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TCP 壅塞控制技術之研究與設計 

  學生：詹益禎                          指導教授：陳耀宗博士

國立交通大學資訊工程學系 

摘    要 

隨著網際網路訊務流量的快速成長，如何以有效率的方式使用網路資源是一個

成功的壅塞控制機制所要面對的根本問題。TCP 身為網際網路上一個被廣為使用的

端對端傳輸層協定，它被創造出許多不同的版本，用來改進網路的使用效能。在目

前的 TCP 版本中有兩個特別值得留意的方案，一個是現今網際網路上廣為使用的

Reno，另一個則是宣稱相較於Reno可增進百分之三十七到七十一傳輸效能的Vegas。 

TCP Vegas 能夠偵測出初期的網路壅塞而且可以成功的避免在 TCP Reno 上時常

發生的週期性封包遺失的現象，很多研究報告已經指出，Vegas 在很多方面都要優

於 Reno，例如整體網路的使用率、穩定性、公平性、以及傳輸速率等。很可惜的是

Vegas 並不完美，仍然有一些缺點存在於它的壅塞控制機制中，這些問題或問題的

起因包含了重新繞路、永久壅塞、競爭連線間的公平性、非對稱網路傳輸、高頻寬-

延遲乘積網路、以及無線傳輸下的非壅塞封包遺失等。在這份論文中，我們提出了

四個改進 Vegas 的機制，為 Vegas 移除邁向成功的障礙。這些新提出的機制有些是

單純的端對端方法，有些則利用了路由器所提供的資訊以改善連線的傳輸效能。 

第一個提出的方案 RoVegas 是一個使用路由器訊息回饋的改進方案，藉由封包

路徑上的路由器執行特定的機制，RoVegas 可以解決重新繞路時所引起的問題，可

以解決永久壅塞問題，也可以增進競爭連線間的公平性，以及改善在非對稱網路傳

輸時，TCP 可能的效能損失。 

Enhanced Vegas 是一個純粹端點對端點的改進機制，不用路由器的協助，它可

以量測出發生在前送路徑和返回路徑上的網路壅塞程度，因此它能精準而合宜的調

整封包的傳送速率，有效提高當壅塞發生在返回路徑時的連線效能。 

由於在擁有大壅塞窗口時的反應速度過於緩慢，TCP 在高頻寬-延遲乘積網路中

顯得效能不彰，因此第三個改進機制 Quick Vegas 被提出來。Quick Vegas 利用連
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線壅塞窗口的調整紀錄以及連線估測堆積在佇列中的封包數量為依據，對 TCP 壅塞

控制演算法做出調整，這個改變使得一個連線的送端在調整壅塞窗口大小時採取更

有效和積極的態度，因此讓連線在高頻寬-延遲乘積網路中能有較好的表現。 

TCP 壅塞控制的一個眾所週知的問題是它沒有辦法分辨出封包遺失的原因，傳

統的 TCP 把所有封包遺失的原因都歸咎於網路的壅塞，這種推測在異質性日益顯著

的網際網路中並不合宜。錯把傳輸失誤所造成的封包遺失當成網路壅塞的訊號將導

致 TCP 不必要的效能損失。最後一個提出的改進方案 RedVegas 利用 TCP Vegas 原有

的特性以及路由器在封包上的壅塞標記，可以準確的判斷出傳輸失誤所造成的封包

遺失，透過封包遺失原因的分類，RedVegas 可以適切的對不同原因的封包遺失做出

不同的反應，因此改善了在異質網路傳輸中的 TCP 效能。 

 ii
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ABSTRACT

With the fast growth of Internet traffic, how to efficiently utilize network re-

sources is essential to a successful congestion control. Transmission Control Protocol

(TCP) is a widely used end-to-end transport protocol in the Internet, it has sev-

eral implementation versions (i.e., Tahoe, Reno, Vegas...) which intend to improve

network utilization. Among these TCP variants, there are two notable approaches.

One is Reno which has been widely deployed on the Internet; the other is Vegas

with a claim of 37 to 71 percent throughput improvement over Reno was achieved.

TCP Vegas detects network congestion in the early stage and successfully pre-

vents periodic packet loss that usually occurs in TCP Reno. It has been demon-

strated that TCP Vegas outperforms TCP Reno in the aspects of overall network

utilization, stability, fairness, and throughput. However, TCP Vegas still suffers

problems that inhere in its congestion control algorithm, these include issues of

rerouting, persistent congestion, fairness, network asymmetry, high bandwidth-delay

product (BDP) networks, and internetworking of wired and wireless networks. In

this dissertation, we propose four enhanced mechanisms to remove the obstacles of

TCP Vegas for achieving a real success. These mechanisms not only adopt end-to-

end approaches but also utilize the information that provided by routers to improve

the performance of connections.

The first proposed mechanism, RoVegas, uses a router-assisted approach. By

performing the proposed scheme in routers along the round-trip path, RoVegas

can solve the problems of rerouting and persistent congestion, enhance the fairness

iii



among the competitive connections, and improve the throughput when congestion

occurs on the backward path.

An end-to-end scheme, Enhanced Vegas, is also presented to improve the perfor-

mance degradation of TCP Vegas in asymmetric networks. Through distinguishing

whether congestion occurs in the forward path or not, Enhanced Vegas significantly

advances the connection throughput when the backward path is congested.

TCP congestion control may function poorly in high BDP networks because of

its slow response with large congestion window size. In the third mechanism, we

propose an improved version of TCP Vegas called Quick Vegas, in which we present

an efficient congestion window control algorithm for a TCP source. The modifica-

tion allows TCP connections to react faster and better to high BDP networks and

therefore improves the overall performance.

A well-known problem in providing TCP congestion control over wired and wire-

less networks is that it may encounter both congestion loss and random loss. Tra-

ditional TCP interprets every packet loss as caused by congestion which may not

be the case in the current Internet. In the last proposed mechanism, RedVegas,

we utilize the innate nature of TCP Vegas and congestion indications marked by

routers to detect random packet losses precisely. Through the packet loss differen-

tiation, RedVegas reacts appropriately to the losses, and therefore the throughput

of connection over heterogeneous networks can be significantly improved.

Keywords: Asymmetric networks, heterogeneous networks, high bandwidth-

delay product networks, Internet, TCP congestion control, TCP Vegas, transport

protocol, wireless networks.
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Chapter 1

Introduction

Transmission Control Protocol (TCP) is the most popular transport protocol for

the current Internet. It provides a reliable data transport between two end hosts of

a connection as well as controls the connection’s bandwidth usage to avoid network

congestion. Many Internet applications use it as the underlying communication

protocol. The behavior of TCP is therefore tightly coupled with the overall Internet

performance.

The essential strategy of TCP is sending packets to the network without a reser-

vation and then reacting to observable events occurred. Original TCP is officially

defined in [1]. It has a simple sliding window flow control mechanism without any

congestion control. After observing a series of congestion collapses in 1980’s, Ja-

cobson introduced several innovative congestion control mechanisms into TCP in

1988. This TCP version, called TCP Tahoe [2], includes the slow-start, additive

increase and multiplicative decrease (AIMD), and fast retransmit algorithms. Two

years later, the fast recovery algorithm was added to Tahoe to form a new TCP

version called TCP Reno [3]. TCP Reno is currently the dominating TCP version

deployed in the Internet.

TCP congestion control is an active research area. Over the years, considerable

research regarding the knowledge about TCP has been done [4, 5, 6, 7, 8, 9, 10].

TCP Reno can be thought as a reactive congestion control scheme. It uses packet
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loss as an indicator for congestion. In order to probe the available bandwidth along

the end-to-end path, TCP congestion window will be increased until a packet loss

is detected, at which point the congestion window is halved and a linear increase

algorithm will take over until further packet loss is experienced.

It is known that TCP Reno may periodically generate packet loss by itself and

can not efficiently recover multiple packet losses from a window of data. Moreover,

the AIMD strategy of TCP Reno leads to periodic oscillations in the aspects of

congestion window size, round-trip delay, and queue length of the bottleneck node.

Recent works have shown that the oscillation may induce chaotic behavior into the

network thus adversely affects overall network performance [11, 12].

To alleviate the performance degradation problem of packet loss, many researchers

attempted to refine the fast recovery algorithm which embedded in TCP Reno. New

proposals includes TCP NewReno [13], SACK [14], FACK [15], Net Reno [16], and

LT [17]. All these algorithms bring performance improvement for a connection after

a packet loss is detected.

To combat the inherent oscillation problem of TCP Reno, many congestion avoid-

ance mechanisms are proposed. These works include DUAL [18], CARD [19], Tri-S

[20], Packet-Pair [21], TCP vegas [22, 23, 24, 25], and TCP Santa Cruz [26]. Among

these creative mechanisms, there is a notable approach, TCP Vegas, with a claim

of 37 to 71 percent throughput improvement over TCP Reno was achieved.

1.1 Motivation

With the fast growth of Internet traffic, how to efficiently utilize network resources

is essential to a successful congestion control. TCP Vegas with a proactive con-

gestion control strategy has the potential to provide a stable and efficient network

environment.

To prevent the performance degradation caused by AIMD, TCP Vegas employs

a fundamentally different congestion avoidance approach. It uses the difference be-

tween the expected and actual throughput to estimate the available bandwidth in the
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network. The idea is that when the network is not congested, the actual throughput

will be close to the expected throughput. Otherwise the actual throughput will be

smaller than the expected throughput. TCP Vegas uses the difference in through-

put to gauge the congestion level in the network and update the congestion window

size accordingly. As a result, TCP Vegas is able to detect network congestion in

the early stage and successfully prevents periodic packet loss that usually occurs in

TCP Reno. Many studies have demonstrated that TCP Vegas outperforms TCP

Reno in the aspects of overall network utilization [23, 24], stability [9, 10], fairness

[9, 10], and throughput [11, 23, 24].

Although TCP Vegas is superior to TCP Reno in the aforementioned aspects,

however, TCP Vegas still suffers problems that inhere in its congestion control

algorithm, these include issues of rerouting [9], persistent congestion [9], fairness

[10, 27, 28], network asymmetry [29, 30, 31], high bandwidth-delay product (BDP)

networks [32], internetworking of wired and wireless networks [33, 34], and incom-

patibility between TCP Reno and Vegas [9, 35, 36]. All these problems may prevent

TCP Vegas from achieving a success.

1.2 Contributions

In this dissertation, we propose four enhanced mechanisms to remove the obstacles

of TCP Vegas for achieving a success. These mechanisms not only adopt end-to-end

approaches but also utilize the information that provided by routers to improve the

performance of connections. We now briefly describe each proposed mechanism and

its contributions as follows:

• RoVegas: The first proposed mechanism, RoVegas, is a router-assisted ap-

proach. In RoVegas, we define a new IP options named AQT (accumulate

queuing time) to collect the queuing time experienced by a probing packet.

By performing the proposed scheme in routers along the round-trip path, a

RoVegas source may obtain the queuing time of both forward and backward

directions as well as the fixed delay of the round-trip path. As a result, it can
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solve the problems of rerouting and persistent congestion, enhance the fair-

ness among the competitive connections, and improve the throughput when

congestion occurs along the backward path.

• Enhanced Vegas: An end-to-end scheme, Enhanced Vegas, is also presented

to improve the performance degradation problem of TCP Vegas in asymmetric

networks. The mechanism uses TCP timestamps option to estimate queueing

delay on the forward and backward path separately without clock synchroniza-

tion. Through distinguishing whether congestion occurs in the forward path or

not, Enhanced Vegas significantly advances the connection throughput when

the backward path is congested.

• Quick Vegas: TCP congestion control may function poorly in high BDP

networks because of its slow response with large congestion window size. In the

third mechanism, we propose an improved version of TCP Vegas called Quick

Vegas, in which we present an efficient congestion window control algorithm for

a TCP source. Our algorithm is based on the increment history and estimated

amount of extra data to update the congestion window intelligently. The

modification allows TCP connections to react faster and better to high BDP

networks and therefore improves the overall performance.

• RedVegas: A well-known problem in providing TCP congestion control over

wired and wireless networks is that it may encounter both congestion loss

and random loss. Traditional TCP interprets every packet loss as caused by

congestion which may not be the case in the current Internet. Misinterpreta-

tion of a random loss as an indication of network congestion results in TCP

slowing down its sending rate unnecessarily. In the last proposed mechanism,

RedVegas, we utilize the innate nature of TCP Vegas and congestion indica-

tions marked by routers to detect random packet losses precisely. Through

the packet loss differentiation, RedVegas reacts appropriately to the losses,

and therefore the throughput of connections over heterogeneous networks can

be significantly improved.
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1.3 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we review the

design principles of the two notable TCP implementations, TCP Reno and TCP

Vegas. Some variants of TCP Reno and several innovative congestion avoidance

mechanisms are also discussed in this Chapter. The proposed RoVegas, Enhanced

Vegas, Quick Vegas, and RedVegas are described and evaluated in Chapters 3, 4,

5, and 6 respectively. Finally, we conclude the main work of this dissertation and

point out some future work in Chapter 7.
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Chapter 2

Background

End hosts sharing a best-effort network need to respond to congestion by imple-

menting congestion control mechanisms to ensure network stability. Otherwise, the

network may be driven into congestion collapses. Over past decades, two main con-

gestion control algorithms were proposed and tested in real networks. One is TCP

Reno [2, 3], and the other is TCP Vegas [22, 23, 24, 25]. TCP Reno has been widely

deployed on the current Internet. Several RFCs are documented for the implemen-

tation of TCP Reno. The basic functionality is recommended by [1, 37, 38, 39, 40]

and extensions are exhibited in [14, 41, 42, 43]. Table 2.1 lists these RFCs. In

the following sections, we summarize the congestion control mechanism embedded

in TCP Reno and TCP Vegas. Besides, some variants of TCP Reno and several

innovative congestion avoidance mechanisms are also discussed.

2.1 TCP Reno

TCP Reno is a window1-based congestion control mechanism. Its window-adjustment

algorithm consists of three phases; slow-start, AIMD (additive increase/multiplicative

decrease), and fast retransmit and recovery. A connection begins with the slow-start

phase. The objective of slow-start is to enable a TCP connection to discover the

1TCP window refers to the amount of outstanding data that can be transmitted by the sender

without acknowledgements.
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Table 2.1: RFCs for the TCP implementation.

RFC number Topic

793 Transmission Control Protocol

1122 Requirements for Internet Hosts - Communication Layers

1323 TCP Extensions for High Performance

2018 TCP Selective Acknowledgement Options

2581 TCP Congestion Control

2582 The NewReno Modification to TCP’s Fast Recovery Algorithm

2914 Congestion Control Principles

3168 The Addition of Explicit Congestion Notification (ECN) to IP

3390 Increasing TCP’s Initial Window

Source

Destination

Time

...

