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*e reasonable distance between adjacent cars is very crucial for roadway traffic safety. For different types of drivers or different
driving environments, the required safety distance is different. However, most of the existing rear-end collision models do not
fully consider the subjective factor such as the driver. Firstly, the factors affecting driving drivers’ characteristics, such as driver
age, gender, and driving experience are analyzed. *en, on the basis of this, drivers are classified according to reaction time.
Secondly, three main factors affecting driving safety are analyzed by using fuzzy theory, and the new calculation method of the
reaction time is obtained. Finally, the improved car-following safety model is established based on different reaction time. *e
experimental results have shown that our proposed model obtained more accurate vehicle safety distance with varied traffic
kinematic conditions (i.e., different traffic states, varied driver types, etc.). *e findings can help traffic regulation departments
issue early warnings to avoid potential traffic accidents on roads.

1. Introduction

Private car has become affordable for public with the quick
development of economic and promotion of manufacture
technique. An adverse effect of is increasing traffic accidents
on roadways which greatly imperil traffic safety and effi-
ciency. *e previous studies have shown that drivers are
assumed to the take the major responsibility for the traffic
accidents (i.e., a few accidents are triggered by vehicle de-
fects). Indeed, over 80% traffic accidents on roads can be
ascribed to driver misconduct (e.g., answering cell phone,
smoking, and taking naps) [1, 2]. It is observed that varied
driver characteristics (e.g., age, gender, experience, and
speed of response) can impose different impact on indi-
vidual vehicle maneuver procedure. *e driver response
time for different driver types for taking actions against
dangerous driving situations is varied, which has attracted a
lot of research attentions [3–5]. More specifically, the

aggressive drivers require smaller displacement between
neighboring vehicles when traveling on road, while the mild
drivers are likely to keep sufficient vehicle headway for the
purpose of avoiding potential traffic accidents. Note that
quantifying such vehicle rear end displacement considering
driver types is not easy, which is indeed a hot topic in the
transportation safety research community.

Several studies have been conducted to establish mini-
mum safety following distance model with vehicle kinematic
data (i.e., driver types, vehicle acceleration/decelerations
distributions, etc.). Zhang and Hao deeply analyzed the re-
sistance influence on theminimum safety distance, which was
involved with air resistance, road resistance, vehicle wheel
rolling resistance, etc. [6]. Xu et al. proposed a minimum
safety car-following model under different driver states by
considering the vehicle acceleration/deceleration in vehicle
braking process [7]. Spyropoulou proposed a novel vehicle
safety distance model which considered the constraints of
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vehicle speed variation, minimal safety distance, etc. [8]. Hu
et al. firstly studied driver behavior differences and empirical
judgment ratio distributions in an abnormal traffic scenario
and then proposed a car-following model for estimating the
minimum safety distance for the emergency evacuation ve-
hicle [9]. Similar research studies can be found in [10–14].

Many studies have been conducted to analyze the rela-
tionship between traffic safety and drivers characteristic, in-
cluding driver personality, physical fitness, driver distraction,
etc. [15–18]. Tang and Xia implemented a series of experi-
ments to measure the reaction time of four different driver
types and further studied its impact on the minimal safety
distance of preventing rear-end collision [17]. Tang and Xia
analyzed a variety of factors that affect the driver reaction time
by using fuzzy mathematics theory and then proposed a novel
model to estimate driver reaction time [17]. By considering
influence of driver individual differences, vehicle braking
performance, and driving states, Zhang et al. established a car-
following model with minimum safety distance for three
typical traffic states [19]. Similarly, Xue et al. proposed a rear-
end collision behavior model considering the individual dif-
ferences of drivers [20]. Some scholars analyzed the rela-
tionship between other influencing factors and car safety, such
as the speed relation among adjacent vehicles [21, 22].

