥

2 . (3.36)

The first part of this expression corresponds to the uncoupled case and, as discussed previ-

ously, is minimized by equispaced and equipowered pilots. The second term in (3.36), then,

is a penalty term resulting from the coupling between the estimation of τd and h. Considered

alone, the numerator of this penalty term,
∥

∥(BFL)†DBFLh
∥

∥

2
, is minimized by placing all

of the available pilot power in the center of the frequency band at the zeroth frequency or

at a combination of this and locations at which the channel frequency response has a zero.

When considered in combination with the denominator, which we examined earlier for the

α = 1 case, the result requires L or more pilots (L+1 pilot clusters is typical), spread across

the frequency band. However, in this case the non-band-edge pilots receive the largest allo-

cation of power, with the power decreasing towards the band edges, and the pilots tend to

cluster more towards the center of the band, though still relatively well spaced. In the full

expression of (3.36), the uncoupled term tends to be the dominant term. Thus, the resulting

pilot allocation is relatively equipowered and equispaced. However, the penalty term alters

this solution, dictating a low number of discrete pilot clusters (usually L+1) with outermost

pilots tending towards the band edges and inner pilots shifting slightly towards locations of

small channel frequency response. Also, a greater fraction of the power is allocated towards

the center of the frequency band.
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For values of α ∈ (0, 1), resulting pilot allocations combine the features of the α = 0

and α = 1 limiting cases. Thus, as α moves from 1 to 0, the optimal pilots move from

roughly equipowered and equispaced to a configuration of pilots with most of the power at

the band edges. The selection of α will depend on desired or required constraints. We also

note that G(α,b) varies linearly with σ2
n

PT
. This implies that for a particular α, the structure

of b∗ is not a function of the total pilot power or measurement noise level, only its norm is.

In this chapter, we are interested in finding the pilot configuration which minimizes

the variance on the estimation of the channel impulse response h while constraining the error

variance of the time delay estimate τd to be at or below some threshold, assuming a fixed

total pilot power PT . Because of the coupling of the τd and h terms in the CRB, we cannot

design the pilots independently. But assuming PT is sufficient so that the constraint on the

error variance on τd may be achieved, this problem may be solved by searching for the α

that results in a value for σ2
n

2
γ−1

τd
which meets the required constraint. The resulting pilot

configuration automatically minimizes the error variance on the estimate of h by design.

3.5 Pilot Selection using the CRB-FOP

Once again, consider the problem of finding the pilot configuration which minimizes

the channel impulse response estimation error variance while meeting a constraint on the

error variance of the time delay estimate. When addressed in terms of the expression of

(3.25), the search for the solution, while feasible, may be intimidating since we must search

over α, solving for a different pilot configuration at each α, until we find the solution that

satisfies our conditions. It would be desirable, therefore, to have a method for solving this

problem that did not necessitate such a search. In this section, we derive another CRB

which allows us to address the above design problem directly without the need for a trade-

off parameter such as α.

3.5.1 Derivation of the CRB-FOP

We begin by reconsidering the signal model of (3.2) in terms of the estimation prob-

lem. Assume that pilot tones are transmitted over P ≤ N frequency subchannels. For the

purposes of intuition, also assume that the estimation of the channel impulse response will
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be performed in two stages. The channel will first be estimated in frequency at K < P of the

frequency subchannels, and then these estimates will be used to obtain the channel impulse

response. Note that while this estimation procedure aids intuition, the CRB to be derived

is general in that it does not depend on this particular estimation procedure. Let

yP = ET
P ΓBg + nP . (3.37)

The matrix EP is defined as

EP =
[

ep1 ep2 · · · epP

]

, (3.38)

where ei is the i-th column of the N × N identity matrix and {pi}, i = 1, . . . , P is the set

of frequency subchannel indexes for the P pilot locations. Thus, yP and nP = ET
Pn are

the received signal and additive noise, respectively, at the OFDM frequency subchannels

corresponding to pilot locations. The vector g = FLh is the frequency response of the

channel. Now define

gK = ET
Kg, (3.39)

where EK is defined in the same manner as EP but over the index set {ki} ⊂ {pj}, i.e., gK

is the channel frequency response corresponding to K < P of the pilot locations. We now

wish to find a CRB with respect to our parameters

ΘF =
[

τd Re[gT
K ] Im[gT

K ]
]T

. (3.40)

This initial CRB corresponds with the first part of our intuitional problem in which the

channel is first estimated in frequency at K OFDM subchannels. As was previously done,

we may use Bangs formula (see (3.9)) to find the FIM, the inverse of which is the CRB. The

process of finding the derivatives required for (3.9) is straight forward, so we do not include

it here. The resulting FIM is given by

JF (ΘF ) =
2

σ2
n





JF,τd
JT

F,21

JF,21 JF,h



 (3.41)
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with

JF,τd
= gHBHDZPDBg, (3.42)

JF,21 =





Im[ET
KBHDBg]

−Re[ET
KBHDBg]



 , (3.43)

and

JF,h =





ET
KBHBEK 0

0 ET
KBHBEK



 , (3.44)

where D is given in (3.14) and ZP = EPET
P is an N × N diagonal matrix with ones on the

diagonal corresponding to the locations given by {pi} and zeros elsewhere. Using the block

inversion formula of (3.16), the CRB may now be directly found, and it is given by

CRBF =
σ2

n

2





λ−1
τd

CRBT
F,21

CRBF,21 CRBF,22



 , (3.45)

where

λτd
= gHBHD(ZP − ZK)DBg

= gHBHDZP\KDBg,
(3.46)

CRBF,21 =





−λ−1
τd

Im[qF ]

λ−1
τd

Re[qF ]



 , (3.47)

CRBF,22 =





Q−1
F + λ−1

τd
Im[qF ]Im[qT

F ] −λ−1
τd

Im[qF ]Re[qT
F ]

−λ−1
τd

Re[qF ]Im[qT
F ] Q−1

F + λ−1
τd

Re[qF ]Re[qT
F ]



 , (3.48)

QF = ET
KBHBEK , (3.49)

and

qF = (BEK)†DBg. (3.50)

The matrix ZP\K is the N ×N diagonal matrix with ones on the diagonal corresponding to

the locations given by {pi}\{ki} and zeros elsewhere.
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We now have a CRB with respect to the parameters ΘF . However, what we would

really like is a CRB with respect to the parameters Θ, that is, with respect to τd and the

channel impulse response h. Note that Θ is a function of ΘF when K ≥ L, i.e.,

Θ =











1 0T 0T

0 Re
[

(ETFL)†
]

−Im
[

(ETFL)†
]

0 Im
[

(ETFL)†
]

Re
[

(ETFL)†
]











ΘF

= TΘF

(3.51)

for K ≥ L. Because of this relationship, we may find the desired CRB by using the CRB as

a function of parameters (CRB-FOP) formulation [41]. That is, given a CRB as a function

of Θ0 and the functional relationship Θ1 = f(Θ0), the CRB with respect to Θ1 may be

found from the CRB with respect to Θ0 as

CRB(Θ1) = J′CRB(Θ0)J
′H (3.52)

where J′ is the Jacobian of the function f(Θ0) with respect to Θ0, i.e.,

J′ =
[

∂f

∂[Θ0]1
∂f

∂[Θ0]2
· · · ∂f

∂[Θ0]K

]

. (3.53)

For our problem, the relationship between ΘF and Θ is linear so the Jacobian is simply

J′ = T. Using (3.52), we find the CRB with respect to Θ from the CRB of (3.45), and it is

given by

CRBΘ =
σ2

n

2





λ−1
τd

CRBT
Θ,21

CRBΘ,21 CRBΘ,22



 , (3.54)

where

CRBΘ,21 =





−λ−1
τd

Im[qΘ]

λ−1
τd

Re[qΘ]



 , (3.55)

CRBΘ,22 =





Re[QΘ] + λ−1
τd

Im[qΘ]Im[qT
Θ

] −Im[QΘ] − λ−1
τd

Im[qΘ]Re[qT
Θ

]

Im[QΘ] − λ−1
τd

Re[qΘ]Im[qT
Θ

] Re[QΘ] + λ−1
τd

Re[qΘ]Re[qT
Θ

]



 , (3.56)

QΘ = (ET
KFL)†Q−1

F (ET
KFL)†H , (3.57)
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and

qΘ = (ET
KFL)†qF . (3.58)

3.5.2 The CRB-FOP and Pilot Selection

Given the CRB-FOP formulation of (3.54), let us make a few observations relative to

the CRB and optimal pilot selection. First, we should emphasis that the quality of the CRB

is not degraded as a result of this two-step procedure for its obtaining. In particular, it is

shown in [41] that if an efficient estimator exists for the first set of parameters Θ0, then an

efficient estimator also exists for the second set of parameters Θ1 assuming that the function

relating the two parameter sets is linear, which it is in our case. Therefore, the CRB is not

loosened by taking this derivation approach.

Next, we observe that the CRB subblock given by (3.56) is very similar in structure

to that given in (3.22). Therefore, much of the intuition gained in Section 3.3 for pilot

design relative to the trace of (3.22) also applies for this subblock. In fact, if the pilots are

constrained to be equipowered, such as in the DPS case, it is easy to verify that the two

expressions are identical except for the differences in λ−1
τd

and γ−1
τd

.

Finally, we observe that λτd
is almost identical in form to the uncoupled Jτd

of (3.11).

This does not mean that the expression for λτd
is uncoupled in terms of the estimation of

τd and h. It is coupled. However, the form of this expression does suggest a very simple

two-step procedure for addressing our design problem, finding a pilot configuration which

minimizes the channel impulse response estimation error variance while meeting a constraint

on the error variance of the time delay estimate. For the first step, pilot locations and powers

may be selected to ensure that the constraint on τd estimation performance is met. This may

be done for both the DPS and CPD scenarios in the same manner as in the uncoupled case.

For the second step, with the remaining power, pilots are selected to minimize tr[CRBΘ,22],

and this may be done in a manner identical to the previously discussed coupled case with

α = 0, except that the pilot locations selected for the first part of the problem are excluded

from consideration here. The important point is that this secondary pilot selection does not

alter the value of λ−1
τd

realized by the initial design.
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Table 3.1: Channel Impulse Response Coefficients

Element Coefficient Value

h0 0.3802 + j0.2254
h1 1.2968 − j0.9247
h2 −1.5972 − j0.3066
h3 0.6096 + j0.2423

Note that this design procedure does not guarantee the optimal solution to our desired

problem. This is because, as was mentioned previously, the CRB subbolocks relating to τd

and h are not truly uncoupled. It is possible, for example, that selecting slightly less optimal

locations when designing pilots for λτd
, may make possible an improved pilot design for the

secondary pilot selection. That being said, such a scenario is not likely when P −K is small,

so we expect this design procedure to yield optimal results in most instances.

3.6 Numerical Simulations

We now proceed to present simulation results demonstrating the design and properties

of the optimal pilot signals chosen based upon the CRB formulations presented previously.

For the results that follow, assume a channel impulse response is of length L = 4. We

use an OFDM signal using N = 32 subchannels, a total pilot power of PT = L + 1, and

a measurement noise variance of σ2
n = −20 dB. The channel impulse response is selected

randomly with coefficients drawn from a zero-mean unit-variance complex Gaussian distri-

bution. These impulse response coefficients, ordered by increasing delay, are given in Table

3.1. When designing pilots for the DPS case, P = 5 pilots are used. For the CPD case, the

Matlab function fminunc with a random initialization is used for minimization.

To begin, we first look at optimal pilot design results obtained when minimizing over

the cost function G(α,b). In Fig. 3.1, the optimal pilot configurations are shown for both

the DPS and CPD cases when α = 0. The magnitude of the channel frequency response,

|g(k)|, is superimposed on the plot as a reference. Recall that when α = 0, full performance

emphasis is placed on h estimation. For the CPD case, we observe L + 1 pilot clusters with
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Figure 3.1: Example of DPS and CPD pilot design using G(α,b) with α = 0.

a relatively even spacing over the frequency subchannels, and the positions of these CPD

pilots correspond well with the optimal pilot locations selected for the DPS scenario.

Note that it may be arguable whether or not there are actually L or L + 1 CPD

pilot clusters since pilot spacings may wrap around the edges of the frequency band. While

pilot power is generally allocated near both band edges for α = 0, we have noted in other

simulations that these allocations do not tend to behave as a cluster, e.g., one or the other

may move away from the band edge from time to time. Also, while the CPD pilot cluster

locations correspond well with those found for the DPS scenario with L + 1 equipowered

pilots, that is not the case when using only L DPS pilots.

If we conclude that there are L + 1 pilot clusters, the equispacing seen in this figure

does not correspond to the notion of equispacing as defined in [20]. Relative to that case,

the outermost pilots have been shifted towards the band edges and positions of the non-edge
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Figure 3.2: Example of DPS and CPD pilot design using G(α,b) with α = 1.

pilots have shifted to maintain approximately equal spacing within the interior of the band.

In terms of power allocation, the interior pilot clusters are allocated a larger percentage

of the available power than those on the band edges. All of these results agree with the

discussion of Section 3.4.

For the complementary limiting case of α = 1, simulation results are presented in

Fig. 3.2. Recall that when α = 1 the pilot locations are designed with sole emphasis placed

on the time delay estimation performance. With this shift in emphasis comes a corresponding

shift in relative power allocation among the pilots. For this case, the pilots near the band

edges receive a larger relative power allocation than those towards the band center. In

addition, the pilot locations are not as equally spaced as they were in the α = 0 case, with

some pilots shifting closer to the band edges for the CPD case and close to the locations
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of lower channel response magnitude in the DPS case. Once again, the simulation example

supports the intuition developed earlier.

It is useful to note in Fig. 3.2 that, like in Fig. 3.1, the locations of the DPS pilots have

a relatively good correspondence with the locations of the CPD pilots, though the correspon-

dence is not as strong in this case. This relationship between the pilot locations selected by

the DPS when using L+1 pilots and those selected for the CPD is typical in the simulations

we have carried out. It is greatest when α is small (though not, interesting, when α = 0) and

weakens as α is increased. Since for typical values of N , L, and P , the minimization used

for the CPD optimization requires much less computation than the DPS exhaustive search,

this relationship could be used to significantly reduce the computational burden of the DPS

optimization. For example, the CPD optimization could be used to restrict the DPS pilot

search space considerably, which would result in dramatic computational reductions.

We now present an example in which the minimization of (3.25) is used to find pilot

designs which minimize the variance of the channel coefficient estimates while satisfying a

constraint on the variance of the time delay estimate. The constraint on the delay variance,

or, correspondingly, on γ−1
τd

, is chosen to be γ−1
TARGET = 6 × 10−5 × (Ts/(2πσn))2. Given this

constraint, the simulation is carried out by varying α over thirty-two evenly-spaced points

on [0, 1], solving the minimization of (3.25) at each point, and selecting the solution which

satisfies and is closest to the desired constraint. For the CPD case, the best pilot design is

found at a value of α = 0.61 with γ−1
τd

= 5.9×10−5×(Ts/(2πσn))2 and tr[CRB22]/L = 0.077.

The DPS, however, was unable to meet the constraint with the available power, achieving

only γ−1
τd

= 6.6 × 10−5 × (Ts/(2πσn))2 and tr[CRB22]/L = 0.019 with α = 1. The resulting

pilot configurations are shown in Fig. 3.3.

Note that for the CPD case, the values of the two terms of G(α,b∗) at the optimal b∗
change relatively smoothly with α. This observation may be used to simplify the search for

the value of α which satisfies the design problem above. In Fig. 3.4, the values of these terms

are plotted relative to α for the optimal pilot locations. Except for the occasional outlier,

most channel realizations investigated in our simulations have demonstrated trade-off curve

features comparable to those seen in the figure.
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Figure 3.3: Example of DPS and CPD pilot design using G(α,b) with constraint σ2
n
2 γ−1

τd
≤

3 × 10−5 × (Ts/(2π))2; the target is not achieved in the DPS case resulting in α = 1, σ2
n
2 γ−1

τd
=

3.3 × 10−5 × (Ts/(2π))2, and tr[CRB22]/L = 0.019, but is achieved in the CPD case with

α = 0.61, σ2
n
2 γ−1

τd
= 2.9 × 10−5 × (Ts/(2π))2, and tr[CRB22]/L = 0.077.

Finally, we consider an example in which the CRB-FOP formulation is used for opti-

mal pilot design. Once again, we are considering the problem of finding pilot designs which

minimize the variance of the channel coefficient estimates while satisfying a constraint on the

variance of the time delay estimate. Figure 3.5 presents the optimal pilot designs for our prob-

lem using the CRB-FOP formulation and targeting the same constraint as in the previous

design example. Recall that, unlike the previous case, it is not necessary with this formulation

to search for a constraint-satisfying solution over a trade-off parameter such as α. Instead,

the pilots are designed in two steps, first by directly satisfying the constraint, and then by

minimizing the channel estimation variance with the remaining available power. Both the

DPS and CPD where able to solve this problem, though the DPS required three pilots to
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Figure 3.4: Demonstration of the influence of α on the terms of G(α,b).

satisfy the delay constraint. For the pilot solutions shown, λ−1
τd

= 5.6 × 10−5 × (Ts/(2πσn))2

and tr[CRBΘ,22]/L = 0.117 for the DPS case and λ−1
τd

= 6 × 10−5 × (Ts/(2πσn))2 and

tr[CRBΘ,22]/L = 0.099 for the CPD scenario. Note that in both cases, the channel esti-

mation performance is lower than that found using the standard CRB formulation. This

is a result of the model used to derived the CRB as a function of parameters. The model

prohibits the channel estimation from using information garnered by pilots allocated exclu-

sively for the delay estimation. However, this loss may be a small price to pay for the design

simplifications available when using this CRB formulation.