CWND=1 CWND=2 CWND=4 CWND=8

Figure 2.1: Packets in transit during slow-start.

available bandwidth by gradually increasing the amount of data injected into the

network from the initial window size2. Upon receiving an acknowledgement packet

(ACK), the congestion window size (CWND) is increased by one packet. With ref-

erence to Fig. 2.1, initially, the sender starts by transmitting one packet and waits

for its ACK. When that ACK is received, the congestion window is incremented

from one to two, and two packets can be sent. When both of these two packets are

acknowledged, the congestion window is increased to four, and so on.

2RFC 2581 suggests an initial window size of two packets and RFC 3390 suggests a larger

initial window can be used for reducing the duration of startup period, specifically for connections

running in long propagation delay networks.
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Since the CWND in the slow-start phase expands exponentially, the packets sent

at this increasing rate would quickly lead to network congestion. To avoid this, the

AIMD phase begins when CWND reaches the slow-start threshold (SSTHRESH ).

In AIMD phase, the CWND is added by 1/CWND packet every once receiving an

ACK, this makes window size grow linearly. The process continues until a packet

loss is detected and then the the CWND will be cut by half.

There are two ways for TCP Reno to detect packet loss. One is based on the

reception of three duplicate ACKs, the other is based on retransmission timeout.

When a source receives three duplicate ACKs, the fast retransmit and recovery

algorithm is performed. It retransmits the lost packet immediately without waiting

for a coarse-grained timer to expire. In the meantime, the SSTHRESH is set to half

of CWND, which is then set to SSTHRESH plus the number of duplicate ACKs.

The CWND is increased by one packet every once receiving a duplicate ACK. When

the ACK of a retransmitted packet is received, the CWND is set to SSTHRESH

and the source reenters the AIMD phase.

If a serious congestion occurs and there is no sufficient survived packets to trigger

three duplicate ACKs, the congestion will be detected by a coarse-grained retrans-

mission timeout. When the retransmission timer expires, the SSTHRESH is set to

half of CWND and then the CWND is reset to one and finally the source restarts

from slow-start phase.

A window evolution example including three window-adjustment phases of TCP

Reno can be referred to Fig. 2.2. A connection starts from slow-start phase with an

exponentially increasing rate. Since the connection has no idea about the available

bandwidth of the network, the over expanded window size incurs a severe congestion

quickly. After a retransmission timeout, the connection restarts from slow-start

phase. When the CWND grows up to the SSTHRESH, the window size is increased

linearly. After that, the pattern of periodically additive increasing and multiplicative

decreasing of window size continues throughout the lifetime of the connection.

The fast retransmit and recovery algorithm of TCP Reno allows a connection

to quickly recover from isolated packet losses. However, when multiple packets are
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Figure 2.2: TCP Reno’s window evolution.

dropped from a window of data, TCP Reno may suffer serious performance problems.

Since it retransmits at most one dropped packet per round-trip time, and further

the CWND may be decreased more than once due to multiple packet losses occurred

during one round-trip time interval. In this situation, TCP Reno operates at a very

low rate and loses a significant amount of throughput.

A number of enhanced loss recovery algorithms have been proposed to improve

the above problem. In the following subsections, we briefly describe three noted

remedies of TCP Reno, these include TCP NewReno [13], SACK [14], and FACK

[15].

2.1.1 TCP NewReno

TCP NewReno makes a small change to a connection source, it may eliminate TCP

Reno’s waiting for a retransmission timeout when multiple packets are lost from a

window. The change enhances the fast recovery algorithm of TCP Reno.

In TCP Reno, partial ACKs3 bringing the connection out of fast recovery results

3Partial ACK is an acknowledgement that acknowledge some but not all of the outstanding

packets at the start of that fast recovery phase.
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in a retransmission timeout in case of multiple packet losses. In TCP NewReno,

when a source receives a partial ACK, it won’t get out of fast recovery [5, 42,

13]. Instead, it assumes that the packet immediately follows the most recently

acknowledged packet has been lost, and hence retransmits the lost packet. Thus,

in the situation of multiple packet losses, TCP NewReno will retransmit one lost

packet per round-trip time until all of the lost packets from the same window have

been recovered, and will not incur retransmission timeout. It remains in fast recovery

phase until all of the outstanding packets at the start of that fast recovery phase have

been acknowledged. Although this can avoid the unnecessary window reduction, the

recovery time is still long. The implementation details of TCP NewReno has been

specified in RFC 2582.

2.1.2 SACK

Another way to deal with multiple packet losses is to tell the source which pack-

ets have arrived at the destination. Selective Acknowledgments (SACK) does so

exactly. TCP adapts accumulated acknowledgement strategy to acknowledge the

successfully transmitted packets, this improves the robustness of acknowledgement

when the path back to the source features high loss rate. However, the drawback of

accumulated acknowledgement is that after a packet loss the source is unable to find

out which packets are successfully transmitted. Therefore, it is unable to recover

more than one lost packet in each round-trip time.

SACK option [14] field contains a number of SACK blocks, where each SACK

blocks reports a non-contiguous set of data that has been received and buffered.

The destination uses ACK with SACK option to inform the source one contiguous

block of data that has been received out of order at the destination.

When SACK blocks are received by the source, they are used to maintain an

image of the receiver queue, i.e., which packets are missing and which have been

received at the destination. Scoreboard is set up to track those transmitted and

received packets according to the previous information of the SACK option. For
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each transmitted packet, scoreboard records its sequence number and a flag bit that

indicates whether the packet has been “SACKed”. A packet with the SACKed bit

turned on does not require to retransmit, but packets with the SACKed bit off and

sequence number less than the highest SACKed packet are eligible for retransmission.

Whether a SACKed packet is on or off, it is removed from the retransmission buffer

only when it has been cumulatively acknowledged.

SACK TCP implementation still uses the same congestion control algorithms as

TCP Reno. The main difference between SACK TCP and TCP Reno is the behavior

in the event of multiple packet losses. SACK TCP refines the fast retransmit and

fast recovery strategy of TCP Reno so that multiple lost packets in a single window

can be recovered within one round-trip time.

2.1.3 FACK

Forward Acknowledgments (FACK) [15] was developed to decouple the congestion

control algorithms from the data recovery algorithms. It uses the additional infor-

mation provided by SACK option to keep an explicit measure of the total amount

of outstanding data in the network. The goal of the FACK algorithm is to perform

precise congestion control during recovery. By accurately controlling the outstand-

ing data in the network, FACK can improve the connection throughput during the

data recovery phase.

2.2 TCP Vegas

TCP Vegas is a rate-based congestion control mechanism. It can detect network

congestion in the early stage and successfully prevents periodic packet loss that

usually occurs in TCP Reno. TCP Vegas features three improvements as compared

with TCP Reno: (1) a new retransmission mechanism, (2) an improved congestion

avoidance mechanism, and (3) a more effective slow-start mechanism. We summary

the design principles of TCP Vegas as follows.
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TCP Vegas adopts a more sophisticated bandwidth estimation scheme that tries

to avoid rather than to react to congestion. It uses the measured round-trip time

(RTT ) to accurately calculate the amount of data packets that a source can send. Its

window adjustment algorithm consists of three phases: slow-start (SS), congestion

avoidance (CA), and fast retransmit and fast recovery (FF). The congestion window

is updated based on the currently executing phase.

During the congestion avoidance phase, TCP Vegas does not continually increase

the congestion window. Instead, it tries to detect incipient congestion by comparing

the actual throughput to the expected throughput. Vegas estimates a proper amount

of extra data to be kept in the network pipe and controls the congestion window

size accordingly. It records the RTT and sets BaseRTT to the minimum of ever

measured round-trip times. The amount of extra data (∆) is estimated as follows:

∆ = (Expected − Actual) × BaseRTT, (2.1)

where Expected throughput is the current congestion window size (CWND) divided

by BaseRTT, and Actual throughput represents the CWND divided by the newly

measured smoothed-RTT. The CWND is kept constant when the ∆ is between

two thresholds α and β. If ∆ is greater than β, it is taken as a sign for incipient

congestion, thus the CWND will be reduced. On the other hand, if the ∆ is smaller

than α, the available bandwidth may be under utilized. Hence, the CWND will

be increased. The updating of CWND is per-RTT basis. The rule for congestion

window adjustment can be expressed as follows:

CWND =



























CWND + 1, if ∆ < α

CWND − 1, if ∆ > β

CWND, if α ≤ ∆ ≤ β

. (2.2)

During the slow-start phase, TCP Vegas is similar to TCP Reno that allows

a connection to quickly ramp up to the available bandwidth. However, to ensure

that the sending rate will not increase too fast, TCP Vegas doubles the size of its

congestion window only every other RTT. A similar congestion detection mechanism
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Figure 2.3: TCP Vegas’ window evolution.

is applied during the slow-start to decide when to switch the phase. If the estimated

amount of extra data is greater than γ, TCP Vegas leaves the slow-start phase,

reduces its congestion window size by 1/8 and enters the congestion avoidance phase.

By keeping a proper amount of extra data in the network, TCP Vegas does not

generate packet loss by itself. Ideally, it can maintain a stable window size as well

as fully utilize the network resources if the network resources remain constant. An

example of TCP Vegas’ window evolution in a stable network environment can be

referred to Fig. 2.3.

As in TCP Reno, a triple-duplicate acknowledgement (ACK) always results in

packet retransmission. However, in order to retransmit the lost packets quickly,

TCP Vegas extends TCP Reno’s fast retransmission strategy. TCP Vegas measures

the RTT for every packet sent based on fine-grained clock values. Using the fine-

grained RTT measurements, a timeout period for each packet is computed. When

a duplicate ACK is received, TCP Vegas will check whether the timeout period of

the oldest unacknowledgement packet is expired. If so, the packet is retransmitted.

This modification leads to packet retransmission after just one or two duplicate

ACKs. When a non-duplicate ACK that is the first or second ACK after a fast
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Figure 2.4: Phase transition diagram of TCP Vegas.

retransmission is received, TCP Vegas will again check for the expiration of the

timer and may retransmit another packet. Note that, packet retransmission due to

an expired fine-grained timer is conditioned on the reception of certain ACKs.

After a packet retransmission was triggered by a duplicate ACK and the ACK

of the lost packet is received, the congestion window size will be reduced to alleviate

the network congestion. There are two cases for TCP Vegas to set the CWND.

If the lost packet has been transmitted just once, the CWND will be three fourth

of the previous congestion window size. Otherwise, it is taken as a sign for more

serious congestion, and one half of the previous congestion window size will be set

to CWND. Notably, in case of multiple packet losses occurred during one round-trip

time that trigger more than one fast retransmission, the congestion window will be

reduced only for the first retransmission.

If a loss episode is severe enough that no ACKs are received to trigger fast
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Table 2.2: Variable description of Fig. 2.5.

Variable Description

ACKSeqNo sequence number of the last successfully received packet

NumDupACK number of duplicate ACK

RTO duration of the coarse-grained retransmission timer

FGRTO duration of the fine-grained retransmission timer

CWNDCT last congestion window adjustment time due to a packet loss detection

SendTime sending time of the lost packet

Delta amount of extra data

LostSeqNo squence number of the lost packet

NumTransmit number of transmission times of the lost packet

NewCWND congestion window size that will be used as a lost packet is recovered

IncrFlag a flag used to adjust congestion window every other RTT

IncrAmt increment amount of congestion window size for each new ACK is received

WorriedCtr a counter used to check FGRTO after a lost packet is recovered

retransmit algorithm, eventually, the losses will be identified by Reno-style coarse-

grained timeout. When this occurs, the slow-start threshold (SSTHRESH ) will be

set to one half of current CWND, then the CWND will be reset to two, and finally

the connection will restart from slow-start.

Figure 2.4 shows the phase transition diagram of TCP Vegas. A connection

begins with the slow-start phase. The window-adjustment phase transition is owing

to the specific events as depicted along the edges.

TCP congestion control is mainly based on the feedback of ACKs. The control

procedure will be triggered whenever an ACK is received by the connection source.

Figure 2.5 illustrates the detailed procedure of TCP Vegas as it receives an ACK.

The description of variables used in Fig. 2.5 is shown in Table 2.2.
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Figure 2.5: Flowchart of the procedure for TCP Vegas upon receiving an ACK.
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2.3 Other Congestion Avoidance Mechanisms

TCP window size and the queue length of bottleneck node in the operation of TCP

Reno often exhibit a clear oscillating behaviors when the traffic volume exceed the

available resources. Such oscillation is inherent in the additive increase and multi-

plicative decrease algorithm and is used as a measure of probing resource changes.

In addition to TCP Vegas, many efforts of end-to-end congestion control mech-

anisms such as DUAL [18], CARD [19], Tri-S [20] have been paid since 1988 by

steering system away from the periodic congestion losses and it is expected that

a connection can operate in the equilibrium point. However, these proposals do

not attract much attentions as compared to TCP Vegas. We briefly describe these

mechanisms as follows.

The window in Jain’s CARD [19] approach is increased by one packet size and

decreased by one-eighth based on the gradient of delay-window curve, which is used

to evaluate the optimal point of the system. The performance of the window control

mechanism was studied with a deterministic simulation model of a connection in a

wide-area network. Note that the window changes during every adjustment, that is,

it oscillates around its optimal point.

DUAL scheme [18] defines one optimal point with queue length and uses the

corresponding delay as the congestion signal. The congestion window normally uses

fine-tuning to adjust window size, namely increases by 1/CWND for each ACK re-

ceived. The algorithm decreases the congestion window by one-eighth if the current

RTT is greater than the average of the minimum and maximum RTTs observed so

far for every two RTTs. If a timeout is detected, the algorithm assumes that sub-

stantial traffic increase and severe congestion have occurred. It uses quick-turning

to reduce the window size, similar to TCP Tahoe timeout action (CWND is set to

1 and SSTHRESH is set to half of the window).

The Tri-S scheme proposed in [20], searches the operating point based on con-

tinuous evaluation of the current throughput gradient. For every RTT, the Tri-S

increases window size by one packet and compares the throughput achieved to the
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throughput when the window was one packet smaller. It is this difference that

determines the increase, decrease or unchange of the window.

TCP Santa Cruz [26] was designed with transmission-media heterogeneity in

mind. With timestamp option in RFC 1323, it operates by summing the relative

delays from the beginning of a session and then updating the measurements at dis-

crete intervals. The bandwidth probing in this work is closely related to the Packet

Pair [21], which uses the spacing of the ACKs to determine the available bandwidth

in the networks. Similar to the proactive congestion avoidance mechanism in TCP

Vegas [22, 23], this monitoring of the available bandwidth permits the detection

of the incipient stage of congestion, and allows the congestion window to increase

or decrease in response to early warning signs to reach a target optimal operating

point.