Fuzzy relevant models have been proposed to simulate
real-world traffic situations considering varied driver types
and thus provide optimal traffic control strategies for the
purpose of ensuring traffic safety and efficiency (i.e., with
minimal waiting time, short queue length, etc.). Chai et al.
proposed a simulation-based approach to measure driver
cognitive failures, which was implemented with fuzzy logic
and cellular automata model [23]. Azimirad et al. proposed a
novel fuzzy traffic controller to formulate and optimize traffic
control at isolated signalized intersection [24]. Li proposed a
dynamic fuzzy neural networks traffic flow prediction model
to accurately obtain traffic flow prediction under chaos traffic
state [25]. Bocklisch et al. proposed an adaptive fuzzy pattern
classification model for simulating nonlinear, multidimen-
sional transition processes, which aims to identify the lane
change intentions for varied driver types [26].

*e previous studies focusing on vehicle rear-end colli-
sion analysis mainly employed the kinematic data to estimate
minimal neighboring vehicle distance with the quantitative
indicators (i.e., speed, displacement, etc.), which did not
consider the qualitative indicators (e.g., driving behavior
differences influence) and mainly led to biased results. *e
advantages of fuzzy theory can help us quantify the physi-
ological and psychological characteristics of vehicle drivers
and thus provide us a more holistic view of the car-following
model.*e paper is organized as follows. Driver features were
deeply analyzed in Section 2, and the proposed safety model
was illustrated in Section 3. *e experimental results were
described in Section 4, and Section 5 concluded the paper.

2. Driving Characteristics and Reaction Time

2.1. Driving Characteristics Analysis. *e vehicle controlling
procedure consists of environment perception, potential risk
judgment and traveling decision making, and vehicle maneuver,

which can be found in Figure 1. In the perception stage, the
driver’s control of car speed and perception of surrounding
environment have a close bearing on the driver’s reaction speed
to the unexpected situation. In the judgment and decision-
making stage, the driver makes control decisions based on
driving experience to ensure driving safety. In the operation
stage, the driver controls the car accelerating, decelerating,
turning, and braking according to the decision. Note that over
80% traffic accidents are triggered due to the driver errors
[16, 27, 28]. To avoid the potential traffic accidents, drivers are
supposed to take early and correct maneuver activities (i.e.,
identify risky behaviors, decide the suitable travel behavior, take
maneuver activities, etc.) for each of vehicle maneuver steps.

*e driver’s individual characteristics can be analyzed
from physiological and psychological factors, for example, the
driver’s age, gender and driving age, fatigue and emotions
while driving, the driver’s own driving style and safety atti-
tude, traffic regulations awareness level, and so on. *ese
research studies show that [29–31] (1) the reaction speed to
the emergency situation will be significantly reduced with age;
(2) in terms of emergency response capacity and the ability to
cope with the complex external environment, the female
drivers are worse than the male drivers; (3) the experienced
driver has the faster reaction in the emergency situation; and
(4) the adventure driver is more likely to be in danger of rapid
acceleration, deceleration, and changing lanes than the cau-
tious driver. Based on the above analysis, it is necessary to
quantify the driving characteristics into quantifiable param-
eters, such as reaction time, which can be introduced into the
modeling process of the improved car-following model.

2.2. Relationship Analysis between Driver Characteristics and
Reaction Time. *e driver age, driving experience duration,
and fatigue level are considered as crucial elements for
quantifying analysis on the relationship between driver
characteristics and reaction time [32, 33]. Previous studies
have evaluated the reaction time variation under different
traffic flow density constraints by building three kinds of
traffic flow density scenarios, which suggested that the driver
reaction time tends to be shorter in higher traffic flow
density. Factually, the driver in a conservative driving style
(intends to obtain much larger distance) has the longest
reaction time regardless of the vehicle braking manner. *e
driver age has a significant interference to driver reaction
time which is obviously observed in the emergency traffic
situations. *e statistical distributions of empirical traffic
data suggested that the average and variance of collision
avoidance reaction time of 18 to 30 years old drivers are the
smallest and the drivers over 51 years old have the longest
collision avoidance reaction time. Previous studies suggested
that aging drivers need more reaction time because they
require longer time to think carefully about various potential
travel strategies [18, 34, 35]:

tr � 1 +(1 − C)
1− Q, (1)

where tr is the driver’s reaction time, C is the response
degree of different types of drivers under different condi-
tions, and Q is vehicle braking type.
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According to the formula, the reaction time of several
representative driver types is obtained which is shown in
Table 1 (for details, see [9]).