3.7 Conclusions

In this chapter, we have considered the design of optimal pilot signals for the joint

estimation of the time delay and channel impulse response parameters in an OFDM com-
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Figure 3.5: Example of DPS and CPD pilot design using the CRB-FOP method with con-

straint σ2
n
2 λ−1

τd
≤ 3× 10−5 × (Ts/(2π))2; the target achieved using both DPS and CPD methods

with σ2
n
2 λ−1

τd
= 2.8 × 10−5 × (Ts/(2π))2 and tr[CRBΘ,22]/L = 0.117 for the DPS case and

σ2
n
2 λ−1

τd
= 3.0 × 10−5 × (Ts/(2π))2 and tr[CRBΘ,22]/L = 0.099 for the CPD case.

munications system. In particular, the chapter addressed the problem finding the pilot

locations and power levels which minimize the channel impulse response estimation error

variance while meeting a constraint on the error variance of the time delay estimate. Follow-

ing the introduction of the OFDM signaling model, the CRB was derived relative to the both

the time delay and channel impulse response. A weighted trace of the CRB was then used

to address the pilot design problem. While the optimal pilots could not be found directly,

the expression allowed us to determine many of the general properties of the optimal solu-

tion. Following this presentation, a second CRB was derived as a function of intermediate

parameters. This CRB, while similar to the first, led to a simplified method for finding op-

timal pilot configurations. The numerical simulations demonstrated the use of these CRBs
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in solving the pilot design problem and supported the conclusions of the paper concerning

the structure of the optimal pilots.
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Chapter 4

Performance Bounds for MIMO-OFDM Channel Estimation

4.1 Introduction

In this chapter, we study the theoretical performance of pilot-based channel interpo-

lation and prediction for frequency-selective, time-fading, wireless MIMO-OFDM channels

via bounds for the interpolation and prediction error of the channel. Our analysis of these

bounds demonstrates that (1) better estimation and prediction performance can be obtained

using MIMO systems, (2) parametric channel modeling is advantageous in terms of estima-

tion and prediction performance, but (3) the presence of modeling errors quickly degrades

the performance of parametric approaches based on calibrated arrays and necessitates the

use of more robust models. The analysis is based on extended ray-based parametric channel

models for SISO and MIMO channels. The lower bounds on interpolation and prediction

error are derived using vector formulations of the CRB for biased and unbiased estimators

and for functions of parameters, in a manner similar to [59, 60]. We consider bounds for

several different types of channel parameterizations. The first model employs directions of

departure (DOD) and directions of arrival (DOA) at the transmit and receive arrays, re-

spectively, and includes the effects of imperfect array calibration on estimation performance.

We also consider bounds for models that are formulated using more robust spatial-signature

representations of the channel instead of DOD and DOA information. We show that while

angle-based models enjoy a performance advantage for perfectly calibrated arrays, the ad-

vantage is quickly lost when modeling errors are taken into account. The derived bounds

allow one to compute the size of the calibration error required before spatial-signature models

yield better results. Note that earlier versions of this work are presented in [91–93].

The remainder of the chapter is organized as follows. Section 4.2 introduces the

DOD/DOA and spatial-signature-based channel models. The performance bounds on the
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interpolation and prediction error are derived in Section 4.3, and numerical evaluations of

the bounds are examined in Section 4.4. Finally, concluding remarks are given in Section

4.5.

4.2 Channel Models

We consider wideband ray-based channel models, where the signal at the receiver is

represented by a sum of a finite number of copies of the signal sent by the transmitter, each

copy experiencing its own attenuation, delay, and Doppler. The resulting channel model is

variable in both time (t) and frequency (ω), and can be expressed as the following Mr ×Mt

matrix function

H(ω, t) =
L

∑

l=1

αlar,l(ω)aT
t,l(ω)ej((ωc−ω)τl−ωd,lt) , (4.1)

where L denotes the total number of propagation paths, ωc is the center or reference fre-

quency of the frequency band of interest, and associated with each path l are the following

parameters:

- complex gain αl

- Doppler frequency ωd,l

- delay τl

- Mt × 1 transmit antenna array response at,l(ω)

- Mr × 1 receive antenna array response ar,l(ω).

We use the above model over time intervals where the relative positions of the transmitter

and receiver change by at most a few tens of wavelengths, and thus we assume that the

given physical channel parameters are time-invariant. The time-varying phase due to the

Doppler induces the multipath fading effect. Narrowband (frequency flat) versions of this

model have been used in several channel measurement campaigns [86–88] and form the basis

for the derivations and analysis of [60]. The wideband version of the model can be derived

directly as a time-varying multipath channel kernel [89]. As described in the sections that

54



follow, we will consider several different ways of parameterizing the spatial components of

the channel at,l(ω) and ar,l(ω).

4.2.1 DOD/DOA Model

For the DOD/DOA model, we assume that the array response vectors at,l(ω) and

ar,l(ω) in (4.1) are functions of the DOD and DOA, respectively, of signal path l (while we

use a scalar direction parameter to describe the DOD or DOA, the approach below is easily

extended to cases where the array response vectors depend on multiple parameters, including

azimuth and elevation angles, polarization states, etc). This model is valid for any array

geometry; for example, a uniform linear array at the transmitter may be described using the

Vandermonde structure

aT
t,l(Ωt,1, ω) =

[

1 e−jΩt,l(ω) · · · e−j(Mt−1)Ωt,l(ω)

]

, (4.2)

where Ωt,l(ω) = k(ω)dt sin φt,l is the solid angle of path l, k(ω) is the frequency-dependent

wave number, dt is the separation between antenna elements, and φt,l is the direction of

departure (DOD) of path l.

We may also express (4.1) for the DOD/DOA model in matrix form as

H(ω, t) = Ar(Ωr, ω)XW(ω, t)At(Ωt, ω)T (4.3)

with

Ar(Ωr, ω) =
[

ar,1(Ωr,1, ω) · · · ar,L(Ωr,L, ω)
]

, (4.4)

At(Ωt, ω) =
[

at,1(Ωt,1, ω) · · · at,L(Ωt,L, ω)
]

, (4.5)

X = diag(α1, α2, . . . , αL), (4.6)

and

W(ω, t) = diag(ejγ1(ω,t), . . . , ejγL(ω,t)), (4.7)

where γl(ω, t) = ej((ωc−ω)τl−ωd,lt). In (4.3), the dependence of the array responses in the

DOD/DOA model on frequency and the solid angles of departure and arrival is explicitly
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shown. For notational simplicity, we omit this dependence from the notation in what follows,

though this dependence is implied when discussing the DOD/DOA model. It is convenient

for our analysis to represent (4.3) in a vectorized form:

h(ω, t) = (At ⊗ ArX)vec(W(ω, t)), (4.8)

where ⊗ is the Kronecker product and vec(A), the vectorization operator, stacks the columns

of A. Thus, h(ω, t) is an MtMr × 1 vector.

The channel model in (4.8) is parameterized by the L-length vector parameters α, τ ,

ω, Ωt, and Ωr, which are of the form α
T = [α1, α2, . . . , αL],ωT = [ωd,1, ωd,2, . . . , ωd,L], and

so on. For convenience, we will represent these parameters collectively using a single real-

valued vector Θ =
[

Re[α]T , Im[α]T , τ T , ωT ,ΩT
t ,ΩT

r

]T
. Note that the number of parameters

depends only on the number of paths L, not on the size of the antenna arrays Mt and Mr.

4.2.2 DOD/DOA Model with Calibration Errors

The above DOD/DOA model inherently assumes ideally calibrated arrays, with array

responses that are precisely known functions of the DOD or DOA. This is never the case

in practice due, for example, to effects such as mutual coupling, imprecisely known antenna

positions, RF non-linearities, I/Q imbalance, etc. To more realistically study the perfor-

mance of parametric models based on array calibration, we introduce a generalized model

in which the actual array responses are described as the sum of the nominal ideal response

and a perturbation term: at,l + vt,l and ar,l + vr,l. In matrix form, the DOD/DOA model

with calibration errors (CE) becomes

H(ω, t) =
L

∑

l=1

αl(ar,l + vr,l)(at,l + vt,l)
T ejγl(ω,t) (4.9)

= (Ar + Vr)XW(ω, t)(At + Vt)
T , (4.10)

where Vt and Vr are defined in a similar manner as At and Ar. In vectorized form, the

model becomes

h(ω, t) = ((At + Vt) ⊗ (Ar + Vr)X)vec(W(ω, t)). (4.11)
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As with (4.8), this model is parameterized by α, τ , ω, Ωt, and Ωr. While it is

possible to treat the calibration error variables Vt and Vr as additional model parameters

to be estimated, in this paper we will focus on analyzing the performance of methods that

ignore the presence of such perturbations. In particular, we show how to augment the

resulting performance bound to account for the bias that results from mismodeling the array

response.

4.2.3 Vector Spatial Signature Model

The DOD/DOA model assumes specific array configurations that depend on the

parameters Ωt and Ωr. The estimation of these parameters can be difficult and performance

is often very sensitive to calibration errors. Such problems can be avoided with the use of

a more general model in which the path gains and the angle- and position-dependent array

responses of the DOD/DOA model are replaced by unstructured vectors, termed spatial

signatures. In this case, the model of (4.1) becomes simply

H(ω, t) =
L

∑

l=1

ar,la
T
t,le

j((ωc−ω)τl−ωd,lt) (4.12)

= ArW(ω, t)AT
t , (4.13)

or, in vectorized form,

h(ω, t) = (At ⊗ Ar)vec(W(ω, t)). (4.14)

The vectors at,l and ar,l are not explicit functions of DOD or DOA, but instead abstractly

represent the transmit and receive array responses for path l with delay τl and Doppler

ωd,l. Note that while simpler to estimate and insensitive to calibration errors, this vector

spatial signature (VSS) model approximates the array response vectors as being frequency

independent, which is not true when using physical antenna arrays with wideband signals.

The VSS model is parameterized by τ , ω, the LMt-element vectors Re[at], Im[at], and the

LMr-element vectors Re[ar], Im[ar], where at = vec(At) and ar = vec(Ar). Unlike the

DOD/DOA model, the number of parameters depends on Mt and Mr, as well as L.
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4.2.4 Matrix Spatial Signature Model

In this section, we generalize (4.12) one step further by replacing the vector spatial

signatures at,l and ar,l of path l by a matrix spatial signature Al so that

H(ω, t) =
L

∑

l=1

Ale
j((ωc−ω)τl−ωd,lt). (4.15)

As in the VSS model, the matrices Al are not assumed to be explicit functions of DOD

or DOA, instead they abstractly represent the channel characteristics for a particular path

with associated delay τl and Doppler ωd,l. Since no restriction is placed on the elements of

the matrices Al, they may be of arbitrary rank, in contrast to the rank-one matrices formed

by the outer products ar,la
T
t,l in the VSS model. The consequences of this fact will be seen

later. Note that as in the VSS case, this model assumes the matrix spatial signatures are

also frequency independent. This matrix spatial signature (MSS) model is essentially a two-

dimensional filter in ω and t with matrix filter taps. At a fixed time t, it is similar to the

multi-channel finite impulse response (FIR) channel models frequently used in the literature,

although the taps are not evenly spaced in time.

As with the other models, the summation in (4.15) can be expressed using matrix

operations as

H(ω, t) =
L

∑

l=1

Alwl(ω, t)

=
[

A1 A2 · · · AL

]

















w1IMt

w2IMt

...

wLIMt

















= A(w ⊗ IMt), (4.16)

where

wl(ω, t) = ej((ωc−ω)τl−ωd,lt), (4.17)
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Table 4.1: Number of Real-Valued Model Parameters

Model No. of Parameters

DOD/DOA 6L
VSS 2L(Mt + Mr + 1)
MSS 2L(MtMr + 1)

A =
[

A1 A2 · · · AL

]

, (4.18)

and

wT =
[

w1(ω, t) w2(ω, t) · · · wL(ω, t)
]

. (4.19)

In vector form,

h(ω, t) = (IMt ⊗ A)vec(w ⊗ IMt). (4.20)

The MSS model is parameterized by τ , ω (through w), and the Mr × LMt real-valued

matrices Re[A] and Im[A]. Thus, the 2L(MtMr + 1) parameter vector Θ depends on both

the number of paths and the array sizes. Table 4.1 summarizes the number of parameters

for each model.

4.3 Lower Bound on Estimation/Prediction Error

In what follows, we will derive Cramér-Rao bounds (CRBs) for the performance of

channel estimation as functions of the parameters of the models presented above. We make

the following two assumptions common to most MIMO-OFDM systems: (1) we assume that

bursts of training or pilot data are available at several points in time or at several frequencies

or both, and (2) we assume that these bursts are short enough in time and narrow enough in

frequency that the channel can be assumed to be constant over their duration and bandwidth.

In most MIMO-OFDM applications, each burst of training data would be used to produce a

local “snapshot” of the channel, and the various local estimates would then be interpolated

or extrapolated in order to find estimates of the channel at other times and frequencies. An

alternative approach would be to use all of the pilot data directly to find channel estimates

at all times and frequencies of interest, rather than breaking the process into two-steps

involving intermediate channel snapshots. We will focus on the former approach, but we
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discuss analysis of the latter approach in Section 4.3.1. In particular, we show that under

certain standard assumptions, the two approaches yield identical bounds.

To derive the CRB here, we assume that pilot symbols are used to obtain a series of

NM channel measurements h̃(ωn, tn) at time-frequency pairs (ω1, t1), · · · , (ωNM
, tNM

). These

measurements are imperfect due, for example, to noise and interference present along with

the training data. Thus, we model the channel measurements as a sum of the true channel

h(ω, t) and a Gaussian noise term due to estimation error, so that

h̃(ωn, tn) = h(ωn, tn) + n(ωn, tn), (4.21)

where the MtMr × 1 Gaussian noise term is distributed as n(ω, t) ∼ CN (0,Cn). The

NM samples form the measurement segment, which is used to interpolate or extrapolate the

channel to other times and frequencies of interest. For convenience, we stack the NM channel

measurements into an NMMtMr-length vector as follows:

h̃ =

















h̃(ω1, t1)

h̃(ω2, t2)
...

h̃(ωNM
, tNM

)

















= h + n, (4.22)

where h is parameterized by any of the models described in Section 4.2 and n is a NMMtMr-

length stacked estimation error vector distributed jointly as n ∼ CN (0,C). Our analysis is

general enough to accommodate an arbitrary covariance matrix C. However, for simplicity

in the presentation of the CRB derivations and expressions, we will assume the channel

measurement error to be spatially and temporally white, so that C = σI where I is an

MtMr×MtMr identity matrix and σ is the variance. This is a common model in the literature

that holds when unitary training symbols are used to form the channel measurements. As will

be seen shortly, the derivatives with respect to the covariance and the model are decoupled,

allowing the results derived using this assumption to be generalized in a straight-forward

manner. An expression for σ in terms of the signal-to-noise ratio and the number of training

symbols can be found in [60], although in computing the channel estimation bounds we will
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assume that σ is an unknown parameter that also must be estimated. Thus, σ must be

added as a parameter to each of the models described by Θ in the previous section.

At any particular time and frequency (ω, t), the channel estimate is written as ĥ(ω, t)

and the channel estimation error is given by

e(ω, t; h̃,Θ) = ĥ(ω, t; h̃) − h(ω, t;Θ). (4.23)

For clarity, we have explicitly included the h̃ and Θ dependence in (4.23), but in what follows

we omit these dependencies for simplicity and write the channel estimate as ĥ(ω, t) and the

estimation error as e(ω, t). Our goal is to find a lower bound on the covariance matrix of

any unbiased estimator ĥ using the Cramér-Rao bound (CRB). Using a vector formulation

of the CRB [78], the bound may be written as

E

[

(

ĥ(ω, t) − h(ω, t)
)(

ĥ(ω, t) − h(ω, t)
)H

]

≥ H′BH′H , (4.24)

where the matrix inequality F ≥ G indicates that the matrix difference F − G is positive

semi-definite, B is the CRB matrix with respect to the parameters Θ, and H′ is the Jacobian

matrix

H′ =
[

∂h(ω,t)
∂θ1

∂h(ω,t)
∂θ2

· · · ∂h(ω,t)
∂θP

]

, (4.25)

where P is the number of model parameters, e.g., P = 6L + 1 for the DOD/DOA model,

P = 2L(Mt +Mr +1)+1 for the VSS model, and P = 2L(MtMr +1)+1 for the MSS model.

Matrix B, the CRB with respect to Θ, can be calculated using Bangs formula [40]

[

B−1
]

ij
= tr

[

C−1∂C

∂θi

C−1 ∂C

∂θj

]

+ 2Re

[

∂hH

∂θi

C−1 ∂h

∂θj

]

= J(Θ)ij, (4.26)

where J(Θ) is the Fisher information matrix (FIM).

When considering the form of the CRB expression in (4.24), it may be instructive to

assume a scenario in which the channel parameters Θ are estimated using the NM available

channel measurements, and then the channel is estimated at time/frequency locations out-
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side the measurement segment using the parameter estimates Θ̂ and the appropriate channel

model. In practice, such a method may be difficult and computationally burdensome, par-

ticularly when L is large. However, the CRB formulation above does not depend upon such

an estimation scheme. Nor is our goal to suggest a particular algorithm for channel interpo-

lation and extrapolation, but is instead to bound the best possible performance that could

be achieved given the assumed channel models.

Once the CRB is known, the sum of variances of the elements of the estimation error

vector e(ω, t) may be bounded as

E
[

‖e(ω, t)‖2
2

]

≥ tr
[

H′BH′H
]

, (4.27)

where ‖·‖2 denotes the Euclidean norm. Note that even though B depends on the NM

channel measurements, this expression is valid for any (ω, t) pair through the transformation

H′, not just those in the measurement segment. That is, once the CRB for the model

parameters Θ is found, the bound for h may be calculated for any (ω, t).

4.3.1 Direct vs. Indirect Use of Pilots

As mentioned above, we focus in this paper on the two-step procedure where channel

measurements are obtained independently at several time-frequency pairs, and then used

to find channel estimates elsewhere. However, the one-step approach, where the data used

to generate the independent channel measurements is pooled together and used directly to

generate channel estimates at all other times and frequencies, can also be analyzed using our

framework. In the direct approach, instead of channel measurements, we have NM bursts of

pilot data:

Z(ωn, tn) = H(ωn, tn)Sn + Ñ(ωn, tn) , n = 1, · · · , NM , (4.28)

where Sn is an Mt×NT matrix of pilot data and Ñ(ωn, tn) is the noise present during training.