2.4 Chapter Summary

In this chapter, we outline the design principles of TCP Reno and TCP Vegas.

TCP Reno uses packet loss as a signal to indicate that network is congested and

reduces its window size accordingly. Therefore, TCP Reno can be concluded as a

reactive congestion control mechanism. An appealing alternative, TCP Vegas, uses

a sophisticated bandwidth estimation scheme to keep a proper amount of extra data

in the network. As a result, it may steer the system away from congestion loss before

it actually occurs. Thus, TCP Vegas is a proactive congestion control mechanism.

Some variants of TCP Reno and several innovative congestion avoidance mechanisms

are also reviewed in this chapter.
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Chapter 3

RoVegas: A Router-Assisted

Congestion Avoidance Mechanism

for TCP Vegas

The most innovative idea of TCP Vegas is its congestion avoidance mechanism.

It uses queueing delay as the congestion measure to predict whether congestion is

about to happen. Queueing delay may provide a more fine-grained information of

the network status than the binary signal – packet loss. Based on the additional

fine-grained information, TCP Vegas not only reacts to but also avoids congestion.

As a result, it can prevent the performance degradation caused by AIMD strategy

and may provide a more stable and efficient transmission as compared to that of

TCP Reno.

However, the measurement of queueing delay is noisy. An inaccurate queueing

delay estimation may incur serious impact on the performance. In this chapter,

we propose a router-assisted congestion avoidance mechanism (RoVegas) for TCP

Vegas. Through the proposed mechanism performed in routers along the round-trip

path, RoVegas may obtain a more precise queueing delay and fixed delay measure-

ment, and solve several problems that inhere in TCP Vegas.

The rest of this chapter is organized as follows. Section 3.1 describes the problems
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that inhere in the congestion avoidance mechanism of TCP Vegas. Section 3.2

discusses the RoVegas. In Section 3.3, related work is reviewed. Section 3.4 and 3.5

present the analysis and simulation results respectively. Lastly, we summarize this

chapter in Section 3.6.

3.1 Problem Statements

In TCP Vegas, several problems may adversely affect the connection performance.

We summarize these problems as follows.

Rerouting: Since TCP Vegas estimates the BaseRTT to compute the expected

throughput and adjust its window size accordingly. Thus it is very important to

estimate the quantity accurately for Vegas connections. Rerouting may cause a

change of the fixed delay1 that could result in substantial throughput degradation.

When the routing path of a connection is changed, if the new route has a shorter

fixed delay, it will not cause any serious problem for Vegas because most likely

some packets will experience shorter round-trip time, and BaseRTT will be updated

eventually. On the other hand, if the new route for the connection has a longer

fixed delay, it would be unable to tell whether the increased round-trip time is

due to network congestion or route change. The source host may misinterpret the

increased round-trip time as a signal of congestion in the network and decrease its

window size. This is just the opposite of what the source should do.

Persistent Congestion: Persistent congestion is another problem caused by

the incorrect estimation of BaseRTT [9]. Overestimation of the BaseRTT in Vegas

may cause a substantial influence on the performance. Suppose that a connection

starts while many other active connections also exist, the network is congested and

the packets are accumulated in the bottleneck. Then, due to the queuing delay

caused by those packets from other connections, the packets of the new connection

may experience a round-trip time that are considerably larger than the actual fixed

1The fixed delay is the sum of propagation delay and packet processing time along the round-trip

path. In other words, the fixed delay is the round-trip time without queuing delay.
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delay along the path. Hence, the window size of the new connection will be set to

a value such that its expected amount of extra data lies between α and β; in fact,

there may be much more extra data in the bottleneck queue due to the inaccurate

estimation of the fixed delay. The situation can be more explicit described as follows.

TCP Vegas uses the following inequality to detect and control the extra data in

the network pipe.

α ≤ (Expected − Actual) × BaseRTT ≤ β, (3.1)

We can rewrite Eq. (3.1) as:

α ≤ CWND × (1 −
BaseRTT

RTT
) ≤ β. (3.2)

An overestimated BaseRTT will shrink the estimated amount of extra data (i. e.,

CWND × (1−BaseRTT/RTT )) and cause the Vegas source to misjudge that the

network is not so congested. As a result, the Vegas source sets its window size larger

than it should be and therefore puts more extra data on the bottleneck queue.

This scenario will repeat for each newly added connection, and it may cause the

bottleneck node to remain in a persistent congestion. Persistent congestion is likely

to happen in TCP Vegas due to its fine-tuned congestion avoidance mechanism.

Unfairness: Different from TCP Reno, TCP Vegas is not biased against the

connections with longer round-trip time [9, 10]. However, there is still unfairness

comeing with the nature of Vegas. According to the difference between the expected

and actual throughputs, a Vegas source attempts to maintain an amount of extra

data between two thresholds α and β by adjusting its congestion window size. The

range between α and β induces uncertainty to the achievable throughput of connec-

tions. Since Vegas may keep different amount of extra data in the bottleneck even

for the connections with the same round-trip path. Thus, it prohibits better fairness

achievement among the competing connections.

Furthermore, the inaccurate computation of expected throughput may also lead

to unfairness. Recall that the computation of expected throughput is based on

the measurement of BaseRTT. If Vegas connections can not estimate the BaseRTT
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accurately, it may affect the fairness achievement. When a new connection starts

sending data while many other connections are also active, it may cause overesti-

mation of the fixed delay and result in unfair distribution of bandwidth among the

Vegas connections.

Network Asymmetry: Based on the estimated extra data kept in the bottle-

neck, Vegas updates its congestion window to avoid congestion as well as to maintain

high throughput. However, a roughly measured RTT may lead to a coarse adjust-

ment of congestion window size. If the network congestion occurs in the direction

of ACK (backward path), it may underestimate the actual throughput and cause

an unnecessary decreasing of the congestion window size. Ideally, congestion in the

backward path should not affect the network throughput in the forward path, which

is the data transfer direction. Obviously, the control mechanism must be able to

distinguish whether congestion occurs in the forward path or not and adjust the

congestion window size more intelligently.

Incompatibility: TCP Vegas adopts a proactive congestion avoidance scheme,

it reduces its congestion window before an actual packet loss occurs. TCP Reno, on

the other hand, employs a reactive congestion control mechanism. It keeps increas-

ing its congestion window until a packet loss is detected. Researchers [9, 35, 36]

have found that when Reno and Vegas perform head-to-head, Reno generally steals

bandwidth from Vegas. This incompatibility between Vegas and Reno depress the

adoption of Vegas on the Internet.

3.2 RoVegas

From the above discussion, we can find that the coarse estimation of fixed delay along

the round-trip path, BaseRTT, results in problems such as issues of rerouting, per-

sistent congestion, and unfairness. A Vegas source is unable to distinguish whether

congestion occurs in the forward path or not, this further leads to unnecessary

throughput degradation when the congestion occurs on the backward path. In this

section, we propose a router-assisted congestion avoidance mechanism (RoVegas)
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for TCP Vegas to deal with these problems. The details of the proposed mechanism

are described as follows.

3.2.1 Proposed Mechanism

TCP Vegas estimates a proper amount of extra data to be kept in the network pipe

and controls the congestion window size accordingly. The amount is between two

thresholds α and β, as shown in Eq. (3.1). When backward congestion occurs, the

increased backward queuing time will affect the Actual throughput and enlarge the

difference between the Expected throughput and Actual throughput. It results in

decreasing the congestion window size. Since the network resources in the backward

path should not affect the traffic in the forward path, it is unnecessary to reduce

the congestion window size when only backward congestion occurs.

A measured RTT can be divided into four parts: forward fixed delay (i. e.,

propagation delay and packet processing time), forward queuing time, backward

fixed delay, and backward queuing time. To utilize the network bandwidth efficiently,

we redefine the Actual throughput as

Actual′ =
CWND

RTT − QTb

, (3.3)

where RTT is the newly measured round-trip time, QTb is the backward queuing

time, and CWND is the current congestion window size. Consequently, the Actual′

is a throughput that can be achieved if there is no backward queuing delay along

the path.

To realize our scheme, we define a new IP option named AQT (accumulate

queuing time) to collect the queuing time along the path. According to the general

format of IP options described in [44], the fields of an AQT option are created as

in Fig. 3.1. The option type and length fields indicate the type and length of this

IP option. The AQT field expresses the accumulated queuing time that a packet

experienced along the routing path. The AQT-Echo field echoes the accumulated

queuing time value of an AQT option that was sent by the remote TCP.
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Figure 3.1: Fields of an AQT option.

A probing packet is a normal TCP packet (data or ACK) with AQT option

in its IP header. When a RoVegas source sends out a probing packet, it sets the

AQT field to zero. An AQT-enabled router (i. e., a router that is capable of AQT

option processing) adds the queuing delay of a received probing packet to the AQT

field. The queuing time is computed based on the queuing disciplines. The details

regarding how to compute the queuing time of each received probing packet in

various queuing disciplines is beyond the scope of our discussion.

Whenever a RoVegas destination acknowledges a probing packet, it inserts an

AQT option into the ACK. The AQT-Echo field is set to the value of the AQT

field of the received packet, then the AQT field is reset to zero. Through the AQT-

enabled routers along the round-trip path, a RoVegas source is able to obtain both

the forward queuing time (the value of AQT-Echo field) and backward queuing

time (the value of AQT field) from the received probing packet. Moreover, for

each probing packet received by a RoVegas source, the BaseRTT can be derived as

follows:

BaseRTT = RTT − (AQT + AQT-Echo). (3.4)

Notice that, the derived BaseRTT of a connection will be identical for each

probing packet received when both the route and size of the probing packets are

fixed. The derived BaseRTT of RoVegas represents the actual fixed delay along

the round-trip path, if the path of a connection is rerouted and the fixed delay is

changed, the newly derived BaseRTT may reflect the rerouting information. As a

result, the issue of rerouting can be solved. Furthermore, since each connection of

RoVegas is able to measure the fixed delay without bias, the problem of persistent
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congestion can be avoided and the fairness among the competitive connections can

also be improved.

To avoid the unnecessary reduction of congestion window size, the proposed

router-assisted congestion avoidance mechanism is described as follows:

• Derive the Expected throughput that is defined as the current congestion win-

dow size divided by BaseRTT.

• Calculate the Actual′ as the current congestion window size divided by the

difference between the newly measured RTT and backward queuing time.

• Let Diff = (Expected − Actual′) × BaseRTT .

• Let wcur and wnext be the congestion window sizes for the current RTT and

the next RTT, respectively. The rule for congestion window adjustment is as

follows:

wnext =



























wcur + 1, if Diff < α

wcur − 1, if Diff > β

wcur, if α ≤ Diff ≤ β

. (3.5)

3.2.2 Implementation Issue

RoVegas relies on probing packets to probe the network status, therefore, how often a

probing packet will be sent for a connection is an important issue. Since the window

adjustment of RoVegas is performed on per-RTT basis. Inserting probing packets

frequently makes the proposed mechanism robust against the network congestion,

however, it also imposes more overhead on RoVegas. For the overhead induced by

the probing packets, we consider the worst case that every packet with the AQT

option. If the data packet size is 1500 bytes, which is the maximum transmission

unit of Ethernet, the overhead ratio of data packets is 8/1500, which is about 0.53

%. In the practical implementation, the number of the probing packets per-RTT

can be dynamically adjusted depending on the network status. That is, the more

severe the backward congestion is, the more frequent the AQT option should be
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inserted into a data packet. Through this way, the overhead induced by the AQT

option can be reduced to an even smaller amount.

We make every packet to be a probing packet and demonstrate that the proposed

mechanism is effective to improve the performance of TCP Vegas by the results of

both analysis and simulation shown in Sections 3.4 and 3.5.

3.3 Related Work

Congestion control for TCP is an active research area. Since Brakmo et al. [22, 23]

proposed TCP Vegas in 1994 with claiming to achieve higher throughput and one-

fifth to one-half the losses of TCP Reno, there have been quite a lot of studies

focusing on TCP Vegas.

Ahn et al. [24] performed some live Internet experiments with TCP Vegas. They

reproduced claims in [22, 23] with varying background traffic and concluded that

Vegas indeed offers improved throughput of at least 3 to 8 percent over Reno. TCP

Vegas is also found to retransmit fewer packets and to have a lower average and a

lower variance of RTT than Reno.

By using the fluid model and simulations, Mo et al. [9] show that Vegas is not

biased against connections with longer round-trip time like Reno does. It achieves

better fairness of bandwidth sharing among the competitive connections with differ-

ent propagation delays. However, they also pointed out that TCP Vegas does not

receive a fair share of bandwidth in the presence of a TCP Reno connection.

Two problems of Vegas that could have serious impact on its performance are

also described in [9]. One is the rerouting problem. Rerouting may lead to the

change of fixed delay and therefore bring about inaccurate estimation of BaseRTT.

This may erroneously affect the adjustment of the congestion window size. The

other is the persistent congestion, which is still caused by the inaccurate estimation

of BaseRTT.

Hasegawa et al. [10] focus on the fairness and stability of the congestion control

mechanisms for TCP. They use an analytical model to derive that TCP Vegas can
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offer higher performance and much stable operation than Reno. However, because

of the default values of α and β in the implementation, connections of Vegas could

not share the total bandwidth in a fair manner. Thus Hasegawa et al. propose an

enhanced Vegas which sets α equal to β to remove the uncertainty induced by the

range between α and β.

Through the analytical study and simulation, Boutremans et al. [27] show that

in addition to the setting of α and β, the fairness of TCP Vegas critically requires

an accurate estimation of propagation delay. Nevertheless, they think there is no

obvious way to achieve this.

To prevent the performance degradation of TCP Vegas in asymmetric networks,

Elloumi et al. [29] proposed a modified algorithm. It divides a round-trip time into a

forward trip time and a backward trip time in order to remove the effects of backward

path congestion. However, it seems unlikely to work without clock synchronization.

Another mechanism for solving the issue of Vegas in asymmetric networks is

proposed in [30, 31]. Fu et al. employ an end-to-end method to measure the actual

flow rate on the forward path at a source of TCP Vegas. Based on the differences

between the expected rate along the round-trip path and the actual flow rate on the

forward path, the source adjusts the congestion window size accordingly. However,

in a backward congestion environment the self-clocking behavior of TCP will be

disturbed. Then the TCP traffic with bursty nature will make the source hard to

decide the measure interval between two consecutive tagged packets. Moreover, the

actual flow rate on the forward path measured by the source may be usually greater

than the expected rate along the round-trip path. It may lead to an over-increased

congestion window size, and causes congestion along the forward path.