3. Analysis and Improvement of Safety
Distance Model

*e reaction time of various types of drivers is different
when they face the same situation, so the required safety
distance is also different.*e improvement of safety distance
model mainly researches on driver’s reaction time and
confirms a more reasonable safety distance. When estab-
lishing the model, the driver’s reaction time varies from
different influencing factors. Some researchers discovered
that these influencing factors are not absolutely indepen-
dent, but have a certain intersection, and they have char-
acteristics of fuzziness [36, 37]. *erefore, this study uses the
fuzzy mathematics principle to calculate reaction time of
different types of drivers.

3.1. ReactionTimeAnalysis. *ere are many factors affecting
the driver’s driving behavior, and the impact of these factors
can be measured by the reaction time of drivers.*rough in-
depth analysis and comparative research, three main factors
affecting response time were selected in this manuscript: age,
driving age, and fatigue. Other factors will be considered in
future research.

In the fuzzy inference system, there are three variables
including input variables, fuzzy rules, and fuzzy output, as
shown in Figure 2. After determining the influencing factors,
the fuzzy distribution method is used to determine mem-
bership function, and the Gaussian or semi-Gaussian dis-
tributions are selected which include small, large, and
intermediate types that correspond exactly to the conser-
vative, adventurous, and conventional types of driver clas-
sification [38, 39].

(1) Membership function of age:

*e driver’s age can be roughly divided into three
parts including youth, middle, and old age, which are
denoted as A1, A2, and A3, respectively. *e legal
driver age in China ranges from 18 to 70 which are
supposed by China traffic regulations. Following
such rule, the driver age interval is set as [20, 70].*e
membership function of driver’s age is trapezoidal
membership function.

(2) Membership function of driving age:

As for the driver’s driving age, it can be roughly
divided into three levels including low, medium, and
high, which are denoted as B1, B2, and B3, and the

interval [0, 50] is selected. More specifically, we set
the driving age interval from 0 to 50 considering that
a driver can hold a driver license without longer than
50 years. *e membership function of driving age is
the Gaussian membership function.

(3) Membership function of fatigue degree:

*e driving time is used to express the driver’s fa-
tigue. It can be roughly divided into mild, moderate,
and high fatigue magnitude, respectively, which are
marked as C1, C2, and C3. Note that driver fatigue
interval is set as [0, 10] following the rules suggested
by the Chinese traffic regulations. *e driver fatigues
the membership function is the Gaussian member-
ship function.

(4) Reaction time variable:

*e inference system finally derives the driver’s re-
action time according to fuzzy theory. Based on a
large number of survey results, it is generally believed
that the driver’s response time interval is [0.2, 3.0],
which can be roughly divided into short, medium,
and long. *erefore, the Gaussian-type function is
used for the membership function.

After inputting the driver’s age, driving age, and fatigue
level, the fuzzification process can be performed to obtain
the approximate value of the driver’s reaction time, and then
the center of gravity defuzzification method is used for
antifuzzification, and the precise value of the reaction time
can be obtained. Its expression is

y0 �
 uc(y)y dy
 uc(y)dy

, (2)

where  is the integral of all subsets in the continuous
domain y and y0 means that the area of left and right sides is
the same.

3.2. Improved Safety Distance Model Establishment. *e
reaction time is used to distinguish different types of drivers
and is used as a parameter in the process of model building.
In order to analyze different driving conditions compre-
hensively, three states of static, uniform, and deceleration of
the preceding car were analyzed in order to establish the
safety distance model.