Note that Equation (4.28) implicitly assumes narrowband pilot data of short duration so that
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the channel can be assumed to be approximately constant. Vectorizing (4.28) yields

z(ωn, tn) = (ST
n ⊗ I)h(ωn, tn) + ñ(ωn, tn) (4.29)

= S̃nh(ωn, tn) + ñ(ωn, tn) , (4.30)

where we have defined S̃n = (ST
n ⊗ I). Stacking all NM data vectors together as in (4.22),

we end up with the model

z =











S̃1

. . .

S̃NM











h + ñ = S̃h + ñ , (4.31)

where we assume that the noise term ñ is distributed as ñ ∼ CN (0, C̃).

Apart from the presence of the linear transformation S̃, the form of Equation (4.31)

is identical to that in (4.22), and the bound on the channel estimation error again follows

from a straightforward application of the vector CRB and Bangs formula:

E

[

(

ĥ(ω, t) − h(ω, t)
)(

ĥ(ω, t) − h(ω, t)
)H

]

≥ H′B̃H′H , (4.32)

where
[

B̃−1
]

ij
= tr

[

C̃−1∂C̃

∂θi

C̃−1 ∂C̃

∂θj

]

+ 2Re

[

∂hH

∂θi

S̃HC̃−1S̃
∂h

∂θj

]

. (4.33)

Thus, analysis of the one-step estimation approach follows directly from analysis of the

two-step procedure presented below.

Under standard assumptions about the training data, noise, and channel estimation

procedure, we can further show that the one- and two-step procedures yield exactly the same

CRB. Assume NT ≥ Mt and that the training data matrices Sn have full row rank. If the

measurement noise is uncorrelated at different time-frequency pairs (ωn, tn), the FIM with

respect to the channel parameters becomes

[

B̃−1
]

ij
=

NM
∑

n=1

2Re

[

∂hH
n

∂θi

(ST
n ⊗ I)HC̃−1

n (ST
n ⊗ I)

∂hn

∂θj

]

, (4.34)
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where C̃n = E[ñ(ωn, tn)ñ(ωn, tn)H ]. If we also assume that C̃n = σ̃nI, then (4.34) simplifies

further to
[

B̃−1
]

ij
=

NM
∑

n=1

2

σ̃n

Re

[

∂hH
n

∂θi

(S∗
nS

T
n ⊗ I)

∂hn

∂θj

]

. (4.35)

A standard approach to flat-fading channel estimation with training data is to apply the

pseudo-inverse of S†
n to the right of Z(ωn, tn) in (4.28), which results in the channel estimate

Ĥ(ωn, tn) = Z(ωn, tn)S†
n = H(ωn, tn) + Ñ(ωn, tn)S†

n. (4.36)

In this case, the covariance of the two-step measurement noise becomes

Ĉn = (S†T
n ⊗ I)C̃n(S†∗

n ⊗ I) = σ̃n(S†T
n S†∗

n ⊗ I) , (4.37)

and its inverse is given by

Ĉ−1
n =

1

σ̃n

(S∗
nS

T
n ⊗ I). (4.38)

Plugging this into (4.26) and again assuming the measurement noise is uncorrelated from

measurement to measurement, we obtain an FIM identical to (4.35). Thus, for the given

assumptions, the one- and two-step procedures have identical CRBs. Note that if NT = Mt,

the same result may be shown for more general C̃n.

4.3.2 DOD/DOA Model

Using the CRB tools given by (4.24)-(4.26), we derive a lower bound for the estimation

error using the DOD/DOA model without calibration errors. In order to evaluate (4.26), we

explicitly write out h, the sampled channel vector of (4.22). For the DOD/DOA model, h

may be written as

h = (INM
⊗ (At ⊗ ArX))W , (4.39)
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where

W =

















vec(W(ω1, t1))

vec(W(ω2, t2))
...

vec(W(ωNM
, tNM

))

















. (4.40)

The evaluation of the derivatives in (4.25) and (4.26) is straightforward but tedious, and the

derivations are left to Appendices B.1 and B.2. The form of the resulting FIM with respect

to Θ for the DOD/DOA model can be expressed as a collection of submatrices as follows:

J(Θ) =





MtMrNM

σ2 0T

0 J22



 , (4.41)

where

J22 =





























Re[P1] −Im[P1] Re[P2] Re[P3] Re[P4] Re[P5]

Im[P1] Re[P1] Im[P2] Im[P3] Im[P4] Im[P5]

Re[PT
2 ] Im[PT

2 ] Re[P6] Re[P7] Re[P8] Re[P9]

Re[PT
3 ] Im[PT

3 ] Re[PT
7 ] Re[P10] Re[P11] Re[P12]

Re[PT
4 ] Im[PT

4 ] Re[PT
8 ] Re[PT

11] Re[P13] Re[P14]

Re[PT
5 ] Im[PT

5 ] Re[PT
9 ] Re[PT

12] Re[PT
14] Re[P15]





























. (4.42)

Note that σ has been added as the first element of Θ in this and all subsequent

models. The individual blocks in the above expression have a simple form; for example, P1

is given by

P1 =
2

σ

NM
∑

n=1

WH
n (AH

t At) ⊙ (AH
r Ar)Wn, (4.43)

where ⊙ denotes an element-wise matrix (Hadamard) product and Wn = W(ωn, tn). The

remainder of the CRB submatrices are given in Appendix B.3.1. These subblocks are eas-

ily calculated for any specific channel or array configuration. Numerical examples of the

resulting bounds are presented later in Section 4.4.
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4.3.3 DOD/DOA Model with Calibration Errors

For the DOD/DOA model with calibration errors, the measurement vector h is given

by

h = (INM
⊗ ((At + Vt) ⊗ (Ar + Vr)X))W . (4.44)

In this paper, the calibration errors Vt and Vr are assumed to be ignored during the channel

estimation process, resulting in a biased channel estimator. Therefore, the bound given by

the CRB formula in (4.24) will not apply. However, we may still find a corresponding bound

for the biased case. To do this, we assume

E
[

ĥ(ω, t)
]

= h(ω, t) + b(ω, t)

= (At ⊗ ArX)vec(W(ω, t)), (4.45)

where h(ω, t) is the DOD/DOA channel model with calibration errors and b(ω, t) is the

estimation bias given by

b(ω, t) = (At ⊗ ArX)vec(W(ω, t)) − h(ω, t). (4.46)

Then the CRB may be found as

E
[

e(ω, t)e(ω, t)H
]

≥ H′BH′H + bbH , (4.47)

where B is the CRB matrix with respect to the parameters and H′ is the Jacobian matrix

H′ =
[

∂(h(ω,t)+b(ω,t))
∂θ1

· · · ∂(h(ω,t)+b(ω,t))
∂θP

]

. (4.48)

The time and frequency dependent bias term accounts for the effects of the calibration errors

on the bound. Matrix B, the CRB for Θ, may be calculated by applying Bangs formula to

the sampled channel model h of (4.44).

If we further assume that the calibration errors are random variables drawn from a

particular distribution, e.g., vec(Vt) ∼ CN (0, σtI) and vec(Vr) ∼ CN (0, σrI), then we may
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remove specific calibration error terms from the CRB, obtaining

E
[

e(ω, t)e(ω, t)H
]

≥ H′BH′H + E
[

bbH
]

, (4.49)

where B, the CRB with respect to the parameters, becomes

B−1 = E[J(Θ)]. (4.50)

The expectations in (4.49) and (4.50) are with respect to the calibration and measurement

error distributions. A derivation of this modified CRB is available in Appendix A. The

CRB expression found for the calibration error model using the above biased CRB formula

is given in Appendix B.3.2. Note that the bound of (4.49) is not a Bayesian or posterior

CRB since the calibration errors are not considered channel parameters in this scenario.

The expectation over the calibration errors removes the dependence of the bound on specific

calibration error realizations, but does not qualitatively alter the bound of (4.49) relative to

(4.47).

4.3.4 VSS CRB

The VSS measurement vector h is given by

h = (INM
⊗ (At ⊗ Ar))W . (4.51)

The results of applying (4.24)-(4.26) to this model are detailed in Appendix B.3.3.

4.3.5 MSS CRB

The MSS measurement vector h is given by

h = (INM
⊗ (IMt ⊗ A))B

= (INMMt ⊗ A)B, (4.52)
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where A is given in (4.18),

B =

















vec(w(ω1, t1))

vec(w(ω2, t2))
...

vec(w(ωNM
, tNM

))

















, (4.53)

and w(ωn, tn) is given in (4.19). Application of (4.24)-(4.26) to this model is presented in

Appendix B.3.4.

4.4 Numerical Simulations

In this section, we explore the limiting performance of MIMO-OFDM channel esti-

mation and prediction by numerically evaluating the derived bounds for several scenarios.

In examining the estimation error performance via the CRB, a natural measure is the Root

Mean Square Error

RMSE(ω, t) =

√

E[‖e(ω, t)‖2
2]

E[‖H(ω, t)‖2
F ]

, (4.54)

where (ω, t) is the time and frequency at which the channel is estimated or predicted. Unlike

previous expressions, the expected values in (4.54) are over not only the measurement error,

but the channel realizations as well. Thus, this measure represents a normalized average

(over the channel and the measurement noise) error of the elements of h(ω, t), and it allows

for a direct and fair comparison of the error performances of MIMO systems with various

array sizes, including the limiting SISO case. Substituting the bound of (4.27) into (4.54),

we obtain the normalized RMSE bound

RMSE(ω, t) ≥
√

E [tr[CRB(ω, t)]]

E[‖H(ω, t)‖2
F ]

, (4.55)

where we use CRB(ω, t) to denote the CRB for any of the models described above.

In the simulations that follow, the expected value in the numerator of (4.55) is com-

puted by averaging the estimation error bound over 500 independent channel realizations.

The channel realizations are generated using the DOD/DOA channel model. To obtain these

realizations, the channel parameters for each realization are selected as follows. We begin
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by assuming that the different channel parameters composing Θ are independent, a justifi-

able approximation when considering the channel model. The scattering parameters α are

chosen as independent circular-symmetric complex Gaussian random variables distributed

as αl ∼ CN (0, 1). The path delays τ are selected from an exponential distribution such

that approximately 98% of the τl fall in the delay range of (100 − 1000)λ/c, where λ is the

wavelength at ωc = 2π(2.4 GHz) and c is the speed of light in free space, i.e., 98% of the τl

fall between 0.042µs and 0.42µs. The physical DODs and DOAs for the antenna arrays are

drawn from a uniform distribution so that φt,i, φr,i ∼ U [0, 2π), and the solid angles are given

by the formula Ω·,l = k(ω)d· sin φ·,l with d· = λc/2, where λc is the wavelength at ωc. Note

that k(ω), and therefore Ωt and Ωr, are frequency dependent. The Doppler frequency of

path l is derived from a physical viewpoint to be ωd,l = k(ω)∆s

Ts
sin φd,l, where φd,l is the angle

between the propagation path l and the direction of array motion, and ∆s and Ts are the

distance and time separating consecutive channel measurements, respectively. We assume

φd,l ∼ U [0, 2π). Since ∆s

Ts
is the rate of motion of the antenna array, we may choose either the

sample spacings and sample rate or the rate of array motion to complete the specification

of ωd,l. The simulations use a rate of motion of 5m/s. Using this, the sample rate may be

determined from the measurement spacing discussed in the following. Like Ωt and Ωr, the

values chosen for ωd are frequency dependent. Finally, we assume that the calibration errors

are Gaussian distributed with vec(Vt) ∼ CN (0, σtI) and vec(Vr) ∼ CN (0, σrI).

With the assumptions above, the denominator of (4.55) simplifies to LMtMr(1 +

σt)(1 + σr). To avoid the need of adjusting the channel-to-noise power ratio (CNR), which

is defined from (4.21) to be

CNR =
E

[

‖h(ω, t)‖2
2

]

E
[

‖n(ω, t)‖2
2

] , (4.56)

for different levels of calibration error, we normalize the average power for each of the ele-

ments in the array vectors (array plus calibration error) to unity. Now we may express the

normalized error bound as

RMSE(ω, t) ≥
√

E [tr[CRB(ω, t)]]

LMtMr

. (4.57)
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The CNR reduces to

CNR =
L

σ
. (4.58)

A realistic channel model often consists of several multipath components. For exam-

ple, outdoor measurements taken in downtown Austin, TX, were generally well described by

3-8 paths [53]. Unless otherwise stated, the numerical simulations in this section use L = 6

paths in the channel models. In the simulation results, the time variable will be given in

terms of wavelengths (position or distance) to allow for direct comparisons with previous

work and to abstract the results away from mobile velocity and towards the physical envi-

ronment. The results may be easily converted into units of time by assuming a particular

mobile velocity and channel sampling rate. For most of the simulations, the NM pilot-based

channel measurements are selected or sampled evenly over space and frequency: 16 measure-

ments across a 20 MHz frequency bandwidth and 32 in space between -10 and 0 wavelengths

for a total of NM = 512 channel measurements. Thus, results for wavelengths less than zero

correspond to channel interpolation performance, while those for wavelengths greater than

zero correspond to channel prediction. The measurement noise power is −20dB relative to

unity per receive antenna.

4.4.1 The Channel Models

Figure 4.1 is an example of the 2-dimensional (2D) normalized error bound using a

3×3 MIMO antenna configuration for DOD/DOA and VSS channel models where the upper

surface is the VSS bound. For the sake of clarity, the remaining results will be presented as

position (time) and frequency slices, the position slices at ω − ωc = 0 MHz, the midpoint

of the frequency measurements, and the frequency slices at −5λ, the mid-point of the time

measurements. A representative frequency slice of the normalized error bounds for a 2 × 2

MIMO configuration is shown in Fig. 4.2. In the figure, we see that the ideal DOD/DOA

model provides the best performance in terms of the error bound, which is expected since it

provides the most parsimonious parametrization of the channel. The addition of −60 dB of

calibration error (value of σr = σt relative to the gain of the ULA elements) results in a slight

increase in the bound. However, a rapid increase in the bound is observed as the calibration
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Figure 4.1: Example of 2D normalized error bound results for the DOD/DOA and VSS
models.

error is increased further. A calibration error level of −50 dB is enough to result in the

poorest performance for any of the bounds. The bound for all models increases towards the

band edge since fewer nearby channel measurements are available for interpolation. The VSS

and MSS bounds fall between the two calibration error cases, with the VSS model having

a performance edge over MSS in the center of the bandwidth with decreasing performance

towards the band-edges. Recall that the ULA array responses are frequency dependent via

the wavenumber k, which explains why the VSS performance degrades more quickly away

from the band center. On the other hand, the MSS bound is higher than VSS at the band

center because it does not exploit the rank-one nature of the channel taps, but it is less

sensitive to the frequency dependence of the channel because of the additional modeling

degrees of freedom it has available.
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Figure 4.2: Comparison of bounds for all discussed models in frequency.

Figure 4.3 is a position (time) slice corresponding to the same overall 2D results used

to produce Fig. 4.2. In the estimation region of the plot, the appearance of the bound

slices are very similar to their frequency counterparts. This similarity is due to the duality

in the form of the time and frequency dependence in (4.1). However, in this case the VSS

bound remains lower than the MSS bound as a function of position since the array responses

are assumed to be time-invariant. As expected, in the prediction region, the bound for the

DOD/DOA model without calibration errors is lower than the others.

4.4.2 Calibration Error

The results in Figs. 4.2 and 4.3 suggest that the DOD/DOA model has an extreme

sensitivity to array calibration errors. The normalized error bounds are used to explore this
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Figure 4.3: Comparison of bounds for all discussed models as a function of wavelength.

issue further in Fig. 4.4. Each point in the curves in this plot represent the lowest bound

point from the 3D error bound surfaces for a 2 × 2 MIMO configuration, which occur at

(0 MHz, -5λ). The results in the figure demonstrate the robustness of the VSS model with

respect to calibration errors; around ωc the VSS model performs equally well regardless of the

underlying array structure. This is a significant advantage of the VSS model, particularly

in situations when the array structure may be in doubt or calibration errors are present.

The DOD/DOA model, on the other hand, is shown to be extremely sensitive to even small

amounts of calibration error. This suggests that unless the calibration errors in a system

can be accurately accounted for prior to channel estimation, the DOD/DOA model should

be abandoned in favor of the VSS model for parametric channel estimation. Also included
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Figure 4.4: Examination of the normalized error bound as a function of calibration error.

in the plot as a reference is the average normalized error performance achieved when using

cubic interpolation to estimate the channel from the channel measurements.

Recall that these simulations assume a measurement noise power of −20 dB. Though

not plotted here, we note that changing the measurement noise power level results in the

raising or lowering of the calibration-error-free bound levels, without significantly altering

the slope and position of the calibration-error-dependent portions of the plot. Thus, channels

with lower measurement noise are more sensitive to small amounts of calibration error, while

the converse is true for higher measurement noise power.
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Figure 4.5: Plot of the normalized error bound in frequency for various array sizes.

4.4.3 Array Sizes

We now examine the impact of the array sizes Mt and Mr on the normalized error

bounds. Figure 4.5 displays a frequency slice of the DOD/DOA and VSS error bounds for a

SISO, a 1×2 single input multiple output (SIMO), and 2×2 and 3×3 MIMO configurations.

Note that DOD/DOA and VSS models are not uniquely identifiable for the SISO case since

the array parameters cannot be estimated. Practically, however, the DOD/DOA and VSS

models reduce to the same identifiable SISO channel, and their performance is identical for

this scenario. It is clear that significant gains in channel estimation performance may be

achieved through the use of an increased number of antennas at the transmitter and receiver.

The one exception to this in the plot is the 1× 2 SIMO VSS system, whose bound is higher

than for the SISO system as a result of the extra and unnecessary intermediate step of
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Figure 4.6: Plot of the normalized error bound versus wavelength for various array sizes.

estimating the transmit array element. The SIMO DOD/DOA bound was formulated to

omit this extra step, and therefore does not suffer the same penalty. Overall, these results

are in harmony with those obtained with the wideband time-invariant bounds developed

in [91].

Nearly identical results are seen in the estimation portion of the position slice in

Fig. 4.6. Even greater benefits due to MIMO arrays are seen in the prediction portion of

this plot. The results indicate that both the DOD/DOA and VSS MIMO systems may be

predicted much farther into the future than the corresponding SISO and SIMO systems.