To enhance the throughput of Vegas when it performs with TCP Reno head-

to-head, Lai [35] suggests two approaches, one is using the random early detection

(RED) mechanism in the router, the other is adjusting parameters of Vegas. Both

may improve the performance of Vegas.

Feng et al. [36] show that the default configuration of Vegas is indeed incompat-

ible with TCP Reno. However, with a careful analysis of how Reno and Vegas use
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Figure 3.2: Network model for analysis.

buffer space in the routers, Vegas and Reno can be compatible with one another

if Vegas is configured properly. Nevertheless, no mechanism has been proposed to

configure Vegas automatically.

3.4 Performance Analysis

In this section, we present a steady-state performance analysis of both Vegas and

RoVegas. By investigating the queue length of the bottleneck buffer through the

analytical approach, we can clarify the essential nature of these two mechanisms.

The network model used in the analysis is depicted in Fig. 3.2.

Assuming the source S1 is a greedy source. The destination D1 generates an

ACK immediately upon receiving a data packet sent from S1. Either the forward

or backward link between two routers R1 and R2 is the bottleneck along the path.

The forward link between two routers has a capacity of uf (data packets per second)

and backward link has a capacity ub (ACKs per second). To facilitate the analysis

as the backward path is congested, a normalized asymmetric factor k, k=uf/ub, is

introduced [33]. The network is defined as asymmetric if the asymmetric factor is

greater than one.

The service discipline is assumed to be First-In-First-Out (FIFO). Let τ be the

BaseRTT (without any queuing delay), lf and lb be the mean numbers of packets

queued in the forward and backward bottleneck buffer respectively. Since the win-
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dow size of Vegas converges to a fixed value in steady state, the mean number of

packets queued in bottleneck buffer should also be converged to a fixed level [10].

3.4.1 Analysis on Vegas

The congestion avoidance mechanism of Vegas shown in Eq. (3.1) can be rewritten

as below:

RTT

RTT − BaseRTT
× α ≤ CWND ≤

RTT

RTT − BaseRTT
× β. (3.6)

The BaseRTT and RTT can be expressed as follows:

BaseRTT = τ, (3.7)

RTT = τ +
lf
uf

+
lb
ub

. (3.8)

After substitution of Eq. (3.7) and Eq. (3.8), Eq. (3.6) can be rewritten as:

τufub + lfub + lbuf

lfub + lbuf

× α ≤ CWND ≤
τufub + lfub + lbuf

lfub + lbuf

× β. (3.9)

Symmetric Network (k ≤ 1): If the bottleneck is in the forward path, packets

will be accumulated in the forward bottleneck queue and no packets will be queued

in the backward path, that is lb = 0, thus Eq. (3.9) can be simplified as:

τuf + lf
lf

× α ≤ CWND ≤
τuf + lf

lf
× β. (3.10)

Since S1 is the only traffic source in the network thus it may occupy all the

bandwidth of the bottleneck. Based on the fluid approximation, the congestion

window size of S1 can be obtained through the bandwidth-delay product of the

bottleneck as follows:

CWND = uf × (τ +
lf
uf

). (3.11)

By substituting Eq. (3.11) into Eq. (3.10), we have

α ≤ lf ≤ β. (3.12)

29



The throughput T of S1 can also be derived from Eq. (3.8) and Eq. (3.11) as:

T =
CWND

RTT
= uf . (3.13)

From Eq. (3.12) and Eq. (3.13), we observe that when the bottleneck appears in

the forward path, the mean number of packets queued in forward bottleneck buffer

is kept stable between α and β, and the link bandwidth is always fully utilized in

steady state. This observation matches the design goal of Vegas.

Asymmetric Network (k > 1): If the bottleneck exists in the backward path

then the queue of the backward bottleneck node will be built up and no packets will

be queued in the forward path, that is lf = 0, therefore Eq. (3.9) can be rewritten

as:
τub + lb

lb
× α ≤ CWND ≤

τub + lb
lb

× β. (3.14)

Similar to the Eq. (3.11), the window size of S1 can also be obtained by the bandwidth-

delay product of the bottleneck link:

CWND = ub × (τ +
lb
ub

). (3.15)

By substituting Eq. (3.15) into Eq. (3.14), we have

α ≤ lb ≤ β. (3.16)

In the meantime, the throughput T of S1 can be derived from Eq. (3.8) and Eq. (3.15)

as:

T =
CWND

RTT
= ub =

uf

k
. (3.17)

From Eq. (3.16) we can find that, Vegas is unable to distinguish whether con-

gestion occurs in the forward path or not. It keeps a steady quantity of extra data

between α and β on the backward path. This may lead to poor utilization of for-

ward path. As shown in Eq. (3.17), the throughput of S1 is limited by the capacity of

backward path. Notably, an ACK in the backward path implies that a data packet

has arrived at its destination. Therefore, the throughput of S1 is uf/k (data packets

per second).
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3.4.2 Analysis on RoVegas

The congestion avoidance mechanism of RoVegas can be briefly expressed as follows:

α

BaseRTT
≤

CWND

BaseRTT
−

CWND

RTT −
lb
ub

≤
β

BaseRTT
. (3.18)

By Eq. (3.18), we have the congestion window size of RoVegas as:

RTT

RTT−BaseRTT−
lb
ub

×α≤CWND≤
RTT

RTT−BaseRTT−
lb
ub

× β. (3.19)

From Eq. (3.7) and Eq. (3.8), Eq. (3.19) can be rewritten as:

τuf + lf
lf

× α ≤ CWND ≤
τuf + lf

lf
× β. (3.20)

Since the result of Eq. (3.20) is identical to that of Eq. (3.10). If the bottleneck

is in the forward path (i.e., lb = 0), the behavior of RoVegas will be same as Vegas.

However, the result of Eq. (3.20) reveals that the throughput of RoVegas in the case

of backward congestion is not simply limited by the bandwidth of backward path as

that of Vegas.

As shown in Eq. (3.18), RoVegas always attempts to maintain a proper amount of

extra data in the forward path regardless of where the congestion occurs. However,

TCP is a “self-clocking” protocol, that is, it uses ACKs as a “clock” to strobe new

packets into the network [2]. Hence, as the backward path is congested, the rate of

data flow in the forward direction will be throttled in a manner by the rate of ACK

flow.

There exists a further restriction in Vegas that may limit the growth of the

congestion window. The congestion window will not be increased if the source is

unable to keep up with, that is, the difference between the congestion window size

and the amount of outstanding data is larger than two maximum-sized packets [25].

Be a variant of TCP Vegas, RoVegas also complies with this restriction.

In an asymmetric network, for example k = 8, assuming that in steady state the

forward path can be fully utilized by S1, it means that 7/8 of ACKs will be dropped

in the backward path. With TCP, the ACKs are cumulative [45], that is, later
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ACKs carry all the information contained in earlier ACKs. In this case, a survived

ACK may represent that eight data packets have arrived at the destination. Once

a survived ACK is received by the source, the difference between the congestion

window size and the amount of outstanding data is eight packets. It will restrict

the growth of the congestion window. Actually, the forward path may not be fully

utilized by RoVegas with k = 8.

For an asymmetric network, if the dropping ratio of ACKs reaches 2/3, the

congestion window of RoVegas will not be increased. Since for each ACK received

by the RoVegas source, the difference between the congestion window size and the

amount of outstanding data will be three packets. In such situation, RoVegas enters

the steady state and the growth of congestion window stops. For each ACK received,

the RoVegas source may send three packets back-to-back.

Let F be the throughput ratio of RoVegas to Vegas (i.e., F =

throughput of RoVegas
throughput of Vegas ). In asymmetric networks, we have the throughput rela-

tionship of Vegas and RoVegas as follows:

1 < F ≤ 3, ∀k > 1. (3.21)

Note that, the throughput of RoVegas contains the overhead induced by the

AQT option. So the actual throughput ratio of RoVegas to Vegas should be slightly

smaller than F. Equation (3.21) will be further verified by the following performance

evaluation.

3.5 Performance Evaluation

In this section, we compare the performance of TCP RoVegas with TCP Vegas by

using the network simulator ns-2.1b9a [46]. We show the performance results in

backward congestion environments, the bias experiments, the fairness investigations

among the competitive connections, and the study of gradual deployment.

The FIFO service discipline is assumed. Every packet of RoVegas is a probing

packet. Whenever a throughput of RoVegas is computed, the overhead induced by
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S2
Cb, 20 ms

Figure 3.3: A single bottleneck network topology for investigating throughputs of

Vegas and RoVegas when the congestion occurs on the backward path.

the AQT option will be subtracted from the throughput. Several VBR sources are

used to generate backward traffic. These VBR sources are exponentially distributed

ON-OFF sources. During ON periods, the VBR source sends data at 3.2 Mb/s.

Unless stated otherwise, the size of each FIFO queue used in routers is 50 packets,

the size of data packet is 1 Kbytes, and the sizes of ACKs are 40 and 48 bytes

for Vegas and RoVegas respectively. To ease the comparison, we assume that the

sources always have data to send.

3.5.1 Throughput Improvement

Improving the throughput of a connection when the congestion occurs in the back-

ward path is one of the design goals of RoVegas. In this subsection, we investigate

the throughputs of Vegas and RoVegas in two types of backward congestion. One

is the congestion caused by network asymmetry, the other is the congestion caused

by additional backward traffic.

The first network topology for the simulations is shown in Fig. 3.3. Sources,

destinations, and routers are expressed as Si, Di, and Ri respectively. A source and

a destination with the same suffix value represent a traffic pair. The bandwidth

and propagation delay are 10 Mb/s and 1 ms for each full-duplex access link, 1.6

Mb/s and 20 ms for the connection link from R1 to R2, and Cb and 20 ms for

the connection link from R2 to R1, respectively. Cb is set based on the normalized

asymmetric factor k. For example, if k = 4 and the size of data packet and ACK

are 1 Kbytes and 40 bytes respectively, then Cb is set to 16 Kb/s.
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Figure 3.4: Throughput of Vegas in asymmetric networks.

Asymmetric Networks: To evaluate the throughputs of Vegas and RoVegas

in asymmetric networks, different values of k are used. A source S1 of either Vegas or

RoVegas sends data packet to its destination D1. The size of each FIFO queue used

in routers is 10 packets. Figures 3.4 and 3.5 exhibit the throughput performance of

Vegas and RoVegas in asymmetric networks respectively.

By observing the results shown in Fig. 3.4, with the increasing value of k from

2 to 32, the throughput of Vegas degrades accordingly. As our analysis depicted in

Eq. (3.17), the throughput of Vegas in this scenario should be uf/k (data packets

per second). Obviously, the simulation results conform to our previous analysis.

Comparing the results of Fig. 3.5 with that of Fig. 3.4, we can find that the

throughput of RoVegas is much greater than that of Vegas. With k = 2, RoVegas

maintains a high throughput at 1587.2 Kb/s in which the backward congestion seems

not existing. The throughput ratios of RoVegas to Vegas in steady state are about

2 and 3 for k=2, 4 and k=8, 16, 32 respectively. Notably, all the simulation results

shown in Fig. 3.4 and Fig. 3.5 are consistent with our previous analysis.

Symmetric Network With Backward Traffic: Asymmetric networks should

not be the only reason that causes backward congestion. Actually, even in a sym-
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Figure 3.5: Throughput of RoVegas in asymmetric networks.

metric network the backward congestion may still occur. We use a VBR source with

1.44 Mb/s averaged sending rate to examine the throughputs of Vegas and RoVegas

separately in a single bottleneck network as shown in Fig. 3.3. The capacity of the

backward bottleneck, Cb, is set to 1.6 Mb/s. A source of either Vegas or RoVegas is

attached to S1 and a VBR source is attached to S2. The S1 starts sending data at 0

second, while S2 starts at 50 second. Figure 3.6 depicts the throughput comparison

between Vegas and RoVegas.

As shown in Fig. 3.6, when the traffic source is Vegas only (0–50 second), it

achieves high throughput and stabilizes at 1.6 Mb/s. However, the performance

of Vegas degrades dramatically as the VBR source starts sending data. Although

the overhead induced by AQT option slightly lower the throughput of RoVegas

(0.8 %) during the preceding 50 seconds, nevertheless, RoVegas maintains a much

higher throughput than that of Vegas while the backward congestion occurs. With

the inference of the backward VBR traffic, the average throughput of Vegas is 521

Kb/s and RoVegas is 1092 Kb/s. Since we use the same traffic pattern of the VBR

source while the throughput of Vegas or RoVegas is examined. Thus there are some

synchronized throughput fluctuations between Vegas and RoVegas.
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Figure 3.6: Throughput comparison between Vegas and RoVegas with the backward

traffic load is 0.9 in the single bottleneck network topology.

To evaluate the average throughputs of Vegas and RoVegas with different back-

ward traffic loads, we set the VBR traffic loads to vary from 0 to 1. The traffic

sources are the same as the above descriptions but the sources of either Vegas or

RoVegas and VBR start at 0 second. The simulation period is 200 seconds for each

sample point. From the simulation results shown in Fig. 3.7, we can find that when

the backward traffic load is not zero, RoVegas always achieves a higher average

throughput than Vegas. For example, as the backward traffic load is 1, RoVegas

achieves a 4.1 times higher average throughput in comparison with that of Vegas.

In the parking lot configuration as shown in Fig. 3.8, we use three VBR sources

each with 1.28 Mb/s averaged sending rate to examine the throughputs of Vegas

and RoVegas. The bandwidth and propagation delay of each full-duplex access link

and connection link are 10 Mb/s, 1 ms and 1.6 Mb/s, 10 ms respectively. The source

of either Vegas or RoVegas are attached to S1, and three VBRs are attached to S2

to S4 respectively. The TCP source from either Vegas or RoVegas starts sending

data at 0 second, and then three VBR sources from S2 to S4 successively enter the

network every 100 seconds.
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Figure 3.7: Average throughput versus different backward traffic loads for Vegas

and RoVegas in the single bottleneck network topology.

S1

D2

1.6 Mb/s,
10 ms

S4

D1

10 Mb/s,
1 ms R2 R3

D3 D4

S2 S3

R4R1

Figure 3.8: A parking lot network topology for investigating throughputs of Vegas

and RoVegas when the congestion occurs on the backward path.

From the simulation results presented in Fig. 3.9 we can observe that when the

traffic source is TCP only (0–100 second) both Vegas and RoVegas could fully utilize

the bandwidth (due to the overhead induced by AQT option, the throughput of

RoVegas is slightly lower than Vegas). However, as the VBR sources successively

enter the network, Vegas suffers a serious throughput reduction. Under the same

environment, RoVegas features a much better throughput performance compared

with that of Vegas. The average throughput ratio of RoVegas to Vegas during

100–200, 200–300, and 300–400 second are 2.00, 2.77, and 3.46 respectively.