(1) Static state of the front car:

When the front vehicle is stationary, the positional
relationship between the two vehicles is shown in
Figure 3.

Perception Operation Driving
Environmental,

vehicle information

Feedback

Judgment and
decision 

Figure 1: Control flow for vehicle maneuver procedure.
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At position 1, the rear car begins to realize the
danger. After the reaction time t, the rear car will
arrive at position 2.*e rear car maintains a constant
speed v1 during the whole process, and traveling
distance in reaction time t is

S1 � v1t. (3)

At position 2, the rear car starts to brake at the maximum
deceleration, and its speed drops to 0 at position 3. At this
time, the distance between the front and rear cars is d0,
and the distance traveled by rear car during this time is

S2 �
v21
2a1

. (4)

To avoid collision of two cars, the minimum safety
distance needed to maintain is

D1 � S1 + S2 + d0 �
v1t + v

2
1

2a1 + d0
, (5)

where a1 is the maximum braking deceleration of the
rear car and d0 is the minimum safety distance re-
quired for the two cars.

(2) Uniform state of the front car:

When two cars are driving at a constant speed, a
collision occurs only when the speed of the following
vehicle is faster than the speed of the preceding
vehicle. *e positional relationship is shown in
Figure 4.

Assume that the rear car is in position 1 and the front
car is in position 3. *e rear car will reach position 2
after reaction time t, and then it starts to brake.
During the reaction time, the rear car maintains a
constant speed, and the distance traveled is

S1 � v1t. (6)

At position 2, assume that the rear car begins to de-
celerate until its speed is the same with the front car;
meanwhile, the front car arrives at position 5 and the
rear car arrives at position 4. In this process, the dis-
tance traveled by the rear car and the front car is,
respectively,

S3 � v2t2 �
v2 v1 − v2( 

a1
�
v1v2 − v

2
2

a1
. (7)

To avoid collisions of two cars, the minimum safety
distance needed to maintain is

D2 � S1 + S2 − S3 + d0 � v1t +
v21 − v

2
2

2a1
−
v1v2 − v

2
2

a1
+ d0.

(8)

(3) Deceleration state of the front car:

When the speed of the rear car is faster than that of
the front car, the two cars have the possibility of
collision. In order to prevent this collision, the speed
of the two cars is equal or the speed is zero when the
distance between two cars is d0. *e position rela-
tionship is shown in Figure 5.

With the previous analysis, the rear car travels from
position 1 to position 2 within the reaction time t. *e
distance traveled is

S1 � v1t. (9)

At position 2, the rear car begins to brake. When the
speed of two cars is equal (set as v), the rear and the front car

Table 1: Reaction time of different types of drivers (s).

Driver types
Conservative Cautious Conventional Radical Adventurous
C� 0.1 C� 0.3 C� 0.5 C� 0.7 C� 0.9

Hydraulic brake/Q� 0.15 1.91 1.74 1.55 1.36 1.44
Barometric brake/Q� 0.4 1.94 1.81 1.66 1.49 1.25

DefuzzificationFuzzification Fuzzy rules Fuzzy result
Input

age, driving
age, fatigue,
degree, etc.

Output

reaction
time

Figure 2: Fuzzy inference system.

Rear car Rear car Front carRear car
v

S1 S2 d0

Position 1 Position 2 Position 3 Position 4

Figure 3: Positional relationship (in the static state of the front
car).
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will arrive the position 4 and 5, respectively. *e travel
distances are as follows:

S2 �
v21 − v

2

2a1
,

S3 �
v22 − v

2

2a2
.

(10)

To avoid collisions, the minimum safety distance to be
maintained is

D3 � S1 + S2 − S3 + d0 � v1t +
a2 − a1( v2 + a1v22 − a2v21

2a1a2
+ d0,

(11)
where a2 is the braking deceleration of the front car and the
remaining parameters have the same meaning as mentioned
above.