As was suggested in [60], this increase in performance is intuitively explained by noting

that the larger arrays reveal more of the underlying channel structure, allowing for a better

characterization of the channel parameters. This advantage is maintained even when the
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number of channel measurements NM is adjusted to be proportional to 1/Mt, allowing for

a fairer comparison for the given receive CNR of −20 dB. Also included in this plot is

an example of the average normalized error performance when 2D cubic interpolation is

used to estimate the channel from the measurement segment. The low points in the curve

correspond to the locations of the channel measurements in time. It is clear that estimation

of the channel through a parametric approach offers dramatic gains over simple unstructured

interpolation schemes.

The improvement in channel estimation performance with increasing array size sug-

gests that it may be possible to use fewer pilot channels in MIMO-OFDM systems compared

with SISO systems for the same performance level. To illustrate how the number of pilot

subcarriers affect the normalized error bounds, Fig. 4.7 shows VSS bounds corresponding to

a 1 × 2 SIMO configuration with the number of pilot subcarriers (frequency measurements)

ranging from 4 to 32. The markers in the plot indicate the frequencies at which direct

channel estimates are obtained using the pilots. Also displayed on the plot are the coher-

ence bandwidths measured as the frequency range for which the coherence function is either

above 0.9 or 0.5. As expected, having sufficiently dense pilot channels is vital to channel

interpolation performance. In Fig. 4.8, the number of pilot subcarriers are reduced from 16

to 8 (there are now NM = 8 ∗ 32 = 256 channel measurements), and we plot the normalized

error bounds for various array sizes. When smaller arrays are used, the number of samples

is insufficient to achieve interpolated channel estimates of similar quality to those obtained

by the pilots. However for larger arrays, this frequency sampling density is adequate.

4.4.4 Number of Multipath Components

In all of the numerical simulations presented so far, the number of multipath compo-

nents of the channel was chosen to be L = 6. Our final results explore the dependence of the

normalized error bounds on the number of paths. For the following results, the noise power

is adjusted as L is varied to maintain a constant CNR equivalent to that for the −20 dB

noise, L = 6 case used in the previous simulations. Figures 4.9 and 4.10 are frequency and

position slice plots, respectively, of the normalized error bounds for 2 × 2 DOD/DOA and

VSS models with L ranging from 2 to 10 paths. The results in the figures indicate that as

77



−10 −5 0 5 10
−26

−24

−22

−20

−18

−16

−14

−12

−10

frequency (MHz)

n
o

rm
a

liz
e

d
 e

rr
o

r 
b

o
u

n
d

 (
d

B
)

N
M,f

 = 4

N
M,f

 = 8

N
M,f

 = 16

N
M,f

 = 32

CBW (>0.9)

CBW (>0.5)

Figure 4.7: The effect of frequency measurement spacing on performance.

the number of multipath components of a channel increases, the possible channel estimation

performance is reduced. It is interesting to note that while increasing the number of paths

raises the level of the normalized error bound, it does not significantly alter the bound slope.

Thus, increasing the number of channel paths in the model does not severely impact the

predictability of MIMO-OFDM channels.

4.5 Conclusions

In this chapter, we have presented lower bounds for several parametric mobile wide-

band MIMO-OFDM channel models. These bounds were derived using vector formulations

for the Cramér-Rao lower bound for functions of parameters for both unbiased and biased

estimators. The Fisher information matrices in the CRB formulations were noted to have a
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Figure 4.8: The effect array sizes and frequency measurement spacing on performance.

simple block structure allowing for convenient representation and calculation of the bounds.

Numerical evaluations of these bounds demonstrated some interesting features regarding the

estimation and prediction of MIMO-OFDM channels. First, our analysis indicates that better

channel estimation and prediction performance can be achieved through the use of antenna

arrays at the transmitter and receiver. A consequence of this fact is that a MIMO-OFDM

system could function with a lower time and frequency pilot density than a corresponding

SISO implementation, even taking into account the fact that more pilot symbols are re-

quired to estimate a MIMO channel. Second, our results suggest that when suitable, the use

of parametric channel modeling provides a significant advantage in estimation and prediction

performance, particularly when compared with simple unstructured interpolation schemes

for estimating the channel. Finally, we have shown that channel estimation methods based
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Figure 4.9: The normalized error bound for various path numbers L in frequency.

on DOD/DOA parameterizations are extremely sensitive to array calibration errors, and

that approaches based on either vector or matrix spatial signatures are significantly more

robust despite the imprecise way in which they characterize the frequency dependence of the

channel. In particular, the VSS channel model appears to be a reasonable compromise in

terms of complexity, performance and robustness.
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Chapter 5

Power Allocation and Bit Loading for Spatial Multiplexing with
Imperfect CSI

5.1 Introduction

In this chapter, we develop a closed-form expression for the subchannel SINR when

using imperfect CSI in SVD-based signaling schemes. This result generalizes the SINR

derivation of [64] by allowing for non-uniform power allocation and correcting an overesti-

mation of the interference power due to CSI inaccuracies. In addition, this new expression

allows for different levels of CSI error at the transmitter and receiver, whereas previous

methods typically assume the CSI is identical at both ends of the communications link or

that perfect CSI is available at the receiver. Our SINR expressions are developed with the

aid of the first-order SVD perturbation analysis of [77] in a manner similar to the previous

work of [94]. Note that the first-order analysis of [77], unlike previous SVD perturbation

studies [95–99], includes in its analysis the effects of the subchannel interferences between

singular vectors within the signal subspace, making the results directly applicable to the

present problem. Once obtained, our SINR expressions allow us to (1) analyze the impact

of imperfect CSI on the MIMO SVD subchannels; (2) perform robust bit-loading design

through the systematic selection of the subchannel power levels; and (3) find thresholds for

the amount of channel uncertainty and measurement noise above which beamforming should

be used instead of spatial multiplexing over the SVD-based subchannels. For the special

case of identical CSI at both ends of the link, the SINR expression allows us to derive ap-

proximately optimal subchannel power levels for M-QAM signaling under a subchannel SER

constraint, a result directly applicable to robust bit-loading design.

The remainder of this chapter will proceed as follows. In Section 5.2, the MIMO chan-

nel and signaling model are presented and subchannel SINR expressions are derived. These
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expressions are then used in Sections 5.3 and 5.4 to develop subchannel power allocation

schemes and to find thresholds for the channel perturbation levels tolerable for multiplexing.

Finally, in Section 5.5, numerical simulations are used to demonstrate the accuracy of the

derived expressions and their usefulness when applied to the MIMO SVD-based bit-loading

problem.

5.2 Derivation of the Subchannel SINRs

Consider a narrow-band MIMO communications system employing Nt transmit an-

tennas and Nr receive antennas with CSI as discussed in Chapter 2.5, which we now review

here. The available CSI is obtained through channel estimation at the receiver, presumably

with the aid of training data sent from the transmitter, and is periodically made available

to the transmitter through feedback. Imperfections in the CSI arise as a result of both the

estimation and feedback processes. Mathematically, we describe this scenario by letting H

be the channel as known at the transmitter, H+∆H1 the channel as known at the receiver,

and H + ∆H1 + ∆H2 the actual MIMO channel, where the preceding matrices all have di-

mension Nr ×Nt. In this context, the matrix ∆H1 represents the discrepancies between the

actual channel and the transmit CSI that are unique to the transmitter alone. The source

of these imperfections may include quantization effects and errors in the feedback channel

as well as variations in the MIMO channel when assuming that the receiver updates its CSI

more frequently than the transmitter. Channel variations considered in this context may

occur, for example, if the transmitter or receiver moves during the interval between channel

estimation and channel feedback. On the other hand, the matrix ∆H2 represents CSI errors

that are common to both the transmitter and receiver. Such errors are typically introduced

at the receiver and are then fed back to the transmitter. Factors contributing to this term

include estimation errors and outdated CSI present at the receiver. When ∆H1 = 0, the

transmitter and receiver possess the same CSI. We refer to this special case as the common

CSI (CCSI) case. The general case with ∆H1 6= 0 is referred to as the mismatched CSI

(MCSI) case.
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The transmitter CSI matrix H has the following singular value decomposition (SVD):

H = UΣVH , (5.1)

where U and V are respectively Nr × F and Nt × F , Σ = diag{σ1, σ2, · · · , σF}, F =

min{Nr, Nt}, and (·)H denotes the Hermitian tranpose. The singular values are assumed to

all be unique, and are ordered in the normal way: σ1 > σ2 > · · · > σF . The SVD of the

receiver CSI matrix H + ∆H1 is defined to be

H + ∆H1 = U1Σ1V
H
1 , (5.2)

where the terms in (5.2) are defined analogously to those in (5.1). Viewing the receiver CSI

as a perturbed version of H, the matrices on the right-hand side of (5.2) are related to those

on the right-hand side of (5.1) by the following perturbation relationships:

U1 = U + ∆U1, (5.3)

Σ1 = Σ + ∆Σ1, (5.4)

and

V1 = V + ∆V1. (5.5)

Given the above CSI and definitions, consider the following narrow-band MIMO SVD-

based signaling scheme:

y = UH
1 [(H + ∆H1 + ∆H2)VPx + n] . (5.6)

The matrix P is a real-valued F×F diagonal matrix whose entries are the square-roots of the

power assigned to the elements of the signal vector x, which is assumed to be normalized and

composed of uncorrelated entries so that E
[

xxH
]

= I, where I is an F × F identity matrix

and E[·] denotes expectation. The vector n represents additive spatially and temporally
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white noise: E[n] = 0, E
[

nnH
]

= σ2
nI. Note that in general the transmitter and receiver

make use of singular vectors from different SVDs.

Were perfect CSI available at the transmitter and receiver, i.e., ∆H1 = ∆H2 = 0,

the MIMO channel would be decomposed into F independent single-input single-output

(SISO) subchannels by this signaling scheme. With imperfect CSI, however, the resulting

subchannels are coupled and subchannel interference results. In what follows, we derive SINR

expressions for the SVD subchannels that account for this interchannel interference. We will

assume that in equation (5.6), the signal x, the noise n, and the channel perturbations

∆H1 and ∆H2 are mutually uncorrelated1. The channel perturbation terms ∆H1 and ∆H2

are assumed to be zero-mean complex proper random variables; i.e., E[vec(∆Hk)] = 0,

E[vec(∆Hk)vec(∆Hk)
H ] = C∆Hk

, E[vec(∆Hk)vec(∆Hk)
T ] = 0, where the vectorization

operator vec(A) stacks the columns of the matrix A. While the derivations that follow may

be generalized in a straightforward manner to the case where ∆H1 and ∆H2 are correlated,

for simplicity we will not make this assumption.

5.2.1 General Case: MCSI

As mentioned above, an analysis for the general MCSI case has not appeared in

the literature; only the CCSI case has been addressed. The results of our analysis can

be specialized to the CCSI case by simply setting ∆H1 = 0 (or equivalently, by setting

C∆H1 = 0). Using the relationships in (5.1)-(5.5), equation (5.6) may be written as follows:

y = UH
1 [(H + ∆H1 + ∆H2)VPx + n] (5.7)

=
[

Σ + ∆Σ1 + Σ∆VH
1 V + UH∆H2V + ∆Σ1∆VH

1 V + ∆UH
1 ∆H2V

]

Px + UH
1 n. (5.8)

For relatively small perturbations, the first-order analysis of [77] can be used to approximate

this expression. Using the results of [77] and dropping all second-order and higher terms, we

obtain

y ≈
[

Σ + ∆Σ1 + ΣQH
1 + UH∆H2V

]

Px + UH
1 n (5.9)

1Although noise is partially responsible for the CSI errors, we assume that the current realization n of
the temporally white noise was not used in calculating the receiver CSI.
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with

Q1 = D ⊙ (ΣUH∆H1V + VH∆HH
1 UΣ), (5.10)

[D]fg =







(σ2
g − σ2

f )
−1, f 6= g

0, f = g
, (5.11)

∆Σ1 = diag(∆σ1, ∆σ2, . . . , ∆σF ), (5.12)

and

∆σf =
1

2
(uH

f ∆H1vf + vH
f ∆HH

1 uf ), (5.13)

where ⊙ is the element-wise, or Hadamard, matrix product, ∆u1,i and ui are the i-th columns

of ∆U1 and U, respectively, and ∆v1,i and vi are the i-th columns of ∆V1 and V, respec-

tively.

In (5.9), the diagonal term Σ+∆Σ1, along with the diagonal of UH∆H2V, represent

the contribution of the desired signals to the received data, while the term ΣQH
1 , which has a

diagonal of all zeros, plus the off-diagonal elements of UH∆H2V correspond to multiplexing

interference. Thus, the signal portion of y at the i-th receive antenna, ys,i, may be written

as

ys,i = (σi + ∆σi + uH
i ∆H2vi)[P]iixi , (5.14)

and the interference-plus-noise term is given by

yIN,i = σi[Q
H
1 Px]i +

F
∑

f=1

f 6=i

uH
i ∆H2vf [P]ffxf + uH

1,in, (5.15)

where [z]i is the i-th element of the vector z and [A]ij is the ij-th element of the matrix A.
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Using the statistical assumptions made above, we may write the average signal power

of the i-th data stream as

Ps,i = E[ys,iy
∗
s,i]

= E[|(σi + ∆σi + uH
i ∆H2vi)[P]iixi|2] (5.16)

=
(

σ2
i + E[|∆σi + uH

i ∆H2vi|2]
)

E[xix
∗
i ][P]2ii (5.17)

=
(

σ2
i + E[|∆σi|2] + E[|uH

i ∆H2vi|2]
)

[P]2ii, (5.18)

where (·)∗ denotes conjugation and the equality in (5.18) is due to the assumed independence

of ∆H1 and ∆H2. The third term in (5.18) can be further manipulated using the well-known

result

vec(ABC) = (CT ⊗ A)vec(B), (5.19)

where ⊗ is the matrix Kronecker product, to obtain

E[|uH
i ∆H2vi|2] = (vT

i ⊗ uH
i )C∆H2(v

∗
i ⊗ ui). (5.20)

Similarly, the second term can be written as

E[|∆σi|2] =
1

4
E[|uH

i ∆H1vi + vH
i ∆HH

1 ui|2] (5.21)

=
1

4
E[2|uH

i ∆H1vi|2] (5.22)

=
1

2
(vT

i ⊗ uH
i )C∆H1(v

∗
i ⊗ ui), (5.23)

where (5.22) results from the complex proper assumption on ∆H1 and (5.23) follows directly

from the derivation of (5.20). Thus, the average signal power of the i-th data stream may

be expressed as

Ps,i =

(

σ2
i + (v∗

i ⊗ ui)
H

(

C∆H2 +
1

2
C∆H1

)

(v∗
i ⊗ ui)

)

[P]2ii. (5.24)
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If the channel perturbations are assumed to be spatially white, i.e., C∆H1 = σ2
H,1I and

C∆H2 = σ2
H,2I, equation (5.24) simplifies to

Ps,i =

(

σ2
i +

σ2
H,1

2
+ σ2

H,2

)

[P]2ii. (5.25)

The interference and noise variance for the i-th subchannel is derived in a like manner,

albeit with slightly more complexity due to the multiple co-channel sources of interference.

The average interference-plus-noise variance for the i-th subchannel is given by

PIN,i = E[yIN,iy
∗
IN,i]

=
F

∑

f=1

f 6=i

F
∑

k=1
k 6=i

[P]ff [P]kkE
[

|uH
i ∆H2vf |2

]

E [xfx
∗
k]

+ σ2
i E[|eH

i QH
1 Px|2] + E[uH

1,innHu1,i]

(5.26)

=
F

∑

f=1

f 6=i

[P]2ff (v
T
f ⊗ uH

i )C∆H2(v
∗
f ⊗ ui) + σ2

i E[|eH
i QH

1 Px|2] + σ2
n, (5.27)

where ei is a length-Nr vector with one in the i-th position and zeros elsewhere. Using the

fact that Q1 is skew symmetric, the complex proper assumption on ∆H1, and properties of

the trace operator, we find after some manipulation that the second term of (5.27) becomes

σ2
i E[|eH

i QH
1 Px|2] = σ4

i tr
[

D2
i P

2(VH ⊗ uT
i )CT

∆H1
(V ⊗ u∗)

]

+ σ2
i tr

[

D2
i Σ

2P2(vT
i ⊗ UH)C∆H1(v

∗
i ⊗ U)

]

,
(5.28)

where

[Di]fg =







(σ2
i − σ2

f )
−1, f = g and f 6= i

0, f 6= g or f = i
. (5.29)

As in the signal power case, if we assume that C∆H1 = σ2
H,1I, C∆H2 = σ2

H,2I, then (5.27)

reduces to

PIN,i = σ2
H,1

F
∑

f=1

f 6=i

σ2
i (σ

2
f + σ2

i )[P]2ff

(σ2
f − σ2

i )
2

+ σ2
H,2

F
∑

f=1

f 6=i

[P]2ff + σ2
n. (5.30)
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Finally, if the average total transmit power is constrained to be equal to PT , i.e.,

F
∑

i=1

[P]2ii = PT , (5.31)

then we may further simplify (5.30) to

PIN,i = σ2
H,1

F
∑

f=1

f 6=i

σ2
i (σ

2
f + σ2

i )[P]2ff

(σ2
f − σ2

i )
2

+ σ2
H,2(PT − [P]2ii) + σ2

n. (5.32)

The SINR for the MCSI case is given by the ratio of (5.25) and (5.32).

5.2.2 Special Case: CCSI

When ∆H1 = 0, the transmitter and receiver possess the same, albeit incorrect, CSI.

In this case, referred to as the CCSI scenario, the average or expected signal power at the

i-th receive antenna is given by

Ps,i = (σ2
i + σ2

H,2)[P]2ii, (5.33)

and the interference-plus-noise variance in the i-th subchannel is given by

PIN,i = σ2
H,2(PT − [P]2ii) + σ2

n. (5.34)

Using (5.33) and (5.34), we find the per-subchannel SINR for the CCSI signaling model to

be

SINRCCSI,i =
(σ2

i + σ2
H,2)[P]2ii

σ2
H,2(PT − [P]2ii) + σ2

n

. (5.35)

Two things of significance should be noted about this special case. First, all first-order

approximations used in deriving the signal and interference-plus-noise expressions of (5.25)

and (5.32) are due to the presence of ∆H1. Since (5.33) and (5.34) are computed for the case

where ∆H1 = 0, these expressions are exact. Second, note that the SINR expression for the

i-th subchannal given in (5.35) is decoupled from the other subchannels. This property will
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be used later in Section 5.3, allowing us to optimize the subchannel power allocation levels

when using M-QAM.