The average throughputs of Vegas and RoVegas with different backward traffic
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Figure 3.9: Throughput comparison between Vegas and RoVegas with the backward

traffic load is 0.8 in the parking lot network topology.

loads in the parking lot network are also examined. The traffic sources of either

Vegas or RoVegas and three VBRs start at 0 second. The VBR traffic loads vary

from 0 to 1 accordingly. From the simulation results shown in Fig. 3.10 we can

find that as the backward traffic load is not zero, RoVegas always achieves a higher

average throughput than Vegas, especially when the backward traffic load is heavy.

For example, as the backward traffic load is 1, the average throughput ratio of

RoVegas to Vegas is 14.09.

Obviously, we have demonstrated that RoVegas significantly improves the con-

nection throughput when the backward path is congested.

3.5.2 Persistent Congestion

As a connection starts when there exist many other connections, the new connection

may experience round-trip times that are considerably larger than the actual fixed

delay along the path. Thus the BaseRTT of this new connection will be larger than

it should be. Therefore the new connection will put a larger amount of extra data

than its expected amount on the network. This bias may possibly drive the system
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Figure 3.10: Average throughput versus different backward traffic loads for Vegas

and RoVegas in the parking lot network topology.

to a persistent congestion.

In this subsection, we study the bias of Vegas through simulation. The simulation

network topology is illustrated in Fig. 3.11 in which the bandwidth and propagation

delay for each full-duplex link are depicted.

Eight connections of Vegas from S1 to S8 successively enter the network every 20

seconds. The α and β of Vegas are set to 1 and 3 respectively. Thus, the amount

of extra data for each connection should be kept between 1 and 3 packets. From

the results shown in Fig. 3.12, we can observe that when the fourth connection of

Vegas joins the network, the queue occupancy of the bottleneck increases to 15

packets. This amount of extra data is larger than the expected maximum amount

(12 packets). Even worse, as the eighth connection starts, the queue occupancy of

the bottleneck is 40 packets. That is, averagely each connection of Vegas contributes

5 packets to the bottleneck. This situation will become worse and worse when more

connections enter the network.

In contrast to the Vegas connections, each RoVegas connection keeps a proper

amount of extra data in the bottleneck. When the eighth connection of RoVegas
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Figure 3.12: Queue occupancy of the forward bottleneck for Vegas and RoVegas.

joins the network, the queue occupancy of the bottleneck is 18 packets. Since each

connection of RoVegas is able to derive the fixed delay along the round-trip path,

the bias of Vegas no longer exists in RoVegas.

3.5.3 Fairness Enhancement

Fairness is another important issue of Vegas. Although Vegas is not biased against

the connections with longer round-trip time like Reno does, there is still unfairness

occurred in Vegas. In this subsection, we investigate the fairness metric of Vegas and
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Figure 3.13: Network topology for exploring the fairness issue of Vegas and RoVegas,

in which the traffic pairs are featured by different propagation delay.

RoVegas. Two network topologies used in the simulations are depicted in Fig. 3.11

and Fig. 3.13.

The first network topology for the simulation is shown in Fig. 3.11, in which all

traffic pairs features the same propagation delay. Five connections of either Vegas

or RoVegas from S1 to S5 successively join the network every 30 seconds. In order

to remove the uncertainty induced by the range between α and β, we set α equal to

β in two simulation scenarios. Figure 3.14 shows the results of simulations.

From the simulation results of Vegas presented in Fig. 3.14(a) and Fig. 3.14(b)

we can see that no matter the values of α and β are equal or not, connections are

unable to share the bandwidth fairly. According to our previous discussion, there are

two criteria for achieving the fairness among the competitive connections of Vegas.

One is that the measured BaseRTT must be precise enough. The other is that the

uncertainty induced by the range between α and β must be removed. Connections

in Fig. 3.14(a) do not meet both criteria. Connections in Fig. 3.14(b) do not conform

to the first criterion. Therefore, both connections in these two figures are unable to

fairly share the bandwidth of the bottleneck.

Observing the results of RoVegas shown in Fig. 3.14(c) and Fig. 3.14(d). Since

connections in Fig. 3.14(c) do not meet the second criterion of fairness, the through-

puts of these connections are not identical. Finally, connections in Fig. 3.14(d) meet

both criteria, hence, all the connections share the bandwidth fairly.

The second network topology for exploring the fairness issue of Vegas and RoVe-
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Figure 3.14: Fairness investigation of Vegas and RoVegas in which connections with

the same propagation delay and successively enter the network every 30 second. (a)

Vegas (α = 1, β = 3). (b) Vegas (α = β = 2). (c) RoVegas (α = 1, β = 3). (d)

RoVegas (α = β = 2).

gas is depicted in Fig. 3.13, in which traffic pairs are featured by different propagation

delays. The bandwidth and propagation delay of each full-duplex access link and

connection link are 10 Mb/s, 1 ms and 1.6 Mb/s, 10 ms respectively.

Five connections of either Vegas or RoVegas from S1 to S5 start at the same

time. Same as the previous simulations, we set α equal to β in two simulation

scenarios to remove the uncertainty induced by the range between α and β. Figure

3.15 represents the results of simulations.

Since the Vegas connections in Fig. 3.15(a) do not meet both criteria of fairness

and those in Fig. 3.15(b) do not conform to the first criterion. Therefore, the Vegas
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Figure 3.15: Fairness investigation of Vegas and RoVegas in which connections with

different propagation delay and enter the network at the same time. (a) Vegas

(α = 1, β = 3). (b) Vegas (α = β = 2). (c) RoVegas (α = 1, β = 3). (d) RoVegas

(α = β = 2).

connections could not share the bandwidth fairly with each other no matter the

values of α and β are equal or not. The RoVegas connections in Fig. 3.15(c) do

not obey the second criterion, thus the bandwidth sharing of bottleneck is unfair.

However, the RoVegas connections in Fig. 3.15(d) comply with both criteria, and

hence the fairness among the competitive connections indeed has been achieved.

3.5.4 Gradual Deployment

It can not be expected that all routers on the Internet are AQT-enabled while the

AQT option is a newly defined IP option. To consider the gradual deployment issue,
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for each ACK received by a RoVegas source, the BaseRTT should be measured as

the following pseudo codes:

if (the ACK is a probing packet)

BaseRTTtemp = RTT− (AQT + AQT-Echo)

/* where RTT is the newly meausred round-trip time */

if (BaseRTTtemp < BaseRTT )

BaseRTT = BaseRTTtemp

else /* the ACK is not a probing packet) */

if (RTT < BaseRTT )

BaseRTT = RTT

If all bottleneck routers along the round-trip path are not AQT-enabled, RoVegas

may behave like Vegas. Since RoVegas cannot obtain the backward queuing time

(QTb) to reduce the impacts of backward congestion, and may not estimate a precise

BaseRTT to enhance the fairness and solve the persistent congestion. However, we

try to explore whether a single AQT-enabled router on the end-to-end path may

achieve the benefits from the RoVegas mechanism.

A parking lot network as shown in Fig. 3.8 is used to examine the throughputs of

Vegas and RoVegas separately, here only R2 is AQT-enabled. Three VBR sources

each with 1.28 Mb/s averaged sending to generate backward traffic. A source of

either Vegas or RoVegas from S1 and three VBRs from S2–S4 start sending data at

0 second. Despite only one AQT-enabled router R2 is locating on the routing path,

we can find that RoVegas still maintains a higher throughput than that of Vegas, as

depicted in Fig. 3.16. The simulation results imply that the proposed mechanism is

amenable to gradual deployment for reducing the impacts of backward congestion.

This feature may encourage the gradual adoption of RoVegas in the Internet.
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Figure 3.16: Throughput comparison between Vegas and RoVegas for only R2 is

AQT-enabled in the parking lot network.

3.6 Chapter Summary

In this chapter, we carefully examine the problems existed in current TCP Vegas

scheme and point out the roughly estimated BaseRTT is the problem source of is-

sues of rerouting, unfairness, and persistent congestion. A router-assisted congestion

avoidance mechanism, RoVegas, is hence proposed. Comparing with other previous

studies, RoVegas provides a more effective way to solve the problems of rerouting

and persistent congestion, to enhance the fairness among the competitive connec-

tions, and to improve the throughput when congestion occurs on the backward path.

The limitations of RoVegas and a gradual deployment scheme are also discussed.

Through the results of both analysis and simulation, the effectiveness of RoVegas is

shown. However, there is still an issue that needs more attentions. It is enhancing

the throughput of Vegas when it performs with Reno head-to-head. Therefore, how

to enable compatibility between Reno and RoVegas would be our future work.
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Chapter 4

Enhanced Vegas: An End-to-End

Approach of TCP Vegas for

Asymmetric Networks

Network with high degree of bandwidth asymmetry can adversely impact the per-

formance of feedback-based transport protocols such as TCP. The reason is that

even if the network path in the direction of data flow is not congested, congestion

in the backward direction can disrupt the flow of feedback.

Several networking technologies with asymmetric network characteristics, such

as asymmetric digital subscriber line (ADSL), cable modem, and satellite-based net-

works, have been widely deployed. These networks feature a large capacity difference

between the two communicating directions. This will greatly increase the possibili-

ties of backward path congestion. Both TCP Reno and TCP Vegas may suffer severe

performance degradation when the backward path is congested [31, 47], especially

for TCP Vegas [31]. Therefore, how to amend the deficiency of TCP Vegas in such

situation becomes an important issue.

In the previous chapter, we have proposed a router-assisted solution which can

improve the performance of TCP Vegas in the case of backward path congestion. In

this chapter, we try to solve the problem under a constraint of keeping TCP in end-
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to-end semantics. The proposed mechanism, Enhanced Vegas, uses TCP timestamps

option to estimate queueing delay on the forward and backward path separately

without clock synchronization. Through distinguishing whether congestion occurs

in the forward path or not, it significantly advances the connection throughput when

the backward path is congested.

The rest of this chapter is organized as follows. Section 4.1 describes the proposed

mechanism. Section 4.2 gives some simulation results. Lastly, we conclude this

chapter in Section 4.3.

4.1 Enhanced Vegas

To improve the performance in backward path congestion, there are two critical

issues of TCP Vegas: (1) how to estimate the backward queueing delay from the

measured round-trip time and (2) how to make use of the estimation to adjust the

congestion window size. For the issue (2), we adopt the same policy as that in the

previous chapter. The Actual throughput is redefined as

Actual′ =
CWND

RTT − QT (backward)
, (4.1)

where RTT is the newly measured RTT, QD(backward) is the backward queuing

time, and CWND is the current congestion window size. The Actual′ is therefore

a throughput that can be achieved if there is no backward queuing delay along the

path.

To solve the issue (1), we make use of the TCP timestamps option to obtain

the backward queuing time. When a connection source sends a packet, it inserts a

timestamp into the TCP header. As the destination acknowledges this packet, it

copies the forward timestamp and adds a backward timestamp to the ACK packet.

Assume there is a TCP source a and its destination b. Let tab and tba be the end-to-

end trip time of the forward data packet and the backward ACK packet respectively.

We can acquire tab by subtracting the forward timestamp from backward timestamp

and tba by subtracting the backward timestamp from the receiving time in the source
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(i.e., system time of source a when it receives this ACK packet). Assume tdab is the

difference of system clocks in source a and destination b, and tab(Min) (tba(Min))

denotes the minimum tab (tba) that the source a ever measured. The trip time of a

packet between two hosts is consisted of the fixed delay time and the queuing delay

time. Let tab(FD) (tba(FD)) denotes the fixed delay time from a (b) to b (a) and

tab(QD) (tba(QD)) represents the forward (backward) queuing time from a (b) to b

(a). We have the following equations:











tab = tab(FD) + tab(QD) + tdab

tba = tba(FD) + tba(QD) − tdab

. (4.2)

Since tab(Min) (tba(Min)), the minimum delay from a (b) to b (a), occurs when the

queuing delay tab(QD) (tba(QD)) approaches zero, therefore we obtain











tab(FD) = tab(Min) − tdab

tba(FD) = tba(Min) + tdab

. (4.3)

Here, the fixed delay time from a to b is expressed as tab(Min)− tdab. Since tab, tba,

tab(Min), and tba(Min) all can be measured by source a. Thus the forward queuing

time tab(QD) and the backward queuing time tba(QD) can be derived from Eq. (4.2)

and Eq. (4.3) as follows:











tab(QD) = tab − tab(Min)

tba(QD) = tab − tba(Min)
. (4.4)

The tba(QD) is just the QD(backward) that we need in Eq. (4.1). Furthermore,

the BaseRTT can be more precisely estimated by the sum of tab(FD) and tba(FD)

(i.e., the sum of tab(Min) and tba(Min)). To Avoid the unnecessary reduction of

TCP congestion window size, the rule for congestion window adjustment of En-

hanced Vegas is same as Eq. (3.5).

The proposed mechanism estimates BaseRTT and queuing time on both di-

rections based on tracking the minimum end-to-end trip time (i.e., tab(Min) and

tba(Min)). However, if the clock speed is different between the source and the

destination, the accumulated time differences caused by clock skews may result in
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Figure 4.1: Network configuration for the simulations.

incorrect measurement of minimum end-to-end trip time. Certain efficient algo-

rithms have been proposed to estimate clock skews from network delay measure-

ments [48, 49]. Let Ca and Cb be the clock speed of source a and destination b

respectively. The clock ratio is denoted by ρ, ρ = Cb/Ca . Then we have the

following equations to adjust the minimum end-to-end trip time:











tx+∆x
ab (Min) = txab(Min) − ∆x(1 − ρ)

tx+∆x
ba (Min) = txba(Min) + ∆x(1 − ρ)

, ∆x ≥ 0 (4.5)

where tx+∆x
ab (Min) (tx+∆x

ba (Min)) and txab(Min) (txba(Min)) denote the tab(Min)

(tba(Min)) on the time (x + ∆x) and x respectively.

4.2 Performance Evaluation

We perform the simulations using ns-2 [46] to compare the throughputs between

Vegas and our proposed Enhanced Vegas. A VBR source is used to generate the

backward traffic. This VBR source is an exponentially distributed ON-OFF source.

During ON periods, the VBR source sends data at 2 Mb/s. Several VBR sources

with different average sending rates are used to examine our mechanism. All param-

eters of both Vegas and Enhanced Vegas are the same. Without loss of generality,

the packet size is set at 1 Kbytes. To ease the comparison, we assume that the

sources always have data to send. The network configuration we used is shown in

Fig. 4.1, in which the bandwidth and delay of each full duplex link are depicted.
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Figure 4.2: Throughput comparison between Vegas and Enhanced Vegas with the

backward traffic load 0.9.