4. Model Simulation and Analysis

4.1. Improved Model Simulation. When the front car is in
three different states, the establishedmodel is simulated. Due to
the combination of three factors (age, driving age, and fatigue
degree) and limited space, representative combinations are
selected for simulation. For example, the age is 30, 45, and 60,
the driving age is 5, 10, and 15, and the values of fatigue degree
take 2, 5, and 8. *ese numbers are arranged and combined
randomly. Table 2 shows the driver reaction time obtained by
substituting three groups of factors into the fuzzy system.

From Table 2, some conclusions can be obtained as
follows. (1) When the driver’s age and driving age are
constant, the driver’s reaction time is directly proportional
to the fatigue degree. (2) When the driver’s age and fatigue
degree are constant, the driver’s reaction time is directly
proportional to the driving age. (3) When the driver’s
driving age and fatigue value are constant, the driver’s re-
action time is directly proportional to the age. And, between

the ages of 30 and 45, the driver’s reaction time grows slowly,
and after the age of 45, the growth rate accelerated.

4.2. Comparative Analysis of Different Models

4.2.1. Traditional Safety Distance Model. So far, there are
many classic car safety distancemodels, such as, theMazdamodel,
the Honda model, and the models proposed by the domestic
research institutes and various universities [14], as follows:

(a) *e Mazda model:

Rear car Rear car Front car Rear car
v

S1 S2 d0

Front car

D2 S3

Position 1 Position 2 Position 3 Position 4 Position 5

Figure 4: Positional relationship (in the uniform state of the front car).

Rear car Rear car Front car Rear car

Position 1 Position 2 Position 3 Position 4 Position 5

v

S1 S2 d0

Front car

D2 S3

Figure 5: Positional relationship (in the deceleration state of the front car).

Table 2: Reaction time in different combinations.

Age, driving age, and fatigue degree Reaction time (s)

(30 5 2) 1.21
(30 5 5) 1.58
(30 5 8) 1.69
(30 10 8) 1.83
(30 10 5) 1.52
(30 10 2) 1.28
(45 5 2) 1.39
(45 5 5) 1.92
(45 5 8) 2.10
(45 10 8) 1.99
(45 10 5) 1.73
(45 10 2) 1.32
(45 15 8) 1.91
(45 15 5) 1.62
(45 15 2) 1.38
(60 5 2) 1.94
(60 5 5) 2.58
(60 5 8) 2.75
(60 10 8) 2.71
(60 10 5) 2.53
(60 10 2) 1.81
(60 15 8) 1.91
(60 15 5) 1.61
(60 15 2) 1.34
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d �
a2v

2
1 − a1v

2
2

2a1a2
+ v1t1 + vrt2 + d0. (12)

(b) *e Honda model:

D �(1.2 + l)v1 +
v21 − v

2
2

2a
+ d. (13)

(c) Research institutes’ model:

S0 � 0.3195v1 + 0.034vr +
vr 2v1 − vr( 
254.06φ

+ 5. (14)

(d) Universities’ models:

dw � τvc +
v2c
2ac

+ doff ,

Dx �
v2c

2 0.0826vc + 0.6177( 
+ 3.6.

(15)

In the formulas, d,D, S0, dw, andDx represent the safety
distance, v1 and v2 represent the speed of the leading and
following car, a1 and a2 represent the acceleration of the
leading and following car, vr is the relative speed, d0 and d
represent the minimum safety spacing, l is the length of car,
τ is the response time of driver, and the remaining pa-
rameters are the same as before.

4.2.2. Model Comparison and Analysis. *e reaction time
deduced by the fuzzy theory is substituted into different
safety distance models. Under different reaction times, the
safety distances calculated by different models are dif-
ferent. Four groups of data are randomly selected as
comparisons.

(1) Static state of the front car:

D1 represents the safety distance of modified model
when the leader car is in the anchoring state. In such
traffic state, the parameters are set as follows: the
initial speed of the rear car is 60 km/h and the de-
celeration is 4m/s2. *e safety distance between the
two cars is 50m. More specific parameter settings are
shown in Table 3.