5.2.3 Effect of Channel Estimation Errors

The channel perturbation variance σ2
H,2 (or, correspondingly, C∆H2) is the result

of two primary sources of error: imprecise channel estimation due to noise, and temporal

variations in the channel since the receiver last updated its channel estimate. In many

situations, it is possible to quantify the channel estimation errors, allowing σ2
H,2 to be more

precisely described in terms of system parameters. In particular, if we make the reasonable

assumption that the errors due to channel estimation and time variation are uncorrelated

(i.e., the channel is relatively stationary over the short duration of the training symbols),

then we can decompose σ2
H,2 into two terms:

σ2
H,2 = σ2

H,o + σ2
H,n, (5.36)

where σ2
H,n is the component due to estimation error and σ2

H,o accounts for all other error

sources. The size of σ2
H,n depends on a number of factors including, for example, the number

of pilot symbols NP ≥ Nt used to estimate the channel and the power P ′
T allocated to the

pilots. For example, when unitary training data is used to estimate the channel, it is easily

shown that if the elements of ∆H2,n are i.i.d, then σ2
H,n = Kσ2

n where K = Nt/(P
′
T NP ) [100].

5.2.4 Effect of Channel Mobility

There are a number of ways to relate the component of the channel perturbation

due to mobility to the given physical scenario in question. As a simple example, consider

a Gauss-Markov fading channel model [101], in which the current channel at time t, Ht,

is related to a reference channel Ht−r in the past at time t − r according to the following

first-order auto-regressive (AR) model:

Ht =
√

αrHt−r +
√

1 − αrEt , (5.37)
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where Et is independent of Ht−r, vec(Ht−r) ∼ CN (0,CH), vec(Et) ∼ CN (0,CH), CH is the

covariance of the channel matrix and 0 ≤ αr ≤ 1. Note that under this model, Ht maintains

the same distribution as Ht−r. If this model is employed in the signaling scheme of (5.6), the

average received signal power remains constant as the channel changes, unlike the additive

perturbation model H + ∆H. The parameter αr is tuned according to the level of mobility

assumed in the scenario under consideration. For example, it can be shown [101] that the

choice

αr = J0(2πrf)2 (5.38)

yields second-order channel statistics that match those of Jakes’ fading model [102], where

J0(·) is the zeroth-order Bessel function of the first kind, f = fdTs, fd is the maximum

Doppler frequency in the fading environment, and Ts is the sampling period.

The preceding SINR analysis can be easily adapted to the above mobility model. For

example, the subchannel power and interference expressions for the CCSI case under (5.37)

are given by

Ps,i =
(

αrσ
2
i + 1 − αr + σ2

H,n

)

[P]2ii (5.39)

and

PIN,i =
(

1 − αr + σ2
H,n

)

(PT − [P]2ii) + σ2
n, (5.40)

assuming the noise model in (5.36) with array motion and measurement noise as the primary

contributors to the channel perturbation.

5.2.5 SINR for Specified Outage Rates

The SINR expressions developed thus far are average SINR expressions; that is, they

are defined as the ratio of the average signal power and the average interference-plus-noise

variance. These average expressions are simple and may often be easily applied to problems

involving the SINR. In some applications, however, such average expressions may not be

sufficient. For example, consider the problem of transmitting using subchannel power bit-

loading levels chosen based on the expressions of (5.33) and (5.34). An outage is considered

to occur anytime the instantaneous SER exceeds the target value E . Bit-loading design

based upon these average expressions may lead to unacceptably high outage rates as the
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level of channel perturbation grows. A common approach to solving this problem is to use

a back-off factor, decreasing the target SER (or equivalently, increasing the target SINR)

to achieve a more conservative, lower-throughput operating point. While this approach is

simple, it is not obvious how to choose the back-off value in order to achieve an acceptable

outage probability.

An alternative approach would be to derive a more conservative SINR expression

that lies below the instantaneous SINR for some specified probability near one and choose

bit-loading levels based upon this more conservative analysis. Such an SINR confidence level

could be directly found were the probability distribution function (pdf) of the SINR known.

Unfortunately, the exact SINR distribution for the problem we consider is not easily derived,

and confidence interval thresholds based on it would likely have to be determined numerically.

However, using some simplifying assumptions, it is possible to derive approximate SINR

confidence levels.

To facilitate the derivation of the SINR confidence levels, we assume that the channel

perturbation and measurement noise distributions are zero-mean, spatially uncorrelated com-

plex Gaussian random variables, i.e., vec(∆H1) ∼ CN (0, σ2
HI), vec(∆H2) ∼ CN (0, σ2

HI),

and n ∼ CN (0, σ2
nI). In particular, note that the Gaussian assumption was not necessary

in the previous SINR derivation, but is necessary for what follows. Now consider again the

signaling scheme of (5.6), which we may approximate as

y = (U + ∆U1)
H [(H + ∆H1 + ∆H2)VPx + n] (5.41)

≈ (Σ + ∆UH
1 HV + UH∆H1V + UH∆H2V)Px + (U + ∆U1)

Hn, (5.42)

where (5.42), like (5.9), is a first-order approximation relative to the channel perturbation

terms. However, the approximation made here is different from that made in (5.9) and,

coupled with the Gaussian assumptions, allows for a simpler derivation. From (5.42), we

find that the squared norm of the received signal at the i-th receive antenna may be written

as

|ys,i|2 = |σi + ∆uH
i Hvi + uH

i ∆H1vi + uH
i ∆H2vi|2[P]2ii|xi|2. (5.43)
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Using the first-order analysis of [77], we find that

∆uH
i Hvj =







σiσj

σ2
i −σ2

j
vH

i ∆HH
1 uj +

σ2
j

σ2
i −σ2

j
uH

i ∆H1vj, i 6= j

0, i = j
. (5.44)

This simplifies (5.43) to

|ys,i|2 = |σi + uH
i ∆H1vi + uH

i ∆H2vi|2[P]2ii|xi|2. (5.45)

In Section 5.2.1, the average signal power was found by taking the expected value of |ys,i|2

over the channel perturbations ∆H1 and ∆H2 and the signal xi. This time, we take the

expectation over xi only, obtaining

Ex[|ys,i|2] = |σi + uH
i ∆H1vi + uH

i ∆H2vi|2[P]2ii. (5.46)

Note that uH
i ∆H1vi + uH

i ∆H2vi is a zero-mean Gaussian random variable whose real and

imaginary parts have variances (σ2
H,1 + σ2

H,2)/2 independent of i. As a result, (5.46) may be

expressed as a function of a single random variable as

Ex[|ys,i|2] =
σ2

H,1 + σ2
H,2

2
[P]2iiZs, (5.47)

where the random variable Zs,i ∼ χ2
nc(k, λ) is noncentral chi-square with k = 2 degrees of

freedom and noncentrality parameter λ = 2σ2
i /(σ

2
H,1 + σ2

H,2) [103].

Following a similar procedure and utilizing (5.44), the interference and noise term

averaged over x is given by

Ex[|yIN,i|2] =
F

∑

f=1

f 6=i

∣

∣

∣

∣

∣

σiσf

σ2
i − σ2

f

vH
i ∆HH

1 uf +
σ2

i

σ2
i − σ2

f

uH
i ∆H1vf + uH

i ∆H2vf

∣

∣

∣

∣

∣

2

[P]2ff

+ |UH
1 n|2.

(5.48)

It is straightforward to show that the random variables vH
i ∆HH

1 uf , u
H
i ∆H1vf , and uH

i ∆H2vf

are mutually independent zero-mean Gaussian random variables with variances σ2
H,1, σ2

H,1,
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and σ2
H,2, respectively, irrespective of i and f . Thus, each term in the sum of (5.48) is itself

a zero-mean complex Gaussian random variable. It is also easy to show that the terms in

the sum of (5.48) are independent one from another. Were the measurement noise and each

term in the sum to have the same variance, then (5.48) would be a scaled realization of a

chi-square random variable. Unfortunately, this is not the case, and the distribution of (5.48)

is not known. However, we may obtain an approximate result by assuming all of the terms in

(5.48) share an average variance for the purposes of selecting a chi-square distribution, and

then substituting the resulting random variable into the equation. Following this procedure,

we have

Ex[|yIN,i|2] ≈
ZIN

2(M − 1)







M
∑

f=1

f 6=i

(

σ2
i (σ

2
f + σ2

i )

(σ2
f − σ2

i )
2

σ2
H,1 + σ2

H,2

)

[P]2ff + σ2
n






, (5.49)

where ZIN ∼ χ2(2(M − 1)) and M is the number of active subchannels, or, equivalently, the

number of nonzero diagonal entries in P. Note that the result in (5.49) implicitly assumes

that M > 1. If M = 1, there is no interchannel interference and Ex[|yIN,i|2] is easily found

to be Z ′
INσ2

n/2 with Z ′
IN ∼ χ2(2).

Using (5.47) and (5.49), we may now write an approximate SINR confidence level

expression. Let X−1
nc (p, k, λ) and X−1(p, k) be the inverse cumulative distribution functions

for the noncentral and central chi-square distributions, respectively, i.e., z = X−1
nc (p, k, λ) =

{z : Pr(Z ≤ z|k, λ) = p} and z = X−1(p, k) = {z : Pr(Z ≤ z|k, λ) = p} where Z is a

noncentral or central chi-square random variable, respectively. Then we may select signal

power and interference-plus-noise confidence levels as

Ps,i =
σ2

H,1 + σ2
H,2

2
[P]2iiX

−1
nc

(

ps, 2,
2σ2

i

σ2
H,1 + σ2

H,2

)

(5.50)

and

PIN,i =
X−1 (pIN , 2(M − 1))

2(M − 1)







M
∑

f=1

f 6=i

(

σ2
i (σ

2
f + σ2

i )

(σ2
f − σ2

i )
2

σ2
H,1 + σ2

H,2

)

[P]2ff + σ2
n






. (5.51)

95



Now define SINRp,i as the subchannel SINR confidence level such that Pr(SINRi ≤
SINRp,i) = p. In order to obtain SINRp,i, we must combine the confidence levels of (5.50)

and (5.51). Motivated by the observation that the random variables (5.47) and (5.49) are

independent, we will combine the confidence levels for the signal and interference-plus-noise

powers by simply taking their ratios. That is,

SINRp,i ≈



































σ2
H,1+σ2

H,2
2

[P]2iiX
−1
nc

(

p,2,
2σ2

i
σ2

H,1
+σ2

H,2

)

X−1(1−p,2(M−1))
2(M−1)

[

∑M
f=1
f 6=i

(

σ2
i
(σ2

f
+σ2

i
)

(σ2
f
−σ2

i
)2

σ2
H,1+σ2

H,2

)

[P]2ff+σ2
n

] M ≥ 2

σ2
H,1+σ2

H,2
2

[P]2iiX
−1
nc

(

p,2,
2σ2

i
σ2

H,1
+σ2

H,2

)

σ2
n
2

X−1(1−p,2)
M = 1

, (5.52)

where values for X−1
nc (p, k, λ) and X−1(p, k) may be found in distribution tables or calcu-

lated using statistical software. While we could combine the confidence levels in a more

sophisticated manner, the additional effort involved is not justified considering the level of

approximation already present in the confidence levels. We expect the above SINR con-

fidence level expression to be most accurate when the interference term closely resembles

a scaled chi-square random variable. This is most likely to occur in the CCSI case with

uniform subchannel power levels when σ2
n ≈ σ2

H,2.

Note that the inverse noncentral chi-square function depends on the subchannel sin-

gular values and the channel perturbation variance. As a result, its precomputation may pose

an additional design challenge. For a moderate number of transmit and receive antennas, we

have found that we may further approximate the above SINR confidence level expression to

remove this function from the numerator for M ≥ 2. The resulting approximation is given

by

SINRp,i ≈



























σ2
i [P]2ii

X−1(1−0.5p,2(M−1))
2(M−1)

[

∑M
f=1
f 6=i

(

σ2
i
(σ2

f
+σ2

i
)

(σ2
f
−σ2

i
)2

σ2
H,1+σ2

H,2

)

[P]2ff+σ2
n

] M ≥ 2

σ2
H,1+σ2

H,2
2

[P]2iiX
−1
nc

(

p,2,
2σ2

i
σ2

H,1
+σ2

H,2

)

σ2
n

M = 1

, (5.53)
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where we have replaced the numerator with a nominal value, which we chose in this case to

be the received signal power in the absence of channel perturbations, and the denominator

probability level was then modified to compensate for the change in the numerator. An

example of the performance of the approximate confidence interval will be given below.

5.2.6 Numerical Examination of the SINR

In this section, we provide Monte Carlo simulations to detail some of the charac-

teristics of the derived SINR expressions. We assume a 4 × 4 MIMO channel H selected

such that vec(H) ∼ CN (0, I16), a measurement noise variance of −30 dB relative to unity,

and a total transmit power of unity with power allocated uniformly over all of the SVD

subchannels. The channel perturbations for the Monte Carlo simulations are generated with

vec(∆H1) ∼ CN (0, σ2
H,1I) and vec(∆H2) ∼ CN (0, σ2

H,2I) for various values of σ2
H,1 and σ2

H,2.

Figure 5.1 compares the SINRs generated using the MCSI SINR expression with Monte Carlo

results for the first and fourth subchannels and for two special cases, σ2
H,1 = 0 and σ2

H,2 = 0.

The plot indicates excellent agreement between the simulations and the first-order analysis,

even for values of σ2
H,1 → 1, where the perturbations are of the same “size” as the channel

coefficients themselves (excellent agreement for σ2
H,1 = 0 and σ2

H,2 → 1 is guaranteed since

the analysis is exact in this case). SINR results when both σ2
H,1 and σ2

H,2 are nonzero may

be inferred from the special cases given above.

In some cases, the receiver may be aware of the value of H known at the transmitter.

This situation will arise, for example, if the error term ∆H1 is due to quantization effects,

which are known at the receiver prior to feedback. In such situations, the receiver would have

the option of creating a CCSI scenario by ignoring the ∆H1 term, and using U instead of U1

in (5.6). In effect, this amounts to assigning ∆H1 (or the portion of it due to quantization

errors) to ∆H2. Using the SINR analysis approach above, one can show that it is preferable

for the transmitter and receiver to use common CSI rather than mismatched CSI on the i-th

subchannel if
F

∑

f=1

f 6=i

σ2
i (σ

2
f + σ2

i )[P]2ff

(σ2
f − σ2

i )
2

> PT − [P]2ii , (5.54)
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Figure 5.1: Comparison of the MCSI SINR expression results with Monte Carlo results for
the first and fourth subchannels.

which, interestingly, will often be the case. The inequality of (5.54) will most likely be

violated when the singular value of subchannel i is significantly smaller than the larger

singular values (in which case it may not be assigned any transmit power anyway). This

observation is borne out by the following simulation example. In this example, we fix the

total channel perturbation variance to σ2
T = σ2

H,1 + σ2
H,2 = −15 dB and we let σ2

H,1 = ρσ2
T

and σ2
H,2 = (1−ρ)σ2

T for 0 ≤ ρ ≤ 1. Thus, ρ is the fraction of the total channel perturbation

variance due to σ2
H,1; ρ = 0 means we assign all of ∆H1 to ∆H2 and create a CCSI scenario.

Increasing ρ towards one increases the mismatch in CSI between the transmitter and receiver,

but reduces the power of ∆H2. Figure 5.2 shows the resulting SINRs for the four subchannels

of a 4× 4 Rayleigh distributed channel. As predicted, the simulation shows that using CCSI

instead of MCSI is preferable except for the weakest subchannel over all values of ρ.
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H,1 + σ2

H,2 = 15 dB.

In the last example, we compare the derived SINR expressions with those from pre-

vious CCSI SINR analyses. We again assume a 4 × 4 MIMO channel H selected such that

vec(H) ∼ CN (0, I16). Using uniform power loading over all of the subchannels with a to-

tal transmit power of one, and assuming a estimation error variance of −20 dB, we find

SINR values for the first MIMO subchannel for several different channel perturbation pow-

ers and compare these results to those obtained through Monte Carlo simulation assuming

vec(∆H2) ∼ CN (0, σ2
HI). The results for the other subchannels are similar to those pre-

sented here. Figure 5.3 shows the resulting SINR averaged over 100 channel realizations with

10,000 independent perturbations per realization. The upper four curves shown in the figure

correspond to average SINR expressions. These include our CCSI results (equation (5.35),

labeled “CCSI”), the first-order SINR expression from [94] (labeled “1st-order”), the SINR
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Figure 5.3: A comparison of the per-subchannel SINR expressions with Monte Carlo simula-
tion.

expression from [64] (labeled “Excess Interference”), and Monte Carlo simulation results.

Equation (5.35) matches the Monte Carlo results exactly through the entire range of chan-

nel perturbation powers, while the other SINR expressions differ from the simulations to

varying degrees. In particular, the result from [64] tends to underestimate the subchannel

SINR over a wide range of σ2
H,2 values. The lower three curves in Fig. 5.3 are results for

the SINR confidence level expressions. Both the original SINR confidence level expression of

(5.52) and its further approximation of (5.53) agree well with the Monte Carlo results over

a wide range of useful channel perturbation variance levels.
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5.3 Subchannel Power Allocation

Assume a communications system in which the transmission over each subchannel is

required to achieve as high a rate as possible while meeting a particular symbol error rate

(SER) threshold, E . The various available subchannels may be active or inactive depending

on the chosen approach. When only one subchannel is in use, the scheme is referred to as

beamforming; on the other hand, transmission over multiple subchannels results in spatial

multiplexing. Using the SINR expressions derived above, we wish to determine whether

beamforming or multiplexing is the optimal approach in terms of total throughput. If mul-

tiplexing is chosen, one must determine how to allocate power to the various subchannels

in order to maximize the resulting transmission rate. We will consider this second problem

first, for both the MCSI and CCSI cases.