In the first simulation, we use a VBR source with 900 Kb/s average sending

rate to examine the throughput of Vegas and Enhanced Vegas separately. A source

from either Vegas or Enhanced Vegas starts sending data at 0 second, while VBR

source starts at 50 second. By observing the result in Fig. 4.2, when traffic source

is Vegas only, it can achieve high throughput and stabilize at 1,000 Kb/s until the

VBR source starts sending data. However, it shows that performance of Vegas drops

dramatically as the VBR traffic starts. On the contrary, Enhanced Vegas maintains

a much higher throughput than Vegas. During the active period of VBR source, the

average throughput of Vegas is 325 Kb/s and Enhanced Vegas is 767 Kb/s. Since

the traffic pattern of the VBR source keeps the same when the throughput of Vegas

or Enhanced Vegas is examined. Thus there are some synchronized fluctuations

of throughput for Vegas and Enhanced Vegas. The simulation results demonstrate

that the proposed scheme significantly improves the throughput of Vegas when the

backward path is congested.

In the second simulation, we evaluate the average throughput of Vegas and En-

hanced Vegas with different backward traffic loads separately. Sources of either
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Figure 4.3: Average throughput versus backward traffic load for Vegas and Enhanced

Vegas.

Vegas or Enhanced Vegas and VBR start at 0 second. The VBR traffic loads vary

from 0 to 1. The simulation period is 200 seconds for each sample point. From the

simulation results shown in Fig. 4.3, we can find that the Enhanced Vegas obtains

a much higher average throughput than TCP Vegas, especially when the backward

traffic load is heavy. For example, when the backward traffic load is 1, Enhanced

Vegas achieves a 12 times higher average throughput than that of Vegas.

4.3 Chapter Summary

In this chapter, we propose an end-to-end approach of TCP Vegas for asymmetric

networks. Comparing with other studies [29, 30, 47, 26], Enhanced Vegas provides a

much easier way to improve the connection throughput when the backward path is

congested. The simulation results show the effectiveness of our proposed mechanism.

Nevertheless, clock skew issue is still a problem of Enhanced Vegas, such as the

convergence speed of the clock ratio measurement. In the future research, we will

try to eliminate the clock issues from Enhanced Vegas.
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Chapter 5

Quick Vegas: Improving

Performance of TCP Vegas for

High Bandwidth-Delay Product

Networks

A critical design issue of TCP is its congestion control that allows the protocol

to adjust the end-to-end communication rate based on the available bandwidth of

the bottleneck link. However, TCP congestion control may function poorly in high

bandwidth-delay product (BDP) networks because of its slow response with large

congestion windows. In this chapter, we propose an improved version of TCP Vegas

called Quick Vegas, in which we present an efficient congestion window control

algorithm for a TCP source. Our algorithm is based on the increment history

and estimated amount of extra data to update the congestion window intelligently.

Simulation results show that Quick Vegas significantly improve the performance of

connections as well as remain fair and stable when the bandwidth-delay product

increases.

The rest of this chapter is organized as follows. Section 5.1 addresses the prob-

lems of TCP Reno and TCP Vegas in high BDP networks. In Section 5.2, related
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work is reviewed. Section 5.3 describes the proposed Quick Vegas. Section 5.4

presents the simulation results. Lastly, we summarize this chapter in Section 5.5.

5.1 Problem Statements

Many Internet applications use TCP as its transport protocol. The behavior of TCP

is therefore tightly coupled with the overall Internet performance. TCP performs

at an acceptable efficiency over today’s Internet. However, theory and experiments

show that, when the per-flow product of bandwidth and latency increases, TCP

becomes inefficient [50]. This will be problematic for TCP as the bandwidth-delay

product (BDP) of Internet continues to grow.

TCP Reno takes packet loss as an indiction of congestion. In order to probe

available bandwidth along the end-to-end path, it periodically creates packet losses

by itself. It is well-known that TCP Reno may feature poor utilization of bottleneck

link under high BDP networks. Since TCP Reno uses additive increase - multi-

plicative decrease (AIMD) algorithm to adjust its window size, when packet losses

occur, it cuts the congestion window size to half and linearly increases the conges-

tion window until next congestion event is detected. The additive increase policy

limits TCP’s ability to acquire spare bandwidth at one packet per round-trip time

(RTT ). The BDP of a single connection over very high bandwidth links may be

thousands of packets, thus TCP Reno might waste thousands of RTTs to ramp up

to full utilization of the link. For example, the time of a connection to converge to

an optimal bandwidth value can take the order of minutes in a high BDP network

which with 1 Gb/s available bandwidth and 100 ms round-trip time. Thus, if TCP’s

convergence mechanism is too sluggish, TCP will eventually become a performance

bottleneck itself.

Unlike TCP Reno which uses binary congestion signal, packet loss, to adjust its

window size, TCP Vegas adopts a more fine-grained signal, queuing delay, to avoid

congestion. It can successfully prevent the problems caused by AIMD algorithm.

However, in high BDP networks, Vegas tends to prematurely stop the exponentially-
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increasing slow-start phase and enter the slower congestion avoidance phase until

it reaches its equilibrium congestion window size [32]. As a result, a new Vegas

connection may experience a very long transient period and throughput suffers.

In addition, the availability of network resources and the number of competing

users may vary over time unpredictably. It is sure that the available bandwidth is

not varied linearly [51]. Since Vegas adjusts its congestion window linearly in the

congestion avoidance phase, this prevents Vegas from quickly adapt to the changing

environments.

5.2 Related Work

Several studies have been made to improve the connection performance over high-

speed and long-delay links. These approaches can be divided into two categories.

One is simpler and needs only easily-deployable changes to the current protocols,

for example, HighSpeed TCP [52] and Scalable TCP [53]. The other needs more

complex changes with a new transport protocol, or more explicit feedback from the

routers, examples are XCP [50] and QuickStart [54].

HighSpeed TCP involves a subtle change in the congestion avoidance response

function to allow connections to capture available bandwidth more readily. Scalable

TCP is similar to HighSpeed TCP in that the congestion window response function

for large windows is modified to recover more quickly from loss events and hence

reduce the penalty for probing the available bandwidth.

The same as TCP Reno, both HighSpeed TCP and Scalable TCP use packet loss

as an indication for congestion. This causes periodic oscillations in the congestion

window size, round-trip delay, and queue length of the bottleneck node. These

drawbacks may not be appropriate for emerging Internet applications [11, 12].

XCP is a new transport protocol designed for high BDP networks. It separates

the efficiency and fairness policies of congestion control, and enables connections to

quickly make use of available bandwidth. However, because XCP requires all routers

along the path to participate, deployment feasibility is a concern.
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QuickStart is a mechanism that uses IP options for allowing an end host to

request a high initial sending rate along the end-to-end path. The feasibility of

QuickStart relies on the cooperation of the end host and routers. Again, the difficulty

in deployment is an issue to be overcome.

5.3 Quick Vegas

In high BDP networks, the equilibrium congestion window size is larger than that

of small BDP networks. Besides, network resources and competing users may vary

over time unpredictably. In order to react faster and better to high BDP networks,

the window adjustment algorithm should be more aggressive than it has been.

TCP Vegas updates its congestion window linearly in the congestion avoidance

phase, it is too sluggish for a high BDP network. Depending on the information

given by the estimated extra data, it is worth to try a more aggressive strategy. The

details of Quick Vegas is described as follows.

For the increment of congestion window, Quick Vegas keeps the history to guide

the changes of window size. Since there is no direct knowledge of current available

bandwidth, Quick Vegas records the number of consecutive increments due to ∆ < α

and refers to this value as succ. Whenever the congestion window should be increased

due to ∆ < α, it is updated as follows:

CWND = CWND + (β − ∆) × succ. (5.1)

Thus the congestion window size will be increased by (β−∆) at the first estimation

of ∆ < α, and by (β − ∆) × 2 at the next consecutive estimation of ∆ < α, and so

on. The succ will be reset whenever ∆ ≥ α. The idea is that if the increment was

successful it might be the case that there is enough bandwidth and it is worthwhile

to move to a more aggressive increasing strategy. However, to ensure that the

congestion window will not be increased too fast, Quick Vegas can at most double

the size of congestion window for every estimation of ∆ < α.

For the decrement of congestion window, Quick Vegas uses the difference of ∆
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and (α + β)/2 as the amount of decrement for every estimation of ∆ > β. The

decrement rule can be expressed as follows:

CWND = CWND − (∆ −
α + β

2
). (5.2)

Since the estimated amount of extra data gives us a good suggestion of how many

extra data are beyond the ideal volume that should be kept in the network pipe.

Therefore, Quick Vegas subtracts the excess amount from the congestion window

directly.

Compared with TCP Vegas, the window adjustment algorithm of Quick Vegas

is more aggressive. To ensure that the estimation of extra data is valid and the

adjustment does not overshoot the real need, Quick Vegas adjusts its congestion

window only every other RTT, just like the updating in slow-start phase. Besides,

in order to achieve a higher fairness between the competing connections, Quick

Vegas intends every connection to keep an equal amount, that is (α +β)/2, of extra

data in the network pipe. If the estimated amount of extra data is between α and

β, Quick Vegas will adjust its congestion window linearly toward the ideal amount.

The window adjustment algorithm of Quick Vegas can be presented as the following

pseudo codes:

if (∆ > β)

CWND = CWND − (∆ −
α+β

2
)

incr = 0; succ = 0

else if (∆ < α)

succ = succ + 1

if ((β − ∆) × succ > CWND)

incr = 1

else

incr = β−∆

CWND
× succ

else if (∆ > α+β

2
)

CWND = CWND − 1; incr = 0; succ = 0

else if (∆ < α+β

2
)
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Figure 5.1: Network configuration for the simulations.

incr = 1

CWND
; succ = 0

else /* ∆ == α+β

2
*/

incr = 0; succ = 0

To reduce the bursty effect of increment, the incr is served as the increment amount

of congestion window after each ACK is received by a Quick Vegas source.

5.4 Performance Evaluation

We use the network simulator ns-2.1b9a [46] to execute the performance evaluation.

All parameter settings of both Vegas and Quick Vegas are the same. Especially,

γ = 1, α = 2, and β = 4 that are same as in [23]. Unless stated otherwise, the buffer

size in routers is large enough so that packet loss is negligible. The sizes of data

packets and ACKs are 1 Kbytes and 40 bytes respectively. To ease the comparison,

we assume that the sources always have data to send.

The network configuration for the simulations is shown in Fig. 5.1. Sources,

destinations, and routers are expressed as Si, Di, and Ri respectively. A source and

a destination with the same subscript value represent a traffic pair. The bandwidth

and propagation delay are 1 Gb/s and 1 ms for each full-duplex access link, and

Cb and 48 ms for the full-duplex connection link between R1 and R2. The Cb is set

based on the need of simulation scenarios.
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Figure 5.2: Basic behavior of TCP Vegas.

5.4.1 Basic Behavior

In this subsection, we compare the basic behavior between TCP Vegas and Quick

Vegas in the aspects of congestion window size, queue length, and throughput. The

bottleneck capacity Cb is set at 50 Mb/s. A TCP connection of either Vegas or

Quick Vegas from S1 to D1 starts sending data at 0 second and a CBR traffic flow

from S2 to D2 with 25 Mb/s rate starts at 80 second and stops at 160 second. The

objective of the simulation scenario is to explore how fast for a new connection can

ramp up to equilibrium and how fast a connection can converge to a steady state as

the available bandwidth is changed. Figure 5.2 and 5.3 exhibit the basic behavior

of Vegas and Quick Vegas respectively.

By observing the congestion window evolution shown in Fig. 5.2 we can find

that the transient period for a new Vegas connection is quite long. Vegas prema-

turely stop the exponentially-increasing slow-start phase at 1.9 second and enter the

linearly-increasing congestion avoidance phase. It takes 59 seconds to reach equi-
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Figure 5.3: Basic behavior of Quick Vegas.

librium. When the available bandwidth is halved at 80 seconds, Vegas takes 47.9

seconds to converge to a new steady state. As the available bandwidth is doubled

at 160 second, there is a 31.8 seconds transient period for Vegas.

The queue length at bottleneck shown in Fig. 5.2 also reveals that Vegas can not

quickly adapt to the changed bandwidth. When the available bandwidth is halved

at 80 seconds, the queue is built up quickly. The maximum queue length is 620

packets and it also takes 47.9 seconds for Vegas to recover the normal queue length.

In comparison with Vegas, Quick Vegas reacts faster and better, as shown in

Fig. 5.3. The ramp up time of Quick Vegas is 27 seconds, and it takes 6.7 and 3.9

seconds to converge as the available bandwidth is halved and doubled respectively.

Note that due to the bursty nature of a new TCP connection, the estimation of extra

data will be disturbed [32]. The consecutive increment number (succ) may not be

accumulated to a large number. Therefore, the ramp up time can not be greatly

improved as compared with the convergence period of the available bandwidth when
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it is halved or doubled.

The queue length at bottleneck shown in Fig. 5.3 also exhibits that Quick Vegas

can quickly adapt to the changed bandwidth. When the available bandwidth is

halved at 80 seconds, the built up queue is quickly removed. The maximum queue

length is 540 packets, which is also smaller than that of Vegas (620 packets).

Based on the simulation results of throughput shown in Fig. 5.2 and 5.3, obvi-

ously, Quick Vegas has a better performance than Vegas when a connection is either

in the beginning (0–60 second) or the available bandwidth is doubled (160–190 sec-

ond). Although the throughput of Quick Vegas (23.2 Mb/s) is smaller than that

of Vegas (25.9 Mb/s) at 85 second, however, Vegas has a larger maximum queue

length. In the simulation we assume a large queue size at bottleneck so that packet

losses will not occur. In more realistic scenarios, the queue size of bottleneck may

not be large enough. A larger maximum queue length means a higher probability

of packet losses occur, which in turn would cause a lower throughput.

5.4.2 Convergence Time

With high BDP networks, the transient period of TCP can greatly affect overall

performance. In this subsection, we use a metric “convergence time” [32] to capture

the transient performance of TCP. Convergence time indicates how many BaseRTTs

are required to reach a new stable state.

The traffic sources are same as that in the previous subsection. The bottleneck

capacity Cb is varied for different BDP. At some time instant, the CBR traffic

source starts or stops sending packets to halve or double the available bandwidth,

respectively.

Figure 5.4 presents the convergence time for a new connection to reach equilib-

rium. Theoretically, Quick Vegas doubles the increment rate that results in loga-

rithm convergence time in contrast to Vegas which converges linearly. However, due

to the bursty nature of a new TCP connection, the succ may not be consecutively

accumulated. The convergence time of Quick Vegas is about half of that of Vegas
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Figure 5.4: Convergence time of new connections.

as the BDP is greater than 500 Kb.