(a) We employ MATLAB to implement experiment
when the driver reaction time is set to 1.21 s, and
the corresponding results are shown in Figure 6.
*e comparison result of safety distances for
different models is shown in Figure 7.

From Figure 6, we can see that the two curves in-
tersect at 50m, which proves that setting the safety
distance to 50m is not enough and a collision will
occur. Under this condition, the safety distance of
rear-end collision model is 54.89m by calculation.
From Figure 7, it can be found that in all the models,

the improved model D1 is the closest to the mini-
mum safety distance.

(b) We employ MATLAB to implement experiment
when the driver reaction time is set to 1.58 s,
and the corresponding results are shown in
Figure 8. *e comparison chart of safety dis-
tances for different models is shown in Figure 9.

From Figure 8, the safety distance is 61.06m. From
Table 3, it can be seen that the models D1 and D are
close to theminimum safety distance. However, due to
the need of keeping a certain distance between two cars
when they are still, the model D1 is more appropriate.

(2) Uniform state of the front car:

D2 represents the safety distance of the modified
model when the front car is in the uniform state. In
such traffic state, the parameters are set as follows:
the speed and deceleration of the rear car are 80 km/h
and 4m/s2 and the speed of the front car is 40 km/h.
*e safety distance between the two cars is 50m.
More specific traffic parameters for obtaining safety
distance in the traffic state are shown in Table 4.

(a) We employ MATLAB to implement experiment
when the driver reaction time is set to 1.39 s, and
the corresponding results are shown in Figure 10.
*e comparison chart of safety distances for
different models is shown in Figure 11.

It can be seen from Figure 10 that since there are no
intersections between the two curves, it can be seen that
the safety distance of 50m is sufficient, and the cal-
culated safety distance to prevent rear end is 31.37m.
Figure 11 shows that the safe distance of model D2 is
closest to 31.37m, so the model D2 is most suitable.

(b) We employ MATLAB to implement experiment
when the driver reaction time is set to 1.73 s, and
the corresponding results are shown in Figure 12.
*e comparison of the safety distances of dif-
ferent models is shown in Figure 13.

It can be seen from Figure 12 that since there are no
intersections between the two curves, it can be seen
that the 50m safety distance is sufficient. According
to MATLAB calculations, the safety distance is
34.78m if there is no collision. From Figure 13, it is
found that the safe distance of model D2 is closest to
31.37m, so the model D2 is most suitable.

(3) Deceleration state of the front car:

D3 represents the safety distance of the modified
model when the front car is in the deceleration
state. In this driving condition, the parameters are
set as follows: the speed and deceleration of the
rear car are 100 km/h and 5m/s2 and the speed and
deceleration of the front car are 60 km/h and 3m/
s2. *e safety distance between the two cars is 50m.
*e safety distance of different models (in the
deceleration state) is shown in Table 5.
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(1) When the driver’s reaction time is 1.21 s, use
MATLAB simulation to obtain results as shown in
Figure 14. *e comparison of the safety distance of
different models is shown in Figure 15.

From Figure 14, there are intersections between
the two curves, which proves that it is not enough
to set the safety distance to 50 m, and there will be
a collision. After the simulation calculation, the

Table 3: Safety distance of different models (in the static state).

Age, driving age, and fatigue degree (30 5 2) (30 5 5) (30 5 8) (30 10 8)
Reaction time (s) 1.21 1.58 1.69 1.83
D1 59.89 66.06 67.89 70.22
d 63.22 69.39 71.22 73.56
D 59.82 61.95 67.42 70.53
S0 96.26 96.26 96.26 96.26
dw 61.37 69.87 72.36 75.96
Dx 70.12 70.12 70.12 70.12
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Figure 6: Distance change (in the static state on front car).
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Figure 7: Safety distance comparison (in the static state on front
car).
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safety distance for preventing rear-end collision is
64.5 m. It can be seen from Figure 15 that the
safety distance of model D3 is the closest to
64.5 m. *us, the model D3 is most suitable.