In order to proceed, we must first relate the SER, the number of bits per transmission

symbol, and the SINR. This is done for M-QAM signals using two approximations. The first

relates the SER to the SINR and the minimum distance between constellation points for a

constellation with unit average energy [104]:

SER ≈ 4Q

(

√

d2
minSINR

)

, (5.55)

where Q is the well-known Q-function for Gaussian distributions and dmin is the minimum

constellation distance. This approximation is valid for general M-QAM constellations. Other

approximations can be used for certain special cases [64,104].

The second approximation relates the minimum distance between M-QAM constel-

lation points to bits per M-QAM symbol by fitting the following first-order-in-the-exponent

curve to the constellation points:

d2
min = e−αb+β, (5.56)

where b is the number of bits per symbol. Assuming symmetric constellations, a least squares

fit of α and β to (5.56) results in the following parameter values α = 0.717, β = 0.604. Using

(5.55) and (5.56), we may then approximate the number of bits per transmission as a function
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of the SER and SINR:

b ≈ 1

α

(

β − ln

(

(Q−1(SER/4))2

SINR

))

, (5.57)

where Q−1(·) is the inverse Q-function. Note that any suboptimality in the approximately

optimal power allocation developed below is a result of the approximations in (5.57).

5.3.1 MCSI Subchannel Power Allocation

For the MCSI case, we consider two ad-hoc methods which employ the signal power

and interference-plus-noise expressions in (5.25) and (5.32) (or the SINR confidence level

expressions of (5.52) or (5.53)) to adjust the power levels suggested by the waterfilling solu-

tion in order to obtain more robust bit-loading levels. The first, which is the simpler of the

two methods, takes a bottom-up approach to the subchannels. (Note that the subchannels

are assumed to be ordered from largest to smallest according to the size of their associated

singular values.) We begin by examining the smallest subchannel allocated power by the

waterfilling method by using (5.57) to determine the number of bits to be allocated to the

subchannel. If (5.57) indicates that the subchannel cannot support any bits, the subchannel’s

power is reallocated up to the next subchannel. This process is repeated in an ascending

manner for the remaining subchannels.

The second method is essentially the ad-hoc method of [73], though modified to use

our SINR expressions and the SER and bit expressions of (5.55) and (5.57). This method

employs an iterative top-down approach for allocating power. We begin the process by

using the waterfilling method to allocate power among the subchannels assuming perfect

CSI. Next, (5.57) is used to determine the number of bits that may be allocated to the

strongest subchannel using the available power. Given this bit allocation, we then determine

the minimum amount of power required to support that number of bits at the required SER

target level. Since this cannot be determined directly through our expressions, we employ a

numerical search to find this minimum power. The excess power is reallocated to the next

strongest subchannel. The above steps are then repeated for the next subchannel and so on

until all of the remaining subchannels have been considered. Once the total bit allocation for

all of the subchannels has been determined and recorded, the process is carried out again,
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this time removing the smallest subchannel and reallocating its power before repeating the

process. This overall process is repeated until the limiting beamforming case. The total bit

allocations for each case are compared and the one that results in the largest number of bits

is chosen.

Note that in [73], excess power from the smallest subchannel could also be reallocated

from one temporal transmission to the next. Though this modification is not difficult to

implement, it is not used in the simulations of Section 5.5 as it would unnecessarily complicate

comparisons with other methods.

5.3.2 CCSI Subchannel Power Allocation

For the CCSI case, our SINR expression allows for a more systematic optimization

than in the MCSI case. In this section, we use the subchannel CCSI SINR expression

in (5.35) to find approximately optimal subchannel power levels. Consider the following

constrained optimization problem, where for a given number of active subchannels M ≤ F ,

a diagonal power loading matrix P with positive, real-valued elements is chosen to maximize

the number of M-QAM bits per transmission while guaranteeing a minimum SER of E :

P∗ = arg max
P:

∑
[P]2

ff
=PT

SER≤E

M
∑

f=1

bf . (5.58)

The general optimization problem in (5.58) is difficult to solve, but the approximation

obtained by substituting (5.57) into (5.58) can be solved in closed form. The resulting

problem may be expressed as

P∗ ≈ arg min
∑

[P]2ff=PT

M
∑

f=1

ln

(

PIN,f

Ps,f

)

, (5.59)

which we solve by using Lagrange multipliers:

J =
M

∑

f=1

ln

(

PIN,f

Ps,f

)

− γ

(

M
∑

f=1

[P]2ff − PT

)

. (5.60)
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Equating the derivative of J with respect to [P]2ii to zero, we find after some manipulation

that

[P]2ii =
γB ±

√

γ2B2 + 4γBσ2
H,2

2γσ2
H,2

, (5.61)

γ =
−B

[P]2ii(B − [P]2iiσ
2
H,2)

, (5.62)

and

B = PT σ2
H,2 + σ2

n. (5.63)

The second derivative of J with respect to [P]2ii is strictly greater than zero when

[P]2ii ≤
PT

2
+

σ2
n

2σ2
H,2

, (5.64)

in which case (5.61) will not correspond to a saddle point. A few things must be noted

here. First, with γ as given in (5.62), the powers given by (5.61) are always real and positive

as we require. Second, while it may appear otherwise, the solution for γ in (5.62) must be

independent of i. Thus, (5.61) and (5.62) imply that the optimal power loading scheme when

using M ≤ F active subchannels is to spread the power uniformly over the subchannels, i.e.,

[P]2∗ii =
PT

M
. (5.65)

This solution, which corresponds to the larger root of (5.61) (− from ±), always satisfies the

second derivative condition of (5.64). The power level in (5.65) is for a particular M ≤ F .

The optimal M may be selected as the value of M which results in the largest value for

J2 =
M

∑

f=1

ln

(

Ps,f

PIN,f

)

, (5.66)

with the power allocated evenly over the M active subchannels. Since F is typically not

large, the cost of this search is small.
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5.4 Beamforming vs. Multiplexing Thresholds

In this section, using the power allocation methods discussed above, we derive thresh-

olds for the CSI error and noise level above which beamforming rather than spatial multi-

plexing is optimal in terms of bits per transmission.

5.4.1 CCSI Thresholds

We begin with the CCSI case, for which we will assume the optimality of uniform

power allocation. Multiplexing over M subchannels is preferable to beamforming in terms

of bits per transmission when

bBF ≤
M

∑

m=1

bm , (5.67)

where bBF is the number of bits supported when beamforming and b1, b2, . . . , bM are the

number of bits supported when multiplexing using the first M subchannels, where the sub-

channels are ordered by decreasing singular values. Using (5.57), we may re-express the

relationship of (5.67) at the threshold as

β

α
− 1

α
log

[

(Q−1(E/4))2σ2
n

Ps,BF

]

≤
M

∑

m=1

(

β

α
− 1

α
log

[

(Q−1(E/4))2PIN,m

Ps,m

])

, (5.68)

where Ps,BF is the signal power when beamforming. With the uniform power allocation

assumption, PIN,m is the same for all m, and the above expression may be simplified to

(Q−1(E/4))2(M−1)(PIN,m)MPs,BF ≤
[

M
∏

m=1

Ps,m

]

σ2
ne

(M−1)β. (5.69)

Plugging (5.33) and (5.34) into (5.69), we find after some rearrangement that

σ2
H,2 ≤

[

(

PT eβ

(Q−1(E/4))2

)M−1 (

∏M
m=2(σ

2
m + σ2

H,2)
)

σ2
n

]
1
M

− Mσ2
n

(M − 1)PT

. (5.70)
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Finally, if we assume that σ2
m ≫ σ2

H,2 near the threshold for the M active subchannels, we

obtain the following threshold for the channel perturbation power:

σ2∗
H,2,M =

[

(

PT eβ

(Q−1(E/4))2

)M−1 (

∏M
m=2 σ2

m

)

σ2
n

]
1
M

− Mσ2
n

(M − 1)PT

, (5.71)

where multiplexing is optimal for σ2
H,2 ≤ σ2∗

H,2,M and beamforming is optimal otherwise.

The above threshold describes the optimal transition point between multiplexing over M

subchannels and beamforming. An overall threshold may be found by evaluating (5.71) for

possible values of M and selecting the maximum, i.e,

σ2∗
H,2 = max

M
σ2∗

H,2,M . (5.72)

Since 1 < M ≤ F and F is typically not large, the cost of this search is small.

Note that the threshold of (5.72) must be positive in order for multiplexing to be

useful for any value of σ2
H,2. Using this observation, we obtain the following threshold on the

measurement noise above which beamforming is always preferable:

σ2∗
n =

(

PT eβ

M∗(Q−1(E/4))2

)

(

∏M∗

m=2 σ2
m

M∗

)
1

M∗−1

, (5.73)

where M∗ is the maximizing M from (5.72).

5.4.2 CCSI Thresholds for Specified Outage Rate

The threshold of (5.72) was derived using average signal and interference-plus-noise

powers, and thus, due to outages, the effective multiplexing/beamforming threshold may be

somewhat lower than that predicted by (5.72). The SINR confidence intervals derived earlier

can be used to address this issue if we use (5.33) instead of (5.50) to obtain an expression

for Ps,BF in (5.69). This approximation is accurate since σ2
1 ≫ σ2∗

H,2 for values near the

threshold. The other power terms in (5.69), Ps,m and PIN,m, are found using the numerator

and denominator of (5.52) for M > 1. The derivation proceeds in the same manner as before,
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and we find

σ2∗
H,2,M =

[

(

PT eβ

(Q−1(E/4))2

)M−1 (

∏M
m=2 σ2

m

)

σ2
n

]
1
M

− Mσ2
n

X−1(1 − 2p, 2(M − 1))PT /2
, (5.74)

the maximum of which over M gives the overall threshold. Note that the numerator of (5.74)

is identical to that of (5.71). Thus, the threshold on σ2
n is still given by (5.73).

5.4.3 Separate Estimation Error and the Gauss-Markov Model

We may modify the previously derived thresholds to accommodate (5.36) with σ2
H,n =

Kσ2
n and the Gauss-Markov channel mobility model in (5.37). Assuming that αr is suffi-

ciently close to one, a similar assumption to that made in Section 5.4.1 with regard to the

size of the channel perturbation near the threshold, and following the previous derivations,

we find thresholds on 1 − αr and σ2
n which are given by

1 − α∗
r =

[

(

PT eβ

(Q−1(E/4))2

)M∗−1 (

∏M∗

m=2 σ2
m

)

σ2
n

]
1

M∗

− M∗σ2
n − (M∗ − 1)PT σ2

H,n

(M∗ − 1)PT

, (5.75)

and

σ2∗
n =

(

PT eβ

(Q−1(E/4))2

)

(

∏M∗

m=2 σ2
m

((PT K + 1)M∗ − PT K)M∗

)
1

M∗−1

. (5.76)

Note that the influence of the assumption on αr acts in a manner counter to the effect of

the earlier assumption σ2
m ≫ σ2

H,o.

5.4.4 MCSI Thresholds

The techniques used to find the thresholds for the CCSI case with uniform power

allocation do not hold for the MCSI case. However, we can find alternative thresholds for

the MCSI case if we make the additional assumption that the transition from multiplexing

to beamforming occurs as the transition from using the two subchannels associated with the

two largest singular values to beamforming along the single subchannel associated with the

largest singular value:

bBF ≤ b1 + b2 , (5.77)
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where bBF is the number of bits supported when beamforming and b1 and b2 are the number

of bits supported on the first and second subchannels, respectively, when multiplexing. The

threshold can be obtained by considering the case where b2 = 1 and bBF and b1 are as large

as possible given the available power and the SER target E . Using (5.57), we express (5.77)

at the threshold as

− 1

α
ln

[

σ2
n

Ps,BF

(

Q−1

(E
4

))2
]

≤ − 1

α
ln

[

PIN,1

Ps,1

(

Q−1

(E
4

))2
]

+ 1, (5.78)

which reduces to
(

Ps,1

PIN,1

)

≥
(

Ps,BF

σ2
n

)

e−α. (5.79)

The interference power PIN,1 is a function of the transmit power allocated to the second

subchannel, [P]222. Using the exact relationship

SER = Q
(√

2 SINR
)

(5.80)

for the single bit-per-symbol case, the SINR expression in (5.32) for the MCSI case, and the

two-subchannel power relationship [P]211 = PT − [P]222, we find after some manipulation that

at the threshold SER= E ,

[P]222 =
(PT (λ21σ

2
H,1 + σ2

H,2) + σ2
n)(Q−1(E))2

(λ21σ2
H,1 + σ2

H,2)(Q
−1(E))2 + σ2

H,1 + 2(σ2
H,2 + σ2

2)
(5.81)

in order to support a single bit, where

λij =
σ2

i (σ
2
j + σ2

i )

(σ2
j − σ2

i )
2

. (5.82)

Plugging (5.81) into (5.79) via (5.25) and (5.32) and collecting σ2
H,1 terms, we obtain a

quadratic inequality in σ2
H,1,

a2σ
4
H,1 + a1σ

2
H,1 + a0 ≤ 0, (5.83)

where

a2 = P 2
T (Q−1(E))2λ12λ21, (5.84)
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a1 = P 2
T (Q−1(E))2(λ21 + λ12)σ

2
H,2 − PT (eα − 1)σ2

n

+ PT (Q−1(E))2(λ21 + λ12)σ
2
n,

(5.85)

and

a0 = (Q−1(E))2(P 2
T σ4

H,2 + eασ4
n) − 2PT (eα − 1)σ2

2σ
2
n

+ 2PT ((Q−1(E))2 − eα + 1)σ2
nσ

2
H,2.

(5.86)

Since σ2
H,1 must be real and nonnegative, and since a1, a2 > 0 when E ≤ 0.15 (we assume the

desired SER threshold will be less than this value), the resulting threshold on σ2
H,1 is given

by

σ2∗
H,1(σ

2
H,2, σ

2
n) =

−a1 +
√

a2
1 − 4a2a0

2a2

, (5.87)

where multiplexing is beneficial when σ2
H,1 < σ2∗

H,1 and beamforming is optimal otherwise.

If the above threshold is negative, then beamforming is always throughput optimal.

Necessary conditions on σ2
H,2 and σ2

n for multiplexing can be found by examining the condition

that guarantees the non-negativity of σ2∗
H,1, which is a2

1 − 4a2a0 ≥ a2
1. Since a2 > 0, this

condition is equivalent to a0 ≤ 0. Setting (5.86) less than or equal to zero yields the

following quadratic inequality for σ2
H,2:

b2σ
4
H,2 + b1σ

2
H,2 + b0 ≤ 0, (5.88)

where

b2 = P 2
T (Q−1(E))2, (5.89)

b1 = 2PT ((Q−1(E))2 − eα + 1)σ2
n, (5.90)

and

b0 = (Q−1(E))2eασ4
n − 2PT (eα − 1)σ2

2σ
2
n. (5.91)
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Since σ2
H,2 must be real and nonnegative, and since b2 > 0, and b1 > 0 for E ≤ 0.15, the

resulting threshold is given by

σ2∗
H,2(σ

2
n) =

−b1 +
√

b2
1 − 4b2b0

2b2

, (5.92)

where a necessary condition for multiplexing to be beneficial is σ2
H,2 < σ2∗

H,2; otherwise,

beamforming is optimal.

Once again, non-negativity requirements come into play, this time for σ2
H,2. The

non-negativity of σ2
H,2 requires that b0 ≤ 0, or equivalently,

(Q−1(E))2eασ4
n − 2PT (eα − 1)σ2

2σ
2
n ≤ 0. (5.93)

Ignoring the trivial solution of σ2
n = 0, (5.93) may be rewritten to form a threshold for the

measurement noise:

σ2∗
n =

2PT (eα − 1)σ2
2

(Q−1(E))2eα
, (5.94)

where for σ2
n > σ2∗

n , beamforming will always be optimal. Note that when σ2
H,2 = 0, this

same threshold on σ2
n will be obtained from the a0 ≤ 0 condition above.

Figure 5.4 depicts the multiplexing region as a function of σ2
H,1 and σ2

H,2 for a par-

ticular 4 × 4 channel realization, assuming a noise variance of σ2
n = −20 dB. The shaded

region in the figure represents the combinations of σ2
H,1 and σ2

H,2 for which multiplexing is

advantageous.

Thresholds using the noise model of (5.36), the Gauss-Markov model, or the confi-

dence level SINR expressions may be derived in a similar manner. See Appendix C for some

additional examples.

5.5 Numerical Simulations

In this section, we examine the usefulness of the SINR expressions derived in Section

5.2 and the related power allocation schemes presented in Section 5.3. Additionally, we

look at the performance of the multiplexing/beamforming thresholds presented in Section
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Figure 5.4: Example of multiplexing/beamforming thresholds on σ2
H,1 and σ2

H,2.

5.4 by noting how well they predict the transition from multiplexing to beamforming in the

simulated power allocation schemes.

Five subchannel power allocation and bit-loading methods will be employed in the

simulations. The first uses conventional waterfilling to determine subchannel power levels

and bit loading is performed using (5.57) assuming perfect CSI. Since this method does

not incorporate knowledge about the channel perturbations, we will refer to this method as

waterfilling with uniformed bit loading (WFUBL). The next two methods are the ad-hoc

methods discussed in Section 5.3.1. We refer to the first ad-hoc technique in this section as

waterfilling with informed bit loading (WFIBL) since knowledge of the channel perturba-

tion variances is used to determine the bit-loading levels and, in some cases, to adjust the

subchannel power levels. We refer to the second ad-hoc method of Section 5.3.1 as power

trimming with informed bit loading (PTIBL), its name referring to the algorithmic trim-
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ming of excess power from each subchannel for use in other subchannels. The fourth power

allocation method is uniform power allocation with informed bit loading (UPIBL), which

was shown to have optimality properties in Section 5.3.2 for the CCSI scenario. We will,

however, also employ this power allocation scheme for the MCSI scenario considered. The

final power allocation method is beamforming, which we couple with informed bit loading

and refer to as beamforming with informed bit loading (BFIBL).

In the simulations, the MIMO channel is 4 × 4 and selected such that vec(H) ∼
CN (0, I16). The Gauss-Markov model is used to prevent power growth in the channel, thus

producing simulations with more intuitive results. Note, however, that the results will be

plotted versus the channel perturbation power to better match the discussion of the paper.