Figure 5.5 and 5.6 display the convergence time as the available bandwidth is

halved and doubled respectively. Obviously, Quick Vegas greatly improves the tran-

sient performance of connection in both scenarios as compared to Vegas.

5.4.3 Utilization, Queue Length, and Fairness

The simulations presented in this subsection intend to demonstrate link utilization of

the bottleneck, fairness between the connections, and queue length at the bottleneck

buffer where connections join and leave the network. The bottleneck capacity Cb is

set at 1 Gb/s. Connections C1–C20, C21–C40, and C41–C60 start at 0, 100, and 200

second respectively. Each connection with the same active period is 300 seconds.

The size of bottleneck buffer is 1250 packets.

Table 5.1 shows the bottleneck link utilization in which connections of Vegas,

Quick Vegas, and New Reno [13] are evaluated. When Vegas connections enter the

empty network, it takes 55 seconds to reach equilibrium, while Quick Vegas takes 25

seconds. Since severe packet losses occur in the exponentially increasing slow-start

phase, the link utilization of New Reno during 0–25 second is quite low (0.170).
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Figure 5.5: Convergence time of connections when available bandwidth is halved.
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Figure 5.6: Convergence time of connections when available bandwidth is doubled.
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Table 5.1: Link utilization of the bottleneck.

Time (s) Vegas Quick Vegas New Reno

0–25 0.335 0.632 0.170

25–55 0.780 1.000 0.647

55–300 1.000 1.000 0.788

300–310 0.853 0.872 0.706

310–400 1.000 1.000 0.797

400–420 0.607 0.785 0.665

420–435 0.886 1.000 0.921

435–500 1.000 1.000 0.781

As the new connections C21–C40 and C41–C60 enter the network at 100 and 200

second, both Vegas and Quick Vegas can fully utilize the bottleneck link. However,

by observing the queue status shown in Fig. 5.7 we can find that Quick Vegas features

a smaller maximum queue length (1017 packets) as compared with that of Vegas

(1188 packets). A smaller maximum queue length implies that Quick Vegas can

adapt to the changing network environment much quickly and prevent packet losses

much effectively.

When the available bandwidth increases substantially due to connections C1–C20

and C21–C40 leave the network at 300 and 400 second, the remaining connections of

Quick Vegas can also quickly adapt to the newly available bandwidth. As a result,

the bottleneck link utilization of Quick Vegas during 300–310 and 400–435 second

are higher than that of Vegas.

Different from Vegas or Quick Vegas, New Reno can not maintain a stable queue

length as shown in Fig. 5.7(c). Since New Reno needs to create packet losses by

itself to probe the available bandwidth along the path. Therefore, packet losses

occur periodically and certain amount of throughput is wasted. It is obvious that

New Reno can not maintain such high link utilization like that of Vegas or Quick

Vegas as depicted in Table 5.1.

The average queue length at the bottleneck of Vegas and Quick Vegas are ex-
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Figure 5.7: Queue status of the bottleneck.

hibited in Table 5.2. Due to the ability of quickly grabing the available bandwidth,

Quick Vegas has slightly higher average queue length during 0–100 and 400-500 sec-

ond. However, when the network is congested (100–300 second), Quick Vegas fea-

tures not only smaller maximum queue length but also lower average queue length.

To evaluate the fairness among connections, we use the fairness index proposed

in [55]. Given a set of throughput (x1, x2, . . . , xn), the fairness index of the set is

defined as:

f(x) =
(
∑n

i=1 xi)
2

n
∑n

i=1 xi
2
. (5.3)

The value of fairness index is between 0 and 1. If the throughput of all connections
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Table 5.2: Average queue length (packets).

Time (s) 0–100 100–200 200–300 300–400 400–500 0–500

Vegas 28 174 268 122 47 128

Quick Vegas 45 121 187 107 51 102

Table 5.3: Fairness index.

Time (s) 0–100 100–200 200–300 300–400 400–500

Active Connections C1–C20 C1–C40 C1–C60 C21–C60 C41–C60

Vegas 0.969 0.941 0.972 0.987 0.999

Quick Vegas 0.965 0.960 0.980 0.977 0.981

is the same, the index will take the value of 1.

Table 5.3 shows the fairness index of Vegas and Quick Vegas for each 100 seconds

time period. Although Quick Vegas adopts a more aggressive strategy to adjust the

congestion window size, however, Quick Vegas keeps the similar fairness index values

as that of Vegas. The simulation result suggests that Quick Vegas preserves the good

characteristic of fairness as that of original TCP Vegas.

5.5 Chapter Summary

In this chapter, we propose an improved version of TCP Vegas named Quick Vegas

for high bandwidth-delay product networks. Quick Vegas presents a modification

of congestion window update algorithm at the connection source. Based on the

increment history and estimated amount of extra data, Quick Vegas adopts a more

intelligent and aggressive way to adjust its window size. Simulation results show

that Quick Vegas reacts faster and better to changing environments and therefore

improves the overall performance.

For the future research of Quick Vegas, we will try to develop a new slow-start

mechanism. Due to the bursty nature of new TCP connections, the estimation of

65



extra data is always disturbed. It makes connections in high BDP networks tend to

stop the slow-start phase too early and lead to a longer transient period. With a

suitable slow-start mechanism, Quick Vegas can be excellent in high BDP networks.
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Chapter 6

RedVegas: Performance

Improvement of TCP Vegas over

Heterogeneous Networks

Nowadays IP network has become the dominant paradigm for all networking envi-

ronments. The significant cause of packet losses in such heterogenous networks is no

longer limited to network congestion. Traditional TCP interprets every packet loss

as caused by congestion which may be not the case in the current Internet. Misin-

terpretation of wireless random loss as an indication of network congestion results

in TCP slowing down its sending rate unnecessarily. In this chapter, we propose a

new variant of TCP Vegas named RedVegas. By using the innate nature of Vegas

and congestion indications marked by routers, RedVegas may detect random packet

losses precisely. Through the packet loss differentiation, RedVegas reacts appropri-

ately to the losses, and therefore the throughput of connection over heterogeneous

networks can be significantly improved.

The rest of this chapter is organized as follows. Section 6.1 addresses the problem

of TCP in heterogeneous networks and explains why we propose a solution for TCP

Vegas. In Section 6.2, the related work is reviewed. Section 6.3 describes the

proposed RedVegas. Section 6.4 presents the simulation results. Lastly, we conclude
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this chapter in Section 6.5.

6.1 Problem and Motivation

Owing to the great advancement in wireless networking technology and new emerg-

ing applications, providing ubiquitous mobile Internet access becomes increasingly

important. The well-known problem in providing TCP congestion control over het-

erogeneous networks (wired/wireless environment) is that current TCP implemen-

tations rely on packet loss as an indicator of congestion. In the wired networks,

a congestion is indeed a likely reason of packet loss. On the other hand, a noisy,

mobile, and fading radio channel is the most likely cause of loss in the wireless net-

works. The effective bit error rates in wireless networks are significantly higher than

that in wired networks. Since TCP does not have any mechanism to differentiate

between congestion losses and wireless random losses, the latter may cause a severe

throughput degradation.

The purpose of congestion control is to dynamically adapt the end-to-end trans-

mission rate of a connection to the currently available capacity. TCP performs

at an acceptable efficiency over the traditional wired networks where packet losses

are caused by network congestion. However, when TCP observes random losses,

it misinterprets such losses and reduces its window size, this causes the reduction

of throughput unnecessarily. Therefore, TCP’s performance drops rapidly in the

presence of frequent random losses [56, 34].

The throughput deterioration problem of TCP over wireless networks has been

addressed in [57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. However, part of solutions are

designed especially for TCP Reno [57, 58], TCP Vegas has not been given equal

attention.

TCP Vegas exhibits many superior features than the most widely deployed TCP

Reno [9, 10, 11, 12, 22, 23, 24]. Even in wireless Multi-hop networks, Vegas also

keeps better performance than that Reno can achieve [67]. It has the potential to

provide a more stable and efficient network environment. For this reason, we propose
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a random error detection mechanism (RedVegas) for TCP Vegas and expect that

the proposed RedVegas may drive TCP Vegas to a real success.

6.2 Related Work

Several approaches have been proposed to optimize TCP for wireless networks. We

summarizes them as follows.

Link Layer Mechanisms: Link layer mechanisms try to improve the quality

of the lossy wireless link. They hide the characteristics of the wireless link from

the transport layer and try to solve the problem at the link layer. The intuition

behind link layer mechanisms is to treat the problem as local, and to solve it locally.

Forward error correction (FEC) and automatic repeat request (ARQ) are two typical

techniques used in link layer mechanisms [59, 60].

End-to-End Approaches: In the end-to-end approaches [57, 58, 61], the TCP

source attempts to handle the losses in a way that improves the performance of a

connection which runs on wireless networks. In wireless environment, the major

cause of packet losses is not limited to network congestion, thus some rules are used

to infer the cause of packet losses. Based on the inferences, a source may react

appropriately to the losses. These approaches maintain the end-to-end semantics of

TCP and thus do not need any extra support from the intermediate hops along the

path.

Base Station Schemes: If only the last hop connecting to a mobile host is

a wireless link, a TCP-aware agent can be run on the base station to improve the

performance of connections.

Split connection approaches [62, 63, 64] isolate mobility and wireless related

problems from the existing network protocols. This is done by splitting the TCP

connection between the mobile host and the fixed host into two separate connec-

tions: a wired connection between the fixed host and the base station, and a wireless

connection between the base station and the mobile host. In this way the wired con-

nection does not need any change in existing software on the fixed hosts, and the
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wireless connection can use a specialized mobile protocol to provide better perfor-

mance.

The snoop protocol [65] introduces a snoop module at a base station to monitor

every packet transmitted through the connection in either direction. By caching

recently transmitted TCP packets sent to a mobile host and monitoring the associ-

ated acknowledgment packets returning to the source, the snoop module can quickly

resend a cached copy of the lost packet to the mobile host. The snoop protocol hides

the packet loss from the fixed host and hence avoids the unnecessary invocation of

congestion control mechanism.

Explicit loss notification [66] is a mechanism runs on the base station to watch

passing TCP packets to deduce whether there is a packet loss due to corruption. It

sets a special bit in the returning acknowledgment packets to notify the source of

a connection that the recent packet loss may be resulted from corruption instead

of congestion. Based on the notification, the source may react appropriately to the

loss and therefore improve the performance of connections.

6.3 RedVegas

The issue of packet losses differentiation can be divided into two parts: (1) how to

distinguish between congestion loss and random loss, and (2) how to make use of

the information to refine the congestion window adjustment process. The success

of our RedVegas relies on the cooperation of the end-hosts and routers. It assumes

that the routers are capable of marking packets when congestion occurs.

The key idea of RedVegas is described as follows. Since Vegas always attempts

to keep the amount of extra data between two thresholds α and β in the network

pipe. In fact, the extra data is the major part of in-flight packets that stays in the

bottleneck buffer. Whenever an arriving packet is dropped due to the congestion

in the bottleneck link, it is very likely that some preceding packets belonging to

the same connection have been queued in the bottleneck buffer. Specifically, the

amount of these preceding packets should be between α and β. If the router detects
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congestion and marks a congestion indication bit on all packets in the current buffer,

the consecutive packets of the same connection prior to the dropped packet will very

likely be marked. Based on the ACKs of the marked packets, a RedVegas source

may infer the cause of packet loss accordingly.

Like the Explicit Congestion Notification (ECN) mechanism [43], RedVegas uses

two bits in IP header as the congestion indication field (CI) and one bit in TCP

header as the CI-echo flag. The first bit of CI represents the CI-capable transport

(CICT) of a packet and the second bit serves as congestion experienced flag. When

a RedVegas source wants to send a packet, it sets the CICT bit. Whenever a router

drops a packet due to congestion, it will mark all packets’ congestion experienced

flag of those packets queued in the buffer with CICT bit set. Every time a RedVegas

destination acknowledges a received packet, it checks whether the congestion expe-

rienced flag in the received packet is marked or not. If so, it will set the CI-echo flag

in the ACK packet. As a RedVegas source receives an ACK, it checks the CI-echo

flag. If the flag is set, the sequence number1 of the newest acknowledged packet will

be recorded in the variable NCSEQ.

As in Vegas, RedVegas has three ways to detect packet loss, a triple-duplicate

ACK, a fine-grained timeout, and a coarse-grained timeout. Whenever a packet loss

is identified by a triple-duplicate ACK or a fine-grained timeout, RedVegas will try

to infer the cause of loss. When a packet loss is detected and the difference between

the sequence number of the lost packet and NCSEQ is no greater than β, RedVegas

assumes that the loss is a congestion loss. Otherwise, random loss is inferred. If the

losses are identified by a coarse-grained timeout, RedVegas does not intend to infer

the cause of losses. Since the losses are severe and the information carried by the

received ACKs may be passe. RedVegas leaves this part of algorithm to be intact.

In the proposed scheme, the ACKs with CI-echo flag of both the preceding and

succeeding packets of a lost packet may assist the inference. To ease the illustration,

1For a practical TCP implementation, a sequence number identifies the byte in the stream of

data. In this paper, to ease the description of the proposed mechanism, we use a sequence number

to represent the packet.
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Figure 6.1: Snapshot of the consecutive packets in network pipe.

we assume the part of consecutive packets of a connection that pass through the

network pipe are packet (i-3 ) to packet (i+3 ), as shown in Fig. 6.1. The lost packet

(i) is eventually identified by a triple-duplicate ACK, the value of β is three, and

all ACKs of the consecutive packets successfully reach the source. If a congested

router marks any preceding packet from packet (i-3 ) to packet (i-1 ) or succeeding

packet from packet (i+1 ) to packet (i+3 )2, the loss packet (i) will not be judged as

a random loss. Since the difference between the sequence number of the lost packet

and the NCSEQ will be equal to or smaller than β, a congestion loss is inferred.

In some situations, the ACKs with CI-echo flag of the preceding packets may fail

to reach the connection source. Using the CI information carried by the ACKs of the

succeeding packets may help RedVegas to reduce the possibility of misinterpreting

a congestion loss as a random loss. Since the misinterpreting a congestion loss

as a random loss may result in a wrong reaction that will violate the objective

of congestion control. RedVegas intends to keep a high accuracy of random loss

detection.

After the lost packet is recovered, RedVegas will adjust the congestion window

size according to the loss differentiation. A connection needs not to reduce the

sending rate if the loss was not caused by congestion. Thus, if the lost packet is

detected as a random loss, the CWND will not be changed, that is, the CWND

2The marking of succeeding packets is not guaranteed by RedVegas, it depends on the network

status after the lost packet (i) is dropped.
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will be equal to the congestion window size when the loss is detected. However, if

a congestion loss is perceived, the same window-adjustment mechanism as that in

Vegas will be adopted.