(2) We employ MATLAB to implement experiment
when the driver reaction time is set to 1.73 s, and
the corresponding results are shown in
Figure 16.

Table 4: Safety distance of different models (in the uniform state).

Age, driving age, and fatigue degree (45 5 2) (45 10 5) (60 15 8) (60 5 8)
Reaction time (s) 1.39 1.73 1.91 2.75
D2 51.32 58.88 62.88 81.54
d 99.84 107.40 111.40 130.06
D 69.82 71.95 77.42 80.53
S0 134.37 134.37 134.37 134.37
dw 109.37 116.87 123.36 138.96
Dx 108.40 108.40 108.40 108.40
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Figure 11: Safety distance comparison (in the uniform state of
front car).
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Figure 13: Safety distance comparison (in the uniform state of
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From Figure 16, it can be seen that there are intersections
between the two curves, which proves that setting the safety
distance to 50m is not enough and a collision will occur.
After simulation calculation, the safety distance of pre-
venting rear-end collision is 78.67m. As can be seen from

Figure 17, the safety distance of model D3 is the closest to
78.67m, so the model D3 is most suitable.

We have evaluated varied minimal car-following dis-
tances at different speed variations. For instance, the min-
imal vehicle headways are 32.04m and 63.86m when the

Table 5: Safety distance of different models (in the deceleration state).

Age, driving age, and fatigue degree (30 5 2) (45 10 5) (60 10 2) (60 5 5)
Reaction time (s) 1.21 1.73 1.81 2.58
D3 69.60 84.05 86.27 107.66
d 73.22 91.89 93.22 106.06
D 76.82 93.95 96.42 108.53
S0 106.26 106.26 106.26 106.26
dw 81.37 89.87 92.36 105.96
Dx 89.12 89.12 89.12 89.12

0

20

40

60

80

100

120

D
is

ta
n

ce
 (

m
)

Time t(s)

Rear car

Front car

0 1 2 3 4 5 6 7 8 9 10

Figure 14: Distance change (in the deceleration state of front car).
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Figure 15: Safety distance comparison (in the deceleration state of
front car).
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Figure 16: Distance change (in the deceleration state of front car).
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Figure 17: Safety distance comparison (in the deceleration state of
front car).
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following car moves at 60 km/h and 90 km/h with the
leading vehicle in the uniform state. *e minimal vehicle
distance can be shorter when the leading vehicle is in the
deceleration state and the following car has same speed
constraints (i.e., 60 km/h and 90 km/h). Vehicle speed in-
fluence on the simulation model can be summarized as two-
folds: (1) the required minimum following distance for the
following car is different when the leading car is in different
traffic states (e.g., different speeds) and (2) the traveling
speed of the following car is in positive relationship to that of
the minimal car-following distance (i.e., higher speeds re-
quires larger minimal distance).

5. Conclusions

We have analyzed different driver types’ influence on
roadway safety and thus quantified the influence by
establishing a novel car rear-end collision model. We
employed the fuzzy theory to build the reasoning model
with the input of typical traffic safety factors (i.e., driver
age, driving age, and fatigue degree) and output the
driver reaction time. With the aim of obtaining mini-
mum safety following distance, we have deeply analyzed
the safety distance between two neighboring vehicles
with leading vehicle at varied states. We have estimated
minimal safety distances for the two vehicles with the
leading car in varied kinematic states (i.e., static, de-
celeration, and constant speed), which are indeed
commonly encountered on the roadway traffic scenarios.
Suppose two of the traffic factors are in constant states,
driver reaction time is proportional to the variation of
the remaining factor (either in negative or positive).
Compared with the traditional rear-end model, the
proposed safety distance model established can be
adapted to different types of drivers, which can better
benefit traffic management and control.
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