The autoregressive parameter αr is related σ2
H,2 by

αr =
1

σ2
H,2 + 1

. (5.95)

At the value σ2
H,2 = 0 dB (αr = 0.5), the channel perturbation is of the same variance,

on average, as the channel coefficients themselves. Unless otherwise mentioned, PT = 1,

σ2
n = −20 dB at each receive antenna, and the measurement noise contributes to the channel

perturbations with K = 1; in other words, σ2
H,n = σ2

n. The target SER E is set at 0.01. The

results of the simulations are averaged over 100 channel realizations with 100 Monte Carlo

perturbations per channel realization.

We first consider simulation results for the CCSI channel perturbation scenario. Fig-

ure 5.5(a) displays, as a function of the channel perturbation variance σ2
H,o, the sum of the

bits allocated to each subchannel by the various power allocation and bit-loading methods.

(Note that the results are plotted relative to σ2
H,o instead of the full σ2

H,2 since the effect of

measurement noise on the channel perturbations is a fixed effect given a specific K.) Note

that due to outages, the average number of bits successfully sent per transmission will be less

than the levels shown in this figure. In Fig. 5.5(b), we plot the average effective transmission

rates, assuming that bits corresponding to SER outages are lost.

WFUBL allocates the same number of bits per transmission (BPT) regardless of σ2
H,o

since it does not take CSI errors into account. Of the informed methods, the PTIBL method
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allocates the most BPT, and it remains superior or equivalent in this regard to the other

methods over the entire range of considered channel perturbation powers. This performance

advantage is expected due to the power trimming, which assures all available power is directed

towards bit allocation. For this reason, in the absence of measurement-noise-induced channel

perturbations, PTIBL will also allocate more bits than WFUBL for low channel perturbation

variances, though we don’t show that scenario here. Interestingly, in the measurement-noise-

free scenario, the UPIBL method also allocates slightly more BPT than WFUBL at low

channel perturbation levels, since unlike UPIBL, WFUBL is not optimized for the case of

finite M-QAM constellations.

While allocating a large number of bits, these methods suffer from a large number of

outages, drastically reducing their effective throughput. Of the informed methods, PTIBL,

in particular, has a poor outage performance at low channel perturbation levels. This is

result of its power trimming, which leaves no power margin to protect its transmissions

against outages. UPIBL and WFIBL are best in terms of actual throughput.

The vertical lines in Figs. 5.5(a) and 5.5(b) indicate the location of the channel

perturbation threshold σ2∗
H,2. In Fig. 5.5(a), we see that the threshold accurately determines

the point at which the bit allocation switches from multiplexing to beamforming (the point

at which the UPIBL allocation equals that of BFIBL). However, when outages are taken into

account, the threshold is optimistically high, and it is evident in Fig. 5.5(b) that the switch

to beamforming should have occurred earlier. The WFIBL method continues multiplexing

beyond the threshold, resulting in significantly lower throughput. Note that overall, despite

the throughput loss due to outages, the proposed UPIBL approach still provides valuable

throughput robustness as compared with techniques that do not properly account for the

channel perturbation.

Figure 5.6 shows simulation results when bit allocations and threshold evaluations are

carried out for PTIBL and BFIBL using the SINR confidence level expression of (5.53) with

p = 0.1. Note, in particular, that the outage probabilities for these two methods are close

to 0.1 even though it is the SINR outages that are restricted to the 0.1 level, not the SER

outages. It is (5.57), along with the power trimming, that provides the connection between

these two types of outages, though the SER outage level will typically be less than that for
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SINR since the number of bits chosen for each subchannel will be the floor of the fractional

level chosen by (5.57). For UPIBL and WFIBL, this connection between outage types is less

tight as a result of the excess power in the subchannels, with the SINR confidence level of

(5.53) resulting in overly restrictive bit allocation. To strengthen this connection, albeit in an

ad-hoc manner, we have modified the SINR confidence level expression of (5.53) by replacing

the M − 1 dividing the inverse chi-square function with M , and changing the probability

level back from 1 − 0.5p to 1 − p. In the simulations, these modifications work well for

moderate array sizes, as is demonstrated by the UPIBL results presented in Fig. 5.6. For

comparison purposes, the WFIBL results shown are for the average, not confidence level,

SINR design. Note that the multiplexing/beamforming threshold shown in Fig. 5.6 now

accurately predicts the transition point between multiplexing and beamforming in terms of

real BPT (see Fig. 5.6(b)), due to the reduction in outages.

Finally, we consider results for an MCSI channel perturbation scenario in Fig. 5.7.

We assume in this case that σ2
H,2 = σ2

H,n, and plot the results versus σ2
H,1. The results are

qualitatively similar to those given for the CCSI case. Note that relative to the comparable

CCSI results shown in Figs. 5.5(a) and 5.5(b), the effect of channel perturbation variance on

thoughput is noticeably more pronounced (see the discussion in Section 5.2.6). The threshold

derived for the MCSI case appears to accurately represent the transition from multiplexing

to beamforming when allocating bits, though it suffers from the same outage problem as in

the CCSI case. We have found that simulations for the MCSI closely parallel those for the

CCSI case, so we do not include additional MCSI results here.

In summary, we note that using the derived SINR expressions to allocate power and

bits in MIMO-SVD systems appears to a very effective method for mitigating some of the

effects of channel perturbation when perfect CSI is not available. Also note that, overall,

the best performing power allocation and bit-loading methods appear to be the PTIBL and

UPIBL methods. Though the UPIBL method was only shown to be optimal for bit allocation

in the CCSI case when allowing for fractional bits, it is particularly interesting to observe

that, despite its simplicity, UPIBL remains quite competitive with the more adaptive and

computationally intensive PTIBL method when including the effect of outages, even for the

MCSI case. As mentioned previously, much of this competitiveness is a result of the excess
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power UPIBL leaves on the subchannels, the very excess PTIBL attempts to remove. It is

also interesting to consider that the power reallocation performed in PTIBL and WFIBL

may tend to push these methods closer, at least on average, to a uniform power allocation.

5.6 Conclusions

In this chapter, the problem of MIMO multiplexing using SVD-based methods with

imperfect CSI was considered. In order to account for the effects of the imperfect CSI,

expressions for the per-subchannel signal power and interference-plus-noise power were de-

rived which allow for the computation of a more realistic value for the per-subchannel SINR.

These expressions, which allow for different levels of CSI imperfections at the transmitter

and receiver, were shown to be valid over a wide range of useful channel perturbation powers.

Assuming M-QAM modulation, methods were then presented that use these SINR expres-

sions to address the subchannel power and bit allocation problems given an SER constraint.

In particular, for the special case when identical, though imperfect, CSI is available at the

transmitter and receiver, it was found that uniform power allocation is the optimal alloca-

tion strategy. Additionally, the SINR expressions were also used to derive thresholds on the

channel perturbation and noise variances that indicate when to switch between spatial mul-

tiplexing and beamforming in order to maximize the number of bits per transmission given

a constraint on symbol error rate (SER). Finally, the validity of these derived thresholds

and usefulness of the presented power allocation methods were confirmed through numerical

simulations.
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Figure 5.5: A comparison of (a) designed bit-loading levels and (b) average bits per trans-
mission achieved for uniformed and informed bit-loading schemes.
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Figure 5.6: A comparison of (a) designed bit-loading levels and (b) average bits per transmis-
sion achieved for uniformed and informed bit-loading schemes with confidence level p = 0.1.
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Figure 5.7: A comparison of (a) designed bit-loading levels and (b) average bits per trans-
mission achieved for the MCSI scenario.
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Chapter 6

Conclusions and Open Problems

6.1 Conclusions

Several topics related to the channel parameter estimation problem for OFDM, MIMO,

and MIMO-OFDM systems were presented in this dissertation. These topics included dis-

cussions on optimal pilot design for channel and delay estimation in OFDM systems, channel

estimation performance bounds for several parameter-based MIMO-OFDM channel models,

and robust bit-loading and power-allocation design for MIMO-SVD systems with imperfect

channel estimates. The contributions made in these areas are summarized below.

Chapter 2 began with a review of notation and background information on areas

related to OFDM, MIMO, and the CRB. Following the background material, specific models

were presented including an OFDM signaling model, several parameterized MIMO-OFDM

models, and a narrowband MIMO perturbation model. These models formed the basis of

the discussions to follow.

Chapter 3 considered the design of optimal pilot signals for the joint estimation of

time delay and channel impulse response (CIR) parameters in an OFDM communications

system. In particular, this chapter addressed the problem of finding the pilot locations

and power levels required to minimize the CIR estimation error variance while meeting a

constraint on the error variance of the time delay estimate. Using the OFDM signaling

model derived in Chapter 2, the standard CRB was derived relative to the both the time

delay and channel impulse response. Based on a weighted trace of this CRB, a cost function

was presented for the purpose of addressing the OFDM pilot design problem. While the

optimal pilots could not be found directly, the terms from the cost expression were used to

develop intuition concerning the general structure of the optimal solution.
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As an alternative to the using the standard CRB as the basis for pilot selection,

a second CRB was derived as a function of intermediate parameters. This CRB, while

maintaining a similar structure to the first, led to a simplified method for finding optimal

pilot configurations. Numerical simulations demonstrated the use of these CRBs in solving

the pilot design problem and supported the conclusions of the paper concerning the structure

of the optimal pilots.

Chapter 4 presented lower bounds derived for several parametric time-varying wide-

band MIMO-OFDM channel models. These bounds were derived using vector formulations

for the Cramér-Rao lower bound for functions of parameters for both unbiased and biased

estimators. For the case of biased estimators, a new CRB formulation was obtained fol-

lowing the function-of-parameters approach (see Appendix A). This formulation allowed the

CRB expressions to be obtained for the biased estimator considered. Numerical evaluations

of these bounds illuminated some interesting features regarding the estimation and predic-

tion of MIMO-OFDM channels. First, the numerical analysis indicated that better channel

estimation and prediction performance may be realized through the use of antenna arrays

at the transmitter and receiver for MIMO-OFDM systems. This result, an extension of a

similar result for narrowband MIMO systems [60], illustrated that MIMO-OFDM systems

can operate with lower time and frequency pilot densities than corresponding SISO imple-

mentations, even after taking into account the larger number of pilot symbols required to

estimate a MIMO channel.

Second, the results suggested that when appropriate, full parametric channel modeling

provides a significant advantage in estimation and prediction performance when compared

to less structured channel models. This advantage was particularly evident when comparing

performance results for full parametric models with those obtained using simple unstructured

interpolation schemes for estimating the channel.

And third, the simulations demonstrated that channel estimation methods based on

DOD/DOA parameterizations are extremely sensitive to array calibration errors. On the

other hand, approaches based on either vector or matrix spatial signatures were shown to be

significantly more robust despite the imprecise way in which they characterized the frequency
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dependence of the channel. In particular, the VSS channel model appeared to be a reasonable

compromise in terms of complexity, performance, and robustness.

Finally, Chapter 5 considered the problem of MIMO multiplexing using SVD-based

methods when only imperfect channel estimates are available. Expressions for the per-

subchannel signal power and interference-plus-noise power were derived which accounted for

the effects of the imperfect CSI. The derived expressions allowed more realistic values for the

per-subchannel SINRs to be computed. These expressions, which allow for different levels of

CSI imperfections at the transmitter and receiver, were shown to be valid over a wide range

of useful channel perturbation powers.

Assuming M-QAM modulation, methods were then presented which used these SINR

expressions to address the subchannel power and bit allocation problems given an SER

constraint. For the special case when identical, though imperfect, CSI was available at

the transmitter and receiver, it was found that uniform power allocation is the optimal

allocation strategy. Additionally, the SINR expressions were also used to derive thresholds

on the channel perturbation and noise variances. These thresholds indicated the channel

perturbation and measurement noise variance levels at which the switch between spatial

multiplexing and beamforming or vice versa is beneficial in terms of the number of bits

per transmission. As with previous chapters, the validity and usefulness of the derived

expressions were confirmed through numerical simulations.

6.2 Open Problems

Due to the usefulness and popularity of OFDM and MIMO technologies, continued

research into the theory and applications of these systems is warranted. While the number

of open problems in these areas is quite large, a few open problems related to the topics

covered in this dissertation are worth mentioning here. In Chapter 2, the problem of finding

optimal pilots signals for OFDM channel parameter estimation was discussed. Note that

while the chapter focused on finding pilots for the joint estimation of the time delay and

channel impulse response, there are several other parameters in OFDM systems that bear

consideration, such as the carrier frequency and sampling frequency offsets. Such parameters

could be considered along with those already studied in terms of the problem addressed in
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Chapter 3. The topics of this chapter could be expanded in other ways, as well, addressing

the estimation over multiple OFDM symbols, time-varying channels, and MIMO-OFDM

systems.

In addition, the CRB is but one metric that could be used for the optimal pilot design

problem. Other metrics such as minimum mean-square error and capacity could be used to

study the pilot configuration problem. While this has been done for limiting cases in [20,29]

and others, such approaches may be worth extending to this joint parameter problem in

some fashion.

In order to realize all of the benefits available through the use of optimal pilots such

as those found in Chapter 3, it may be instructive to find estimators that achieve or approach

the CRBs used to find these pilots. For the standard CRB formulation, such estimators may

be found in a manner similar to the joint channel impulse response and carrier frequency

offset estimator discussed by [29] and others. This estimator is not detailed in closed form,

but may be found by solving a related ML problem numerically. For the CRB-FOP-based

pilots, the problem of a CRB-achieving estimator is still open as it is not immediately clear

how to solve the related ML problem.

In Chapter 4, the CRB as a function of parameters was used to analyze the perfor-

mance of channel estimation relative to parameterized wideband MIMO models. Note that

the functions of parameters used in this chapter were nonlinear. As a result, unbiased esti-

mators will only be able to approach, but not achieve, the CRB levels given in this work [41].

Since tighter lower bounds than the CRB exist, an open problem is how to apply some of

these other bounds, which are often more difficult to find, to this same problem.

As was the case in Chapter 3, it is also not clear how to find feasible estimators

whose performance can approach the bounds in Chapter 4. The joint maximum likelihood

estimator for this problem is computationally intractable for practical application and chan-

nel prediction efforts have not lived up to their promise to date. Thus, there is a need to

find lower-computation alternatives that will allow estimation and prediction performance

levels in practice to approach those promised by these bounds.

Also note that the bounds of Chapter 4 depend upon the assumed training structure

used to gather CSI. Thus, the bounds of this chapter could potentially be used in the same
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manner as those of Chapter 3, that is, in application to the problem of optimal pilot selection.

Since this would be a very complex issue to study analytically, a numeric approach might

be the most tractable initially.

Finally, there are a great deal of open problems remaining relative to understanding

the impact of imperfect CSI on MIMO system performance. The work discussed in Chapter

5 focused on the specific case of MIMO SVD-based transmission, which, while simple, is not

optimal in terms of capacity when there are imperfections in the CSI. While solutions exist

for the limiting cases of this problem (see [65–68]), a solution for the general case has yet to be

found. There are also opportunities for expanding the work detailed in Chapter 5 itself, such

as extending the work from narrowband to wideband MIMO channels. As another example,

some work has already been done to extend the work of this chapter to multiuser MIMO.

At this point, though, the expressions derived, while detailing the subchannel SINR, do not

appear to be useful in compensating for imperfections in the channel knowledge due to the

additional challenges of multiuser MIMO systems. As of the present, the area of quantifying

and compensating for imperfect CSI for multiuser MIMO problem is still relatively open.

Overall, many opportunities still exist to advance the study and performance of

OFDM, MIMO, and MIMO-OFDM systems. Such work, whether directly tied to mate-

rial studied in this dissertation or not, has the potential for meaningful impact as society’s

need for increasingly high-throughput communication technologies continues.
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Appendix A

Derivation of a CRB for Biased Estimators

Let R and V be vector random variables associated with the channel measurements
and calibration errors, respectively. We desire to develop a bound for the error variance of
estimators with the property

Er,v|Θ[ĥ(R)] = Ev[h(Θ,V) + b(Θ,V)], (A.1)

where ĥ(R) is the channel estimate, which depends only on the channel measurements,
h(Θ,V) is the true channel, and b(Θ,V) is the estimation bias. Note that the authors
have not seen this particular CRB formulation previously in the literature. However, the
setup and derivation follow the methods shown in [41,78] for related bounds. We present the
derivation here for completeness. We will work first with the left-hand side (LHS). Taking
the derivative with respect to the vector parameter Θ results in

∂

∂Θ
Er,v|Θ[ĥ(R)] =

∂

∂Θ

∫

ĥ(R)p(R,V|Θ) ∂V∂R

=

∫

ĥ(R)

(

∂p(R,V|Θ)

∂Θ

)H

∂V∂R

(A.2)

assuming that the integral in the second equality converges. Similarly, we take the derivative
of the right-hand side (RHS) of (A.1):

∂

∂Θ
Ev|Θ[h(Θ,V) + b(Θ,V)] =

∂

∂Θ
Er,v|Θ[h(Θ,V) + b(Θ,V)]

=

∫

p(R,V|Θ)
∂g(Θ,V)

∂Θ

+ g(Θ,V)

(

∂p(R,V|Θ)

∂Θ

)H

∂V∂R

= Ev|Θ

[

∂g(Θ,V)

∂Θ

]

+

∫

g(Θ,V)

(

∂p(R,V|Θ)

∂Θ

)H

∂V∂R,

(A.3)
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where g(Θ,V) = h(Θ,V) + b(Θ,V). Combining (A.2) with (A.3), multiplying on the left
by the arbitrary row vector aH and on the right by the arbitrary vector d, and noting that

∂p(R,V|Θ)

∂Θ
=

∂ ln p(R,V|Θ)

∂Θ
p(R,V|Θ), (A.4)

we obtain
∫

u(R,V,Θ)v(R,V,Θ)p(R,V|Θ) ∂V∂R = aHE

[

∂(h(Θ,V) + b(Θ,V))

∂Θ

]

d, (A.5)

where
u(R,V,Θ) = aH [ĥ(R) − h(Θ,V) − b(Θ,V)] (A.6)

and

v(R,V,Θ) =

(

∂ ln p(R,V|Θ)

∂Θ

)H

d. (A.7)

Applying the Cauchy-Schwarz inequality, we find

E[u(R,V,Θ)2]E[v(R,V,Θ)2] ≥
(

aHE

[

∂(h(Θ,V) + b(Θ,V))

∂Θ

]

d

)2

. (A.8)

Since d was arbitrary, we can select it to be anything we want that does not depend on
specific realizations of R and V. We choose

d = J(Θ)−1E

[

∂(h(Θ,V) + b(Θ,V))

∂Θ

]H

a, (A.9)

where

J(Θ) = E

[

∂ ln p(R,V|Θ)

∂Θ

(

∂ ln p(R,V|Θ)

∂Θ

)H
]

. (A.10)

Plugging this result into (A.8) and simplifying, we obtain

E[u(R,V,Θ)2] ≥ aHH′BH′Ha, (A.11)

where B and H′ are defined in (4.50) and (4.48), respectively. Applying (A.1) to the LHS
of (A.11), we have

E[u(R,V,Θ)2] = aH
(

C
ĥ
− E[bbT ]

)

a, (A.12)

where
C

ĥ
= E

[

(ĥ(R) − h(Θ,V))(ĥ(R) − h(Θ,V))H
]

. (A.13)

Equations (A.11) and (A.12) lead directly to the bound in (4.49).
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Appendix B

Derivation of CRB Matrices

B.1 Derivatives for the Jacobian and Fisher Matrices

This section presents expressions for the derivatives used to calculate the Jacobian
matrices in (4.25) and (4.48) and the Fisher matrix of (4.26), i.e., ∂C

∂θi
and ∂h(ω,t)

∂θi
.