TCP congestion control is mainly based on the feedback of ACKs. The control

procedure will be triggered whenever an ACK is received by the connection source.

Figure 6.2 illustrates the detailed procedure of Vegas/RedVegas as it receives an

ACK. Shady blocks are for RedVegas especially. The description of variables used

in Fig. 6.2 is shown in Table 2.2.

6.4 Performance Evaluation

In this section, we compare the performance among the three TCP variants (Vegas,

Reno, and RedVegas) and study the effectiveness of distinguishing losses in RedVe-

gas by using the network simulator ns-2.1b9a [46]. The FIFO service discipline is

assumed. All parameter settings of both Vegas and RedVegas are the same. Espe-

cially, α = 1 and β = 3. The size of each FIFO queue used in routers is 16 packets,

the sizes of data packets and ACKs are 1 Kbytes and 40 bytes respectively. To ease

the comparison, we assume that the sources always have data to send.

The network configuration for the simulations is shown in Fig. 6.3, in which the

bandwidth and delay of each full duplex link are depicted. Sources, destinations, and

routers are expressed as Si, Di, and Ri respectively. The link between R2 and D1 is

a wireless link on which we assume all random losses occur. Typically, wireless links

are subject to fading phenomena, which results in random loss in bursty manner.

However, if random losses appear in bursty manner, it is easy for RedVegas to

recognize them. Since RedVegas takes every packet loss to be random loss when there

is no packet to be marked. Therefore, we use a more complicated case, uniformly

distributed loss model, to evaluate RedVegas. In wireless environments, if the bit

error is uniformly distributed, the larger a packet is, the more likely the packet will

be corrupted [68, 69]. Keeping this in mind, when we apply a random loss rate to

data packets, we always set the proportional random loss rate to ACKs.
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Figure 6.2: Flowchart to illustrate the procedure of Vegas/RedVegas as it receives

an ACK. Shady blocks are for RedVegas especially.
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Figure 6.3: Network configuration for the simulations.
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Figure 6.4: Average goodput versus cross traffic load for the three TCP variants.

A TCP connection is established from S1 to D1, and a VBR source is used to

generate cross traffic from S2 to D2. Complying with the study of Internet simulating

[70], the VBR source is a Pareto distribution ON-OFF source with shape parameter

1.5. During ON periods, the VBR source sends data at 1.6 Mb/s. In the following

simulations, unless stated otherwise, the execution time of each sample point is 10

hours.

6.4.1 Basic Behavior

The design goal of RedVegas is to improve performance for TCP Vegas over het-

erogeneous networks. It is obvious that if the packet losses are due to congestion,
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Figure 6.5: Average goodput versus data packet random loss rate for the three TCP

variants.

the behaviors of Vegas and RedVegas should be the same. In this subsection, we

examine the average goodputs among the three TCP variants with different cross

traffic loads. The difference between the throughput and goodput is that the later

only counts those packets effectively received once. Each TCP variant is examined

separately and the results can be found in Fig. 6.4.

With the increasing cross traffic load, the average goodputs of the three TCP

variants degrade accordingly. Note that the goodputs of Vegas and RedVegas are

always identical. The results demonstrate that the behaviors of Vegas and RedVegas

are the same when there is no random loss. It implies that RedVegas does not

misinterpret congestion loss as random loss in such simulation scenarios. From the

simulation results, Vegas always surpasses Reno in goodput with different cross

traffic loads, this conforms to the previous studies [22, 23, 24].

6.4.2 Impact of Random Loss

In this subsection, we compare the average goodputs among the three TCP variants

with different random loss rates. No cross traffic is introduced in the simulations. By
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Figure 6.6: Average goodput versus data packet random loss rate for the three TCP

variants with the cross traffic load is 0.5.

observing the results shown in Fig. 6.5, both Vegas and RedVegas can fully utilize

the bottleneck link when the random loss rate is zero. However, Reno can not

maintain such high goodput with the same condition. Since Reno needs to create

packet losses by itself to probe the available bandwidth along the path. Therefore,

certain amount of goodput is lost.

With the increasing random loss rate, the goodput improvement of RedVegas

becomes obvious. When the random loss rate is 6 %, the goodput of RedVegas is

about 2.84 times higher than that of Reno. When the random loss rate is between

3 % and 13 %, RedVegas always keeps a goodput improvement of larger than 20

% in comparison with Vegas. Notably, with 7 % random loss rate, the goodput

improvement is up to 28.9 %. Moreover, the goodput improvements are 16.7 % and

40 % as compared with Vegas and Reno respectively in a severe radom loss rate (15

%).
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Figure 6.7: Average goodput versus cross traffic load for the three TCP variants

with the data packet random loss rate is 0.05.

6.4.3 Impact of Random Loss and Cross Traffic

TCP connections over heterogeneous networks may experience both random losses

and congestion losses. In this subsection we introduce random losses and cross traffic

into the simulation to examine the goodputs of three TCP variants. The results are

shown in Fig. 6.6 and 6.7.

Figure 6.6 depicts the goodputs of the three TCP variants with the random loss

rate varying from 0 to 15 % and the VBR source with 800 Kb/s averaged sending

rate to generate cross traffic. The simulation results demonstrate that both Vegas

and RedVegas can always maintain higher goodputs than Reno. As compared with

Vegas, when the random loss rate is greater than 3 %, RedVegas always achieves a

more than 10 % goodput improvement. In particular, when the random loss rate is

8 %, the goodput improvement of RedVegas reaches 26.7 %.

As the random loss rate is fixed at 5 % and the cross traffic load varies from

0 to 0.9, the simulation results also illustrate that the goodputs of RedVegas are

higher than Vegas and Reno as shown in Fig. 6.7. Compared with Vegas, the goodput

improvement of RedVegas is kept between 6.7 % and 28.1 %; while it is kept between
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6.7 % and 185 % compared with Reno .

6.4.4 Numeric Analysis

Through the above simulation results, we have demonstrated that the goodput of

RedVegas is higher than that of Vegas whenever random losses are introduced.

However, the effectiveness of packet loss distinguishing scheme in RedVegas has not

been verified. To this end, we change the cross traffic loads from 0 to 90 % to study

the loss differentiation accuracy of RedVegas with the random loss rate fixed at 1 %,

5 %, 10 %, or 15 %. The execution time is 500 seconds for each sampling statistics.

Table 6.1 represents the simulation results.

As the random loss rate is 1 % and the cross traffic load is 40 %, RedVegas

detects 472 random losses and 36 congestion losses. For the latter there are 20

wrong judgements. For the 472 detected random losses, there is only one loss caused

by congestion. As the random loss rate is 5 % and the cross traffic load is 20

%, RedVegas infers 1498 random losses and 23 congestion losses. Among the 23

detected congestion losses, RedVegas has 10 correct judgements. However, all the

1498 random losses inferred are correct. Based on the results shown in Table 6.1, we

mainly have the following three observations: (1) the number of congestion losses

is quite small in most of cases, (2) the accuracy of congestion loss detection is not

very high, and (3) the accuracy of random loss detection is close to 100 %.

Since RedVegas adopts the congestion avoidance mechanism used in Vegas, it

precisely control the amount of extra data between α and β in the bottleneck buffer.

Therefore, the congestion losses can be effectively avoided. That is why the number

of congestion losses is quite small in most of cases. Recall that RedVegas intends to

keep a high accuracy of random loss detection by using the CI information carried

by the ACKs of both the preceding and succeeding packets, consequently, some ran-

dom losses may be possibly misinterpreted as congestion losses. The misinterpreting

random loss as congestion loss may degrade throughput, this is same as in Vegas. At

most, the misdiagnosis does not bring any goodput improvement to RedVegas. Fi-
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Table 6.1: Numeric analysis of packet loss differentiation for RedVegas.

(a)Data Packet Random Loss Rate = 1 %

Cross Traffic Load

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Actual Random Loss†/ 862/ 742/ 668/ 554/ 471/ 402/ 328/ 224/ 132/ 52/

Random Loss Detected 862 743 668 554 472 402 328 224 133 53

Actual Congestion Loss‡/ 0/ 4/ 8/ 20/ 16/ 23/ 37/ 40/ 61/ 66/

Congestion Loss Detected 0 11 16 33 36 39 67 60 116 116

†Actual Random Loss does not mean the total number of actual random loss occur,

it means the number of actual random loss occurs in the Random Loss Detected.
‡Actual Congestion Loss means the number of actual congestion loss occurs in the Congestion Loss Detected.

(b)Data Packet Random Loss Rate = 5 %

Cross Traffic Load

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Actual Random Loss/ 1805/ 1759/ 1498/ 1567/ 1257/ 1137/ 1027/ 615/ 436/ 118/

Random Loss Detected 1805 1760 1498 1568 1258 1137 1027 615 436 118

Actual Congestion Loss/ 0/ 3/ 10/ 11/ 15/ 18/ 23/ 34/ 48/ 62/

Congestion Loss Detected 0 8 23 28 47 51 57 88 152 168

(c)Data Packet Random Loss Rate = 10 %

Cross Traffic Load

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Actual Random Loss/ 719/ 555/ 694/ 602/ 695/ 616/ 441/ 453/ 321/ 89/

Random Loss Detected 719 555 694 602 695 616 441 453 322 89

Actual Congestion Loss/ 0/ 2/ 1/ 6/ 2/ 6/ 3/ 9/ 13/ 29/

Congestion Loss Detected 0 2 5 7 6 16 15 31 73 102

(d)Data Packet Random Loss Rate = 15 %

Cross Traffic Load

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Actual Random Loss/ 167/ 236/ 235/ 185/ 219/ 169/ 168/ 136/ 123/ 51/

Random Loss Detected 167 236 235 185 219 169 168 137 124 51

Actual Congestion Loss/ 0/ 1/ 0/ 0/ 0/ 0/ 0/ 3/ 5/ 6/

Congestion Loss Detected 0 1 0 3 4 2 0 6 17 17
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nally, the most remarkable observation is that the accuracy of random loss detection

is close to 100 %. The results demonstrate the goodput improvement of RedVegas

is indeed based on the correct random loss detections.

6.5 Chapter Summary

In this chapter, we propose an improved scheme, RedVegas, for TCP Vegas. By

using the innate nature of Vegas and congestion indications marked by routers,

RedVegas may detect random packet losses precisely. With the ability of precise

random loss detection, RedVegas reacts appropriately to the loss which is either

caused by network congestion or transmission error, and consequently enhances the

goodput of a connection over heterogeneous networks. Simulation results show the

effectiveness of our proposed mechanism. In the future work, we will focus on a new

design of fast recovery mechanism to further improve the utilization of bottleneck

link when the random loss rate is high.

81



Chapter 7

Conclusions and Future Work

TCP is the main congestion control method for the Internet, it must remain effective

and efficient as the Internet evolves. In this dissertation, several important issues

regarding TCP Vegas over the Internet are investigated and improved. We now

conclude the dissertation by summarizing our contributions and briefly discussing

the future work.

7.1 Summary of Contributions

In this dissertation, we propose four enhanced mechanisms to deal with the problems

that may be obstacles of TCP Vegas for achieving a success. The proposed mech-

anisms can be divided into two categories. One is router-assisted solutions such as

RoVegas and RedVegas, the other is end-to-end schemes those are Enhanced Vegas

and Quick Vegas. We summarize their contributions as follows:

RoVegas: In Chapter 3, we carefully examine the problems existed in current

TCP Vegas scheme and point out the wrongfully estimated BaseRTT is the prob-

lem source of issues of rerouting, unfairness, and persistent congestion. A router-

assisted congestion avoidance mechanism, RoVegas, is hence proposed. Comparing

with other previous studies, RoVegas provides a more effective way to solve the

problems of rerouting and persistent congestion, to enhance the fairness among the

competitive connections, and to improve the throughput when congestion occurs
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on the backward path. Through the results of both analysis and simulation, the

effectiveness of RoVegas is demonstrated.

Enhanced Vegas: Different from RoVegas that is a router-assisted solution.

In Chapter 4, we try to improve the performance of TCP Vegas under a constraint

of keeping TCP in end-to-end semantics. Enhanced Vegas uses TCP timestamps

option to estimate queueing delay on the forward and backward path separately

without clock synchronization. Through distinguishing whether congestion occurs

in the forward path or not, it significantly advances the connection throughput when

the backward path is congested.

Quick Vegas: TCP congestion control may function poorly in high BDP net-

works because of its slow response with large congestion window size. In Chapter 5,

Quick Vegas is proposed to improve this problem. Based on the increment history

and estimated amount of extra data, Quick Vegas adopts a more intelligent and

aggressive way to adjust its window size. Simulation results show that Quick Vegas

reacts faster and better to changing environments and therefore improves the overall

performance.

RedVegas: In Chapter 6, we propose a random error detection mechanism for

TCP Vegas. By using the innate nature of Vegas and congestion indications marked

by routers, RedVegas may detect random packet losses precisely. The simulation

results show that the accuracy of random loss detection is close to 100 %. Through

the packet loss differentiation, RedVegas reacts appropriately to the loss which is ei-

ther caused by network congestion or transmission error, and consequently enhances

the performance of a connection over heterogeneous networks.

The operation fields in packet header for each proposed mechanism are indepen-

dent as shown in Fig. 7.1. RedVegas uses two bits in IP header as the CI field and

one bit in TCP header as the CI-echo flag. RoVegas adds a AQT option to IP header

to generate a probing packet. Enhanced Vegas employs TCP timestamps option to

estimate queueing time. Nothing needs to be added in packet header for Quick

Vegas. The independent operation fields will facilitate the integration of proposed

mechanisms.
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version header
length TOS total length

identification flags fragment offset

TTL protocol header checksum

source IP address

destination IP address

options (if any)

IP
Header

source port number destination port number

sequence number

acknowledgement number

header
length reserved U A P R S F window size

TCP checksum urgent pointer

options (if any)

TCP
Header

timestamps option

AQT option

Enhanced Vegas

RoVegas

Quick Vegas -
nothing needs to be added.

RedVegas
CI-echo flag,   CI

Figure 7.1: Operation fields of proposed mechanisms.

7.2 Future Work

To futher advance this study, future work is needed as we have pointed out in the end

of Chapter 3 – Chapter 6. Among these research directions, enabling compatibility

between TCP Reno and TCP Vegas may be an attractive topic. One possible reason

for TCP Vegas is still unpopular in the Internet is that, when Reno and Vegas coexist

in the same bottleneck, Reno generally steals bandwidth from Vegas. Therefore, if

TCP Vegas may compete well with TCP Reno in this situation, it will great motivate

Internet users to adopt TCP Vegas.
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