B.1.1 Derivatives with Respect to σ

The covariance C = σI depends only on σ, so all of the derivatives are zero except
∂C

∂θ1
= ∂C

∂σ
= I. The channel vector h(ω, t) does not depend on σ, so ∂h(ω,t)

∂σ
= 0.

B.1.2 Derivatives with Respect to Re[α] (DOD/DOA)

∂h(ω, t)

∂Re[αi]
=

∂(At ⊗ ArX)w

∂Re[αi]

=

(

At ⊗ Ar
∂X

∂Re[αi]

)

w

= (At ⊗ ArOii)w, (B.1)

where w = vec(W(ω, t)) and Oij is a matrix of all zeros except for a one at the ij-th position.

B.1.3 Derivatives with Respect to Im[α] (DOD/DOA)

∂h(ω, t)

∂Im[αi]
=

(

At ⊗ Ar
∂X

∂Im[αi]

)

w = j (At ⊗ ArOii)w (B.2)

B.1.4 Derivatives with Respect to ωd

∂h(ω, t)

∂ωd,i

= (At ⊗ ArX)
∂w

∂ωd,i

= (At ⊗ ArX)dω,i, (B.3)

where

dω,i =
∂w

∂ωd,i

= vec
(

−jtejγi(ω,t)Oii

)

. (B.4)

The derivatives for models other than the DOD/DOA follow directly from this derivation.
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B.1.5 Derivatives with Respect to τ

∂h(ω, t)

∂τi

= (At ⊗ ArX)dτ,i, (B.5)

where

dτ,i =
∂w

∂τi

= vec
(

−j(ω − ωc)e
jγi(ω,t)Oii

)

. (B.6)

Note that to improve the conditioning of the Fisher matrix, the derivative may be taken
with respect to τ(bandwidth) instead of with respect to τ alone.

B.1.6 Derivatives with Respect to Ωt (DOD/DOA)

∂h(ω, t)

∂Ωt,i

=

(

∂At

∂Ωt,i

⊗ ArX

)

w = (Dt,i ⊗ ArX)w, (B.7)

where

Dt,i =
∂At

∂Ωt,i

=
[

0 · · · 0
∂[At]:,i
∂Ωt,i

0 · · · 0
]

. (B.8)

Note that this expression is valid for any array type.

B.1.7 Derivatives with Respect to Ωr (DOD/DOA)

∂h(ω, t)

∂Ωr,i

=

(

At ⊗
∂Ar

∂Ωr,i

X

)

w = (At ⊗ Dr,iX)w (B.9)

with Dr,i defined in a similar manner to (B.8).

B.1.8 Derivatives with Respect to At (VSS)

For the VSS model, the elements of At and Ar are themselves parameters. Hence,
we must find derivatives with respect to the elements of these matrices.

∂h(ω, t)

∂Re[[At]ij]
=

∂ ((At ⊗ Ar)w)

∂Re[[At]ij]
= (Oij ⊗ Ar)w. (B.10)

Likewise,
∂h(ω, t)

∂Im[[At]ij]
= j (Oij ⊗ Ar)w. (B.11)

B.1.9 Derivatives with Respect to Ar (VSS)

Following the same procedure as for At, we obtain

∂h(ω, t)

∂Re[[Ar]ij]
= (At ⊗ Oij)w (B.12)
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and
∂h(ω, t)

∂Im[[Ar]ij]
= j

∂h(ω, t)

∂Re[[Ar]ij]
. (B.13)

B.1.10 Derivatives with Respect to A (MSS)

For the MSS model, we must take derivatives with respect to the LMrMt elements
of the matrix A from (4.20).

∂h(ω, t)

∂Re[[A]ij]
=

∂ ((IMt ⊗ A)vec(b ⊗ IMt))

∂Re[[A]ij]

= (IMt ⊗ Oij)vec(b ⊗ IMt). (B.14)

As in previous cases,
∂h(ω, t)

∂Im[[A]ij]
= j

∂h(ω, t)

∂Re[[A]ij]
. (B.15)

B.2 Derivation of CRB Submatrix

The derivatives with respect to the vector parameters α, ωd, τ , and so forth, lead
to a block structure in the Fisher information matrix. Simple closed-form expressions are
obtained for these matrix subblocks by substituting the derivative expressions above into
(4.26). We will now look at a representative subblock given by derivatives with respect to τ
and Ωt. First note that

2Re

[

∂hH

∂τi

C−1 ∂h

∂Ωt,j

]

=
2

σ

NM
∑

n=1

Re

[

∂hH
n

∂τi

∂hn

∂Ωt,j

]

, (B.16)

where hn = h(ωn, tn) and the summation come as a result of the stacked nature of h and
the diagonal structure of C, which is a reflection of the independence of the measurement
noise at different sample locations:

∂hH
n

∂τi

∂hn

∂Ωt,j

= dH
τ,i(At ⊗ ArX)H(Dt,j ⊗ ArX)w (B.17)

= dH
τ,i(A

H
t Dt,j ⊗ XHAH

r ArX)w . (B.18)

Note that dτ,i and w are evaluated at (ωn, tn). We omit this dependence from the notation
momentarily for simplicity. Expanding out the Kronecker product and summing over the
matrix subblocks, we obtain

∂hH
n

∂τi

∂hn

∂Ωt,j

=
L

∑

p=1

L
∑

q=1

d̆H
τ,ip[A

H
t Dt,j]pqX

HAH
r ArXw̆q, (B.19)

where
d̆τ,ip = [dτ,i]((p−1)L+1):pL = [−jωejγi(ω,t)Oii]:,p (B.20)
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and
w̆q = [w]((q−1)L+1):qL = [W]:,q. (B.21)

Note that the terms of (B.19) are only nonzero when q = j due to Dt,i and p = i since

d̆τ,ip = 0 when p 6= i. Only one term remains and (B.19) becomes

∂hH
n

∂τi

∂hn

∂Ωt,j

= [DH
τ ]ii[A

H
t Dt,j]ij[X

HAH
r ArX]ij[W]jj, (B.22)

where Dτ = −j(ωn − ωc)W. Now that we have the individual derivative terms, the entire
block is formed by arranging the individual terms to obtain

2Re

[

∂hH

∂τ
C−1 ∂h

∂Ωt

]

=
2

σ
Re

[

NM
∑

n=1

DH
τ,n(AH

t Dt ⊙ XHAH
r ArX)Wn

]

, (B.23)

where Wn = W(ωn, tn), Dτ,n is defined similarly, and ⊙ is the element-wise or Hadamard
matrix product. The matrix Dt is given by

Dt =
[

∂[At]:,1
∂Ωt,1

∂[At]:,2
∂Ωt,2

· · · ∂[At]:,L
∂Ωt,L

]

. (B.24)

All of the other subblocks of the Fisher matrix may be derived in a like manner.
The Jacobian matrices will also have a block structure. Simplified forms for these

blocks may be found by following a procedure similar to the one above for the Fisher blocks.

B.3 Expressions for FIM Subblocks

B.3.1 DOD/DOA CRB

The Fisher information matrix for the DOD/DOA model is given in (4.41). The
subblocks can be determined by following the example in Appendix B.2 and are given by

P1 =
2

σ

NM
∑

n=1

WH
n (AH

t At) ⊙ (AH
r Ar)Wn,

P2 =
2

σ

NM
∑

n=1

WH
n (AH

t At) ⊙ (AH
r ArX)Dτ,n,

P3 =
2

σ

NM
∑

n=1

WH
n (AH

t At) ⊙ (AH
r ArX)Dω,n,

P4 =
2

σ

NM
∑

n=1

WH
n (AH

t Dt) ⊙ (AH
r ArX)Wn,

P5 =
2

σ

NM
∑

n=1

WH
n (AH

t At) ⊙ (AH
r DrX)Wn,
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P6 =
2

σ

NM
∑

n=1

DH
τ,n(AH

t At) ⊙ (XHAH
r ArX)Dτ,n,

P7 =
2

σ

NM
∑

n=1

DH
τ,n(AH

t At) ⊙ (XHAH
r ArX)Dω,n,

P8 =
2

σ

NM
∑

n=1

DH
τ,n(AH

t Dt) ⊙ (XHAH
r ArX)Wn,

P9 =
2

σ

NM
∑

n=1

DH
τ,n(AH

t At) ⊙ (XHAH
r DrX)Wn,

P10 =
2

σ

NM
∑

n=1

DH
ω,n(AH

t At) ⊙ (XHAH
r ArX)Dω,n,

P11 =
2

σ

NM
∑

n=1

DH
ω,n(AH

t Dt) ⊙ (XHAH
r ArX)Wn,

P12 =
2

σ

NM
∑

n=1

DH
ω,n(AH

t At) ⊙ (XHAH
r DrX)Wn,

P13 =
2

σ

NM
∑

n=1

WH
n (DH

t Dt) ⊙ (XHAH
r ArX)Wn,

P14 =
2

σ

NM
∑

n=1

WH
n (DH

t At) ⊙ (XHAH
r DrX)Wn,

and

P15 =
2

σ

NM
∑

n=1

WH
n (AH

t At) ⊙ (XHDH
r DrX)Wn,

where Dr and Dω,n are defined in a manner analogous to Dt and Dτ,n.

B.3.2 DOD/DOA CRB with Calibration Errors

If the Fisher information matrix for the DOD/DOA model with calibration errors
is evaluated as required by (4.47), the Fisher subblocks are of the same form as those for
the DOD/DOA model, and may be obtained by replacing At with At + Vt and Ar with
Ar +Vr in those expressions. If the Fisher matrix is evaluated as required by (4.49) then the
subblocks may be found by replacing AH

t At by AH
t At +MtσtI and AH

r Ar by AH
r Ar +MrσrI

in the expressions given in Appendix B.3.1. Note that the bias terms bbH and E[bbH ] in
(4.47) and (4.49), respectively, do not have simple closed form expressions. However, the
trace of these terms, as required for the normalized error bound, does and this difficulty is
avoided.
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B.3.3 VSS CRB

Following the same procedure used to find the CRB for the DOD/DOA model, a
bound may be found for the VSS model. The Fisher matrix for the VSS model is

J(Θ) =

[

MtMrNM

σ2 0T

0 J22

]

, (B.25)

where

J22 =

















Re[P1] Re[P2] Re[P3] −Im[P3] Re[P4] −Im[P4]
Re[PT

2 ] Re[P5] Re[P6] −Im[P6] Re[P7] −Im[P7]
Re[PT

3 ] Re[PT
6 ] Re[P8] −Im[P8] Re[P9] −Im[P9]

−Im[PT
3 ] −Im[PT

6 ] Im[P8] Re[P8] Im[P9] Re[P9]
Re[PT

4 ] Re[PT
7 ] Re[PT

9 ] Im[PT
9 ] Re[P10] −Im[P10]

−Im[PT
4 ] −Im[PT

7 ] −Im[PT
9 ] Re[PT

9 ] Im[P10] Re[P10]

















(B.26)

with

P1 =
2

σ

NM
∑

n=1

Dω,n(AH
t At ⊙ AH

r Ar)Dω,n,

P2 =
2

σ

NM
∑

n=1

Dω,n(AH
t At ⊙ AH

r Ar)Dτ,n,

P3 =
2

σ

NM
∑

n=1

(Dω,nA
H
r ArWn) ⊛ AH

t ,

P4 =
2

σ

NM
∑

n=1

(Dω,nA
H
t AtWn) ⊛ AH

r ,

P5 =
2

σ

NM
∑

n=1

Dτ,n(AH
t At ⊙ AH

r Ar)Dτ,n,

P6 =
2

σ

NM
∑

n=1

(Dτ,nA
H
r ArWn) ⊛ AH

t ,

P7 =
2

σ

NM
∑

n=1

(Dτ,nA
H
t AtWn) ⊛ AH

r ,

P8 =
2

σ

NM
∑

n=1

(WH
n AH

r ArWn ⊗ IMt),

P9 =
2

σ

NM
∑

n=1

(W ⊗ IMt)
HG(W ⊗ IMr),
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and

P10 =
2

σ

NM
∑

n=1

(WH
n AH

t AtWn ⊗ IMr),

where

G =







at,1a
H
r,1 · · · at,La

H
r,1

...
. . .

...
at,1a

H
r,L · · · at,La

H
r,L






, (B.27)

at,i and ar,i are the i-th columns of At and Ar, respectively, and ⊛ represents a matrix
product defined for two matrices A and B as follows. If

A =
[

a1 a2 · · · aM

]

(B.28)

and
B =

[

b1 b2 · · · bN

]

, (B.29)

then

A ⊛ B =
[

a1 ⊙ b1 a1 ⊙ b2 · · · a1 ⊙ bN | · · ·
|aM ⊙ b1 aM ⊙ b2 · · · aM ⊙ bN

]

. (B.30)

B.3.4 MSS CRB

The Fisher matrix for the MSS model is

J(Θ) =













MtMrNM

σ2 0T 0T 0T 0T

0 Re[Q1] −Im[P1] Re[P2] Re[P3]
0 Im[P1] Re[P1] Im[P2] Im[P3]
0 Re[PT

2 ] Im[PT
2 ] Re[P4] Re[P5]

0 Re[PT
3 ] Im[PT

3 ] Re[PT
5 ] Re[P6]













, (B.31)

and the individual matrix subblocks are given by

P1 =
2

σ

NM
∑

n=1

b∗
nb

T
n ⊗ IMtMr ,

P2 =
2

σ

NM
∑

n=1

(BH
n ⊗ IMtMr)(1L×L ⊗ IMtMr)







vec(A1)
...

vec(AL)






Dτ,n,

P3 =
2

σ

NM
∑

n=1

(BH
n ⊗ IMtMr)(1L×L ⊗ IMtMr)







vec(A1)
...

vec(AL)






Dω,n,
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P4 =
2

σ

NM
∑

n=1

DH
τ,n







Tr[AH
1 A1] · · · Tr[AH

1 AL]
...

. . .
...

Tr[AH
L A1] · · · Tr[AH

L AL]






Dτ,n,

P5 =
2

σ

NM
∑

n=1

DH
τ,n







Tr[AH
1 A1] · · · Tr[AH

1 AL]
...

. . .
...

Tr[AH
L A1] · · · Tr[AH

L AL]






Dω,n,

and

P6 =
2

σ

NM
∑

n=1

DH
ω,n







Tr[AH
1 A1] · · · Tr[AH

1 AL]
...

. . .
...

Tr[AH
L A1] · · · Tr[AH

L AL]






Dω,n,

where Bn = diag(bn), Dτ,n = ∂Bn/∂τ , and Dω,n = ∂Bn/∂ω.
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Appendix C

Additional Beamforming/Multiplexing Thresholds

C.1 Thresholds Accounting for Estimation Error

More precisely defined thresholds than those of (5.92) and (5.94) can be obtained if
we separate σ2

H,2 into its two component terms, as in (5.36). This is useful since σ2
H,2 is itself

a function of σ2
n. In particular, if we assume that σ2

H,n = Kσ2
n for some constant K that

depends on the particular channel estimation scheme, then using a derivation analogous to
those previously given, we may derive the following beamforming/multiplexing thresholds
for σ2

H,o and σ2
n, which are given by

σ2∗
H,o(σ

2
n) =

−c1 +
√

c2
1 − 4c2c0

2c2

(C.1)

and

σ2∗
n =

2PT (eα − 1)σ2
2

(Q−1(E))2(P 2
T K2 + 2PT K + eα) − 2PT (eα − 1)K

, (C.2)

where

c2 = P 2
T (Q−1(E))2, (C.3)

c1 = 2P 2
T (Q−1(E))2σ2

H,n + 2PT ((Q−1(E))2 − eα + 1)σ2
n, (C.4)

and

c0 = (Q−1(E))2(P 2
T σ4

H,n + eασ4
n) − 2PT (eα − 1)σ2

2σ
2
n

+ 2PT ((Q−1(E))2 − eα + 1)σ2
nσ2

H,n .
(C.5)

Note that the threshold in (5.87) applies as is. If σ2
H,n = 0 (or K = 0) then (C.1) and (C.2)

reduce to (5.92) and (5.94), respectively.

C.2 Thresholds for the Gauss-Markov Channel Model

The derived thresholds may also be modified to accommodate the use of the Gauss-
Markov channel mobility model in (5.37). For simplicity, we will only consider the CCSI case
as discussed in Chapter 5.2.4. Extensions to the MCSI case depend on assumptions about
how the Gauss-Markov model relates to ∆H1 and ∆H2. While the consideration of these
issues was not addressed in this work, once such determinations are made, derivation of the
corresponding thresholds is straightforward. For example, if ∆H1 = 0, then the threshold
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of (5.92) becomes a threshold on 1−αr instead of σ2
H,2. The only other modification needed

is in (5.90) where eα − 1 should be replaced by (eα − 1)(1 − σ2
2). The threshold of (5.94) is

applicable without modification.
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